A Virtual Environment System for Mission Planning

David Zeltzer and Steven Drucker
Computer Graphics and Animation Group
MIT Media Laboratory
Cambridge, MA 02139

Fig. 1. View along the flight path from an aircraft to a target.

Abstract
A key function of a mission planning
system is to enhance and maintain
situational awareness of planning
personnel and aircrews who will use
the system for pre-mission rehearsals
and briefings. We have developed a
mission planner using virtual
envirnoment technology. We provide a

Presented at the IMAGE VI
Conference Scottsdale Az, 14-17 July,
1992

task level interface to computational
models of aircraft, terrain, threats and
targets, so that users interact directly
with these models using voice and
gesture recognition, 3D positional
input, 3 axis force output, and
intelligent camera control.

I ntroduction
A computer-based system for
mission planning has a number of
objectives. Among them, such a system
must:

1) optimize the use of air assets,
including manned, remotely-piloted
and autonomous vehicles;

2) maximize the probability of
mission success as well as aircraft and
crew survivability, in part by
performing penetration analysis and
calculating optimal routes;

3) calculate and output mission data
such as fuel and weapon loads, in-flight
refueling schedules, and initialize and
download mission data to onboard
avionics;

4) provide support for mission
rehearsal and for briefing aircrews;

5) perform all these functions as
rapidly as possible in support of high-
intensity, large-scale operations.

Mission planning for tactical
operations has been characterized as
requiring the “assimilation of large
guantities of symbolic and numeric
information from a variety of sources
under critical time constraints’ (Bate
and Stanley, 1988). A key function of a
mission planning system must be to
enhance and maintain the situational
awareness of planning personnel and
the aircrews who will use the system
for pre-mission briefings and
rehearsals. Interestingly, one lesson
learned in Desert Storm is that
aircrews often prefer to study photo
imagery rather than maps during
mission preparation (Hughes, 1991).
Therefore, a mission planning system
should support 3D perspective views of
photoreal imagery. Finally, while there
IS a growing body of work on

automatic route generation, the
problem is characterized by many
interacting constraints, so that route-
finding algorithms must incorporate
heuristics and simplifying assumptions
in order to keep the problem size
manageable, or to avoid getting stuck
in local extrema (Chamberlain and
Kirklen, 1988). This means that in any
mission planning system — even onein
which route generation is partly or
fully automatic — it will be important
to present easily visualized routing
solutions to the human operators, who
should find it just as easy to modify and
refine them.

For these reasons we have chosen
to focus on the human interface to the
mission planner we have developed.
We assume that some other module
may perform optimal route
calculations; our system could input
these proposed solutions, display them
dynamically and in 3D, and make it
easy for personnel to interactively
modify flight paths, for example, to
take advantage of local terrain
masking.

Virtual Environments and Task-
Level Interaction

Emerging virtual environment (VE)
technologies offer powerful and
productive human interface solutions
for command and control problems,
and we have set out to demonstrate the
utility of VE technology in this
domain.

As we have pointed out elsewhere,
in addition to the computing hardware
and peripherals, a VE consists of three
critical components: a set of
computational models; alogical
Iinterface that specifies which
parameters of these models may be

modified, and when; and a physical
interface that provides one or more
displays (which may be visual,
auditory or tactual) and I/O devices by
which to communicate the user's
intentions to the system (Zeltzer,
1992).

Our work follows a task-level
analysis of the goals and requirements
of a mission planning system, in which
workload and stress levels are likely to
be very high. It is particularly
important in such situations that the
computer interface be as transparent as
possible, requiring a minimum of
computer expertise and programming
skills. Operators and aircrews should
deal directly with the objects and
processes associated with the task, using
a vocabulary and sensorimotor skills
that are already familiar to them
(Zeltzer, 1991).

Unlike a flight simulator, in which
interaction is restricted to cockpit tasks,
we have designed the system to
emphasize task level interaction with
the environment: the operator can
easily change not only his viewpoint,
but all the objects and their positions
within the environment. We provide
models of aircraft, terrain, threats and
targets, and users interact directly with
these models — voice recognition for
speech input, a VPL DataGlove for
positional input and gesture and posture
recognition, and a more conventional
mouse and keyboard interface are all
supported. Finally, we provide a range
of sensory displays, including wide
field of view (FOV) visual displays,
and a force output joystick — a device
that can generate force cues for the
operator.

The system is implemented within
the bolio prototype VE system

(Zeltzer, Pieper and Sturman, 1989).
The bolio system maintains a registry
of all the objects within the virtual
world, and a list of constraints that are
activated and satisfied when certain
conditions are met. It provides the
ability to distribute the system among
networked computing platforms, and to
incorporate a wide variety of 1/0
devices. Using the system, processes
are assigned to each of the following
tasks: a separate process that manages
the movements for each aircraft, one
process to manage the movement and
location of al the targets and threats, a
process for controlling and monitoring
the DataGlove, a process for
controlling and monitoring the force
output joystick, a process to manage the
menus and mouse input, a process to
manage voice input, and the underlying
graphical simulation system which
displays all the objects in the database
and maintains the constraints between
the objects. bolio is implemented in C
on Hewlett-Packard 9000 series
turboSRX graphics workstations
running the HP-UX operating system, a

derivative of AT& T System V Unix -

Aircraft and Flightpaths

As shown in Fig. 1, when using the
mission planner, the operator is
presented with a (full color) 3D
computer graphic representation of the
area of interest; multiple views are
available simultaneously. Using 3D
input devices, the operator can specify
waypoints through which an aircraft
should travel, or prespecified
waypoints can be read in from an
external source. Once defined in either
fashion, the aircraft module will
generate a flight path which will pass
through each of the waypoints, if

possible, based on a simplified
aerodynamic model (actually, an A-4
Skyhawk). The system can represent
and display an unlimited number of
aircraft, each following its own flight
path. Motion of the aircraft along

flightpaths can be interactively
controlled using “VCR” controls that
allow the operator to stop action, back
up, or fast forward motion as
necessary.

Fig. 2. Using the DataGlove to modify a waypoint.

The aircraft module assumes an
initial velocity, and continuously
calculates the distance to the next
waypoint and the angle of turn
necessary to take it to the subsequent
waypoint. Based on this information, it
performs the necessary maneuvering to
maintain the aircraft’s position along
the flight path. Appropriate state
variables are calculated for the entire
path including g-load factors and
aircraft attitude along the path. G-loads

can be displayed as changes in color
along the flight path. Since bolio
supports distributed computation, in
order to maintain interactive update
rates, aircraft dynamic calculations are
offloaded onto a remote platform, in
this case, a Hewlett Packard 9000 series
750 workstation.

As shown in Fig. 2, waypoints can
be moved interactively using any of the
3D input devices we will discuss
shortly. Once a waypoint is moved, the
flight path is recalculated and
displayed. The user can also specify a

terrain following mode, in which the
actual altitude of the waypoints are
ignored and the aircraft moves at a
specified height above ground level.
The operator can also locate points
of interest on the terrain, specify their
identity and set the view to originate or
terminate at that point, so that lines of
sight (LOS) to or from aircraft can be
checked. The view can be made to
track the motion of any specified
aircraft, track a location on the ground
from any of the aircraft, or track the
motion of a moving object on the
ground. This makes it extremely easy

to examine LOS between any objectsin
the system. (Intelligent camera control
will be discussed further below). An
additional viewing interface includes
the use of a head mounted display
(HMD) equipped with a motion
tracking device which senses an
operator's head movements and updates
the display appropriately. Not only
does this provide motion parallax, an
important cue for 3D depth perception,
but the HMD has a wide FOV which
enhances situational awareness in the
virtual world.

Fig. 3. View from a rebl A/C toward a blue A/C that has entered

terrain masked radar coverage.

Target module/terrain database

Terrain may be derived from aerial
Imagery using a depth-from-shading
algorithm (Pentland, 1990), or terrain
objects may be defined and modified
interactively using solid modeling
tools, as in Figs. 1-4. In principle,
terrain information can be derived
from other sources, e.g., DMA DTED,
but we have not implemented the
necessary interfaces.

The terrain model is used by both
the aircraft model in terrain
following mode — and by the target
module. The target module handles all
objects on the ground including threats,
radar, stationary structures and moving
targets — which are constrained to lie
on the terrain surface. Targets can
either be loaded in from a database, or
specified “on the fly” using any of the
3D input devices.

Using the force output joystick, it is
possible to “feel” textured terrain
surfaces, or interactively “sculpt” a 3D
terrain surface for generating
particular scenarios.

Terrain Masked Radar

Terrain masked radar coverage is
generated and displayed automatically,
and the locations of aircraft with
respect to a radar site are continuously
tracked. When an aircraft is “visible’
to a radar, the color of the aircraft is
changed to yellow. See Fig. 3. The
algorithms used for generating the
radar, and checking the visibility are
straightforward. An operator can
interactively locate the radar site using
any of the 3D input devices, and the
terrain is sampled radially outward
from this point. The highest terrain
elevation in each direction is used as an

endpoint, and a connected polyhedron,
including the central radar site and all
the endpoints, is constructed. This is
displayed on the screen in wire frame
form so as not to obscure the
environment — transparent polygons
would look better, but we have not
implemented this. To check aircraft
visibility, we sample the path between
the radar site and the aircraft in
question, and compute the vertical
angle between the highest terrain
feature and the radar site along that
path. If at any point the angle between
the radar and the sampled terrain value
IS greater than the angle between the
radar and the aircraft, the aircraft must
be below the local horizon and is not
visible to the radar. This algorithm can
easily be run at interactive rates.

Input Devices

There are two primary types of
input devices used in the system: those
used for specifying discrete command
information, and those for specifying
continuous three dimensional data.
Commands may be input either through
a conventional keyboard system, a
mouse and menu based system, hand
gesture recognition, or a voice
recognition system. The
mouse/menu/window system is
implemented using the X-window
system with OSF Motif extensions. The
window system supports multiple
simultaneous viewpoints, though thisis
prohibitively slow on our current
hardware (Hewlett-Packard 9000 series
800 workstations with turboSRX
graphics accelerator). The gesture
recognition system uses the VPL
DataGlove which incorporates fiber
optic cables that sense hand flexion. To
specify 3 dimensional input, the

operator can use either the Polhemus
Iso-track sensor attached to the
DataGlove, the Spatial Systems
Spaceball Force/Torgue sensor, or a 3-
axis force output joystick developed as
part of a joint project between the
Mechanical Engineering Department at
MIT and the Media Lab (Russo, 1990).

The 3-axis force output joystick is
really both an input and an output
device. It is a conventional joystick
that has been equipped with motors and
brakes so that it can generate forces on
the shaft. Many modes of interaction
using the joystick were examined. The
user can position targets or threats on
the terrain while feeling the texture of
the terrain. The targets or threats can
be made to repel or attract the joystick
giving an overall impression of the
environment. The movement of the
joystick can be made to follow any of
the aircraft as it moved along its flight
path. Several of these modes can be
combined so that threats can be sensed
as the plane was moving along its path.
One extension that is not yet
implemented is to use the joystick to
modify the flightpath while exerting a
force to the user proportional to a
difficulty involved in having the
aircraft follow the newly proposed
path.

Voice recognition uses the
Articulate Systems Voice Navigator.
Thisis an inexpensive, Macintosh-based
system which supports a small
vocabulary of about 1200 words. The
Macintosh is connected to the main
workstation via a serial connection, and
acts as a “ speech server”.

Voice input is processed with a
finite state machine so that commands
are parsed according to the current
context. Available commands are listed

on the visual display, and any command
that is not appropriate for the current
state is ignored. This command
“prompting” greatly improves voice
Interaction. A noise-cancelling
microphone is used to alleviate
problems with background noise.
Currently the voice system is used
primarily for view specification,
allowing the user to perform a variety
of necessary tasks: tracking the
movements of any of the objects in the
simulation; placing the eyepoint at any
object (and keeping it there during
movement); requesting overhead and
standard views; or adjusting the views
based on panning, zooming, or other
commands.

An HMD can be used to view the
entire scene as an omniscient observer.
The user can move along with an object
as it moves and the system would track
the movements of the user's head and
update the view appropriately,
generating a feeling of being within the
map itself. The wide field of view and
the motion parallax, and the stereo
display added particularly to this sense
of presence.

Intelligent Camera Control

Camera control in the system is
designed to be both flexible and
powerful. Out-the-window views can
be easily directed to any object in the
environment, including other aircraft,
targets or threats. Views may simply
display straightahead out-the-window
imagery, or can be made to follow
objects as they move through space. At
any time, the point of regard and the
viewpoint can be swapped. Voice
control is incorporated, so all the
operations described in this section are
available via hands-free operation.

Besides simple viewpoint and point
of regard control, camera control
based on conventional camera
movements are possible. For instance,
the camera may pan, truck (camera
view point moves toward the point of
regard), dolly (camera viewpoint
moves perpendicular to the vector
connecting the viewpoint and point of
regard), crane, and zoom (field of view
IS increased or decreased). Certain
points of view can be saved and
retrieved for instantaneous changes to
standard reference views.

A more sophisticated level of view
control maintains the positions of
selected objects at certain points in the
frame. For example, rather than
generating an out-the-window view of
a target, it may be more informative to
construct a view external to both the
aircraft and the target. This can be seen
in Fig. 1, which shows a view from an
aircraft to a target, and in Fig. 4,
which shows a view from a different
target looking back towards another
aircraft centered in the frame.

Fig. 4. Centered view showing target, red and blue A/C.

Finally, a system for automatically
tracking the closest target or threat is
available. This system can be used to

merely indicate the closest target via a
line between an aircraft and the target,

or the point of regard can be
automatically changed and tracked so

that the object of regard is always the
closest target.

Scenario Generation

Mission scenarios can easily be
created, stored and retrieved using the
system. Waypoints are created using a
3D input device (e.g., DataGlove or
force output joystick), and paths
through these waypoints can be
displayed and edited using a 3D input
device. These paths can then be saved
in separate files and loaded at a later
time. Positions of targets and threats
can also be saved and retrieved. “Menu
buttons” can be created that load
aircraft, threats and targets with a
single selection. Complicated scenarios
can thus be accomplished by simple
scripting without any need for
recompilation. Scripting is performed
using tcl (tool command language - a
public domain front-end scripting
language), along with an in-house
interface to OSF motif.

Concluding Remarks

While we have not conducted
formal evaluations of the system, many
visitors, including DoD and Air Force
personnel, have seen the system in
operation and have commented
favorably. We have found that for
modifying flightpath waypoints, the
combination of gesture recognition
with the DataGlove, and positional
information from the Polhemus
worked quite well. The Spaceball was
excellent at modifying the views of the
environment by using a “camera in
hand” metaphor, which allows the
operator to freely move the viewpoint
around the virtual world

Voice control has been very
encouraging: when tested in a noisy
room, recognition was quite good.
With the addition of the finite state

machine for command selection, we've
had absolutely NO false actions as a
result of an occasional “false hit”, i.e,,
incorreclty recognized command. The
worst result is that occasionally one has
to repeat a command several times, but
more often than not we have had a
string of 10 to 40 successful commands
in arow.

We are currently in the process of
porting the system to faster platforms,
and we expect a performance increase
of from 4 to 6 times in visual updates
due entirely to the faster hardware. In
addition, this will allow us to conduct
further experiments with the force
feedback joystick, since current
hardware cannot support realtime force
output interaction with dynamic
objects, such as flightpaths.

Acknowledgements

This research was supported in part
by the Defense Advanced Research
Projects Agency under Rome
Laboratories Contract F30602-89-C-
0022, and equipment grants from
Hewlett-Packard and Apple Computer.
Paul Dworkin implemented the force
output joystick module, and Amy
Pritchett of the MIT Aero and Astro
Department implemented the aircraft
dynamics module. Special thanks are
due to Dick Slavinski of Rome
Laboratories for his support and
encouragement.

References
Bate, S., and Stanley, K. (1988).
Heuristic Route Planning: An
Application to Fighter Aircraft. Proc.
I[EEE 1988 National Aerospace and

Chamberlain, D. B., and Kirklen, C.
R. (1988).Advanced Mission Planning
System (AMPS) Employing Terrain
and Intelligence Database Support.
Proc. IEEE 1988 National Aerospace
and Electronics Conf, (pp. 1145-51),
Dayton OH.

Hughes, D (1991). Advanced USAF
Mission Planning System Will Serve
Fighters, Bombers and Transports.
Aviation Week & Space Technology,
134(23), pp. 52-57.

Pentland, A. (1990). Linear Shape
from Shading. Int'l J. of Computer
Vision, Val. 4, pp. 153-162.

Russo, M.A. (1990). The Design and
|mplementation of a Three Degree of
Freedom Force Output Joystick. M.S.
Thesis, Massachusetts Institute of
Technology, Cambridge, MA.

Zeltzer, D. (1992)..Autonomy,
Interaction and Presence. Presence:
Teleoperators and Virtual
Environments, 1(1), in press.

Zeltzer, D. (1991). Task Level
Graphical Simulation: Abstraction,
Representation and Control, in: N.
Badler, B. Barsky and D. Zeltzer
(Eds.), Making Them Move:
Mechanics, Control and Animation of
Articulated Figures, (pp.3-33). San
mateo CA: Morgan Kaufmann.

Zeltzer, D., Pieper, S., and Sturman D.
(1989). An Integrated Graphical
Simulation Platform. Proc. Graphics
Interface '89 (pp. 266-274), London,

Electronics Conf, (pp. 1114-20),
Dayton OH.

Ontario, Canada.

