Milk or Wine: Does Software Security Improve with Age? *'

Andy Ozment
MIT Lincoln Laboratory*

Abstract

We examine the code base of the OpenBSD operating
system to determine whether its security is increasing
over time. We measure the rate at which new code
has been introduced and the rate at which vulnerabili-
ties have been reported over the last 7.5 years and fifteen
versions.

We learn that 61% of the lines of code in today’s
OpenBSD are foundational: they were introduced prior
to the release of the initial version we studied and have
not been altered since. We also learn that 62% of re-
ported vulnerabilities were present when the study began
and can also be considered to be foundational.

We find strong statistical evidence of a decrease in the
rate at which foundational vulnerabilities are being re-
ported. However, this decrease is anything but brisk:
foundational vulnerabilities have a median lifetime of ar
least 2.6 years.

Finally, we examined the density of vulnerabilities in
the code that was altered/introduced in each version. The
densities ranged from 0 to 0.033 vulnerabilities reported
per thousand lines of code. These densities will increase
as more vulnerabilities are reported.

*This work is sponsored by the I3P under Air Force Contract
FA8721-05-0002. Opinions, interpretations, conclusions and recom-
mendations are those of the author(s) and are not necessarily endorsed
by the United States Government.

TThis work was produced under the auspices of the Institute for
Information Infrastructure Protection (I3P) research program. The I3P
is managed by Dartmouth College, and supported under Award number
2003-TK-TX-0003 from the U.S. Department of Homeland Security,
Science and Technology Directorate. Points of view in this document
are those of the authors and do not necessarily represent the official
position of the U.S. Department of Homeland Security, the Science
and Technology Directorate, the I3P, or Dartmouth College.

Currently at the University of Cambridge

Stuart E. Schechter
MIT Lincoln Laboratory

1 Introduction

Many in the security research community have criticized
both the insecurity of software products and develop-
ers’ perceived inattention to security. However, we have
lacked quantitative evidence that such attention can im-
prove a product’s security over time. Seeking such evi-
dence, we asked whether efforts by the OpenBSD devel-
opment team to secure their product have decreased the
rate at which vulnerabilities are reported.

In particular, we are interested in responding to the
work of Eric Rescorla [11]. He used data from ICAT' to
argue that the rate at which vulnerabilities are reported
has not decreased with time; however, limitations in the
data he used prompted us to investigate this area further.

We chose OpenBSD version 2.3 as our foundation ver-
sion, and we collected 7.5 years of data on the vulnerabil-
ities reported in OpenBSD since that version’s release. In
particular, we focused our analysis on foundational vul-
nerabilities: those introduced prior to the release of the
foundation version. We also analyzed the evolution of
the code base. We were driven by the goal of answering
the following questions:

1. How much does legacy code influence security to-
day?

2. Do larger code changes have more vulnerabilities?

3. Do today’s coders introduce fewer vulnerabilities
per line of code?

4. What is the median lifetime of a vulnerability?
Most importantly:

5. Has there been a decline in the rate at which foun-
dational vulnerabilities in OpenBSD are reported?

In the upcoming section, we discuss the limitations of
vulnerability reporting data; these limitations may result
in our analysis underestimating increases in the security

of OpenBSD. In Section 3] we elaborate on the method-
ology used to collect the data sets employed in this work.
We then describe the results of our source code and vul-
nerability density analysis in Sectiond] In Section [5| we
provide statistical evidence that the rate at which founda-
tional vulnerabilities are reported is decreasing. Finally,
we discuss related literature in Section[6land conclude in
Section[7]

2 Limitations of vulnerability analyses

Our analysis uses the rate of vulnerability reports to mea-
sure one characteristic of OpenBSD’s security. We use
this data to estimate the size of the remaining pool of un-
reported vulnerabilities and to estimate the expected fre-
quency with which new vulnerabilities will be reported.
However, this information is only one aspect of the secu-
rity of OpenBSD. The OpenBSD development team has
not only worked to increase the security of the system’s
code base; they have also worked to improve its over-
all security architecture. These improvements include
new security functionality and safeguards that reduce the
severity of vulnerabilities.

2.1 New security functionality

The addition of valuable new security functionality, like
OpenSSH, increases the amount of code that is deemed
security-critical and may thus increase the pool of re-
portable vulnerabilities. This increase does not necessar-
ily imply that the code is less secure: it may only mean
that the operating system has assumed new security re-
sponsibilities.

2.2 Reductions in vulnerability severity

Architectural improvements that reduce the severity of a
vulnerability—but do not eliminate it entirely—can im-
prove security without reducing the rate at which vul-
nerabilities are discovered and reported. For example,
the OpenBSD team improved the security architecture of
OpenBSD by adding stack-guarding tools and random-
ized memory allocation [4], both of which reduce the
severity of vulnerabilities within the code base.

These security improvements are not accounted for
in our study, because we lack an accurate and unbiased
methodology with which to assess the severity of vulner-
abilities. Simply measuring reductions in the total pool
of vulnerabilities is thus likely to underestimate improve-
ments to the security of the overall system.

2.3 The influence of effort & skill on
vulnerability discovery

The rate at which vulnerabilities are discovered and re-
ported depends on the level of effort being expended to
do so. To measure how much more difficult it has be-
come to find vulnerabilities over time, we would need to
normalize the rate of discovery by the effort being ex-
erted and the skills of those exerting it.

Unfortunately, vulnerability reports do not include es-
timates of how many individuals were involved in exam-
ining the software, the time they spent, or their relative
skills.

3 Methodology

We chose to study OpenBSD because its developers have
long prioritized security [8]]. In his work, Rescorla found
no convincing evidence for a decrease in the rate of vul-
nerability reporting for three operating systems: Win-
dows NT 4.0, Solaris 2.5.1, and FreeBSD 4.0 [11]]. He
did find a decrease in the reporting rate for RedHat 6.2,
but he notes the existence of confounding factors for that
system. We therefore sought to test a system whose de-
velopers focused on finding and removing vulnerabili-
ties: if we had replicated Rescorla’s results with this sys-
tem, then less security-focused systems would presum-
ably have the same results. Another reason that we se-
lected OpenBSD is that its entire source code and every
change that has been made to it are readily accessible via
a publicly accessible CVS repository.

The initial release of OpenBSD was version 2.0; this
version was forked from NetBSD 1.1 in late 1996. Prior
to version 2.2, the OpenBSD developers performed an
extensive security audit and repaired numerous vulner-
abilities without reporting them. In version 2.3, the
OpenBSD team changed the way they integrated X11
into the code base. We therefore selected version 2.3,
released on 19 May 1998, as the earliest version for our
data set: it was the first truly stable release in which vul-
nerabilities were consistently documented. We refer to
this version as the foundation version, and we refer to
code and vulnerabilities present before the release of this
version as foundational code and foundational vulnera-
bilities.

The OpenBSD project releases a new version approxi-
mately every six months, incrementing the version num-
ber by 0.1. Our study incorporates the fifteen versions of
OpenBSD from 2.3 to 3.7, inclusive.

3.1 The vulnerability data set

The OpenBSD vulnerability data set was created through
the following process:

Version in which the vulnerability was born

| 23 24 25 26 27 28 29 30 31 32 33 34 35 36 3.7 Total
23 5 5
B 24 11 o0 11
; 25 6 0 1
= 261 5 1 0 0 6
S 27 12 4 2 2 2 22
£ 2812 1 0 1 2 0 16
S 29| 4 o0 0 2 0 0 0 6
2 30| 3 1 0 0 1 0 2 0 7
s 31| 8 2 1 2 0 0 0 1 1 15
£ 3206 2 0 0 0 0 1 2 0 I 12
= 33| 2 1 0 2 0 0 0 O 0 0 2 7
= 34| 2 o0 o0 0 1 0 1 0 1 0 0 0 5
% 357 1 1 o o o O 2 0 1 0 0 1 13
2 361 3 o 1 0o 0o O O O O O O O O O 4
37 1 1 o o0 1 O O O O 0 O O 1 0 0 4
Total 8 14 6 9 7 0 4 5 2 2 2 0 2 0 0 140
MLOC 10.1 04 03 L1 08 04 22 06 08 03 03 08 14 07 09|

Table 1: The OpenBSD version in which vulnerabilities were introduced into the source code (born) and the version
in which they were repaired (died). The final row, at the very bottom of the table, shows the count in millions of lines

of code altered/introduced in that version.

1. We compiled a database of vulnerabilities identi-
fied in the 7.5 years between 19 May 1998 and
17 November 2005 by merging data from the
OpenBSD security web page and four public vul-
nerability databases: NVD (formerly ICAT), Bug-
traq, OSVDB, and ISS X-Force.

2. We examined CVS records and the source code to
identify the date on which the vulnerability was re-
paired. If the fix was itself faulty, the date of the first
repair effort is used because it most closely tracks
the date of discovery. We then selected the earliest
of two possible dates for the vulnerability’s death:
the date on which the vulnerability was reported or
the date of the first repair.”

3. We manually examined prior versions of the source
code to identify the date on which the vulnerability
was introduced. If there was any doubt, the earliest
possible date was chosen. A vulnerability is born on
the date that the first version of OpenBSD to include
the vulnerable code is released.

Not all vulnerabilities could be easily and precisely
categorized: the process was manual, time-consuming,
and laborious. In particular, we had to make a number of
decisions about inclusion and uniqueness.

We included vulnerabilities that we believed to be ap-
plicable to the bulk of OpenBSD’s installed base. We

excluded vulnerabilities that were specific to processor
architectures other than the x86. We also excluded vul-
nerabilities that were location/country dependent. In ad-
dition, we excluded reports of vulnerabilities in histori-
cal versions of OpenBSD if the release that was current
at the time of the report was not vulnerable.

Our analysis covers all portions of the OpenBSD code
in the primary CVS repository. This includes the X-
windowing system, the Apache web server, and many ad-
ditional services not traditionally considered to be part of
the core operating system. However, this repository ex-
cludes the ‘ports’ collection of third-party software that
is not officially part of OpenBSD. We included vulner-
abilities regardless of whether or not they applied to the
default configuration of OpenBSD.

Some of the reports in these vulnerability databases do
not fit the traditional definition of a vulnerability: a few
might be better described as reports of proactive efforts
to improve security design. However, we did not exclude
any vulnerability reports based on justification or sever-
ity, as we lacked an unbiased methodology with which to
assess these factors.

The most difficult distinction for us to make was
whether a group of related reports should be treated as
independent vulnerabilities or a single vulnerability. In-
dividuals may find and report multiple related vulnerabil-
ities at once: either by discovering a new class of vulner-

ability, a new mechanism for identifying vulnerabilities,
or a section of poorly written code. Often these related
vulnerabilities are remediated in the same patch. In or-
der to maintain the independence of each data point, we
grouped closely-related vulnerabilities that were identi-
fied within a few days of each other into a single vul-
nerability data point. A discussion of the need for inde-
pendent data points—and a more detailed explanation of
how vulnerabilities were characterized in this data set—
is described in earlier work [10].

Similarly, OpenBSD includes some software that is
maintained by third parties (e.g. sendmail). Those third
parties often release new versions of their software that
bundle together fixes for multiple (previously secret) se-
curity flaws. Unfortunately, the third party producers do
not always make available the information necessary to
identify the birth and death date of the component vul-
nerabilities. As a result, every such ‘bundle’ patch was
counted as a single vulnerability and was assigned the
birth date of the youngest identifiable security flaw in-
cluded in the bundle. Our decision to bundle vulnera-
bilities is a result of our inability to obtain access to the
data necessary to differentiate between them. However,
it may result in an inflated perception of security for the
system: the models will process fewer vulnerabilities and
thus may find a more rapid trend towards depletion.

3.2 Vulnerability births and deaths

Table [1] shows the number of vulnerabilities that were
born and died in each version of OpenBSD. The version
in which the vulnerability was born is specified by the
column. The version in which the vulnerability died is
specified by the row. The first column contains a total of
87 vulnerabilities that are foundational: they were intro-
duced before the start of our study and were thus present
in the code of the foundation version, 2.3. The top entry
in that column indicates that 5 vulnerabilities died during
the six months between the release of version 2.3 and the
release of 2.4.

The bottom row of Table [Tl also shows the number of
lines of code, in millions, that were altered/introduced in
each release (see Section [3.3] for the methodology used
to obtain this information).

3.3 Source code composition

We analyzed the collective changes to the OpenBSD
code repository in order to establish how much code was
altered/introduced in each version.

We first pre-processed each version of the source code.
Only files with the suffix .c or .h were retained, and all
comments were stripped. Furthermore, files whose name

included keywords indicating that they belonged to an
architecture other than x86 were removed.

After pre-processing was completed, each version was
compared with each successive version. We used diff
to compare files with the same path and filename. The
dif £ tool was instructed to ignore changes in whitespace
or the location of line breaks.

The OpenBSD development team sometimes moved
or copied files, which is difficult to track via CVS. To
detect copies and moves, files with the same name but
different paths were also compared. If they were found
to be identical, we replicated the file in the earlier version
at the directory in which it was found in the later version.
(These replicas were used only to determine if code in
future versions derived from earlier versions: they were
not used to calculate the total line count.)

The estimate of code commonality is highly conserva-
tive. The diff tool marked code lines as changed even
for trivial alterations like global variable renaming and
some types of reformatting—and the OpenBSD team has
been reformatting the code base. In addition, this process
will indicate that all of the code in a file is new if that file
was moved/copied and then had just one line altered be-
tween versions. (Recall that the automated comparison
process only understands that a file was moved if the file
in the new location is an exact copy of the file in the old
location.) Furthermore, if the name of a file is changed
then all of the code in that file is considered to be new.
The comparison data will thus understate the degree to
which later releases are composed of substantively un-
changed code from earlier releases.

4 Analysis

We now address our first four questions about the secu-
rity of OpenBSD, using the vulnerability and source code
composition data sets described above.

4.1 How much does legacy code influence
security today?

The majority (87 of 140, or 62%) of the vulnerabilities
found during the period of the study are foundational;
that is, they were born prior to the release of the founda-
tion version. We considered two hypotheses to explain
why reported vulnerabilities were so often foundational:
foundational code might be of lower quality than more
recent code, or foundational code may constitute the bulk
of the total code base.

The source code history data supports the latter hy-
pothesis. Even after 7.5 years and 14 newer versions, the
foundation version dominates the overall source code: at
least 61% of the lines of code in version 3.7 are founda-
tional, unchanged since the release of version 2.3. As a

3.7
3.6
3.5
34
33
3.2
3.1
3.0
29
2.8
2.7
2.6
2.5 3
24 4 4
23100 9 94 8 79 77 10 67

H 23 24 25 26 27 28 29 30 31 32

Composite version

._.
N = 3o
—_
N — O\ W NN W W
—
N — QN W= W WL
p—
N — QN W RN~ W WL~ DN

Source version
WP o
WO W
N — R WW A
p—
—_m, AN N O N RN
—_——= N DN 0N W= = R

W N O
—_— = DN = 00N W= = WO W

Y N S BN B S R U o) S USRS

[@))
[@)
[®))
(@)}
N
h
[@)
r
()
)
(@)
(@)

et
w

34

w
n
w
(@)
w
N

Table 2: The percentage of each version of OpenBSD that is composed from earlier versions. Columns represent com-
posite versions of OpenBSD, whereas rows represent the source versions of OpenBSD from which they are composed.
Each value in the table is the percentage of lines in the composite version that were last modified in the source version.

37 ° 37
o _ 36 S 3.6
« 35 °
~ 3.0
2 ? q _=H = ﬁﬁ
2 29 s 27 24
Eo2- E
= 26 £
g o)
b e 25 o o
5 w\ -
2 o _mlﬁi% 24 o L 23
g - e
£ c ¢
- = O 4
N L 23 5 ©
5 C
3 [0
g 0 7 g o
3 O 4
z z 2
o 8 .
IS
23 25 27 29 31 33 35 37 23 25 27 29 31 33 35 37
Release (every 6 months) Release (every 6 months)

Figure 1: The composition of the full source code. The Figure 2: The composition of the source code directory

composition of each version is broken-down into the within the kernel (sys/kern) that had the most vulnerabil-
lines of code originating from that version and from each ities. The composition of each version is broken-down
prior version. into the lines of code originating from that version and

from each prior version.

result, the security of the foundation version may still be
driving the overall security of OpenBSD.

Table |2] illustrates the proportion of each version of
OpenBSD that is derived from earlier versions. Each col-
umn represents a composite version; each row represents
a source version that contributes code to the composite.
Values represent the percentage of the lines of code in the
composite version that originate in the source version.?
A line of code in a composite version of OpenBSD is
said to originate in a source version if the line was last
modified in that source version.

For example, the fifth column breaks down the com-
position of OpenBSD version 2.7. The top row of the
column indicates that 6% of the lines of code originate
in that version: they were either altered since the prior
version or have been newly introduced. The second row
from the top shows that 9% of the source code was al-
tered/introduced in the prior version, 2.6, and was not
changed after that version. The bottom row indicates
that the bulk of the code in version 2.7 (79%) was both
present in and remains unchanged since the foundation
version.

Figure [T]shows a graphical representation of the com-
position of each version, using lines of code rather than
percentages. Version 2.3 is composed of a single bar:
by definition, all code in this foundation version is said
to originate in it. For each successive version, a new
bar is added to represent the lines of code that were al-
tered/introduced in that release.

When we look more closely at Figure |1} several large
alterations/introductions of code stand out: in versions
2.6, 2.9, and 3.5. The magnitude of the changes in ver-
sions 2.6 and 3.5 is primarily due to a large number of
files being renamed and slightly altered. Our current
methodology thus overstates the number of new lines of
code and understates the contribution of code derived
from earlier versions. The changes in version 2.9 are
caused in part by the renaming of files; however, they
were also the result of a major upgrade of the XFree86
package.

We were initially surprised that the number of lines
of foundational code fluctuates both downwards and up-
wards. However, increases in the number of lines of
foundational code are readily explained: source files un-
altered since the foundation version were copied and
used in other areas of the code.

Of all the second-level source code directories, the
sys/kern directory contains the largest number of re-
ported vulnerabilities. Fifteen of the seventeen vulner-
abilities reported in this portion of the kernel were in-
troduced in the foundation version. Figure [2] shows the
evolving composition of the source code in the sys/kern
directory. Many of the vulnerabilities in this subsystem
have been in code related to the processing of signals:

Number of vulnerabilities (log base 2)
3
1
o

T T T T T T
18 19 20 21 22 23

Number of lines of code (log base 2)

Figure 3: The number of vulnerabilities introduced and
reported within four years of release compared to the
number of lines of code altered/introduced, by version.

although this subsystem is part of the kernel, it does not
include networking, file system, or virtual memory code.
The code in one of the networking portions of the ker-
nel (sys/netinet) has contributed ten vulnerabilities dur-
ing the course of the study, seven of which are founda-
tional.

4.2 Do larger code changes have more vul-
nerabilities?

Software engineers have examined the defect density of
code: the ratio of the number of defects in a program to
the number of lines of code. Some have argued that any
well-written code can be expected to have a defect den-
sity that falls within a certain range, e.g. 3—6 defects per
thousand lines of code (KLOC) [3]]. We thus ask whether
or not there is a linear relationship between the number of
lines of code altered/introduced in a version of OpenBSD
and number of vulnerabilities introduced in that version.

As we cannot measure the total number of vulnerabil-
ities present, we measure the number discovered within
four years of release for each version that is at least four
years old. The number of vulnerabilities reported dur-
ing this period is reported in the third column of Table
The fourth column contains the vulnerability density:
the ratio of vulnerabilities reported to the number of lines
of code in that version. In this instance, densities are re-
ported in units of vulnerabilities per millions of lines of
code (MLOC).

Figure [3]illustrates the relationship between the num-
ber of lines of altered/introduced code and the number
of vulnerabilities reported. The standard correlation test
(Pearson’s p) is not applicable because we do not have
enough data points. A non-parametric correlation test,

Reported Reported
within 4 yrs by end
of release of study
Vers. MLOC || Vulns it | Vulns oyl
2.3 10.14 59 5.8 87 8.6
2.4 42 9 214 14 330
2.5 28 4 14.3 6 218
2.6 1.05 8 7.6 9 8.6
2.7 a7 6 7.8 7 9.1
2.8 40 0 0.0 0 0.0
29 2.23 4 1.8 4 1.8
3.0 .63 5 7.9 5 8.0
3.1 81 2 2.5
32 33 2 6.0
33 32 2 6.2
34 .83 0 0.0
3.5 1.44 2 14
3.6 74 0 0.0
3.7 91 0 0.0
Total 21.30 95 6.0 140 6.6

Table 3: Vulnerability and code modification statistics
for each version of OpenBSD. MLOC is the number of
lines of code (in millions) altered/introduced in each ver-
sion.

Spearman’s p, is unable reject the null hypothesis that
there is no correlation: it calculates a correlation coeffi-
cient of 0.53 and a p-value of 0.18.*

We are thus unable to find a significant correlation be-
tween the number of lines of altered/introduced code and
the number of vulnerabilities reported.

4.3 Do today’s coders introduce fewer vul-
nerabilities per line of code?

The vulnerability density of code added in new
OpenBSD releases could provide an indication of the
success of their efforts to produce secure code. On the
other hand, code added by the OpenBSD team often pro-
vides security functionality: e.g. OpenSSH. As a result,
that code is likely to attract a disproportionate share of
attention from individuals searching for vulnerabilities;
this extra attention may account for any differences be-
tween the versions’ vulnerability densities.

For each release, Table [3| shows the number of re-
ported vulnerabilities, the number of lines of code al-
tered/introduced (in millions), and the vulnerability den-
sity. The third column shows the number of vulnerabili-
ties reported within four years of each version’s release,
and the fourth column shows the corresponding vulner-
ability density. The fifth column shows the number of
vulnerabilities reported during the entire study, and the

sixth column shows the corresponding vulnerability den-
sity.

The vulnerability density of the foundation version is
in the middle of the pack. Versions 2.4 and 2.5 stand
out for having the highest vulnerability densities (33 and
21.8 reported per million lines of code at the end of the
study, respectively).

The large ratio of reported vulnerabilities per line of
code in version 2.4 seems to support the intuition that
code providing security functionality is more likely to
contain vulnerabilities. Version 2.4 saw the introduc-
tion of the Internet Key Exchange (IKE) key manage-
ment daemon (isakmpd, two vulnerabilities introduced)
and OpenSSL (three vulnerabilities introduced). As a re-
sult, the new code added in that release may have drawn
particular attention from vulnerability hunters.

In version 2.5, two of the six vulnerabilities introduced
were in the Apache program.

The density of reported vulnerabilities for code origi-
nating in versions 2.6, 2.9, and 3.5 are lower in part be-
cause of the inflated new-code counts for those versions
(see Section[3.3).

When calculated per thousand lines of code, rather
than per million, the density of all reported vulnerabil-
ities ranged from 0-0.033 and averaged 0.00657. As
noted above, some software engineers estimate the de-
fect density of well-written code to be 3—6 per thousand
lines of code [5]; these vulnerability densities are three
orders of magnitude less than that amount. The two fig-
ures are not necessarily contradictory: defects include
both vulnerabilities and bugs that are not vulnerabilities.

4.4 Whatis the median lifetime of a vulner-
ability?

Rescorla [[11] applies an exponential model to his data,
so he is able to ascertain the half-life of the vulnerability
sets he considers: those half-lives range from 10 months
to 3.5 years. Unfortunately, exponential models do not fit
our data set (see Section E]) As a result, we are not able
to ascertain, in a formal sense, the half-life of vulnera-
bilities in OpenBSD. Instead, we calculate the median
lifetime of reported vulnerabilities: the time elapsed be-
tween the release of a version and the death of half of the
vulnerabilities reported in that version.

Figure [] plots the age, at report, of foundational vul-
nerabilities. The data is necessarily right censored: we
do not know that we have found all of the vulnerabili-
ties in the foundation version. This data thus provides a
lower-bound of 2.6 years (961 days) on the median life-
time of foundational vulnerabilities.

Is the median lifetime of vulnerabilities decreasing
in newer versions? Table |4 depicts this time for those
vulnerabilities identified within six years of the release

75 100
1 1
®
&

961 days

Percent
50
l

Age in years

Figure 4: The lifetime of foundational vulnerabilities re-
ported during the study period.

of versions 2.3, 2.4, 2.5, and 2.6; this data relies upon
the gross simplifying assumption that all vulnerabilities
present were found within six years of each version’s re-
lease. (We make this assumption so that we include the
same time span after release for each version.) The re-
sults do not indicate a trend. During the course of the
study, six vulnerabilities were identified that had been
introduced in version 2.5: only five of those fell within
the first six years after it’s release. This lack of data par-
tially explains the low median lifetime of vulnerabilities
for version 2.5, and it highlights the limitations of this
analysis.

The most striking part of this analysis is that the me-
dian lifetime of vulnerabilities is so long.

S Are reporting rates declining?

‘We now address whether or not there has been a decline
in the rate at which foundational vulnerabilities have
been reported.

5.1 Illustrating reporting trends

Figures [5] and [f] categorize foundational vulnerabilities
by the time period in which they were reported: we di-
vide the study into periods of equal length.

The columns in Figure [5 represent the number of vul-
nerabilities reported in each of eight periods. The con-
fidence intervals are derived from a normal approxima-
tion of a homogenous Poisson process. The confidence
intervals are too large to permit effective analysis: by vi-
sual inspection alone, one can see that an exponential,
S-shaped, or even a linear model could fit within these
bounds.

Version Median lifetime
2.3 878
2.4 1288
2.5 445
2.6 645

Table 4: The median lifetime of vulnerabilities reported
within the first six years of a version’s release.

However, more conclusive results can be obtained by
dividing the study period into halves, as shown in Figure
[el The number of vulnerabilities reported significantly
declines from the first period (58 vulnerabilities) to the
second (28 vulnerabilities). The 95% confidence inter-
val for the first period ranges from 43.1 to 72.9; for the
second period, it ranges from 17.6 to 38.4.

Another way to examine the frequency of vulnerabil-
ity reports is to measure the time between them. An
analogous metric from reliability engineering, the time-
between-failures (TBF), can be applied by defining a fail-
ure as the report of a vulnerability. Figure [/ groups
foundational vulnerability reports by their time-between-
failures. Each group appears as a pair of columns. The
dark gray columns, the first column in each pair, repre-
sent vulnerabilities reported during the first half of the
study. The light gray columns, the second column in
each pair, represent vulnerabilities reported in the last
half of the study.

Figure [/ shows that the second half of the study had
far fewer foundational vulnerabilities with TBFs of 25 or
less than the first half of the study (39 in the first half
vs. 13 in the second half); the number of vulnerabilities
with TBFs greater than 25 did not significantly change
between the two halves (17 in the first half vs. 18 in the
second half). The TBF ranges were chosen by dividing
by five the maximum TBF of 126.

5.2 Analyzing reporting trends

We find a downward trend in the rate of vulnerability
discovery, a result which contradicts previous work by
Eric Rescorla [11]. His analysis failed to reject the hy-
pothesis that the rate of vulnerability reporting has re-
mained constant in three of the four operating systems

Number of vulnerabilities

:g @@éﬁi

1 2 3 4 5 6 7 8

Study period
(Each period of length 342 days)

Figure 5: The number of foundational vulnerabilities re-
ported during each eighth of the study.

o
<
B Vulns found in first half of study

8 o O Vulns found in second half of study
= %)
£
[
Q
£
=] o
> [8Y)
kS
9]
o)
[o |
=1 —
) l:|

o .j [m—] -:I

0-25 26-50 51-75 76-100 101-126

Days elapsed since last vulnerability found
(time-between-—failures)

Figure 7: The number of days between reports of founda-
tional vulnerabilities reported in the first half of the study
compared with those reported in the second half.

Time-between-failures Number
data of days
Mean 29.1
Median 18

o 29.14
Minimum 1
Maximum 126
Initial intensity 0.051
Current intensity 0.024
Purification level 0.676

Table 5: Measurements & predictions for foundational

vulnerabilities.

70
60
50

30
20 S —
10

Number of vulnerabilities

Study period
(Each period of length 1369 days)

Figure 6: The number of foundational vulnerabilities re-
ported during each half of the study.

- 95%
...... L R Y ST

LOLO 00, (s 90%
S I .Cﬁog.e L o500

Laplace factor
o
1
o
&
0%00gp
o6
o
oooog
%
o
&
o
Two-tailed confidence intervals

-4 4

Vulnerability age (years)

Figure 8: Laplace test for the existence and direction of
a trend in the rate of vulnerability reporting.

125 hd o
-
° °
100
-
-
75 -
-
- °
2
P=1 -
o oo
- - - -
50 e® -
o o
L 4 ° _—
—
& —
[-
o -
- - —
25 - : g
e - © S
- -
- - - - -
- ° " - ° °
- ™ e ®
fo b < © <
- o o, o -
o *®e o e e)
o 10 20 30 a0 50 60 70 80

Vulnerability

Figure 9: Fitted Musa’s Logarithmic model for founda-
tional vulnerability report intervals. The vertical axis
shows the time-between-failures: the number of days
that have passed since the prior vulnerability was found.

he evaluated.

Our analysis above indicates a clear decrease in the
rate of reporting of foundational vulnerabilities. In addi-
tion, we applied a Laplace test to make our data more
directly comparable to the work of Rescorla. In the
Laplace test, the discovery of vulnerabilities is assumed
to be a Poisson process; the test assesses whether there
is a decreasing or increasing trend with respect to inter-
arrival times. The data we used were the number of
days elapsed between the identification of each succes-
sive foundational vulnerability. These data are equivalent
to those for time-between-failures in traditional models
of reliability.

The lowest horizontal dotted line in Figure [§] is at a
Laplace factor of —1.96. When the calculated Laplace
factors are less than that amount, the data indicates a de-
creasing rate of vulnerability reporting with a two-tailed
confidence level of 95%. The test finds evidence for a
decrease in the rate of vulnerability reporting by the end
of year four; by the end of year six, the evidence for a
decrease in the reporting rate is statistically significant.

This test therefore supports our conclusion that the rate
at which foundational vulnerabilities are reported is de-
clining.

5.3 Fitting vulnerability data to reliability
growth models

The case that OpenBSD is becoming more secure can
also be supported using reliability growth models. While
normally applied to the more random discovery of de-
fects, these models can also be applied to the report-
ing of vulnerabilities. Rescorla also applied two relia-
bility growth models to his larger, less precise, data set.
His results for both models matched his results with the
Laplace test: he could not fit the models to three of the
four operating systems he evaluated.

We analyzed the data with seven time-between-
failures reliability growth models. One of the seven mod-
els had acceptable one-step-ahead predictive accuracy
and goodness-of-fit for the data set: Musa’s Logarithmic
model.’

The estimates produced by Musa’s Logarithmic model
are presented in Table [5] The intensity is the number of
vulnerabilities expected to be reported on a given day.
The intensity on the first day of the study (the initial in-
tensity) is 0.051; by the end of the study, the intensity has
been more than halved, to 0.024 (the current intensity).

The purification level is a normalized estimate of how
vulnerability-free the program is at the end of the pe-
riod covered by the data set. A purification level of one
would indicate a program entirely free of vulnerabilities
[15]. Musa’s Logarithmic model calculates that 67.6%

of all foundational vulnerabilities were reported during
the study.

Figure 0] shows the successfully fitted Musa’s Log-
arithmic model superimposed over the data set. The
y-axis indicates the time-between-failures in days (the
number of days that elapsed since the prior vulnerabil-
ity was reported). Although the data points are widely
scattered, the model indicates a trend toward an increas-
ing time between vulnerability reports. In particular, far
fewer of the later vulnerabilities are reported within ten
days of each other.

The reliability growth analysis thus indicates that the
rate of foundational vulnerabilities reported is decreas-
ing.

6 Related Work

Our study builds on prior work in software reliability
growth and on efforts to characterize the social utility of
finding and reporting vulnerabilities.

We have applied models that define software reliabil-
ity in terms of the number of faults in a body of code.
Such models “apply statistical techniques to the observed
failures during software testing and operation to forecast
the product’s reliability” [2, p. 6]. As faults are iden-
tified and removed, the system will fail less frequently
and hence be more reliable. These models can thus be
utilized to estimate characteristics about the number of
faults remaining in the system and when those faults may
cause failures. These estimates can be then be used to
gauge the amount of further testing required to meet re-
liability requirements.

Eric Rescorla first applied reliability growth models to
post-release vulnerability reporting data in order to ques-
tion the social utility of publicly disclosing vulnerabili-
ties [11]. He found no clear trend reduction in the rate of
vulnerability reporting, and he estimates that the half-life
of a vulnerability is between 10 months and 3.5 years.
However, the ICAT database he uses is not focused on
vulnerability age, and it does not reliably report the dates
on which vulnerabilities were born.® For our analysis,
we used the version control system to ascertain the exact
date of birth for each vulnerability in our data set. Fur-
thermore, we test more models (seven) than the two that
he evaluated. In addition, we only present results from
the model that passed both goodness-of-fit and one-step-
ahead predictive accuracy tests; Rescorla only utilized
the former test.

Another related body of literature looks at measuring
software security through market-mechanisms. L. Jean
Camp and Catherine Wolfram proposed a market through
which vulnerability credits could be traded; such markets
have worked previously to create incentives for the re-
duction of negative externalities like environmental pol-
lutants [3].

Prior to this collaboration, Stuart Schechter proposed
creating markets for reports of previously undiscovered
vulnerabilities, in order to measure software security. He
argued that the bid, ask, and most recent sale prices in
such a market approximate the labor cost to find a vulner-
ability. He further argued that these prices can establish
which of two products the market deems to have vulner-
abilities that are less expensive to find [[12]], [13]. Andy
Ozment has separately proposed that a vulnerability mar-
ket could be better designed as an auction; he then used
the economic literature on auctions to refine the proposed
design [9].

Given the emergence of a black market for reports
of undiscovered vulnerabilities, metrics that estimate the
cost to discover a vulnerability may be more valuable
than those that measure the reporting rate. Several or-
ganizations are now actively purchasing vulnerabilities,
so an open market or auction as described in this litera-
ture is not infeasible. Unfortunately, the business mod-
els of some of these organizations are not socially opti-
mal [6]. Furthermore, these organizations are not shar-
ing pricing information, hindering the movement toward
an open market or auction. Until such an entity or enti-
ties arise—and until that entity has gathered several years
of data—other means of measuring software security are
necessary.

One path forward for future research into vulnerabil-
ity reporting rates is to employ more sophisticated mod-
eling techniques. The reliability growth literature is rich
with means of improving models’ accuracy. In addition,
vulnerability analysis can be combined with traditional
‘software metrics:” metrics that attempt to measure a
program’s size, complexity, efc. If performed with an
awareness of previous failures in this field, this line of
research might lead to other fruitful measurements of or
predictors of the rate of vulnerability discovery.

In future work, we plan to examine a competing oper-
ating system and compare the rate of vulnerability report-
ing in that product with the rate in OpenBSD. We hope
to provide further insight on the success of secure coding
measures, the level of effort expended to find vulnerabil-
ities, and changes to the rate of vulnerability reporting in
newly introduced code.

7 Conclusion

Over a period of 7.5 years and fifteen releases, 62% of the
140 vulnerabilities reported in OpenBSD were founda-
tional: present in the code at the beginning of the study.
It took more than two and a half years for the first half of
these foundational vulnerabilities to be reported.

We found that 61% of the source code in the final ver-
sion studied is foundational: it remains unaltered from
the initial version released 7.5 years earlier. The rate of

reporting of foundational vulnerabilities in OpenBSD is
thus likely to continue to greatly influence the overall rate
of vulnerability reporting.

We also found statistically significant evidence that
the rate of foundational vulnerability reports decreased
during the study period. We utilized a reliability growth
model to estimate that 67.6% of the vulnerabilities in the
foundation version had been found. The model’s esti-
mate of the expected number of foundational vulnerabil-
ities reported per day decreased from 0.051 at the start of
the study to 0.024.

Acknowledgements

The authors thank Rich Lippman for his advice on the
statistical analysis. We also greatly appreciate the com-
ments and feedback provided by Ross Anderson, Robert
Cunningham, David Purdy, and Eric Rescorla.

Notes

'ICAT is now known as the National Vulnerability Database
(NVD) [7].

2The release of a public report and the repair of the vulnerability do
not always occur in the same order. When a vulnerability is reported
to an entity other than the OpenBSD development team, the date of the
public report often precedes the date on which a repair is committed
to CVS. When a vulnerability is reported directly to the OpenBSD de-
velopment team, they usually commit a repair into the CVS repository
prior to publicly announcing the vulnerability. We utilize the earlier of
the two dates so that we most closely approximate the date of actual
discovery.

3Because the percentages were rounded, the total percentage for
each version may not exactly equal one hundred.

A correlation coefficient of 1 would indicate a positive linear corre-
lation, —1 would indicate a negative linear correlation, and 0 indicates
no correlation.

5The SMERFS? reliability growth modeling tool was used to as-
sess the models [14]. Musa’s Logarithmic model had acceptable bias
(0.13), noise (0.40), trend (0.09), and Kolmogorov distance goodness-
of-fit (0.09397) results. Bias is determined by a pi-plot; it assesses the
absolute predictive accuracy of the models. The noise and trend results
are useful primarily to ensure that the predictive accuracy indicated by
the p-plot results was not due to opposing trends of inaccuracy cancel-
ing each other out on the average. For a more detailed explanation of
the acceptability tests, see [[1].

®In particular, the ICAT database may omit the fact that out-of-date
versions of a program include a vulnerability. As a result, vulnerabil-
ities may appear to have been introduced in much newer versions of a
program than is actually the case.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

ABDEL-GHALY, A. A., CHAN, P. Y., AND LITTLEWOOD, B.
Evaluation of competing software reliability predictions. IEEE
Transactions on Software Engineering 12,9 (1986), 950-967.

ATAA/ANSI. Recommended Practice: Software Reliability.
ANSI, 1993. R-013-1992.

CAMP, L., AND WOLFRAM, C. Pricing security. In Proceedings
of the CERT Information Survivability Workshop (Oct. 2000),
pp- 31-39. Boston, MA, USA.

DE RAADT, T. Exploit mitigation techniques (in OpenBSD, of
course). In Proceedings of OpenCON 2005 (Nov. 2005). Venice,
Italy.

HATTON, L. Re-examining the fault density - component size
connection. IEEE Software 14,2 (1997), 89-97.

KANNAN, K., AND TELANG, R. Economic analysis of market
for software vulnerabilities. In Workshop on Economics and In-
formation Security (May 2004). Minneapolis, MN, USA.

NIST. NVD metabase: A CVE based vulnerability database.
http://nvd.nist.gov.

OPENBSD. CVS — OpenBSD security page, revision 1.12,
Feb. 1998. http://www.openbsd.org/cgi-bin/
cvsweb/ checkout " /www/security.html?rev=1.
12&content-type=text/htmll

OZMENT, A. Bug auctions: Vulnerability markets reconsid-
ered. In Workshop on Economics and Information Security (May
2004). Minneapolis, MN, USA.

OZMENT, A. Software security growth modeling: Examining
vulnerabilities with reliability growth models. In Proceedings of
the First Workshop on Quality of Protection (September 2005).
Milan, Italy.

RESCORLA, E. Is finding security holes a good idea? In Work-
shop on Economics and Information Security (May 2004). Min-
neapolis, Minnesota.

SCHECHTER, S. How to buy better testing: Using competition
to get the most security and robustness for your dollar. In Infras-
tructure Security Conference (Oct. 2002). Bristol, UK.

SCHECHTER, S. Quantitatively differentiating system secu-
rity. In Workshop on Economics and Information Security (May
2002). Berkeley, CA, USA.

STONEBURNER, W. SMERFS (Statistical Modeling and Esti-
mation of Reliability Functions for Systems), Jan. 2003. http:
//www.slingcode.com/smerfs/,

TIAN, J. Integrating time domain and input domain analyses of
software reliability using tree-based models. IEEE Transactions
on Software Engineering 21, 12 (Dec. 1995), 945-958.

http://nvd.nist.gov
http://www.openbsd.org/cgi-bin/cvsweb/~checkout~/www/security.html?rev=1.12&content-type=text/html
http://www.openbsd.org/cgi-bin/cvsweb/~checkout~/www/security.html?rev=1.12&content-type=text/html
http://www.openbsd.org/cgi-bin/cvsweb/~checkout~/www/security.html?rev=1.12&content-type=text/html
http://www.slingcode.com/smerfs/
http://www.slingcode.com/smerfs/

	Introduction
	Limitations of vulnerability analyses
	New security functionality
	Reductions in vulnerability severity
	The influence of effort & skill onvulnerability discovery

	Methodology
	The vulnerability data set
	Vulnerability births and deaths
	Source code composition

	Analysis
	How much does legacy code influence security today?
	Do larger code changes have more vulnerabilities?
	Do today's coders introduce fewer vulnerabilities per line of code?
	What is the median lifetime of a vulnerability?

	Are reporting rates declining?
	Illustrating reporting trends
	Analyzing reporting trends
	Fitting vulnerability data to reliability growth models

	Related Work
	Conclusion

