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Abstract
The MLF type system by Le Botlan and Rémy (2003) is a natural
extension of Hindley-Milner type inference that supports full first-
class polymorphism, where types can be of higher-rank and im-
predicatively instantiated. Even though MLF is theoretically very
attractive, it has not seen widespread adoption. We believe that this
partly because it is unclear how the rich language of MLF types
relate to standard System F types. In this article we give the first
type directed translation of MLF terms to System F terms. Based
on insight gained from this translation, we also define “Rigid MLF”
(MLF=), a restriction of MLF where all bound values have a Sys-
tem F type. The expressiveness of MLF= is the same as that of
boxy types, but MLF= needs fewer annotations and we give a de-
tailed comparison between them.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Polymorphism

General Terms Languages, Design, Theory

Keywords First-class polymorphism, System F, MLF

1. Introduction
The MLF type system by Le Botlan and Rémy (2003) is a natural
extension of Hindley-Milner type inference that supports full first-
class polymorphism, where any value can have a polymorphic type.
MLF has a strong theoretical foundation and requires very few type
annotations. Even though MLF is very attractive for these reasons,
it has not seen widespread adoption. We believe that this is partly
because the type language of MLF is richer than that of System F.
Besides that this is harder on the programmer, it is also harder to
write a compiler for a language based on MLF: many compilers
use an intermediate language based on System F, and the relation
between MLF terms and System F terms far from clear.

In an attempt to remedy this situation, Leijen and Löh (2005)
described a type inference algorithm that returns System F terms
for well-typed MLF terms. Unfortunately, such algorithm does not
give particular insight into the relation between MLF type rules and
the translated System F terms. Furthermore, we believe that one of
the reasons that a type directed translation was not given in the
previous article is that it is surprisingly subtle to do so – indeed,
this is the main technical contribution of this paper. Specifically:
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• We are the first to give a type directed translation from MLF to
System F terms, and we prove that the translation is sound. The
translation of MLF types that go ‘beyond System F’ (namely
flexibly bound polymorphic types) is done using evidence trans-
lation.

• We show that a translation is possible where no evidence is
passed for polymorphic types with rigid bounds, which corre-
spond naturally to inlined System F types. This greatly simpli-
fies the translated System F terms, but we need to define the
translation on slightly modified type rules. We show that the
modified type rules are sound and complete with respect to the
original MLF type rules.

• It is widely believed that a System F translation of impredica-
tive types may need to traverse structures at runtime to apply
coercion terms. We show conclusively that this is not the case
for MLF and that there exists a concise translation that builds
coerced terms directly without runtime traversals.

• The type directed System F translation leads naturally to the
definition of a restriction of MLF, called “Rigid MLF” (MLF=),
where all bound values have a standard System F type. We
show that MLF= has the same expressiveness as boxy type
inference (Vytiniotis et al. 2006), but needs fewer annotations.
Since MLF= hides MLF types, it can work well as a simplified
version of MLF where the programmer only works with regular
System F types.

In the next section, we start with an introduction to MLF and
explain the MLF type rules. Section 3 first gives an overview
of the difficulties of translating MLF to System F, and introduces
a modified set of type rules on which we define a type directed
System F translation. Section 4 defines MLF=, a restriction of
MLF where all values have System F types. Finally, in the related
work section (Section 5) we give a detailed comparison between
Hindley-Milner, MLF, MLF=, and boxy types.

2. An introduction to MLF
Functional languages with type inference are almost always based
on the Hindley-Milner type system (Hindley 1969; Milner 1978)
– and for good reasons. Type inference based on Hindley-Milner
can automatically infer most general, or principal, types for ex-
pressions without further type annotations. Also, the type system is
sound, and well-typed programs cannot “go wrong”.

To achieve automatic type inference, the Hindley-Milner type
system restricts polymorphism and polymorphic values are not
first-class citizens. In particular, function arguments can only be
monomorphic. Formally, this means that universal quantifiers can
only appear at the outermost level (i.e. higher-ranked types are
disallowed), and quantified variables can only be instantiated with
monomorphic types (i.e. impredicative types are disallowed).

The MLF type system by LeBotlan and Remy (Le Botlan 2004;
Le Botlan and Rémy 2003) is a natural extension of Hindley-Milner



that lifts these restrictions and supports first-class polymorphism
with higher-ranked and impredicative types. In contrast to Hindley-
Milner, some type annotations are required in MLF to avoid guess-
ing polymorphic types. Take for example the following program:

poly f = (f 1, f True)

This program is rejected by both MLF and Hindley-Milner. The
program would be accepted in MLF if we annotate the argument
f with a polymorphic type, like ∀α. α → α or ∀α. α → Int .
The type of a polymorphic argument like f cannot be inferred
automatically since there exist many types for f none of which are
an instance of the other – there is no principal type.

The reader might be worried that many type annotations are
needed, but such is not the case. MLF has a remarkable property
that the only required type annotations are on arguments that are
used polymorphically. For example,

poly (f :: ∀α. α → α) = (f 1, f True)

is a well-typed MLF program. Note that the annotation rule implies
that all programs accepted by Hindley-Milner are also accepted by
MLF. Moreover, the annotation rule only requires annotations on
polymorphic arguments that are also used polymorphically and not
merely ‘passed through’. For example:

polyL :: [∀α. α → α ] → (Int ,Bool) -- inferred
polyL xs = poly (head xs)

is accepted without type annotations even though xs has an (in-
ferred) impredicative polymorphic type. We consider this an impor-
tant property for abstraction and modularity, since we can (re)use
standard functions like head , with type ∀α. [α ] → α, for lists that
contain polymorphic values. As another example, consider the ap-
plication function:

apply :: ∀αβ. (α → β) → α → β -- inferred
apply f x = f x

Of course, the direct application poly id is well typed in MLF, but
also the abstracted application apply poly id . No type annotations
are needed, except for the argument annotation of poly . Note that
to type check apply poly id , the α quantifier in the type of
apply is impredicatively instantiated to the polymorphic type of id ,
namely ∀α. α → α. More generally, if an application e1 e2 is well
typed in MLF, than the expression apply e1 e2 is also well typed.
In general, this applies to functors (apply) applying polymorphic
functions (poly) over structures holding polymorphic values (id ).
For example, we can use the standard map function to apply the
poly function to the elements of a list of identity functions, as in
map poly [id , id ], without any further type annotations.

2.1 Bounded types
Essential to type inference is the ability to assign principal types
to expressions. In the presence of impredicative polymorphism
however, we need more than standard System F types to have
principal types. Consider the following program

let ids = [id ] in (polyL ids, ids ++ [inc ])

where inc has type Int → Int and the append function (++)
has type ∀α. [α ] → [α ] → [α ]. In a setting with first-class
polymorphism we can assign two types to ids , namely a list of
polymorphic identity functions, [∀α. α → α ], or a polymorphic
list of monomorphic identity functions, ∀α. [α → α ]. Indeed,
in the body of the let expression, we use ids with both types:
the polyL function requires the first type, while appending to an
[Int → Int ] list requires the second type. Unfortunately, neither
of these types is an instance of the other – so what type should we
give to ids to make the program well typed?

Monomorphic types
τ ::= α type variable
| c τ1 . . . τn constructor application

Polymorphic types
σ ::= q .σ quantified type
| τ mono type
| ⊥ most polymorphic type

Quantifier
q ::= ∀(α�σ) a bounded quantifier
� ::= > | = a bound is flexible or rigid

Prefix
Q ::= q1, ..., qn a prefix is a list of quantifiers

Syntactic sugar
∀α = ∀(α>⊥)
Q .τ = q1. ... .qn.τ quantify using a prefix

Figure 1. MLF types.

MLF solves this dilemma by going beyond standard System F types
and assigns a type that can be instantiated to both of the previous
types. The MLF type for ids is ∀(β>∀α. α → α). [β ], which is
read as “a list of β, for all types β that are an instance of (or equal
to) ∀α. α → α”. As we will see later, both of our previous types
are instances of this type:

∀(β>∀α. α → α). [β ] v [∀α. α → α ]
∀(β>∀α. α → α). [β ] v ∀α. [α → α ]

where σ1 v σ2 states that σ2 is an instance of σ1. We call > a
flexible bound. For regularity, MLF also introduces rigid bounds,
written as =. The type ∀(β = ∀α. α → α). [β ] is read as “a list
of β, where β is as polymorphic as ∀α. α → α”. Indeed, the type
[∀α. α → α ] is just a syntactic shorthand for the previous type and
we generally inline rigid bounds for notational convenience.

2.2 MLF types formally
Figure 1 defines the grammar of MLF types. Monomorphic types
τ are either a type variable α, or a type constructor application.
We assume that the function constructor → is part of the type
constructors and we do not need to treat it specially. Polymorphic
types σ are either a monomorphic type, the most polymorphic type
⊥, or a polymorphic type quantified with a bound ∀(α�σ1). σ2,
where the bound � is either flexible (> ) or rigid (=).

A quantifier with a flexible bound can be instantiated to any
instance of its bound. In particular, a quantifier ∀(α>⊥) can be
instantiated to any type since ⊥ is the most polymorphic type. For
example, the full MLF type for the identity function is:

id :: ∀(α>⊥). α → α

We call ∀(α>⊥) an unconstrained bound and usually shorten it to
∀α. The ⊥ type is defined as equivalent to ∀(α>⊥). α. Note that
in Hindley-Milner all quantifiers are always unconstrained.

A list of quantifiers is called a prefix and denoted as Q . We
always assume that the quantified variables are distinct and form
the domain of Q , written as dom(Q). If all quantifiers are uncon-
strained, we call Q an unconstrained prefix.

2.3 Type rules of MLF
The type rules for MLF are given in Figure 2. Given the expressive-
ness of MLF, they are surprisingly simple and very similar to the
type rules of Hindley-Milner. A derivation (Q) Γ ` e : σ means
that under a prefix Q and type environment Γ the expression e has



VAR
x : σ ∈ Γ

(Q) Γ ` x : σ

APP
(Q) Γ ` e1 : τ2 → τ (Q) Γ ` e2 : τ2

(Q) Γ ` e1 e2 : τ

FUN
(Q) Γ, x : τ1 ` e : τ2

(Q) Γ ` λx .e : τ1 → τ2

LET
(Q) Γ ` e1 : σ1 (Q) Γ, x : σ1 ` e2 : σ2

(Q) Γ ` let x = e1 in e2 : σ2

GEN
(Q , α�σ1) Γ ` e : σ2 α /∈ ftv(Γ)

(Q) Γ ` e : ∀(α�σ1). σ2

INST
(Q) Γ ` e : σ1 (Q) σ1 v σ2

(Q) Γ ` e : σ2

ANN
(Q) Γ ` e : σ1 (Q) σ @− σ1

(Q) Γ ` (e :: σ) : σ

Figure 2. Type rules

type σ. The type environment Γ contains the types of all the free
term variables in e . The prefix Q contains the bounds of all the free
type variables in Γ, σ, and e1. In Hindley-Milner, the prefix Q is
usually left implicit since all the bounds of the free type variables
are always unconstrained.
The application rule APP applies a function to a monomorphic
argument. Remarkably, this is still expressive enought to apply
functions to polymorphic arguments since the prefix Q can contain
a polymorphic bound of a (monomorphic) type variable. As an
example, we derive the type for the application poly id , where σid

stands for the type ∀α. α → α, τ for (Int ,Bool), and σid → τ as
a shorthand for ∀(β = σid). β → τ .

poly : σid → τ ∈ Γ

(∀α = σid) Γ ` poly : σid → τ
(∀α = σid) σid → τ v α → τ

(∀α = σid) Γ ` poly : α → τ

id : σid ∈ Γ

(∀α = σid) Γ ` id : σid

(∀α = σid) σid v α

(∀α = σid) Γ ` id : α

(∀α = σid) Γ ` poly id : τ

() Γ ` poly id : ∀(α = σid). τ
() ∀(α = σid). τ v τ

() Γ ` poly id : (Int ,Bool)

In the above derivation it is essential that we can instantiate σid

to α under the prefix (∀α = σid). The instantiation rule INST is
used twice to instantiate both the argument type of poly and id
to α after which can we use the application rule APP. Finally, the
generalization rule GEN is used to remove the assumption from
the prefix, and instantiation is applied to remove the (now) dead
quantier, deriving (Int ,Bool).

The annotation rule ANN defines the type rule for type annota-
tions, using the abstraction relation @−. We define this relation (to-
gether with instantiation) in the next section. Note that MLF has
just a single rule for type annotations, and there is no need for spe-
cial type propagation rules. In particular, a lambda bound annota-
tion λ(x :: σ).e is syntactic sugar for

λx . let x = (x :: σ) in e

As such, the essence of MLF is contained in the instance relation
(v) in rule INST, and the abstraction relation (@−) in the annotation

1 due to annotations.

R-TRANS
(Q) σ1⊕ σ2 (Q) σ2⊕ σ3

(Q) σ1⊕ σ3

R-PREFIX
(Q , α�σ) σ1⊕ σ2 α /∈ dom(Q)

(Q) ∀(α�σ). σ1⊕ ∀(α�σ). σ2

Figure 3. General rules, where ⊕ stands for ≡ (equivalence), @−
(abstraction), or v (instantiation).

EQ-REFL (Q) σ ≡ σ

EQ-VAR (Q) ∀(α�σ). α ≡ σ

EQ-FREE
α /∈ ftv(σ2)

(Q) ∀(α�σ1). σ2 ≡ σ2

EQ-MONO
∀(α�σ0) ∈ Q (Q) σ0 ≡ τ0

(Q) τ ≡ τ [α 7→ τ0]

EQ-COMM

α1 6= α2 α1 /∈ ftv(σ2) α2 /∈ ftv(σ1)

(Q) ∀(α1 �1 σ1)(α2 �2 σ2). σ ≡ ∀(α2 �2 σ2)(α1 �1 σ1). σ

EQ-CONTEXT
(Q) σ1 ≡ σ2

(Q) ∀(α�σ1). σ ≡ ∀(α�σ2). σ

Figure 4. Equivalence

A-EQUIV
(Q) σ1 ≡ σ2

(Q) σ1 @− σ2

A-HYP
∀(α = σ) ∈ Q

(Q) σ @− α

A-CONTEXT
(Q) σ1 @− σ2

(Q) ∀(α = σ1). σ @− ∀(α = σ2). σ

Figure 5. Abstraction

I-BOTTOM (Q) ⊥ v σ

I-ABSTRACT
(Q) σ1 @− σ2

(Q) σ1 v σ2

I-HYP
∀(α>σ) ∈ Q

(Q) σ v α

I-RIGID (Q) ∀(α>σ1). σ2 v ∀(α = σ1). σ2

I-CONTEXT
(Q) σ1 v σ2

(Q) ∀(α>σ1). σ v ∀(α>σ2). σ

Figure 6. Instance

rule ANN. In the next section, we formally define these relations
and explain the annotation rule in detail.

2.4 Instantiation, abstraction, and equivalence
Figure 6 formally defines the instance relation (v). Through rule
I-ABSTRACT, the instance relation includes the abstraction rela-
tion (@−) defined in Figure 5. Similarly, through rule A-EQUIV, the



nf(τ) = τ
nf(⊥) = ⊥
nf(∀(α�σ1). σ2) = nf(σ2) iff α /∈ ftv(σ2)
nf(∀(α�σ1). σ2) = nf(σ1) iff nf(σ2) = α
nf(∀(α�σ1). σ2) = nf(σ2[α 7→ τ ]) iff nf(σ1) = τ

nf(∀(α�σ1). σ2) = ∀(α�nf(σ1)). nf(σ2)

Figure 7. Normal form

abstraction relation includes the equivalence relation (≡) defined in
Figure 4 and we have the following inclusion: (v) ⊆ (@−) ⊆ (≡).

All three relations also include the general rules given in Fig-
ure 3. That is, all relations are transitive through R-TRANS, and all
rules can be applied under a common prefix through rule R-PREFIX.
Note that the condition α /∈ dom(Q) in R-PREFIX can always be
satisfied through alpha renaming.

2.4.1 Equivalence
The equivalence relation in Figure 4 defines an equivalence on
types that abstracts from syntactical artifacts, like the order of the
quantifiers. For example, rule EQ-FREE states that unbound quan-
tifiers are not meaningful, while rule EQ-COMM allows rearrange-
ment of independent quantifiers. Rule EQ-MONO is the only rule
that reads information from the prefix, and inlines monomorphic
bounds. For example, assuming Q ′ = (∀(α�Int), we can derive:

∀(α�Int) ∈ (QQ ′) (QQ ′) Int ≡ Int

(Q ,∀(α�Int)) α → α ≡ Int → Int α /∈ dom(Q)

(Q) ∀(α�Int). α → α ≡ ∀(α�Int). Int → Int

Using transitivity R-TRANS and rule EQ-FREE, we can now conclude
that ∀(α�Int). α → α is equivalent to Int → Int . For monomor-
phic types it does not matter whether the bound is flexible or rigid.

The context rule EQ-CONTEXT states we can substitute equiv-
alent types under any bound (rigid or flexible). For example, we
can derive ∀(β = ∀(α>σid). α). [β ] ≡ ∀(β = σid). [β ] by the
context rule and EQ-VAR.

2.4.2 Normal form
To abstract away from syntactical artifacts, Figure 7 defines a
normal form function nf(·) that maps equivalent types to the same
normal form up to rearrangement of their quantifiers (Le Botlan
2004). The normal form of a type is always equivalent to that type,
i.e. nf(σ) ≡ σ.

2.4.3 Abstraction
The abstraction relation in Figure 5 extends the equivalence rela-
tion. In particular, it can read information from the prefix by the
abstraction hypothesis rule A-HYP. If a quantifier α is rigidly bound
to a type σ in the prefix, we can abstract a type σ by α. Note that
abstraction is not symmetric, and the opposite direction is not al-
lowed. This is essential for type inference since we can infer that a
given polymorphic type can be abstracted but we cannot infer the
other direction.

The abstraction relation nicely interacts with the type rules for
lambda expression (FUN) and type annotations (ANN) in Figure 2.
The FUN rule requires the lambda bound argument x to have a
monomorphic type, just like Hindley-Milner – but how are we able
to type a function like poly that requires a polymorphic argument?

The key to typing such function is to give the argument x a
monomorphic type α that is rigidly bound in the prefix to the
polymorphic type ∀(α = σ). The polymorphic type of α is later

revealed by the type annotation through A-HYP. Take for example
the desugared version of poly :

poly = λf0. let f = (f0 :: σid) in (f 1, f True)

We assume that e stands for the body of the lambda expression.
The typing derivation for poly uses generalization to introduce the
polymorphic bound, and assigns a monomorphic type α to the type
of the lambda bound argument f0:

...
(Q ,∀(α = σid)) Γ, f0 : α ` e : (Int ,Bool)

(Q ,∀(α = σid)) Γ ` λf0.e : α → (Int ,Bool) α /∈ ftv(Γ)

(Q) Γ ` λf0.e : ∀(α = σid) (α → (Int ,Bool))

Given this environment, we are now able to type the body of the
lambda expression. In particular, we can use f with the polymor-
phic type σid in the body of the let since we can derive that the
expression (f0 :: σid) has type σid:

f0 : α ∈ (Γ, f0 : α)

(...) Γ, f0 : α ` f0 : α

∀(α = σid) ∈ (Q ,∀(α = σid))

(Q ,∀(α = σid)) σid @− α

(Q ,∀(α = σid)) Γ, f0 : α ` (f0 :: σid) : σid

The rule A-HYP applies here directly, and the type annotation rule
reveals the polymorphic type of α. Note that the annotation is
required since we cannot instantiate rigidly bound type variables,
i.e. we cannot derive (∀(α = σid)) α v σid.

2.4.4 Instantiation
The instantiation relation in Figure 6 extends abstraction and equiv-
alence through rule I-ABSTRACT. The rule I-BOTTOM states that the
most polymorphic type ⊥ can be instantiated to any other type.
While abstraction can use rigid bounds from the prefix, instantia-
tion can use flexible bounds from the prefix through the hypothesis
rule I-HYP. If the prefix contains a quantifier ∀(α>σ) we know that
α is an instance of σ and therefore we can always safely instantiate
a type σ to α.

The context rule I-CONTEXT works only under flexible bounds.
The context rule works nicely with I-BOTTOM to do standard instan-
tiation of unconstrained bounds. For example:

∀α. α → α
= { sugar }
∀(α>⊥). α → α
v { I-CONTEXT, I-BOTTOM }
∀(α>Int). α → α
v { I-ABSTRACT, A-EQUIV, EQ-PREFIX, EQ-MONO, EQ-FREE }
Int → Int

3. From MLF to System F
In this section, we will develop a type directed translation from
MLF terms to System F terms. Such translation is very useful in
practice as compilers that use MLF type inference, can use Sys-
tem F terms as their intermediate language. More importantly, such
translation gives us a better understanding of the expressiveness
and operational behaviour of MLF programs. In particular,

• It is widely believed that a System F translation of impredica-
tive types may need to traverse structures at runtime to apply
coercion terms, where further instantiations can even lead to
multiple traversals. The translation we develop in this section
shows that this is not the case for MLF. Instead we show that
we can always build the coerced terms directly in a single pass
without any traversals.



• The System F translation leads us naturally to a restriction of
MLF where all bound values have a System F type and where
the System F translation is particularly efficient.

• Extending MLF with other type system extensions usually re-
quires a good understanding of the corresponding evidence
translation. For example, to use MLF as a basis for languages
that support qualified types, like Haskell, it is important to have
an evidence translation of predicates which fits seamlessly with
the presented System F translation.

3.1 Translating flexible bounds
The main difficulty in giving a System F translation of MLF terms
occurs when the MLF terms have a type that goes beyond System F,
i.e. polymorphic types that are flexibly bound. Consider:

let ids = [id ] in (polyL ids, ids ++ [inc ])

where ids has type ∀(α>σid). [α ]. Unfortunately, there is no
direct System F equivalent of this type, and in a naı̈ve System F
translation, ids can have two different System F types, namely
∀α · [α → α ] or [∀α · α → α ]. The first type is required
by the append, while the second type is required by the polyL
application. Effectively, MLF delays the instantiation and later ids
is instantiated in two fundamentally different ways. In contrast, in
System F this choice has to be made up front.

A potential way of translating this program to System F is to
assign the type [∀α · α → α ] to ids , and explicitly coerce the
type by mapping a coercion function over all element types that
instantiates them Int → Int functions. In practice though this
solution is unacceptable since the type inferencer might suddenly
introduce coercion terms that need to traverse arbitrary structures
at runtime! This is often seen as one of the fatal properties of
impredicative type systems (Peyton Jones et al. 2007) and boxy
type inference (Vytiniotis et al. 2006) was specifically designed to
avoid this behaviour by rejecting the above program.

Fortunately, there exists a very elegant solution for MLF, first
described by Leijen and Löh (2005): for every non-trivial flexible
bound, we pass in evidence on how to instantiate the term – effec-
tively delaying the instantiation to the call site. A flexible bound
∀(α>σ) states that α can be any instance of σ. Each such bound
is translated into an explicit witness function of type σ → α that
transforms any type σ into its instantiation α. For example, the Sys-
tem F translation of the ids :: ∀(α>σid). [α ] value is:

ids :: ∀α · (σid → α) → [α ]
ids = Λα · λ(v :: σid → α) · single α (v id)

where we assume a function single :: ∀α · α → [α ] that creates a
singleton list. Note in particular how the witness v takes the identity
function to type α. In the body of the let expression, ids can now
instantiated to two different types. For polyL, we simply pass an
identity function that leaves the elements polymorphic:

polyL σid (ids σid (λ(x :: σid) · x))
For the append though, the evidence instantiates all elements to
Int → Int functions:

ids (Int → Int) (λ(x :: σid) · x Int)

For the above example, the evidence just changes the type param-
eters. In the presence of qualified types evidence terms can change
runtime terms too. For example, the term [inc ] could have the type
∀(α>σ). [α ] where σ equals ∀α.Num α ⇒ α → α. The Sys-
tem F translation passes an explicit runtime dictionary as evidence
for Num α to such function. In that case the witness for ids trans-
forms a term of type σid to σ by adding the dictionary argument:

ids σ (λ(x :: σid) · (Λα · λ(num :: Num α) · x α))

σ∗ = ft(nf(σ))

ft(τ) = τ
ft(⊥) = ∀α · α
ft(∀(α = σ1). σ2) = ft(σ2)[α 7→ ft(σ1)]
ft(∀(α>⊥). σ) = ∀α · ft(σ)
ft(∀(α>σ1). σ2) = ∀α · (ft(σ1) → α) → ft(σ2)

Figure 8. MLF types to system-F types.

3.2 Translation of rigid bounds
Figure 8 defines the translation of MLF types to System F types.
The translation works on normal forms to discard trivial bounds
such as monotype bounds or unbound quantifiers. The translation
as given is very satisfactory as the only evidence passed is for non-
trivial flexible polymorphic bounds – exactly those bounds that
were needed to allow type inference with first-class polymorphism
in the first place.

Rigid bounds are simply inlined to get the corresponding Sys-
tem F type. Unfortunately, this prevents us also from defining a
direct type directed translation on the standard MLF rules. In par-
ticular, since the equivalence and abstraction relation can work un-
der rigid bounds (through EQ-CONTEXT and A-CONTEXT), it is no
longer the case that when two types are equivalent, that their Sys-
tem F types are equivalent, i.e. σ1 ≡ σ2 does not imply σ∗

1 = σ∗
2 !

Take for example the lists xs1 :: ∀(γ = ∀αβ. α → β → α). [γ ]
and xs2 :: ∀(γ = ∀βα. α → β → α). [γ ]. The term

if True then xs1 else xs2

is well-typed in MLF since the types of xs1 and xs2 are equivalent,

∀(γ = ∀αβ. α → β → α). [γ ]
≡ { EQ-CONTEXT, EQ-COMM }

∀(γ = ∀βα. α → β → α). [γ ]

However, according to Figure 8, the corresponding System F types
are not equal, and we end up with an ill-typed System F term!
Nevertheless, not using an evidence translation for rigid bounds
is most important in practice to avoid many ‘trivial’ coercions
between equivalent types and we consider this a serious weakness
of the earlier approach by Leijen and Löh (2005). Furthermore,
as we will see in Section 4, the direct translation of rigid bounds
enables a variation of MLF that never passes any evidence which
in turns enables us gain insight in the relation between boxy type
inference and MLF.

Thus, the challenge is to set up the typed translation in such a
way that the above situation is prevented and where rigid bounds
never need evidence translation, and we are going to tackle it head
on in the following sections.

3.3 Canonical equivalence and abstraction
Both the equivalence and abstraction relation can be applied un-
der rigid bounds through their context rules (EQ-CONTEXT and
A-CONTEXT). Therefore, to ensure that the System F type of a rigid
bound never changes, we need to define both a restricted equiv-
alence and restricted abstraction relation where equivalent types
have equal System F translations.

The only rule that prevents equal System F types is EQ-COMM

when quantifiers are rearranged. As we see later, we cannot just
remove the rearrangement rule since abstraction must be able to
rearrange rigid binders. Fortunately, since the System F translation
inlines rigid bounds, rearranging rigid binders does not change the
translated System F type and such rearrangement is sound.
Definition 3.3.a (Canonical equivalence): We define canonical
equivalence, written as ≡c, as equal to the MLF equivalence re-



lation of Figure 4, but the EQ-COMM rule is restricted to rearrange-
ment of rigid binders:

CEQ-COMM

α1 6= α2 α1 /∈ ftv(σ2) α2 /∈ ftv(σ1)

(Q) ∀(α1 = σ1)(α2 �σ2). σ ≡c ∀(α2 �σ2)(α1 = σ1). σ

Similarly, we define canonical abstraction as an extension of canon-
ical equivalence.
Definition 3.3.b (Canonical abstraction): Canonical abstraction,
written as @−c, is equal to the MLF abstraction relation in Figure 5
but the rule A-EQUIV is restricted to canonical equivalence:

CA-EQUIV
(Q) σ1 ≡c σ2

(Q) σ1 @−c σ2

Canonical equivalence satisfies many properties of MLF equiva-
lence, for example nf(σ) ≡c σ holds. Moreover, canonically equiv-
alent types have equal System F types. To make this notion precise,
we first define a System F substitution extraction.
Definition 3.3.c (Substitution extraction): The extraction of a
monotype substitution from a prefix Q , written as Qθ , is defined
as:

(∅)θ = id

(α�σ,Q)θ = [α 7→ τ ] ◦ Qθ iff nf(σ) = τ

(α�σ,Q)θ = Qθ otherwise

Similarly, we can also define the System F substitution extracted
from a prefix Q , written as QΘ:

(∅)Θ = id

(α = σ,Q)Θ = [α 7→ σ∗] ◦ QΘ

(α>σ,Q)Θ = [α 7→ τ∗] ◦ QΘ iff nf(σ) = τ

(α>σ,Q)Θ = QΘ otherwise

Note that (Q1Q2)
Θ = QΘ

1 ◦QΘ
2 for any well formed prefix Q1Q2.

Futhermore, the domain of the substitution is a subset of domain
of the prefix: dom(QΘ)⊆dom(Q). Using System F substitutions,
we can now state our main theorems of canonical equivalence and
abstraction:
Theorem 3.3.d (Canonically equivalent types have equal System F
types):

(Q) σ1 ≡c σ2 ⇒ QΘ(σ∗
1) = QΘ(σ∗

2)

Theorem 3.3.e (Canonical abstraction has equal System F types):

(Q) σ1 @−c σ2 ⇒ QΘ(σ∗
1) = QΘ(σ∗

2)

Both theorems are proved by straightforward induction over the
rules of canonical equivalence and abstraction.

3.4 Canonical instance with System F translation
The canonical instance relation, written asvc, is defined in Figure 9
and Figure 10. There are two differences from normal MLF instan-
tiation (defined in Figure 6): rule CI-ABSTRACT uses canonical ab-
straction, and rule CI-COMM is reintroduces the ability to rearrange
quantifiers with flexible bounds. Furthermore, the canonical instan-
tiation now derives a System F witness term for the instantiation.

The derivation (Q) σ1 vc σ2  f states that σ2 is a canonical
instance of σ1 under prefix Q , where the derived System F witness
f has type σ∗

1 → σ∗
2 , i.e. it instantiates a term with System F type

σ∗
1 into a term with type σ∗

2 .
To describe such witness functions conveniently, we use the •

notation. An expression e with a hole • stands for a function λx · e
where • is replaced by the fresh variable x . For example,

CI-TRANS
(Q) σ1 vc σ2  f1 (Q) σ2 vc σ3  f2

(Q) σ1 vc σ3  f2 (f1 •)

CI-PREFIX
(Q , α�v σ) σ1 vc σ2  f α /∈ dom(Q)

(Q) ∀(α�v σ). σ1 vc ∀(α�v σ). σ2

 gen[∀(α�v σ). σ2] (f (inst[∀(α�v σ). σ1] •))

CI-CONTEXT
(Q) σ1 vc σ2  f

(Q) ∀(α>v σ1). σ vc ∀(α>w σ2). σ
 gen[∀(α>w σ2). σ]

(let v e = w (f e) in inst[∀(α>v σ1). σ] •)

Figure 9. General rules for canonical instance with evidence trans-
lation

CI-BOTTOM (Q) ⊥ vc σ  • σ∗

CI-ABSTRACT
(Q) σ1 @−c σ2

(Q) σ1 vc σ2  •

CI-HYP
∀(α>v σ) ∈ Q

(Q) σ vc α  v •
CI-RIGID (Q) ∀(α>v σ1). σ2 vc ∀(α = σ1). σ2

 gen[∀(α =v σ1). σ2] (inst[∀(α>v σ1). σ2] •)
CI-COMM

α1 6= α2 α1 /∈ ftv(σ2) α2 /∈ ftv(σ1)

(Q) ∀(α1>v σ1)(α2>w σ2). σ vc ∀(α2>w σ2)(α1>v σ1). σ
 gen[∀(α2>w σ2).∀(α1>v σ1). σ]

(inst[∀(α1>v σ1).∀(α2>w σ2). σ] •)

Figure 10. Canonical instance with evidence translation

• = λx · x
• σ∗ = λx · x σ∗

λy · • = λx · λy · x

The rule CI-BOTTOM instantiates the bottom type (⊥) to an arbitrary
type σ. The evidence term thus needs to instantiate a term of type
∀α·α to σ∗, which corresponds to applying the type σ∗ in System F,
and the derived evidence is • σ∗.

Rule CI-ABSTRACT is also straightforward. Due to Theorem
3.3.e, we know that σ1 and σ2 have equal System F types and that
the term stays the same, i.e. the evidence is the identity: •.

The evidence for rule CI-HYP needs to transform a type σ∗

into α – but how should it do that if nothing is known about σ?
The solution to this problem is to annotate each flexible bound
∀(α>v σ) in the prefix with a witness term v of type σ∗ → α.
One can easily check that these terms are always in scope (just like
the type variables in the prefix). The rule CI-HYP simply applies the
witness term to transform σ∗ to α, i.e. v •.

Most of the other rules make use of two helper functions, gen[·]
and inst[·], defined in Figure 11. These functions introduce evi-
dence terms v for flexible bounds and remove trivial bounds.

The function gen[∀(α�v σ1). σ2] takes a System F term of type
σ∗

2 and generalizes it to a term of type (∀(α�σ1). σ2)
∗. The gen[·]

function ensures that in all cases the type variable α and the evi-
dence term v of type σ∗

1 → α are defined and in scope. For conve-
nience we use let bindings to define v, even though System F does
not contain them, and one can read those let bindings as a sub-
stitution on witness terms. For rigid and trivial bounds, gen[·] just
substitutes σ1 for α, and the evidence term v becomes the identity.



gen[∀(α�v σ). σ0] :: σ∗
0 → (∀(α�σ). σ0)

∗

gen[∀(α =v σ). σ0]
= (let v e = e in •)[α 7→ σ∗]

gen[∀(α>v σ). σ0]
= (let v e = e in •)[α 7→ σ∗] iff α /∈ ftv(σ0)
= (let v e = e in •)[α 7→ σ∗] iff nf(σ0) = α
= (let v e = e in •)[α 7→ σ∗] iff nf(σ) = τ
= Λα · let v e = e α in • iff nf(σ) = ⊥
= Λα · λv : σ∗ → α · • otherwise

inst[∀(α = σ). σ0]
= •

inst[∀(α>v σ). σ0]
= • iff α /∈ ftv(σ0)
= • iff nf(σ0) = α
= • iff nf(σ) = τ
= • α iff nf(σ) = ⊥
= • α v otherwise

Figure 11. Canonical type generalization and instantiation

For an unconstrained bound ∀(α>⊥), a type lambda generalizes
over α. For a non-trivial flexible bound, we not only generalize over
the type α, but also bind the evidence v as an argument.

Dually, the function inst[∀(α�v σ1). σ2] takes a System F
term of type (∀(α�v σ1). σ2)

∗ and instantiates it to σ∗
2 (or σ∗

1 if
nf(σ2) = α), where it is assumed that α and v are in scope and
where v has type σ∗

1 → α. One can easily check that this is the case
for all the uses of inst[·]. For rigid and trivial bounds nothing has
to be done. For an unconstrained bound we instantiate the type ar-
gument to α, and for a non-trivial flexible bound we instantiate the
type argument and pass in the evidence function v as an argument.

With these helper functions, the evidence translation for the
other rules is straightforward. Rule CI-RIGID uses inst[·] to instan-
tiate the flexible quantifier and immediately applies gen[·] with a
rigid bound, which substitutes α for σ∗

1 , and binds v to the identity.
Another interesting rule is CI-CONTEXT. Since the bounded types
themselves are instantiated, the types of the witness functions v
and w are not equal and we need to build an witness transformer:
using the evidence f :: σ∗

1 → σ∗
2 , we can define the old witness

v :: σ∗
1 → α in terms of the new witness w :: σ∗

2 → α, as v = w◦ f.
To define soundness of the System F translation, we need to be

able to refer to the witness terms in the prefix from the System F
type environment, and we define the following operation to extract
such environment from the prefix.

Definition 3.4.a (Sytem-F environment extraction): The environ-
ment extraction from a prefix Q is written as QΓ and defined as:

(∅)Γ = ∅
(α = σ,Q)Γ = QΓ

(α>v σ,Q)Γ = v : σ∗ → α,QΓ

Using environment extraction, we can state that the derived Sys-
tem F term is well-typed in System F. The typing relation of Sys-
tem F (Γ `F e : σ) is standard and we omit it here.

Theorem 3.4.b (Soundness of System F translation): If two types
σ1 and σ2 are in a canonical instance relation under a prefix Q with
a witness f, then the witness f is well typed in System F under the
type environment extracted from Q , with type σ∗

1 → σ∗
2 :

(Q) σ1 vc σ2  f ⇒ QΘ(QΓ) `F f : QΘ(σ∗
1 → σ∗

2)

CT-VAR
x : σ ∈ Γ

(Q) Γ `c x : σ  x

CT-APP

(Q) Γ `c e1 : τ2 → τ1  e1

(Q) Γ `c e2 : τ2  e2

(Q) Γ `c e1 e2 : τ1  e1 e2

CT-FUN
(Q) Γ, x : τ1 `c e : τ2  e

(Q) Γ `c λx .e : τ1 → τ2  λ(x : τ∗
1 ) · e

CT-LET

(Q) Γ `c e1 : σ1  e1

(Q) Γ, x : σ1 `c e2 : σ2  e2

(Q) Γ `c let x = e1 in e2 : σ2

 (λ(x : σ∗
1) · e2) e1

CT-GEN
(Q , α�v σ1) Γ `c e : σ2  e α /∈ ftv(Γ)

(Q) Γ `c e : ∀(α�v σ1). σ2

 gen[∀(α�v σ1). σ2] e

CT-INST
(Q) Γ `c e : σ1  e (Q) σ1 vc σ2  f

(Q) Γ `c e : σ2  f e

CT-ANN

(Q) Γ `c e : σ1  e
(Q) σ @−c σ1

(Q) Γ `c (e :: σ) : σ  e

Figure 12. Type rules with evidence translation

3.5 Canonical type rules with System F translation
Figure 12 defines canonical type rules for MLF that derive a corre-
sponding System F term. The type rules are equivalent to the corre-
sponding MLF type rules (see Figure 2) except for the use of canon-
ical instance in CT-INST and canonical abstraction in CT-ANN. The
expression (Q) Γ `c e : σ  e states that under a prefix Q and
type environment Γ, the expression e is well typed with type σ, and
e is a corresponding System F term with type σ∗.

The type directed translation is straightforward. Rule CT-VAR

simply returns x, since the condition x : σ ∈ Γ implies that x has
type σ∗ under the System F environment Γ∗, (i.e. Γ∗ `F x : σ∗).
In CT-APP, e1 and e2 both have monotypes and their System F
types are equivalent, and we can directly apply the corresponding
System F terms too. The same holds for CT-FUN that directly
translates into a corresponding lambda expression. Rule CT-LET is
interesting as the System F translation uses a polymorphic lambda
expression since System F does not contain let bindings.

Generalization in rule CT-GEN uses the gen[·] function de-
fined in Figure 11 to generalize the term e with type σ∗

2 into
(∀(α�v σ1). σ2)

∗. The instantiation rule (CT-INST) uses the wit-
ness function f of type σ∗

1 → σ∗
2 , derived with canonical instance

to transform the term e to a term of type σ∗
2 . Finally, type annota-

tions in CT-ANN use canonical abstraction. By Theorem 3.3.e, their
System F types are equal and no translation is necessary.
Theorem 3.5.a (Canonical type inference derives well typed Sys-
tem F terms): If under a prefix Q and type environment Γ an ex-
pression e is well typed with type σ and a translated System F term
e, then there exists a System F derivation such that under a Sys-
tem F type environment consisting of the environment extraction
of Q (namely QΓ) and the translated environment Γ∗, the term e is
well typed with type σ∗.

(Q) Γ `c e : σ  e ⇒ QΘ(QΓΓ∗) `F QΘ(e) : QΘ(σ∗)

Note that under an empty prefix this simplifies to:

() Γ `c e : σ  e ⇒ Γ∗ `F e : σ∗



3.6 Soundness
By carefully changing the original equivalence, abstraction, and in-
stance relation, we were able to derive a type directed and sound
System F translation for instantiation terms. But at the same time
we are no longer doing MLF instantiation but canonical instantia-
tion, and we would like to establish that the new relations are sound
and complete with respect to the MLF relations. Clearly, the canon-
ical relations are sound with respect to MLF:
Theorem 3.6.a (Canonical equivalence, abstraction, and instance
are sound):

(Q) σ1 ≡c σ2 ⇒ (Q) σ1 ≡ σ2

(Q) σ1 @−c σ2 ⇒ (Q) σ1 @− σ2

(Q) σ1 vc σ2 ⇒ (Q) σ1 v σ2

Proof of Theorem 3.6.a: This is immediate since all the new relations
are sub-relations of the MLF relations. Equivalence includes all the rules
of canonical equivalence, and allows rearrangement of flexible binders.
Canonical abstraction equals MLF abstraction but restricts equivalence to
canonical equivalence. Finally, canonical instance includes an extra rule
(CI-COMM) to rearrange flexible binders, but this is also included in MLF
instantiation by EQ-COMM (via A-EQUIV and I-ABSTRACT). �

As a corollary, it follows that the canonical type rules are also sound
since the only difference with the MLF type rules is the use of
canonical instance and abstraction.
Theorem 3.6.b (Canonical type inference is sound):

(Q) Γ `c e : σ  e ⇒ (Q) Γ ` e : σ

3.7 Completeness
Completeness of the type rules cannot be established directly since
the canonical relations are not complete with respect to the MLF
relations. Take for example the following equivalent types:

(Q) ∀αβ. α → β → α ≡ ∀βα. α → β → α

These types are equivalent by using EQ-COMM to rearrange the flex-
ible binders. Since canonical equivalence restricts rearrangement to
rigid binders, the above types are not canonically equivalent (as it
should, since the corresponding System F types are different). This
seems a fatal flaw of our new rules: incompleteness would imply
that our new rules can only be used to type a subset of the programs
accepted by MLF.

Fortunately, the rules are incomplete only with respect to the or-
der of the quantifiers. We can show that the canonical relations are
complete with respect to the MLF relations under specific invari-
ants where rigid types are in canonical form. In the next section we
formalize this notion and establish a completeness theorem.

3.7.1 Canonical form
Figure 13 defines the canonical form of a type σ, written as can(σ).
The canonical form is a rearrangement of the normal form, where
the position of a quantifier is uniquely determined by the occur-
rences of the bound type variable. Canonical forms satisfy the fol-
lowing properties:

Properties 3.7.a
i. (Q) σ1 ≡ σ2 ⇔ Qθ(can(σ1)) = Qθ(can(σ2))
ii. ftv(can(σ)) = ftv(σ)

As a corrollary of Property 3.7.a.i, we have under an unconstrained
prefix that equivalent types have equal canonical forms:

σ1 ≡ σ2 ⇔ can(σ1) = can(σ2)

The rearranged form makes use of the insertion function ins(·, ·)
to insert quantifiers in their canonical position. Insertion of into a

can(σ) = rf(nf(σ))

rf(τ) = τ
rf(⊥) = ⊥
rf(∀(α�σ1). σ2) = ins(α� rf(σ1), rf(σ2))

ins(α�σ, τ) = ∀(α�σ). τ
ins(α�σ,⊥) = ⊥
ins(α1 �σ1,∀(α2 �σ2). σ) iff α1 6= α2∧ α2 /∈ ftv(σ1)

= if α1#(∀(α2 �σ2). σ) < α2#σ
then ∀(α2 �σ2). ins(α1 �σ1, σ)
else ∀(α1 �σ1)(α2 �σ2). σ

Figure 13. Canonical and rearranged form

α#σ = max(occurences(α, σ) ∪ {0})
occurences(α, σ) = {o | select(skeleton(σ), o) = α}
select(⊥, 1) = ⊥
select(α, 1) = α
select(c τ1 ... τn, 1) = c
select(c τ1 ... τn, i .o) = select(τi, o)

skeleton(τ) = τ
skeleton(⊥) = ⊥
skeleton(∀(α�σ1). σ2) = skeleton(σ2)[α 7→ skeleton(σ1)]

Figure 14. The position of type variable

monomorphic type or ⊥ has no effect, but otherwise quantifiers
may be rearranged. The side condition of the last insertion case can
always be satisfied by simple alpha renaming. The relative order
between quantifiers is now uniquely determined by the position of
their bound variable in the type, written as α#σ, and is defined in
Figure 14.

The position of a type variable in a type is defined as the
maximum of all its occurrences of in the type, or 0 if the type
variable is unbound. This case never occurs for a canonical form
since the rearranged form is taken over the normal form which
discards unbound quantifiers.

To define the occurrences of a type, we first define the skeleton
of a type (skeleton(σ)) as the full inlining of all its bounds. For
example

skeleton(∀(β>∀γ. α → γ). β → α) = (α → ⊥) → α

The selection function select(·, ·) takes such skeleton and a posi-
tion, and returns an element of that skeleton. For example

select((α → ⊥) → β, 1.1.1) = α
select((α → ⊥) → β, 2.1) = β
select((α → ⊥) → β, 1.2.1) = ⊥

The occurrences of a type variable is simply the set of all positions
of the type variable in the skeleton, for example

occurences(α,∀(β>∀γ. α → γ). β → α) = {1.1.1, 2.1}
occurences(β,∀(β>∀γ. α → γ). β → α) = ∅
occurences(β, β → α) = {1.1}

During insertion, we have to be careful never to insert beyond
dependent binders. In particular, we need to ensure that when
quantifiers are rearranged (in the then branch of the last case
of insertion) that α1 /∈ ftv(σ2). Indeed, together with the side
conditions on insertion these are exactly the conditions under which



we can apply EQ-COMM. Fortunately, the position of type variables
respects dependence:
Lemma 3.7.b (Insertion respects dependencies): The definition
of the position of a type variable respects dependence between
binders.

α1#(∀(α2 �σ2). σ) < α2#σ ⇒ α1 /∈ ftv(σ2)

Proof of Lemma 3.7.b: First note that if α2 /∈ ftv(σ), then the position
α2#σ = 0, and the position of α1 cannot be smaller. Otherwise, if
α2 ∈ ftv(σ), we can prove Lemma 3.7.b by contradiction. Assume that
α1 ∈ ftv(σ2) (1), where α2#σ equals o1.1. In that case, the set of
occurrences of α in ∀(α2 �σ2). σ, namely occurences(α, ∀(α2 �σ2). σ),
contains an occurrence for α with the form o1.o2.1, which is larger or
equal to o1.1 (since 0 cannot be part of an occurrence). Since the position
is the maximum of the occurrences, we have α#(∀(α2 �σ2). σ)>α2#σ.
By contradiction, this invalidates the assumption (1), and implies α1 /∈
ftv(σ2). �

3.7.2 Completeness under canonical form
Using canonical forms, we can now state a completeness theorem
for canonical equivalence.
Theorem 3.7.c (Completeness of canonical equivalence): When-
ever two types are equivalent, then their canonical forms are also
canonically equivalent:

(Q) σ1 ≡ σ2 ⇒ (Q) can(σ1) ≡c can(σ2)

This can be proved by straightforward induction over the rules of
equivalence.

For canonical abstraction, completeness does not hold directly
since CI-HYP abstracts over rigid types in the prefix. If those types
are not in canonical form the rule may not apply. To remedy this
situation we are going to define the notion of weak canonical form.
Definition 3.7.d (Weak canonical form): A type σ is in weak
canonical form if all its rigid bounds are in canonical form. We
write σc for types in weak canonical form. A prefix Q is in weak
canonical form if all its quantifiers are in weak canonical form, and
write Qc for such prefix.
The following properties hold for types in weak canonical form:

Properties 3.7.e
i. (Qc) σc vc can(σ), a type in weak canonical form instanti-
ates to its canonical form, and conversely:
ii. (Qc) can(σ) vc σc.
Using weak canonical form, we can now state a compleness theo-
rem for canonical abstraction:
Theorem 3.7.f (Completeness of canonical abstraction): When-
ever two types are in an abstraction relation under a prefix Q , then
their canonical forms are in canonical abstraction relation under a
prefix Qc in weak canonical form:

(Q) σ1 @− σ2 ⇒ (Qc) can(σ1) @−c can(σ2)

For this theorem to hold, it is essential that canonical equivalence
can rearrange rigid binders. Take for example the following abstrac-
tion:

∀(α = σid).∀(γ>σid).∀(β = σid). [β ] → [γ ] → [α ]
@−c { A-PREFIX, A-CONTEXT, A-HYP, and EQ-MONO }
∀(α = σid).∀(γ>σid). [α ] → [γ ] → [α ]

Alas, although the first type is in canonical form, the second one is
not. This happens because abstraction can change the occurrences
of rigidly bound types through A-HYP. Therefore, rearrangement of
rigid binders is necessary to derive canonical forms.

Proof of Theorem 3.7.f: By induction over the rules of abstraction:
Case A-EQUIV: We have (Q) σ1 ≡ σ2, and therefore by Theorem
3.7.c, (Qc) can(σ1) ≡c can(σ2). By rule CA-EQUIV we can now derive
(Qc) can(σ1) @−c can(σ2).
Case A-HYP: We have (α = σ) ∈ Q , and by therefore (α = can(σ)) ∈
Qc since Qc is in weak canonical form. By rule CA-HYP it follows that
(Qc) can(σ) @−c α.
Case A-CONTEXT: By induction, we have (Qc) can(σ1) @−c can(σ2)
(1). Since can(∀(α = σ1). σ) = rf(nf(∀(α = σ1). σ)) we proceed by
case analysis over the normal form:
subcase α /∈ ftv(σ): In this case, it follows directly that can(∀(α =
σ1). σ) = can(σ) = can(∀(α = σ2). σ).
subcase nf(σ1) = τ1 (2): First we note that due to (2) and (1), can(σ2) =
τ2 (3) for some monotype τ2. We can now derive under a prefix Q :
can(∀(α = σ1). σ) = { (2) }
can(σ)[α 7→ τ1] @−c { CA-EQUIV, CEQ-MONO }
∀(α = τ1). can(σ) @−c { CA-CONTEXT, CA-EQUIV, (2) }
∀(α = can(σ1)). can(σ) @−c { CA-CONTEXT, (1) }
∀(α = can(σ2)). can(σ) @−c { CA-CONTEXT, CA-EQUIV, (3) }
∀(α = τ2). can(σ) @−c { CA-EQUIV, CEQ-MONO }
can(σ)[α 7→ τ2] = { (3) }
can(∀(α = σ2). can(σ))

subcase nf(σ) = α: We have can(∀(α = σ1). σ) = can(σ1) (4),
and can(σ2) = can(∀(α = σ2). σ). By EQ-REFL, CA-EQUIV, (1), and
transitity, we can derive (Qc) can(∀(α = σ1). σ) @−c can(∀(α =
σ2). σ).
subcase otherwise: In this case can(∀(α = σ1). σ) equals ins(∀(α =
can(σ1)), can(σ2)) where the bound ∀(α = can(σ1)) is inserted into
can(σ2). But by using CEQ-COMM to rearrange the rigid binder we can
bring it back to the front and we can derive (Qc) can(∀(α = σ1). σ) @−c

∀(α = can(σ1)). can(σ). By CA-CONTEXT and (1), we know that
(Qc) ∀(α = can(σ1)). can(σ) @−c ∀(α = can(σ2)). can(σ). Finally,
we can again apply CEQ-COMM repeatedly to derive (Qc) ∀(α =
can(σ2)). can(σ) @−c ins(∀(α = can(σ2)), can(σ)) where ins(∀(α =
can(σ2)), can(σ)) equals can(∀(α = σ2). σ).
Case A-PREFIX: Similar to A-CONTEXT.
Case A-TRANS: Follows directly by induction and CA-TRANS. �

The above completeness theorems are rather weak as they require
the types to be in canonical form. For canonical instantiation we
have a stronger result where only rigid bounds need to be in canon-
ical form:

Theorem 3.7.g (Completeness of canonical instance): When two
types are in an instance relation under a prefix Q , then their weak
canonical forms are also in a canonical instance relation under the
same prefix in weak canonical form:

(Q) σ1 v σ2 ⇒ (Qc) σc
1 vc σc

2  f

Proof of Theorem 3.7.g: By induction over the instance relation.
Case I-BOTTOM: We have (Q) ⊥ v σ. Using CI-BOTTOM, we can
derive (Qc) ⊥ vc σc.
Case I-ABSTRACT: We have (Q) σ1 @− σ2. As a consequence of
Theorem 3.7.f, (Qc) can(σ1) @−c can(σ2) holds (1). By Property 3.7.e.i
and Property 3.7.e.ii, we can also derive (Qc) σc

1 vc can(σ1) (2), and
(Qc) can(σ2) vc σc

2 (3). Combining (1), (2), and (3), using CI-TRANS,
we can derive (Qc) σc

1 vc σc
2.

Case I-HYP: We assume (α>σ) ∈ Q . This implies (α>σc) ∈ Qc, and
by CI-HYP, (Qc) σc vc α.
Case I-RIGID: We have (Q) ∀(α>σ1). σ v ∀(α = σ1). σ). By
Property 3.7.e.i, (Qc) σc

1 vc can(σ1) (4). The weak canonical form
of ∀(α>σ1). σ is ∀(α>σc

1). σc. Using CI-CONTEXT and (4), we in-
stantiate to ∀(α>can(σ1)). σc. By CI-RIGID, this instantiates to ∀(α =
can(σ1)). σc which equals (∀(α = σ1). σ2)c.
Case I-TRANS: Immediate by induction and CI-TRANS.
Case I-PREFIX: Immediate by induction and CI-PREFIX.
Case I-CONTEXT: Immediate by induction and CI-CONTEXT. �



Using the completeness theorems on the canonical relations, we
can finally state a completeness theorem for the canonical type
rules.
Theorem 3.7.h (Canonical type inference is complete): If we can
infer a type σ for an expression in e under a certain prefix Q and
environment Γ, there exists a canonical type deriviation where σ,
Q , and Γ are in weak canonical form:

(Q) Γ ` e : σ ⇒ (Qc) Γc `c e : σc  e

Proof of Theorem 3.7.h: By induction of the inference rules.
Case T-VAR: We have (x : σ) ∈ Γ, and therefore, (x : σc) ∈ Γc. By rule
CT-VAR, we can derive (Qc) Γc `c x : σc.
Case T-APP: Immediate by induction.
Case T-FUN: Immediate by induction.
Case T-LET: Immediate by induction.
Case T-GEN: By induction and Property 3.7.a.ii, we have α /∈ ftv(Γc), and
either (Qc, α = can(σ1)) Γc `c e : σc

2 or (Qc, α>σc
1) Γc `c e : σc

2.
By rule CT-GEN, we can derive (Qc) Γc `c e : ∀(α = can(σ1)). σc

2
or (Qc) Γc `c e : ∀(α>σc

1). σc
2 where both derived types are in weak

canonical form.
Case T-INST: We have (Q) Γ ` e : σ1 (1), and (Q) σ1 v σ2 (2). By the
induction hypothesis and (1), we have (Qc) Γc `c e : σc

1 (3). By Theorem
3.7.g and (2), we can conclude (Qc) σc

1 vc σc
2, and by CT-INST and (3),

we have (Qc) Γc `c e : σc
2.

Case T-ANN: We have (Q) Γ ` e : σ1 (4), and (Q) σ @− σ1 (5).
By the induction hypothesis and (4), we have (Qc) Γc `c e : σc

1. Due
to Property 3.7.e.i, we know that (Qc) σc

1 vc can(σ1), and we can use
CT-INST to derive (Qc) Γc `c e : can(σ1) (6). As a consequence of
Theorem 3.7.f and (5), we have (Qc) can(σ1) @−c can(σ2) (assuming the
type annotation is converted to canonical form), and we can use CT-ABS
with (6) to derive (Qc) Γc `c (e :: σ1) : can(σ1). Using CI-INST and
Property 3.7.e.ii, we can instantiate to (Qc) Γc `c (e :: σ1) : σc

1. �

3.8 Type inference
MLF has an effective type inference algorithm that infers principal
types. It is beyond the scope of this paper to discuss type inference
in detail, but we remark that the standard MLF inference algorithm
can be used to infer types to canonically, as long as we maintain the
invariants required for completeness (Theorem 3.7.h). In particu-
lar, type annotations must be normalized to canonical form, and
the prefix, type environment, and inferred types must be in weak
canonical form. Ensuring that types are in weak canonical form is
easy to do by requiring in the update algorithm (Le Botlan 2004,
page 123) that rigid bounds are only updated with types in canoni-
cal form, rearranging binders as necessary. No further changes are
required. The translation to System F types can be done similarly
to Leijen and Löh (2005) but simplified to remove translation for
rigid bounds.

4. A restriction to System F types
We have defined an elegant type directed translation from MLF to
System F, where only polymorphic flexible bounds require extra
evidence and type annotations are needed only on lambda bound
arguments that are used polymorphically. Even though this is prob-
ably the best we can hope for, it is interesting to consider a more
restricted version.

In particular, the (implicit) introduction of evidence arguments
for polymorphic flexible bounds may be undesirable in practice.
Take for example our example from Section 2.1:

let ids = [id ] in (polyL ids, ids ++ [inc ])

where ids has type ∀(α>σid). [α ]. In the System F translation,
the ids value is transformed into a function that takes an evidence
argument of type σ∗

id → α. This means that a programmer cannot

F-LET

(Q) Γ `c e1 : σ1

∀σ0.if (Q) Γ ` e1 : σ0 then (Q) σ1 v σ0

(Q) σ1 vc ftype(σ1)
(Q) Γ, x : ftype(σ1) `c e2 : σ2

(Q) Γ `c let x = e1 in e2 : σ2

F-ANN
(Q) Γ `c e : σ1 (Q) σ @−c σ1 σ is an F-type

(Q) Γ `c (e :: σ) : σ

Figure 15. New type rules for MLF=

ftype(σ) = ftypen(nf(σ))

where
ftypen(τ) = τ
ftypen(⊥) = ⊥
ftypen(∀(α = σ1). σ2) = ∀(α = σ1). ftypen(σ2)
ftypen(∀(α>⊥). σ) = ∀(α>⊥). ftypen(σ)
ftypen(∀(α>∀Q . τ). σ) = ftypen(∀Q . σ[α 7→ τ ])

Figure 16. Force to F-Type

assume that let bound values are shared since they could be trans-
lated into functions! The same situation occurs with type classes
too, and Haskell introduced the monomorphism restriction that re-
jects unannotated values that require evidence translation.

4.1 Rigid MLF
We consider a restriction of MLF, called “Rigid MLF” (MLF=),
that never requires evidence translation. To achieve this goal, all
bound values in MLF= are restricted to standard System F types,
i.e. types without polymorphic flexible bounds, and we call such
types F-types
Definition 4.1.a (F-types (Le Botlan 2004)): A type in normal-
form is an F-type if and only if all its flexible bounds are of the
form ∀(α>⊥). A type is an F-type if an only if its normal form is
an F-type.
Types that are not F-types are exactly those with polymorphic
flexible bounds, i.e. a type ∀(α>σ1). σ2 where σ1 is not equivalent
to either a monotype τ or ⊥.
Definition 4.1.b (MLF=): We define MLF= as a restriction of
MLF where both type annotations and let bound values are re-
stricted to F-types.

In practice, this means that a programmer always writes stan-
dard F-type annotations and never MLF types with flexible bounds.
Furthermore, the restriction of type annotations to F-types effec-
tively restricts lambda bound arguments to F-types, and together
with the restriction of let bound values to F-types this means that
no evidence translation is ever necessary.

Figure 15 gives the new type rules for let expressions and
type annotations where we have left out the System F translation
for clarity. The type annotation rule F-ANN just requires that type
annotations have an F-type. The rule for let expressions is more
involved. We cannot just require that the inferred type for the let
binding is an F-type since we would lose principal typings. For
example, the term [id ] can have two F-types, namely [∀α. α → α ],
and ∀α. [α → α ] where neither is an instance of the other.

Instead, the rule F-LET forces the inferred type to an F-type
using the function ftype(σ) defined in Figure 16. This function
systematically translates a shallow type to an F-type. The first four
cases of ftypen(·) are easy: monomorphic types, ⊥, rigid bounds,
and unconstrained bounds are already in the correct form.



The last case deals with non-trivial flexible polymorphic bounds. A
concrete example of this case happens for the term [id ] with type
∀(β>∀α. α → α). [β ]. There are two possible strategies to con-
vert such term to an F-type. First, we can instantiate and lift the
quantifiers outside the bound, giving ∀α. [α → α ], which we call
variant HM. This type is what the Hindley-Milner system would
infer for this term, and therefore we chose this strategy for the def-
inition of ftypen(·). Another possibility is to keep the type poly-
morphic and instantiate to a rigid bound ∀(β = ∀α. α → α). [β ],
which we call variant F. We did not choose this variant since we
feel that compatability with Hindley-Milner is more important.

It is not enough to just force the inferred type for the let bound
expression to an F-type. Since both variant HM and variant F can be
obtained by instantiation, we can always use the instantiation rule
to derive either variant, losing principal typings again. The solution
is simple though: in rule F-LET we specify that the type derived
for the let expression must be the most general type and cannot be
an instance thereof. This most general type is then forced to an F-
type. Requiring let bindings to most general types is not new and
similar solutions are explored for example by Leroy and Mauny
(1993), Garrigue and Rémy (1999), and Vytiniotis et al. (2006).

Standard MLF type inference can be used to infer types for
MLF= where let bound values are of course forced to F-types
and type annotations restricted to F-types. Since lambda bound
arguments are therefore F-types, this implies that rigid bounds are
always F-Types too. Types where all rigid bounds are F-types are
called shallow types. Standard type inference works for MLF=

because all types in MLF= are shallow, and Le Botlan (2004,
Section 10.2) showed that standard MLF type inference is sound
and complete for shallow terms, deriving shallow principal types.

4.2 Expressiveness of MLF=

In MLF= our original example

let ids = [id ] in (polyL ids, ids ++ [inc ]) -- rejected

is no longer accepted. All bound expressions now have simple F-
types, and ids gets the standard Hindley-Milner type ∀α. [α → α ]
and cannot be passed to polyL which expects a list of polymorphic
identity functions. Of course, the expression ids ++ [inc ] is well-
typed. However, we could type the polyL ids application if we add
a type annotation though:

let ids = [id ] :: [∀α. α → α ] in polyL ids

This is well-typed since the annotation is a valid F-type and is not
influenced by the ftype(·) coercion in F-LET. Of course, now the
application ids ++ [inc ] would be ill-typed. We can type check
both applications if we inline the let binding and no longer try to
share the ids value:

(polyL [id ], [id ] ++ [inc ])

In order to type check this example, the type inferencer still assigns
most general types with flexible polymorphic bounds to interme-
diate terms like [id ]. The reader might worry that this still leads
to evidence translation at runtime. However, all bound values have
F-types and we can never abstract over non F-types. In practical
terms this means that all evidence is always locally known and all
remaining evidence translation can always be optimized away.

Having intermediate terms with non F-types is very important
since it removes the need to annotate impredicative instantiations,
and in practice that reduces the number of required type annota-
tions significantly. For example, we did not need to annotate the
application polyL [id ] even though the list is impredicatively in-
stantiated. The only type annotations necessary in MLF= are (1)
on lambda bound arguments that are used polymorphically, and (2)
on let bound expressions that contain flexible polymorphic types

that should stay polymorphic. Admittedly, the second condition is
harder to explain. On the bright side, MLF= stays fully compatible
with Hindley-Milner and in practice few of such annotations are
necessary.

5. Related work
There have been many proposed extensions to standard Hindley-
Milner type inference to support higher-ranked or impredicative
types. Jones (1997) describes a system that retains a stratification
between monomorphic types and type schemes and embed poly-
morphic types inside type constructors, where constructor applica-
tion correspond to type abstraction, and pattern matching to type
application.

Odersky and Läufer (1996) describe a type system for higher-
ranked types where higher-ranked arguments need to be annotated
with their type. Peyton Jones et al. (2007) extend this work where
the type rules propagate known type information to reduce the
annotation burden. Dijkstra (2005) describes a further extension
that supports impredicative types and has bidirectional propagation
of type annotations. In earlier work, Garrigue and Rémy (1999)
describe a system where polymorphic types are embedded inside
monotypes where polytypes are marked whether they are annotated
or declared.

MLF (Le Botlan and Rémy 2003) goes beyond System F types
to support type inference with first-class polymorphism. Several
variants of MLF and their relation to other systems are explored in
(Le Botlan and Rémy 2007). Rémy and Yakobowski (2007) present
an efficient graph based inference algorithm for MLF that has the
same complexity as normal Hindley-Milner type inference.

The work most closely related to this article is by Leijen and
Löh (2005), who describe how MLF can be used with the theory of
qualified types (Jones 1994) and give an algorithm that translates
MLF terms to System F where evidence is passed for all bounded
polymorphic types, including rigidly bound types.

5.1 A comparison with boxy types
Recently, Vytiniotis et al. (2006) introduce boxy type inference
where inferred and annotated types are elegantly distinguished
through boxes in the types. Just like MLF, boxy types support
first-class polymorphism. Moreover, it has proved its value in prac-
tice since it has been implemented in version 6.6 of the Glasgow
Haskell Compiler (GHC).

Directly comparing boxy types and MLF is difficult since their
formulations differ substantially, and since MLF is strictly more
expressive than boxy types (due to flexible polymorphic bounds).
MLF= on the other hand is just as expressive as boxy types where
all values can be given System F types. The set of programs ac-
cepted by boxy types is exactly the same as for MLF= modulo type
annotations. A interesting way of comparing the systems would
therefore be to study how type checking behaves under common
small program transformations, for example, if f x is well typed, is
apply f x also well typed?

Let us first look at inlining of let bindings: if let x = e1 in e2

is accepted, is the inlining e2[x 7→ e1] also accepted?

binding type HM MLF MLF= boxy
monomorphic X X X X
polymorphic X X X ×
higher-rank - X X ×
impredicative - X X ×

In the above table HM stands for Hindley-Milner type inference.
We make a distinction for each kind of binding type, where “poly-
morphic” stands for a rank-1 polymorphic Hindley-Milner type. In
Hindley-Milner, MLF, and MLF= we can always inline a let bind-



ing and still have a well-typed program. Surprisingly, this does not
hold for boxy type inference – not even for rank-1 types. This is
because the boxy type system relies crucially on type generaliza-
tion at let bindings. Let’s assume that ids has type [∀α. α → α ],
and that we have a function choose of type ∀α. α → α → α. Now
take the following program:

let f = choose [ ] in f ids

This program is well-typed in all systems (except HM of course)
where the type of f is ∀α. [α ] → [α ] (i.e. a standard Hindley-
Milner type). However, if we inline the binding to choose [ ] ids ,
the boxy type system rejects this program since it fails to generalize
the intermediate choose [ ] term (and annotations do not help‘).

We now take a look at the inverse of inlining: if e2[x 7→ e1] is
accepted, is the abstraction let x = e1 in e2 also accepted?

binding type HM MLF MLF= boxy
monomorphic X X X X
polymorphic X X X X
higher-rank - X ann ann
impredicative - X × ×

In the above table ‘ann’ means that the abstracted let binding might
need an annotation. Of all systems, only MLF allows this transfor-
mation. HM, MLF=, and boxy types allow it for standard Hindley-
Milner types but higher-rank types may need an annotation. This
happens specifically when a function returns a higher order func-
tion. Suppose g has type (Int → (∀α. α → α)) → Int , then
the expression g (λx .id) is well typed in MLF, MLF=, and boxy
types. The abstraction however is only accepted in MLF:

let f = λx .id in g f

In both boxy types and MLF= we need to annotate the binding.
Without annotation, both systems assign the type ∀αβ. α → (β →
β) which is not polymorphic enough. The binding f must be anno-
tated with the type ∀β. β → (∀α. α → α),

Impredicative types cannot be abstracted in general in MLF=

and boxy types. Whenever such type requires a non-trivial flexible
polymorphic bound in MLF, both MLF= and boxy types fail to type
it and with good reason: without evidence translation, there is not
even a possible System F translation (See Section 3.1).

The final transformation we study is the apply transformation:
if e1 e2 is well typed, is apply e1 e2 also accepted?

HM MLF MLF= boxy
apply X X X ann

In Section 2 we argued that this a particularly important transfor-
mation since it enables general abstraction over polymorphic val-
ues. Unfortunately, this property does not hold for boxy types as
impredicative instantiation needs a type annotation. Take for exam-
ple the application of runST (return 1) where runST has type
∀s.ST s α. To type apply runST (return 1), we need to anno-
tate the full instantiation type of apply :

(apply :: ((∀s.ST s Int) → Int) → (∀s.ST s Int) → Int)
runST (return 1)

A heavy burden indeed!

6. Conclusion and future work
We presented a type directed translation of MLF to System F terms.
This is important in practice in order to compile MLF typed pro-
grams efficiently. In particular, when MLF is extended with qual-
ified types it is essential to have a translation scheme to System F
that can accomodate evidence translation for qualified types, and
we hope that the presented translation increases adoption of MLF.

Even though MLF is very attractive as an inference system for first-
class polymorphism, it is a drawback that users are exposed more
complicated MLF types. Inspired by MLF=, we recently discov-
ered a type system for first-class polymorphism, called HMF, which
is much simpler than MLF. It uses just regular System F types and
is still very expressive. For example, if e1 e2 is well typed, then
apply e1 e2 is well typed too. We are currently studying the prop-
erties of this system (Leijen 2007).
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