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Abstract

Gates are a new notation for representing mixture modelscantext-sensitive
independence in factor graphs. Factor graphs provide aatagpresentation for
message-passing algorithms, such as expectation propagdbwever, message
passing in mixture models is not well captured by factor gsapnless the en-
tire mixture is represented by one factor, because the messguations have a
containment structure. Gates capture this containmeumttstie graphically, al-
lowing both the independences and the message-passintioegufmr a model
to be readily visualized. Different variational approxitinas for mixture models
can be understood as different ways of drawing the gates iodemWe present
general equations for expectation propagation and vanatimessage passing in
the presence of gates.

1 Introduction

Graphical models, such as Bayesian networks and factohgrdp, are widely used to represent
and visualise fixed dependency relationships between ramvadoiables. Graphical models are also
commonly used as data structures for inference algoritiimas shey allow independencies between
variables to be exploited, leading to significant efficiegeyns. However, there is no widely used
notation for representingontext-specifidependencies, that is, dependencies which are present or
absent conditioned on the state of another variable in taphgf2]. Such a notation would be
necessary not only to represent and communicate contextfgpdependencies, but also to be able
to exploit context-specific independence to achieve efft@@d accurate inference.

A number of notations have been proposed for representingexbspecific dependencies, includ-
ing: case factor diagrams [3], contingent Bayesian neta/¢tk and labeled graphs [5]. None of
these has been widely adopted, raising the question: wlogedies would a notation need, to
achieve widespread use? We believe it would need to be:

e simple to understand and use,
o flexible enough to represent context-specific indepenésrinireal world problems,

e usable as a data structure to allow existing inference ihgs to exploit context-specific
independencies for efficiency and accuracy gains,

e usable in conjunction with existing representations, aagfactor graphs.

This paper introduces thgate a graphical notation for representing context-specifipetielencies

that we believe achieves these desiderata. Section 2 besevhat a gate is and shows how it can
be used to represent context-specific independencies imaatuof example models. Section 3
motivates the use of gates for inference and section 4 espamthis by showing how gates can be
used within three standard inference algorithms: Expiect@®ropagation (EP), Variational Message
Passing (VMP) and Gibbs sampling. Section 5 shows how theepiant of gates can tradeoff cost
versus accuracy of inference. Section 6 discusses the gsg¢asfto implement inference algorithms.



Figure 1: Gate examples (a) The dashed rectangle indicates a gate containing a @ausastor,
with selector variable. (b) Two gates with different key values used to construcxure of two
Gaussians. (c) When multiple gates share a selector variaiele can be drawn touching with the
selector variable connected to only one of the gates. (d)»ure of N Gaussians constructed using
both a gate and a plate. For clarity, factors correspondingtiable priors have been omitted.

2 TheGate

A gate encloses part of a factor graph and switches it on odegending on the state of a latent
selector variable. The gate is on when the selector variadea particular value, called tikey,

and off for all other values. A gate allows context-specifidgdpendencies to be made explicit in the
graphical model: the dependencies represented by anydgangide the gate are present only in the
context of the selector variable having the key value. Maidgcally, a gate represents raising the

contained factors to the power zero if the gate is off, or ités on: ([, f; (2))°=FY) wherec is
the selector variable. In diagrams, a gate is denoted byteedasox labelled with the value &gy,
with the selector variable connected to the box boundarg I&bel may be omitted if is boolean
andkeyis true. Whilst the examples in this paper refer to factor graphs gatation can also be
used in both directed Bayesian networks and undirectechgrap

A simple example of a gate is shown in figure la. This exampjeresents the term
N (z;m,p~1)d(e=true) 5o that where is true the gate is on andhas a Gaussian distribution with
meanm and precisiorp. Otherwise, the gate is off andis uniformly distributed (since it is con-
nected to nothing).

By using several gates with different key values, multippenponents of a mixture can be repre-
sented. Figure 1b shows how a mixture of two Gaussians caefdresented using two gates with
different key values, true and false. dfis true,z will have distribution\ (m,, p;*), otherwiser
will have distribution\/ (1m2, p; 1) . When multiple gates have the same selector variable betdiff
ent key values, they can be drawn as in figure 1c, with the gatamgles touching and the selector
variable connected to only one of the gates. Notice thatinekample, an integer selector variable
is used and the key values are the integers 1,2,3.

For large homogeneous mixtures, gates can be used in ctiojunath plates [6]. For example,
figure 1d shows how a mixture df Gaussians can be represented by placing the gate, Gaussian
factor and mean/precision variables inside a plate, sdltlegtare replicatedv times.

Gates may be nested inside each other, implying a conjunofitheir conditions. To avoid ambi-
guities, gates cannot partially overlap, nor can a gateadoits own selector variable.
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Figure 2:Examples of models which use gates (a) A line process where neighboring pixel intensi-
ties are independent if an edge exists between them. (bhgdet dependence between a genetic
variantg,, and an observed quantitative trajt. The selector variable encodes whether the linear
dependency represented by the structure inside the gatesisni or absent.

Gates can also contain variables, as well as factors. Su@bies have the behaviour that, when
the gate is off, they revert to having a default value of falseero, depending on the variable type.
Mathematically, a variable inside a gate represents a Dietia when the gate is offi(x)!—0(c=kev)
whered(x) is one only when: has its default value. Figure 2b shows an example whereblesia
are contained in gates — this example is described in thewoip section.

2.1 Examplesof modelswith gates

Figure 2a shows kine processrom [7]. The use of gates makes clear the assumption thatéigih-
boring image pixels:; andz; have a dependency between their intensity values, unless ifhan
edgee;; between them. An opaque three-way factor would hide thisestrspecific independence.

Gates can also be used to test for independence. In thisteaselector variable is connected only
to the gate, as shown in the example of figure 2b. This is a meba in functional genomics [8]
where the aim is to detect associations between a genetamvay, and some quantitative trait,
(such as height, weight, intelligence etc.) given data feoset ofV individuals. The binary selector
variablec switches on or off a linear model of the genetic variant’stabation y,, to the traitz,,,
across all individuals. When the gate is aff, reverts to the default value 6fand so the trait is
explained only by a Gaussian-distributed background magelinferring the posterior distribution
of ¢ allows associations between the genetic variation andlited be detected.

3 How gatesarise from message-passing on mixture models

Factor graph notation arises naturally when describingsages passing algorithms, such as the
sum-product algorithm. Similarly, the gate notation asisaturally when considering the behavior
of message passing algorithms on mixture models.

As a motivating example, consider the mixture model of figlivevhen the precisions andp, are
constant. Using 1 and 2 as keys insteatto¢ andfalse the joint distribution isp(z, ¢, m1, ms) =
p(c)p(m1)p(ms) f(x|m1)0=D f(2my)?¢=2) wheref is the Gaussian distribution. If we apply
mean-field approximation to this model, we obtain the follay/fixed-point system:

q(c = k) o< p(c = k) exp (Z g(x) Y q(my)log f(xlmk)> €Y
) alc=F)
q(my) o< p(my) exp (Z q() logf(l"mk-)> (2
’ q(c=k)
q(z) o [ exp (Z q(mk)logf(xmk)> ®3)
k mi



These updates can be interpreted as message-passing edmiiim “blurring” (raising to a power
between 0 and 1). For example, the update forn;) can be interpreted as (message from
prior)x (blurred message frorfl). The update for(z) can be interpreted as (blurred message from
m1)x(blurred message fromns). Blurring occurs whenever a message is sent from a factoer ha
ing a random exponent to a factor without that exponent. Thesxponent acts like a container,
affecting all messages that pass out of it. Hence, we usephiged notation where a gate is a con-
tainer, holding all the factors switched by the gate. Greglhy, the blurring operation then happens
whenever a message leaves a gate. Messages passed intardgatthin a gate are unchanged.

This graphical property holds true for other algorithms &l wror example, EP on this model will
blur the message frorfito m; and fromf to x, where “blurring” means a linear combination with
the 1 function followed by KL-projection.

3.1 Why gatesarenot equivalent to ‘pick’ factors

It is possible to rewrite this model so that ttfefactors do not have exponents, and therefore
would not be in gates. However, this will necessarily chatige approximation. This is be-
cause the blurring effect caused by exponents operatesandmaction only, while the blur-
ring effect caused by intermediate factors is always bitio@al. For example, suppose we
try to write the model using a factgsick(z|c, hy, hy) = 6(z — hy)?Dd(z — hy)d(e=2),

We can introduce latent variablés,, ho) so that the model becomegx, ¢, m1, ma, hy, he) =
p(e)p(m1)p(ma) f(h1|ma) f(ha|mse)pick(x|c, h1, he). The pi ck factor will correctly blur the
downward messages frofm,ms) to x. However, thepi ck factor will also blur the message
upward fromz before it reaches the factgr which is incorrect.

Another approach is to pick frotfan,, ms) before reaching the factgh, so that the model becomes
p(x, c,my,ma,m) = p(c)p(mq)p(mz) f(x|m)pick(m|c, mi, ms). In this case, the message from
x to f is not blurred, and the upward messagegitq, m) are blurred, which is correct. However,
the downward messages frqmu;, ms) to f are blurred before reaching which is incorrect.

3.2 Variablesinside gates

Now consider an example where it is natural to consider abbgito be inside a gate. The model

is: p(z,c,m1,ma,y) = p(c)p(ma)p(ma) [T, (f1(zly) f2(ylmi)* ™. If we use a structured
variational approximation whengis conditioned on, then the fixed-point equations are [9]:

q(c=k) oc p(c = k) exp <Z q(z) Y qlyle = k) log fl(ffy)>

exp (Z q(yle =k)D_ q(my)log fz(ylmk)> exp <— > alyle = k)logg(yle = k))

Yy my (4)
q(yle = k) o exp (Z q(z) log fl(:cy)> exp (Z q(my) log fz(ylmk)> (5)
) q(c=k)
q(mi) o< p(my) exp <Z q(yle = k)log fz(ylmk)> (6)
’ q(c=k)
q(x) o< [J exp (Z q(yle = k) log fl(frly)) @)
k Y

Notice that only the messagesi@ndm, are blurred; the messages to and frgiare not blurred.
Thus we can think of as sitting inside the gate. The message from the gateam be interpreted
as the evidence for the submodel containfingf,, andy.



4 Inferencewith gates

In the previous section, we explained why the gate notatiseswhen performing message passing
in some example mixture models. In this section, we desdridve gate notation can be generally
incorporated into Variational Message Passing [10], Etqiem Propagation [11] and Gibbs Sam-
pling [7] to allow each of these algorithms to support cot¥specific independence.

For reference, Table 1 shows the messages needed to appusust&P or VMP using a fully factor-
ized approximatio(x) = [ [, ¢(z;). Notice that VMP uses different messages to and from deter-
ministic factors, that is, factors which have the fofgiz;, x,\;) = 6(z; — h(x,\;)) Wherez; is the
derived child variable. Different VMP messages are alsd tsand from such deterministic derived
variables. For both algorithms the marginal distributiarsobtained ag(x;) = [[, ma—i(x;), €x-
cept for derived child variables in VMP whetgz;) = mpar—i(x;). The (approximate) model
evidence is obtained by a product of contributions, one fearch variable and each factor. Table 1
shows these contributions for each algorithm, with the ptioa that deterministic factors and their
derived variables contributeunder VMP.

When performing inference on models with gates, it is usef@rmploy anormalised fornof gate
model. In this form, variables inside a gate have no linksatidrs outside the gate, and a variable
outside a gate links to at most one factor inside the gateh 8idhese requirements can be achieved
by splitting a variable into a copy inside and a copy outsigegate, connected by an equality factor
inside the gate. A factor inside a gate should not connedidcsélector of the gate; it should be
given the key value instead. In addition, gates shouldddancedby ensuring that if a variable links

Alg. Type Variableto factor Factor to variable
Mi—a () Ma—i(T3)
ol P10 [ Y v, (T ca mimalay)) falxa)]
) CT e
b#a
VMP Stochastic H Ma—i(x;) exp Z H mj_a(z;) | log fo(x4)
a>i xo\Ti \J#i

L a 1 Aa a
Det. to parent Hmb—n’(l’i) exp Z H Mi—a(Tr) | 10g fo(Xa)

Xa\(i,ch) \ k#(i,ch)

b
#a Wherefa (Xa) = chh Mch—a (Ich)fa(Xa)
Det. to child Mpar—i (i) proj Z H mj—a(z;) | fa(Xa)
xa\wi J#i
Alg. Evidence for variable z; Evidence for factor f,

qu, H amJ—’G(z') fa,(xn,)
EP S; = Zm Ha Ma—i(T;) Sq = == lglj:mjﬂa(zj;m)a%j(xj)

VMP | s; = exp(— Zx q(z;) log q(x;)) Sq = exp (Zxa (Hjea mjﬂa(xj)) log fa(xa))

Table 1:Messages and evidence computations for EP and VMP The top part of the table shows
messages between a variableand a factorf,. The notationj € « refers to all neighbors of
the factor,j # i is all neighbors except par is the parent factor of a derived variable, asid

is the child variable of a deterministic factor. Theoj[p] operator returns an exponential-family
distribution whose sufficient statistics matgh The bottom part of the table shows the evidence
contributions for variables and factors in each algorithm.



to a factor in a gate with selector variakiethe variable also links to factors in gates keyed on all
other values of the selector varialleThis can be achieved by connecting the variable to uniform
factors in gates for any missing valuescof After balancing, each gate is part ofjate block- a set

of gates activated by different values of the same conditasiable. See [12] for details.

4.1 Variational Message Passing with gates

VMP can be augmented to run on a gate model in normalised foyrohanging only the messages

out of the gate and by introducing messages from the gateetedlector variable. Messages sent
between nodes inside the gate and messages into the gatechenged from standard VMP. The

variational distributions for variables inside gates anglicitly conditioned on the gate selector, as
at the end of section 3. In the following, an individual gatelénoted;, its selector variable and

its keyk,. See [12] for the derivations.

The messages out of a gate are modified as follows:

e The message from a factgy inside a gatey with selectorc to a variable outside is the
usual VMP message, raised to the power. ,(c = k), except in the following case.

e Where a variable; is the child of a number of deterministic factors inside aeddbckG
with selector variable, the variable is treated as derived and the message is a nromen
matched average of the individual VMP messages. Then theagedor; is

mG—i(%;) = proj Z Me—g(C = kg)mg—i(x:) (8)
geG

wherem,_.;(z;) is the usual VMP message from the unique parent factgrand proj is
a moment-matching projection onto the exponential family.

The message from a gaieto its selector variable is a product of evidence messages from the
contained nodes:

Mmg—c(c=ky) = H Sq H 5, mg_c(c# kg) =1 ()]
acg i€g

wheres, ands; are the VMP evidence messages from a factor and variabfeecteely (Table 1).
The set of contained factors includes any contained gateshvare treated as single factors by the
containing gate. Deterministic variables and factors sandence messages bf except where a
deterministic factorf, parents a variable; outsideg. Instead of sending, = 1, the factor sends:

Sq = €xp (Z Ma—i(x;)logm;_, (3:1)) (10)

z;

The child variabler; outside the gate also has a different evidence message:

8; = exp ( Z mea—i(z;)log mi_,a(ari)) (112)

Zi

wheremq_.; is the message from the parents (8) amd., is the message from; to any parent.
To allow for nested gates, we must also define an evidenceage$sr a gate:

q(c=ky)

5g = H Sa H Si (12)

4.2 Expectation Propagation with gates

As with VMP, EP can support gate models in normalised form bkimg small modifications to the
message-passing rules. Once again, messages betweerinsidies gate are unchanged. Recall
that, following gate balancing, all gates are part of gateks. In the following, an individual gate
is denotedy, its selector variable and its keyk,. See [12] for the derivations.



The messages into a gate are as follows:

e The message from a selector variable to each gate in a gafe @l the same. It is the
product of all messages into the variable excluding messigm gates irG.

e The message from a variable to each neighboring factorersighte blockz is the same.
It is product of all messages into the variable excludingsages from any factor i@'.

Let nbrs(g) be the set of variables outside @¢tonnected to some factor in Each gate computes
an intermediate evidence-like quantity defined as:

Sg = H Sq Hsl H Sig wheres;, = Zmiﬁg(xi)mgﬁi(xi) (13)
acyg i€g  i€nbrs(g) T,

wherem,_.; is the usual EP messagedpfrom its (unique) neighboring factor in The third term
is used to cancel the denominators gfsee definition in Table 1). Given this quantity, the message
out of a gate may now be specified:

e The combined message from all factors in a gate bl@cwith selector variable: to a
variablex; is the weighted average of the messages sent by each factor:

Pr0j [ 32 e Mo € = k)55 i) micy (2:)]

(:) el
(Notem;_.4(z;) is the same for each gage)
e The message from a gate bloGkio its selector variable is:
S
mg_c(c=k,) = =—2— (15)
J ZgEG Sg
Finally, the evidence contribution of a gate block with sédec is:
S

So = ZgGG 9 (16)

Hienbrs(g) Zrl Mi—g (xi)mG*’i (x’b)

4.3 Gibbssampling with gates

Gibbs sampling can easily extend to gates which contain famlprs. Gates containing variables
require a facility for computing the evidence of a submoualich Gibbs sampling does not provide.
Note also that Gibbs sampling does not support deterngrfistitors. Thus the graph should only
be normalised up to these constraints. The algorithm dtgrsetting the variables to initial values
and sending these values to their neighboring factors. Tdrezach variable:; in turn:

1. Query each neighboring factor for a conditional disttitou for ;. If the factor is in a gate
that is currently off, replace with a uniform distributioRor a gatey with selectorz;, the
conditional distribution is proportional te for the key value and otherwise, where is
the product of all factors ig.

2. Multiply the distributions from neighboring factors &t@er to get the variable’s conditional
distribution. Sample a new value for the variable from itaditional distribution.

5 Enlarging gatesto increase approximation accuracy

Gates induce a structured approximation as in [9], so by ngpubdes inside or outside of gates,
you can trade off inference accuracy versus cost. Becalesgair of a gate block is always on, any
node (variable or factor) outside a gate bldglcan be equivalently placed inside each gaté& of
This increases accuracy since a separate set of messages mdintained for each case, but it may
increase the cost.

For example, Archambeau and Verleysen [14] suggested etwsted approximation for Student-t
mixture models, instead of the factorised approximatiofiL8f. Their modification can be viewed
as a gate enlargement (figure 3). By enlarging the gate btooictudew.,,,, the blurring between
the multiplication factor and,,,,, is removed, increasing accuracy. This comes at no additimsa
sinceu.,, is only used by one gate and therefore only one message ischeed: andm.
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Figure 3:Student-t mixture model using gates (a) Model from [13] (b) Structured approximation
suggested by [14], which can be interpreted as enlargingdte

6 Discussion and conclusions

Gates have proven very useful to us when implementing arlidoa inference in graphical mod-
els. By using gates, the library allows mixtures of arbitraub-models, such as mixtures of fac-
tor analysers. Gates are also used for computing the ewdena model, by placing the entire
model in a gate with binary selector variabbleThe log evidence is then the log-oddsbothat is,

log P(b = true) — log P(b = false). Similarly, gates are used for model comparison by placing
each model in a different gate of a gate block. The marginaf tive selector gives the posterior
distribution over models.

Graphical models not only provide a visual way to represeptadabilistic model, but they can
also be used as a data structure for performing inferenchaimtodel. We have shown that gates
are similarly effective both as a graphical modelling niotagind as a construct within an inference
algorithm.
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