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Abstract

We consider the binary consensus problem where each node in the network initially observes one of two states

and the goal for each node is to eventually decide which one of the two states was initially held by the majority

of the nodes. Each node contacts other nodes and updates its current state based on the state communicated by

the last contacted node. We assume that both signaling (the information exchanged at node contacts) and memory

(computation state at each node) are limited and restrict our attention to systems where each node can contact any

other node (i.e., complete graphs). It is well known that for systems with binary signaling and memory, the probability

of reaching incorrect consensus is equal to the fraction of nodes that initially held the minority state. We show that

extending both the signaling and memory by just one state dramatically improves the reliability and speed of reaching

the correct consensus. Specifically, we show that the probability of error decays exponentially with the number of

nodes N and the convergence time is logarithmic in N for large N . We also examine the case when the state is

ternary and signaling is binary. The convergence of this system to consensus is again shown to be logarithmic in

N for large N , and is therefore faster than purely binary systems. The type of distributed consensus problems that

we study arises in the context of decentralized peer-to-peer networks, e.g. sensor networks and opinion formation in

social networks – our results suggest that robust and efficient protocols can be built with rather limited signaling and

memory.

I. INTRODUCTION

A. Problem and Motivation

The binary consensus problem is as follows: given a network where each node initially observes one of two

states, 0 or 1, how to construct a robust distributed protocol which ensures that the nodes reach the right consensus,

i.e., the majority observation at the start of the protocol? We are interested in the binary consensus problem when

there is a limitation on the memory and the communication between the nodes of the network. In particular, we

analyze two protocols for the binary consensus problem. In both the protocols, we restrict the nodes to store one of

three values 0, 1 and e. In the first protocol, we restrict the signaling to be ternary, i.e, a node can communicate only

one of three states, and in the second, we consider the case when the signaling is binary, either 0 or 1. We call the

two protocols respectively, the ternary signaling and the binary signaling protocol. The extra state e corresponds

to an “undecided” state where the node is unsure of the majority value. This state can also be thought of as an

extra quantization level which corresponds to the averaging of a 0 and a 1. In [23], the authors also introduce nodes
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with an “undecided” state, but only in the beginning of the protocol execution. The dynamics of the two protocols

that we propose are very different from the dynamics in [23]. We are interested in characterizing our two protocols

with respect to error probability of final consensus and convergence rate. Our results are for the case when the

underlying graph is complete – analysis for general graphs is of interest but is out of the scope of this paper and

is left for future work.

The distributed binary consensus problem arises in several applications. For instance, consider a ranking appli-

cation in networks where each node has personally ranked two items. A node can observe from some other node

how this node has ranked the items at current time, which again depends on the observations of this encountered

node from other nodes. The objective is to get all the nodes to agree on the rank of the item based on the initial

majority opinion. Other examples are sensor networks where the binary observations could be some state of nature,

or social networks, where the observations reflect an opinion held on some recently released media item (video

or audio or piece of news), when this opinion as well as the media item is displayed on publicly accessible web

pages. The protocol with binary signaling is not only of technical interest to understand the performance under even

further limited information exchange, but is of interest also from a practical stance. For example, in our ranking

application scenario, note that the nature of the application may well be such that each node can only signal one

of two states, e.g. each node must display one of two media items. The user may be in the “indifferent state” e

with respect to both items but will still have to display one of the media items in her profile page and thus signal

a preference for this media item to other nodes. In the ternary model, the user could have signalled indifference to

other nodes through an appropriate display that indicates state e (e.g. show both videos or show equal preference

scores).

B. Related Work

One approach for binary consensus is the voter model, where at a sampling instant, a node picks up the opinion

of a randomly chosen neighbouring node. At any given time, nodes store binary values and communicate binary

observations. The voter model has been extensively studied in the context of infinite lattices [16], finite graphs [7],

[1], [10], heterogenous random graphs [21] and social networks [23]. While the voter model guarantees consensus,

the probability of incorrect consensus is a constant bounded away from zero depending on the initial fraction (and

location) of the minority observations – “the proportional agreement” [10]. However, the voter model is economical

with respect to memory and signaling.

At the other extreme, if there are no memory or signaling constraints, any robust averaging algorithm would

guarantee reliable consensus. Indeed, the average value of the initial observations indicates the majority observation.

Various approaches to averaging have been analyzed, such as gossip based algorithms [3] and belief propagation

[17]. These averaging protocols requires that real values be stored and exchanged between nodes. This appears to

be an excessive overhead when the observations are binary and the objective is to obtain the majority observation.

More recently, in the context of averaging algorithms, the effects of quantization of the values exchanged between

nodes has been studied [12],[5], [9]. In [9], the authors propose an algorithm for binary consensus on arbitrary
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graphs that uses only 4 states for both memory and communication. This algorithm is shown to converge to the

correct consensus with probability 1. In [8], the expected convergence time for this algorithm is characterized for

general graphs. Specifically, the expected convergence time is found to be logarithmic in the number of nodes for

complete graphs with a factor that is decreasing with the fraction of nodes that initially hold the majority state,

1/2 < α ≤ 1, and goes to infinity as α approaches 1/2. The algorithm that we propose uses only 3 states for memory

and signalling, and we find an upper bound on the convergence time that depends only on the number of nodes

(logarithmic dependence) with a factor that is independent of the initial fraction of nodes that hold the majority

state. The main advantage of the algorithm proposed in [9] is that it is error-free, while the error probability of our

algorithm is a non-zero function of the number of nodes in the network. The work in [9] was done independently

of and simultaneously with the conference version [19], [18] of the present paper.

More recently, in [6], a different binary consensus algorithm is studied where each node samples m neighbouring

nodes at each communication step, and updates its binary state according to a majority state held by its neighbours.

For the special case when m = 2, the upper bound on the probability of convergence to wrong consensus derived

in [6] is the same as for our algorithm.

In binary distributed hypothesis testing (distributed detection), nodes observe a binary hypothesis through inde-

pendent noisy channels and communicate with each other in a rate constrained manner, the objective being that one

or several nodes should agree on a reliable estimate of the hypothesis. Binary detection is related to the consensus

problem in two ways. On one hand, one can derive a distributed detection scheme by first applying locally optimal

detection rules to map the observation of each sensor node into an estimate of the hypothesis, and then running a

consensus protocol to disseminate the majority estimate to all the nodes. On the other hand, the binary consensus

problem can be viewed as a particular distributed detection problem, where the channel for the observations is

a binary symmetric channel which flips the binary hypothesis with a given probability. All nodes are required to

reliably construct the hypothesis. However, to our knowledge, such binary channels have never been considered in

the distributed detection literature. See [22] and [2] for a survey of this research area.

Our work also relates to the information theory results on composite hypothesis testing with limited memory, see

e.g. [11], [14]. In this context, given is a sequence X1, X2, . . . of i.i.d. Bernoulli random variables with unknown

mean 0 ≤ θ ≤ 1 and a partitoning of the interval [0, 1] in m ≥ 1 intervals. The problem is to design a hypothesis

testing algorithm that uses limited memory and identifies to which one of the m disjoint intervals, the parameter θ

belongs, with a probability of error diminishing to zero with the number of observations. It was found that for such

an algorithm it is necessary and sufficient to maintain a memory of m+ 1 states. Hence, for the binary hypothesis

testing, 3 states are sufficient. Our problem is different as we consider a network system where observations are

taken from other nodes in the network and are thus not necessarily i.i.d. observations.

The consensus problem also relates to diffusion of innovations and cascading, which is one of the central questions

in social sciences and of interest in a number of on-line settings. The specific question is that of understanding how

an initial idea or behavior attains wide adoption across the network. For example, see [13] for a survey of results

and models.
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C. Summary of our Results

We show that adding one extra state to the voter model increases both the reliability and the speed of reaching

the correct consensus on a complete graph. We show that if 1/2 < α ≤ 1 is the initial fraction of nodes observing

the majority value, then, under the ternary signaling protocol, the probability of reaching the false consensus decays

exponentially with rate ND(α|| 12 ) where N is the number of nodes and D(α|| 12 ) is the Kullback-Lieber divergence

between two Bernoulli distributions with respective means α an 1/2 (Corollary 1). For large N , the convergence

time is shown to be logarithmic in the number of nodes in the network (Theorem 2). This result says that to reach

consensus, a node need not sample all the other nodes in the network. It suffices for the node to sample, uniformly

at random, a logarithmic number of nodes. This convergence time is of the same order as for the 4-state-algorithm

proposed in [9] with respect to the number of nodes N and is faster for sufficiently small fraction of nodes that

initially hold the majority state, α > 1/2 (see [8]). For binary signaling, we show (Theorem 4) that the error

probability is no worse than the classical voter model but is worse (Corollary 2) than ternary signaling by a factor

that increases exponentially with N . For large N , we show that the convergence time under binary signaling is

potentially slower than ternary signaling (Corollary 3). However, we establish that this slow-down is no worse than

a factor 3 (Corollary 3) . While we are not able to obtain an exponential upper bound on the error probability

under binary signaling, our simulation results indicate that even under binary signaling the error probability may

be decaying exponentially.

The organization of the paper is as follows. Section II gives the preliminaries, Section III analyzes the ternary

signaling protocol while Section IV analyzes the binary signaling protocol. Section V compares the analysis with

simulations and is followed by the conclusion in Section VI. Most of the proofs are delegated to the appendix.

II. PRELIMINARIES

Consider an undirected graph G = (V, E) where V is the set of vertices and E is the set of edges. Let vector

X(0) = [X1(0), . . . , XN (0)]> represent the vector of binary 0, 1 observations Xi(0) observed by node i. Let X̂(0)

be the majority of the initial observations at the nodes, i.e.

X̂(0) =

 0, for 1
N

∑N
i=1Xi(0) ≤ 1

2

1, for 1
N

∑N
i=1Xi(0) > 1

2

.

Our goal is to design a reliable distributed protocol with minimal communication and memory overhead that

computes the majority X̂(0) at each node.

We use the asynchronous time model defined in [3]. Each node has a clock which ticks at instances of a Poisson

process with rate 1. Therefore, the inter-tick times at each node are i.i.d. exponential with mean 1 independent

across nodes. Equivalently, this corresponds to a single clock ticking according to a rate N Poisson process at

times Zk, k ≥ 1, where {Zk+1 − Zk} are i.i.d. exponentials of rate N . At time Zk, a node i chosen uniformly at

random from V contacts a neighbouring vertex j, again chosen at random and updates its value based on the signal

received from j. Time will be counted as the number of clock ticks scaled by N .
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Throughout the paper for two sequences aN and bN we write aN ∼ bN , large N , meaning that aN/bN tends to

1 as N tends to infinity. For every time t ≥ 0, we denote with U(t) and V (t) the number of nodes that are in state

1 and 0, respectively, while u(t) = limN→∞
U(t)
N and v(t) = limN→∞

V (t)
N denote the asymptotic fraction of the

nodes that are in state 1 and 0, respectively.

III. TERNARY SIGNALING

The ternary signaling model corresponds to the following two constraints, respectively, on the communication

and the state at every node in G.

• Communication is ternary, i.e. each node can communicate only one of three states to its neighbouring node.

• Memory is ternary, i.e. each node can store only one of three states.

Our protocol under this model is the following. At any time, a node can store one of three values 0, 1 or e. The

value e implies that the node is undecided about the majority value. Let U ,V and S represent, respectively, the set

of nodes storing 0, 1 and e. If a node in U (resp. V) contacts a node in U ,S (resp. V,S), then it does not update

its value. If a node in U (resp. V) contacts a node in V (resp. U), it updates its value to e (resp. e). If a node in S

contacts a node in U (resp.V), then it updates its value to 1 (resp. 0).

A. System Dynamics

We first describe the dynamics for a general graph G. Let Ui = 1 if node i is in state 1 and Vi = 1 if node i is in

state 0. We encode the state e by Ui = Vi = 0. Let for every node i, p(i, j) be a given probability with which node

i contacts a node j at a contact instance of node i. The state of the system evolves according to a continuous-time

Markov process (U,V) specified by the following transition rates:

(U,V)→



(U + ei,V) with rate (1− Ui)(1− Vi)
∑
j p(i, j)Uj

(U− ei,V) with rate Ui
∑
j p(i, j)Vj

(U,V + ei) with rate (1− Ui)(1− Vi)
∑
j p(i, j)Vj

(U,V − ei) with rate Vi
∑
j p(i, j)Uj

where ei is a vector of dimension N with all coordinates equal to 0 but the i-th coordinate equal to 1.

We now focus our analysis of the ternary signaling protocol on the complete graph with N nodes. In particular,

we choose p(i, j) = 1/N , for all i, j = 1, . . . , N . Let U =
∑
i Ui and V =

∑
i Vi. We then have that (U, V ) is a

continuous-time Markov process specified by the transition rates

(U, V )→



(U + 1, V ) with rate (N − U − V ) UN

(U − 1, V ) with rate U V
N

(U, V + 1) with rate (N − U − V ) VN

(U, V − 1) with rate V U
N .

(1)

Note that this is a Markov process on a finite state space SN , {(U, V ) ∈ IN2
+ : U + V ≤ N} and it, therefore,

terminates in one of the absorbing states (N, 0) or (0, N). Above and hereafter, (U, V ) sometimes denotes the
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random process (U(t), V (t)), and sometimes a deterministic value taken by the random process. The meaning

should be clear from the context.

We are interested in the probability of error of our ternary signaling protocol for the complete graph as well as

the expected time to convergence. The two quantities are examined in the following two sections.

B. Probability of Error

For every initial value (U, V ) ∈ SN , we define the probability of error as follows

fU,V , IP((U(t), V (t)) = (N, 0) for some t ≥ 0|(U(0), V (0)) = (U, V )). (2)

From (1), using the first-step analysis [4] we have that fU,V satisfies the following recursion:

(SU + SV + 2UV )fU,V = SUfU+1,V + UV fU−1,V + SV fU,V+1 + UV fU,V−1 (3)

where S = N − U − V and the boundary conditions are given by f0,V = 0 for V ≥ 1 and fU,0 = 1 for U ≥ 0.

An error occurs when the protocol converges to the false consensus i.e., U(0) > V (0) and (U(t), V (t)) hits

(0, N) or vice versa. i.e., U(0) < V (0) and (U(t), V (t)) hits (N, 0). Without loss of generality, we focus on the

case U(0) < V (0), for which fU,V is the error probability. Note that by the symmetry of the protocol, fU,U = 1
2

for U = 1, . . . , bN2 c.

The following theorem provides the solution to fU,V and thus establishes an exact expression for the error

probability.

Theorem 1. For the ternary signalling protocol, for every initial value (U, V ) ∈ SN such that U < V , the

probability of error fU,V , is is given by

fU,V =
1

2

U∑
j=1

aU,V (j)

2(U−j)+(V−j) (4)

where

aU,V (j) =
V − U

(U − j) + (V − j)

(
(U − j) + (V − j)

(U − j)

)
. (5)

Sketch of the proof: It turns out that fU,V satisfies a recursion for the error probability of the auxiliary Markov

process (X,Y ) specified by the transition probabilities

(X,Y )→

 (X,Y − 1) with rate 1
21{Y >0}

(X − 1, Y ) with rate 1
21{X>0}

with the same boundary conditions. This recursion is solved by a path counting argument using the Ballot theo-

rem [20].

The proof details are provided in Appendix VII-A. Theorem 1 implies that for a large number of nodes N

with initial state (U, V ) such that (U, V ) scales linearly with N , we have that the error probability fU,V decays

exponentially with N . The rate of this decay is given in the following corollary.
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Corollary 1. Let the initial state (U, V ) be such that there exists α ∈ (1/2, 1] for which (U, V )/N → (1− α, α)

as N tends to infinity. We have
1

N
log2 fU,V ∼ −D(α||1

2
), large N,

where D(x||y) denotes the Kullback-Lieber divergence between two Bernoulli distributions with means x and y.1

Therefore, the probability of error decays exponentially with N at a rate which depends on the portion of nodes

α that hold the initial majority opinion. This is in sharp contrast to the classical voter model for the complete graph

where the probability of error is a constant, equal to 1− α, that is independent of the number of nodes N . Thus,

the addition of a state e into the communication has the effect of making consensus far more robust.

The next section examines the speed of convergence of the ternary protocol.

C. Convergence Time

In this section we examine the rate of convergence of the protocol in the asymptotic setting, for large number

of nodes N . At time t, there are U(t) nodes in state 1, V (t) nodes in state 0, and S(t) nodes in state e. We have

U(t) + V (t) + S(t) = N for every t ≥ 0.

We define the scaled state uN (t) = U(t)/N , vN (t) = V (t)/N , and sN (t) = S(t)/N . The Markov process

(U, V, S) is a density-dependent Markov jump process, so by Kurtz’s convergence theorem [15], under the as-

sumption that (uN (0), vN (0), sN (0)) goes to a fixed (u(0), v(0), s(0)) as N tends to infinity, the scaled process

(uN (t), vN (t), sN (t)) converges uniformly on every compact time interval to the solution of the following system

of ordinary differential equations, for t ≥ 0,

du(t)

dt
= u(t)s(t)− u(t)v(t)

dv(t)

dt
= v(t)s(t)− v(t)u(t)

ds(t)

dt
= 2u(t)v(t)− s(t)(u(t) + v(t)).

Notice that since s(t) = 1− u(t)− v(t), for every t ≥ 0, it suffices to consider

du(t)

dt
= u(t)(1− u(t)− 2v(t)) (6)

dv(t)

dt
= v(t)(1− v(t)− 2u(t)). (7)

Theorem 2. The system (6)–(7) has the following properties:

1) If u(0) < v(0) (resp. u(0) > v(0)) then (u(t), v(t), s(t)) goes to (0, 1, 0) (resp. (1, 0, 0)).

2) If u(0) = v(0), then (u(t), v(t), s(t)) goes to ( 1
3 ,

1
3 ,

1
3 ).

1That is, D(x||y) = x log2
x
y
+ (1− x) log2

1−x
1−y

.
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3) The time t to reach (u(t), v(t)) is given by

t = log

(
(v(t)− u(t))3

u(t)v(t)

)
− log

(
(v(0)− u(0))3

u(0)v(0)

)
.

4) For v(0) > u(0), the time tl(N) to reach (u(t), v(t)) so that u(t) is of order 1/N is such that

tl(N) ∼ logN, large N. (8)

5) For v(0) > u(0), the time t(N) to reach (u(t), v(t)) so that both u(t) and 1 − v(t) are of order 1/N is

bounded as tl(N) ≤ t(N) ≤ tu(N), where the asymptotic behaviour of tl(N) is as given above, and

tu(N) ∼ 2 logN, large N. (9)

Items 4 and 5 tell us that the convergence time is logarithmic in the number of nodes N with a multiplicative

constant between 1 and 2. The quantity tl(N) is the time to almost deplete the minority state, while t(N) is the

time needed to almost deplete both the minority and the undecided state. The proof of Theorem ?? is given in

Appendix VII-C.

Convergence for other graphs: While we established good properties for the ternary protocol with respect to the

error probability and convergence time, we point out that these established results are for complete graphs. In the

following, we give an example of a graph for which the ternary protocol provides no additional benefits over the

voter model with respect to either the error probability or the convergence time.

We consider a line graph with initial observations defined as follows: the first U(0) nodes from the left observe

1 and the remaining V (0) = N − U(0) nodes observe 0 (see Figure 1).

1 0

1 2 U(0) U(0) + 1 N − 1 N

Fig. 1. Initial state on the line graph.

It can be shown that for this particular case, the dynamics of ternary signaling parallels that of the classical voter

model. The probability of false consensus is a constant (given by U(0)
N if the nodes observing 0 are in a majority)

and the convergence time is quadratic in N . The detailed proof is in Appendix VII-D.

IV. BINARY SIGNALING

So far, we showed that for complete graphs, increasing the computation and signaling state from binary to

ternary yields significant improvements for both the error probability and the convergence time. However, it is a

priori unclear whether this benefit is because of augmenting both the computation state and the signaling or just
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the computation state. In this section, we study the improvements that are achieved if only the computation state

is ternary and the signaling remains binary. Our protocol under this model is the following: As in Section III, a

node can store one of three values 0, 1 or e. Signaling, however, is binary, i.e., nodes are only allowed to display

one of two values 0 or 1. If a node in state 0 (respectively 1) is contacted by another node, it displays its state.

If a node in state e is contacted by another node, it draws either value 0 or 1 uniformly at random and displays

that value. The updating rules are as in Section III, i.e., if a node in state 0 (respectively 1) contacts a node that

displays a 1 (respectively a 0), then the contacting node changes its state to e. If the contacting node is in state e,

it changes its state to the displayed value. Otherwise, the state of the contacting node remains unchanged. As for

ternary signaling, all our results for the binary signaling case are for complete graphs.

A. System Dynamics

It can be readily checked that the system dynamics are fully described by the Markov process (U, V ) specified

by the transition rates:

(U, V )→



(U + 1, V ) with rate 1
2 (N − U − V )(1 + U−V

N )

(U − 1, V ) with rate 1
2U(1 + V−U

N )

(U, V + 1) with rate 1
2 (N − U − V )(1 + V−U

N )

(U, V − 1) with rate 1
2V (1 + U−V

N ).

(10)

As for ternary signaling, U and V denote the number of nodes that are in state 1 and 0, respectively. Note that

this is a Markov process on a finite state space SN , {(U, V ) ∈ IN2
+ : U +V ≤ N} and it therefore terminates in

one of the absorbing states (N, 0) or (0, N). We are interested in the probability of error of the binary signaling

protocol for the complete graph as well as the expected time of convergence. The two quantities are examined in

the following two sections.

B. Probability of Error

Let fU,V be defined as in (2). From (10), using first-step analysis, one can show that fU,V satisfies(
(U + S)

(
V +

S

2

)
+ (V + S)

(
U +

S

2

))
fU,V = U

(
V +

S

2

)
fU−1,V + V

(
U +

S

2

)
fU,V−1

+ S

(
U +

S

2

)
fU+1,V + S

(
V +

S

2

)
fU,V+1

(11)

where S , N − (U + V ) with the boundary conditions given by fU,U = 1
2 for U ∈ {0, . . . , bN2 c}, f0,N = 0, and

fN,0 = 1. As before, fU,V gives the error probability when U < V . The following theorem provides a lower bound

on fU,V .

Theorem 3. For the binary signalling protocol, the probability of error fU,V that is the solution to (11), for V > U ,

satisfies

fU,V ≥ pV−U
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where

pV−U =
1

2

∑2N−1
i=N+V−U

Ni

i!∑2N−1
i=N

Ni

i!

. (12)

The lower bound decays exponentially with N at the rate given in the following corollary.

Corollary 2. Let the initial state (U, V ) be such that there exists α ∈ (1/2, 1] for which (U, V )/N → (1− α, α)

as N tends to infinity. We have

1

N
log pV−U ∼ − [1− 2α(1− log(2α))] , large N. (13)

The function 1 − 2α(1 − log(2α)) is increasing and convex for α in [1/2, 1] (as the derivative 2 log(2α) is

increasing with α) and we have

0 ≤ 1− 2α(1− log(2α)) ≤ 2 log 2− 1 ≈ 0.3863.

For the ternary signaling protocol, we established that the decay rate of the error probability was a(α) = D(α|| 12 ).

If we let b(α) = 1−2α(1− log(2α)), then it can be checked that the difference a(α)− b(α) is increasing in α and

0 ≤ a(α)− b(α) ≤ 1− log 2.

In summary, for any fixed fraction V (0)/N > 1/2, the gap between the error probabilities under binary signaling

and ternary signaling is exponentially large.

We are not able to prove an upper bound to the error probability that is exponentially decaying in N . However,

we can show the following:

Theorem 4. For V ≥ U , fU,V ≤ U
N .

The above theorem says that binary signaling is at least as reliable as the classical voter model. The proof follows

by considering the recursion (11) only on the line U +V = N and showing that the probability of reaching (N, 0)

(when restricted to this line) upper bounds fU,V . The detailed proof can be found in Appendix VII-G.

C. Convergence Time

As in the analysis of the convergence time for the ternary signaling protocol in Section III-C we consider the

asymptotic behaviour of the system for a large number of nodes N . The limit dynamics are given by the following

system of ordinary differential equations:

du(t)

dt
=

1

2

(
(1− v(t))2 − (1 + v(t))u(t)

)
(14)

dv(t)

dt
=

1

2

(
(1− u(t))2 − (1 + u(t))v(t)

)
. (15)
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Let us denote z = u+ v and w = v − u. By a simple calculus, we have

d

dt
z(t) = 1− 3

2
z(t) +

1

2
w(t)2 (16)

d

dt
w(t) =

1

2
(1− z(t))w(t). (17)

The following convergence property for the binary signalling is noteworthy.

Proposition 1. For the system (14)–(15), the initial majority remains the majority forever.

Proof: The result follows by noting the fact z(t) ≤ 1, for all t ≥ 0, thus from (17), the sign of w(t) = v(t)−u(t)

remains unchanged for every t ≥ 0.

The following theorem and its corollary give lower and upper bounds on the convergence time for this system.

These bounds are of the same order as in ternary signaling. The proofs are given in Appendix VII-H.

Theorem 5. The solution (u(t), v(t)) of the system (14)–(15) satisfies:

1) For every initial point (u(0), v(0)) such that v(0) > u(0) we have that for a finite t0 ≥ 0, and all t ≥ t0,

u(t) ≥ (1− v(t))2

1 + v(t)
(18)

u(t) ≤ 3

2
+ v(t)− 1

2

√
1 + 24v(t). (19)

2) Time lower bound: for every t ≥ t0,

t− t0 ≥ log

(
v(t0)

v(t)

(
3v(t)− 1

3v(t0)− 1

) 8
3
(

1− v(t0)

1− v(t)

)2
)
. (20)

3) Time upper bound: for every t ≥ t0,

t− t0 ≤ 3 log

(
(v(t)− u(t))2

(v(t0)− u(t0))2
1− (v(t0)− u(t0))2

1− (v(t)− u(t))2

)
. (21)

Corollary 3. From any initial point (u(0), v(0)) such that v(0) > u(0) we have that the time t(N) for (u(t), v(t))

to reach the state such that u(t) and 1− v(t) are of order 1/N satisfies

2 log(N) +A ≤ t(N) ≤ 3 log(N) +B, large N (22)

where A and B are constants that depend on the initial point (u(0), v(0)) but not on N . If the initial point

(u(0), v(0)) satisfies the inequalities (18)–(19), then we can set,

A = log

v(0)(1− v(0))2(
3v(0)−1

2

) 8
3

 (23)
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Fig. 2. Logarithmic probability of error vs. the number of nodes N for the binary signaling protocol with initial state (u(0), v(0)) =
(0.45, 0.55). The exponent of the error probability corresponds to the slope. Confidence intervals are for 95% of confidence.

and

B = 3 log

(
1− (v(0)− u(0))2

2(v(0)− u(0))2

)
. (24)

We established that the binary protocol is slower than the ternary protocol by at least a factor 2 for large complete

graphs. We also established that this slow-down is for at most a factor 3. In the next section, we provide numerical

results that validate our convergence time analysis for the ternary and binary signaling protocol.

V. NUMERICAL RESULTS

A. Probability of Error for Binary Signaling

Figure 2 shows the exponent of the error probability of binary signaling obtained from simulations and also the

lower bound (13). The simulation plot indicates that the probability of error for binary signaling decays exponentially

with N , but with slower rate than that of the lower bound (13).

The simulations confirm that (13) is an asymptotic lower bound. Note that although the lower bound on the

error probability (12) is valid for all N , the approximations used to get the exponent (13) are valid only for large

values of N . This is visible in Figure 2, where the so-called lower bound is actually larger than the estimated

error probability for N below 600. From the simulation plot, an exponential decay of the error probability seems

plausible.

B. Convergence Time

Figure 3 shows the convergence time for binary and ternary signaling and validates (8) and (22). Specifically,

the simulations confirm that convergence time grows logarithmically for both binary and ternary signaling, the
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Fig. 3. Convergence time vs. the number of nodes N for binary and ternary signaling with initial state (u(0), v(0)) = (0.3, 0.7). Confidence
intervals are for 95% of confidence.

multiplicative constant for ternary signaling is near 1, and the multiplicative constant for binary signaling lies

between 2 and 3.

VI. CONCLUSION

The binary consensus problem has been studied for complete graphs. It is shown how adding one extra state of

memory per node increases the reliability and speed of consensus.

As mentioned in the introduction, the algorithm proposed in [9] achieves zero error probability and a comparable

convergence speed as our algorithm, by adding a fourth state for computation and signaling. An interesting further

research direction is to find a converse for these two results, i.e., (a) to show that with only 2 states, the error

probability must be bounded away from zero for any protocol, and (b) to show that with only 3 states, there is no

protocol with zero error probability.

A further research direction is the extension of our work to general graph structures as well as to the k-ary

consensus problem (k > 2).
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[18] Etienne Perron, Dinkar Vasudevan, and Milan Vojnović. Using three states for binary consensus on complete graphs. In Proc. of the IEEE

INFOCOM’09, Rio de Janeiro, April 2009.
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VII. APPENDIX

A. Proof of Theorem 1

The proof follows from the following two lemmas.

Lemma 1. The solution to (3), for any N ≥ 1, is fU,V given by

fU,V =
1

2
fU,V−1 +

1

2
fU−1,V (25)

with boundary conditions given by fU,0 = 1 for U ≥ 0 and f0,V = 0 for V ≥ 1.

Proof: Assume that fU,V satisfies (25) for all (U, V ). We show that this fU,V also satisfies the recursion (3)

with the same boundary conditions. We do this in several steps. First, we show by induction that fU,V satisfies the

recursion

(U + V )fU,V = UfU+1,V−1 + V fU−1,V+1, (26)
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again with the same boundary conditions.

Base case: Let n , U + V = 2. It is easy to check that for (U, V ) = (1, 1), both (25) and (26) yield f1,1 = 1
2 .

Induction step: Assume that fU,V satisfies (26) for all (U, V ) such that U + V ≤ n − 1. Now, for any (U, V )

satisfying U + V = n, the induction assumption implies that

(U − 1 + V )fU−1,V = (U − 1)fU,V−1 + V fU−2,V+1

and

(U + V − 1)fU,V−1 = UfU+1,V−2 + (V − 1)fU−1,V .

Summing these two equations, we obtain

UfU−1,V + V fU,V−1 = UfU+1,V−2 + V fU−2,V+1.

Multiplying both sides by 1
2 and adding the same term U

2 fU,V−1 + V
2 fU−1,V on both sides, we obtain

(U + V )

(
1

2
fU,V−1 +

1

2
fU−1,V

)
= U

(
1

2
fU,V−1 +

1

2
fU+1,V−2

)
+ V

(
1

2
fU−2,V+1 +

1

2
fU−1,V

)
.

Using (25), we see that the above is equivalent to (26). This concludes the induction step.

Next, we show that (25) and (26) together imply

(U + V )fU,V = UfU+1,V + V fU,V+1. (27)

This follows by applying the recurrence (25) on the points (U, V + 1) and (U + 1, V ):

fU+1,V =
1

2
fU,V +

1

2
fU+1,V−1 (28)

fU,V+1 =
1

2
fU−1,V+1 +

1

2
fU,V . (29)

From (26), it holds that

(U + V )fU,V = UfU+1,V−1 + V fU−1,V+1

(a)
= U(2fU+1,V − fU,V ) + V (2fU,V+1 − fU,V )

where (a) follows from (28) and (29). The above rearranges to (27). The proof of the lemma follows by noting that

(3) is a linear combination of (25) and (27). Since we know fU,V is a solution to both these recursions, it follows

that fU,V is also a solution of (3).

Lemma 2. For U ≤ V , the solution to (25) is given by (4).



16

Proof: Applying successively Eq. (25),

fU,V =
1

2
fU,V−1 +

1

2
fU−1,V

=
1

2
(
1

2
fU,V−2 +

1

2
fU−1,V−1) +

1

2
(
1

2
fU−1,V−1 +

1

2
fU−2,V )

. . .

=

U∑
j=1

cjfj,j +

V∑
j=1

bjf0,j =
1

2

U∑
j=1

cj ,

we note that fU,V can be expressed as a linear combination of the U +V boundary terms. Since f0,j = 0, we focus

on computing cj . Consider paths on the lattice SN that for any two sites of SN are defined as a concatenation

of downward and leftward edges between neighbouring sites of SN . It is easy to check that the coefficient cj is

the product of the number of paths from the site (U, V ) to the site (j, j) that do not intersect with the U = V

line, and 1/2(U−j)+(V−j). The latter term is due to the accumulation of the 1
2 factor while applying the recursion

successively. The number of such paths is given by the Ballot theorem [20]. Indeed, let the number of ballots given

to candidate 1 and candidate 2 be V −j and U−j, respectively. The number of paths that do not intersect the U = V

line until the point (j, j) is equivalent to the number of permutations for which candidate 1 is ahead of candidate

2 throughout the counting of ballots. It follows from the Ballot theorem that the number of such permutations is

(V − j)− (U − j)
(V − j) + (U − j)

(
(V − j) + (U − j)

(V − j)

)
=

V − U
(U − j) + (V − j)

(
(U − j) + (V − j)

(V − j)

)
.

The result follows.

B. Proof of Corollary 1

Let x = j/N , V = αN , and U = (1− α)N . From Eq. (5) and Stirling’s approximation, we have

1

N
log
(
aU,V (j)2−((U−j)+(V−j))

)
∼ 1

N
log

(
(1− 2x)N

(α− x)N

)
− (1− 2x), large N

∼ −ν(x), large N

where

ν(x) , (1− 2x)

[
1−H

(
α− x
1− 2x

)]
.

By the principle of the largest term, we have

1

N
log2 fU,V ∼ − min

x∈[0,1−α]
ν(x), large N.
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It is readily checked that ν(x) is increasing on [0, 1 − α] hence it achieves minimal value at x = 0. The result

follows.

C. Proof of Theorem 2

Subtracting (6) from (7), we have

d((v(t)− u(t))

dt
= (v(t)− u(t))(1− u(t)− v(t)) (30)

The relation (30) says that the difference v(t)− u(t) is increasing with t. Therefore the initial majority is the final

majority. (30) can equivalently be written as

d log(v(t)− u(t)) = (1− u(t)− v(t))dt (31)

Furthermore, (6) and (7) can be written, respectively as

d log u(t) = (1− u(t)− 2v(t))dt (32)

d log v(t) = (1− v(t)− 2u(t))dt (33)

Adding (32) and (33), we get

d log u(t)v(t) =
(
2− 3(u(t) + v(t))

)
dt (34)

Integrating (31) and (34) from 0 to t and rearranging, we obtain∫ t

0

(
u(x) + v(x)

)
dx = x− log

[
v(x)− u(x)

]t
0∫ t

0

(
u(x) + v(x)

)
dx =

2x

3
− 1

3
log
[
v(x)u(x)

]t
0
.

From the above two identities, we get

t = 3 log
v(t)− u(t)

v(0)− u(0)
− log

v(t)u(t)

v(0)u(0)
.

Let tl(N, β) be such that u(tl(N, β)) ∼ β
N for an arbitrary constant β. Then, from the above equation, for a constant

Cβ independent of N ,

tl(N, β)→ logN + Cβ

as N grows large. When β = 1, this proves that tl(N) ∼ logN . Furthermore, when u(0) = v(0), then from the

differential equations, we have u(t) = v(t) for all t ≥ 0 and

du(t)

dt
= 2u(t)(1− 3u(t))

This is a logistic differential equation with the limit point (1/3, 1/3, 1/3).
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Let t(N) be such that v(t(N)) ∼ 1− 1
N . Clearly, we have that t(N) ≥ tl(N). To conclude the proof, we need

to show that t(N) ≤ tu(N) ∼ 2 logN . Choose an arbitrary β < 1
2 , and let tl(N, β) be as defined above. Note that

tl(N, β) ≥ tl(N). We distinguish two cases:

Case 1: t(N) ≤ tl(N, β). In this case, we have t(N) ∼ logN , and tu(N) = 2tl(N, β) will be a valid upper

bound of the correct order.

Case 2: t(N) > tl(N, β). This case needs further inspection. Since u(t) is decreasing in t, we have that

u(t(N)) ≤ β
N . Notice that for every t ≥ 0, v(t) − u(t) ≥ v(0) − u(0). Therefore, v(tl(N, β)) ≥ v(0) − u(0) +

u(tl(N, β) ≥ v(0)− u(0). Furthermore, v(t) ≤ 1− 1
N for all t ≤ t(N). Now, let us consider the system (6), (7),

with initial time tl(N, β) and initial point (u(tl(N, β)), v(tl(N, β))). From (7) and the fact u(t) ≤ β
N , for every

t ≥ tl(N, β), we have
d

dt
v(t) ≥ v(t)

(
1− 2β

N
− v(t)

)
, tl(N, β) ≤ t ≤ t(N).

By the choice of β < 1
2 , we have 1 − 2β

N > 1 − 1
N ≥ v(t), and hence, the right hand side of this differential

equation is positive. We use the separation of variables

dv

v
(

1− 2β
N − v

) ≥ dt
which integrated from tl(N, β) to t(N) yields

log

 1− 2β
N

v(tl(N,β))
− 1

1− 2β
N

v(t(N)) − 1

 ≥ (1− 2β

N

)
(t(N)− tl(N, β)).

Using v(tl(N, β)) ≥ v(0)− u(0) and v(t(N)) = 1− 1
N , we obtain

t(N) ≤ tl(N, β) +
1

1− 2β
N

log(N) +
1

1− 2β
N

log


(

1− 2β
N

v(0)−u(0) − 1
) (

1− 1
N

)
1− 2β

 .

Since 1− 2β > 0 and tl(N, β) ∼ logN , the above inequality yields that for large N ,

t(N) ≤ 2 log(N) +O(1).

This concludes the proof of the theorem.

D. Ternary Signaling on the Line Graph

We analyze the behaviour of the ternary signaling protocol for a line graph with a specific initial configuration.

At a sampling instance, a node can contact only one of its neighbours, which in this case, are the nodes to the right

and left of it.

Suppose that the initial observations at the nodes are given as follows: The first U nodes from the left observe 1

and the remaining V = N −U nodes observe 0. The graph and the initial observations at the nodes are illustrated

in Figure 1. We will refer to this configuration as (U, 0, V ) where the 0 indicates that there are no nodes in state
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e. In this proof, for the sake of notational simplicity, we denote U(0) by U and V (0) by V . Let U denote the set

of nodes observing 1 and let V denote the set of nodes observing 0.

Under ternary signaling, there are three possible configurations that could result at the next step. The first

configuration is the original configuration which occurs when either a node in U contacts a node in U or a node

in V contacts a node in V . For the second configuration (call it (U − 1, 1, V )), node U contacts node U + 1 and

updates its value to e and in the third configuration (call it U, 1, V − 1), node U + 1 contacts node U and updates

its value to e. The probability to transition from (U, 0, V ) to either of the last two configurations, i.e., (U −1, 1, V )

and (U, 1, V − 1) is equal. The last two configurations are illustrated in the Figures 4 and 5 respectively.

1 0e

1 2 U U + 1 N − 1 N

Fig. 4. Configuration (U − 1, 1, V ). The node U updated to state e.

1 0e

1 2 U U + 1 N − 1 N

Fig. 5. Configuration (U, 1, V − 1). The node U + 1 updated to state e.

Suppose that the configuration (U − 1, 1, V ) occurs at the next step. There are three possible configurations

which can occur at the subsequent step. The first is the configuration (U − 1, 1, V ) itself when either a node in U

contacts a node in U (or contacts node U ) or a node in V contacts a node in V (or contacts node U ). The second

configuration is the starting configuration (U, 0, V ) and occurs when the node U in state e contacts node U −1 and

updates its state to 1. The third configuration is a new configuration (U − 1, 0, V + 1) and occurs when the node

U contacts node U + 1 and updates it’s value to 0. Furthermore, the probability to transition from (U − 1, 1, V ) to

either of the last two configurations, i.e., (U, 0, V ) and (U − 1, 0, V + 1) is equal.

Likewise, from the configuration (U, 1, V − 1), there are three possible configurations which can occur at the

subsequent step – the configuration (U, 1, V − 1), the starting configuration (U, 0, V ) and the new configuration

(U + 1, 0, V − 1). The probability to transition from (U, 1, V − 1) to either of the last two configurations, i.e.,

(U, 0, V ) and (U + 1, 0, V − 1) is equal.

Let fU,V denote the probability of reaching the all 0 state starting from the (U, 0, V ) configuration. From the

arguments above, one can check that fU,V satisfies the recursion

fU,V =
1

2
fU−1,V+1 +

1

2
fU+1,V−1,

with the boundary conditions given by f0,N = 1 and fN,0 = 0. This recursion is just the recursion for the classical
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voter model and the solution for fU,V is given by

fU,V =
V

N
.

Let τU,V denote the time to absorption. From standard arguments, it follows that

τU,V = CUV

where C is a constant which represents the mean time interval between changes in the state configuration.

Note that as opposed to the complete graph case where ternary signaling results in an exponentially low (in N )

probability of error, in the line graph for a particular starting state, ternary signaling results in the same probability

of error as the voter model. This is true because the voter model on the line graph for this particular starting

configuration is equivalent to the gambler’s ruin problem. The convergence time of the ternary signaling scheme is

quadratic in the number of nodes N and is furthermore slower by a constant factor as compared to the voter model

(due to the occurrence of intermediate states with a node in state e).

E. Proof of Theorem 3

Define K(t) = V (t) − U(t). At every step, the value of K(t) = K updates to one of K − 1,K,K + 1. The

transition probabilities conditional on K of updating to K − 1 or K + 1 are given by

IP(K(t+ 1) = K + 1|(U(t), V (t)) = (U, V )) =
(U + S)(V + S

2 )

(U + S)(V + S
2 ) + (V + S)(U + S

2 )

IP(K(t+ 1) = K − 1|(U(t), V (t)) = (U, V )) =
(V + S)(U + S

2 )

(U + S)(V + S
2 ) + (V + S)(U + S

2 )
.

We rewrite the first probability as

IP(K(t+ 1) = K + 1|(U(t), V (t)) = (U, V )) =
1

1 + (N−K)(N−U)
(N+K)(N−V )

. (35)

For a fixed K, one can check that the above probability is largest when (U = 0, V = K).

The probability of error is one-half times the the probability of reaching the state K = 0 before reaching K = N .

We obtain a lower bound by assuming that the bias towards the larger K (i.e., K = K + 1) is always maximum.

Hence, we consider a new Markov chain K ′ with transition probabilities

IP(K ′(t+ 1) = K − 1|K ′(t) = K) =
N

2N +K

IP(K ′(t+ 1) = K + 1|K ′(t) = K) =
N +K

2N +K
.

The probability of error pk for this Markov chain satisfies

(2N +K)pK = (N +K)pK+1 +NpK−1, (36)
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for K = 1, . . . , N − 1 with boundary conditions p0 = 1
2 , pN = 0. The lower bound to fU,V is given by

fU,V ≥ pV−U for U ≤ V.

It can be verified that the solution to (36) is

pK =
1

2

∑2N−1
i=N+K

Ni

i!∑2N−1
i=N

Ni

i!

. (37)

F. Proof of Corollary 2

We consider the asymptotics of pK defined in (37) for large N where (U, V )/N tends to (1 − α, α) for fixed

α ∈ (1/2, 1].

From (37), we have

log(pK) = − log 2 + log

(
2N−1∑
i=N+K

N i

i!

)
− log

(
2N−1∑
i=N

N i

i!

)
. (38)

Now, N i/i! is decreasing with i for N ≤ i ≤ 2N . Hence, by the principle of the largest term,

1

N
log

(
2N∑

i=N+K

N i

i!

)
∼ 1

N
log

(
NN+K

(N +K)!

)
, large N.

By Stirling’s approximation, we have that

1

N
log

(
Nm

m!

)
∼ m

N

(
1− log

(m
N

))
, large N.

Using the last asymptote in (38), we have

1

N
log(pK) ∼ K

N
−
(

1 +
K

N

)
log

(
1 +

K

N

)
, large N.

The result follows by noting that K/N ∼ 2α− 1.

G. Proof of Theorem 4

As in the proof of Theorem 3, we consider the embedded state K = V −U . Equation (35) gives the conditional

transition probability of K = k updating to K = k + 1. It can be checked that this probability is smallest when

U + V = N , i.e, when (V = N+k
2 , U = N−k

2 ) and that then it is equal to 0.5. The probability of error is one-half

times the the probability of reaching the state K = 0 before reaching K = N . We obtain an upper bound by

assuming that the bias towards the larger K (i.e., K = k + 1) is always minimum. Hence, we consider a new

Markov chain K ′ with transition probabilities

IP(K ′(t+ 1) = k − 1|K ′(t) = k) =
1

2
(39)

IP(K ′(t+ 1) = k + 1|K ′(t) = k) =
1

2
. (40)
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0 1/3 1/2 1
0

1/3

1/2

1

u
v

(d/dt)u = 0

(d/dt)v = 0

(d/dt)v = − (d/dt)u

Fig. 6. The vector field of (14)–(15).

From first-step analysis, the error probability pk for this Markov chain is the solution of the recurrence

pk =
1

2
pk+1 +

1

2
pk−1, (41)

for k = 1, . . . , N − 1 with boundary conditions p0 = 1
2 , pN = 0. The upper bound to fU,V is given by

fU,V ≤ pV−U for U ≤ V.

The above recurrence corresponds to the classical gambler’s ruin problem and it is well known that pk = N−k
2N = U

N .

H. Proof of Theorem 5

1) Item 1: Figure 6 illustrates the vector fields (du/dt, dv/dt) in the region {v > u, v+u ≤ 1}. Item 1 says that

after a finite time t0, (u(t), v(t)) lies between the curves representing the points where, respectively, du/dt = 0

and d(u+ v)/dt = 0.

The claim follows by direct inspection of the vector field of the system (14)–(15) – see Fig. 6. It suffices to

consider only (u, v) ∈ Ω defined by Ω = {(u, v) ∈ [0, 1]2 : v > u, u+v ≤ 1}. Indeed, for the system (14)–(15), if

(u(0), v(0)) ∈ Ω, then (u(t), v(t)) ∈ Ω, for any t ≥ 0. This follows from Proposition 1. The claim in the theorem

says that for any (u(0), v(0)) ∈ Ω there exists a finite t0 ≥ 0 such that (u(t), v(t)) ∈ A, for all t ≥ t0, where the

set A is defined by

A = {(u, v) ∈ Ω : (1− v)2/(1 + v) ≤ u ≤ 3/2 + v −
√

1 + 24v/2}.

We first note that if (u(0), v(0)) ∈ A, then (u(t), v(t)) ∈ A, for all t ≥ 0. To see this, note that at the boundary

(1 − v)2/(1 + v) = u the vector field is such that (d/dt)u = 0 and (d/dt)v > 0, thus points inwards into the

set A. Similarly, note that the boundary u = 3/2 + v −
√

1 + 24v/2 is the same as v = f(u), where f(u) ,

3/2 + u −
√

1 + 24u/2 at which the vector field is such that (d/dt)v = −(d/dt)u. It suffices to show that

(d/du)f(u) ≤ −1, for all u ∈ A. The last inequality is equivalent to u ≤ 1/3, which is indeed true for u ∈ A.
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Thus, the vector field also points inwards into the set A at the boundary u = f(v).

It remains only to show that for (u(0), v(0)) ∈ Ω \A, we have (u(t0), v(t0)) ∈ A, for some finite t0 ≥ 0. Recall

that we defined w(t) = v(t)− u(t), and z(t) = u(t) + v(t). We consider the following cases.

Case 1: (u(0), v(0)) ∈ B1 where B1 = {(u, v) ∈ Ω : u ≤ (1 − v2)/(1 + v)}. In this region, we have that

(du/dt) ≥ 0, (dv/dt) ≥ 0. Extend a vertical line upward (900) and a unit slope 450 line from (u(0), v(0)) until

the lines intersect the curve u = (1 − v2)/(1 + v). Let C be the region enclosed by the two lines and the curve.

Since both u and v are increasing in this region and since v is increasing more than u, the process is constrained

to lie in C before hitting the set A. Clearly, dz/dt > 0 in C as the region C is bounded away from the curve

v = 3/2+u−
√

1 + 24u/2 (at which points, dz/dt = 0). Hence the time t0 taken to hit the curve u = (1−v2)/(1+v)

is upper bounded by

t0 ≤ K1(1− u(0)− v(0))

where K1 <∞ is a constant.

Case 2: (u(0), v(0)) ∈ B2 where B2 = {(u, v) ∈ Ω : v ≥ (1 − u)2/(1 + u)}. In this region, we have that

(du/dt) ≤ 0, (dv/dt) ≤ 0. Extend a horizontal line leftward (1800) and a unit slope (−1350) line from (u(0), v(0))

until the lines intersect the curve v = (1−u2)/(1+u). Let D be the region enclosed by the two lines and the curve.

Since both u and v are decreasing in this region and since u is decreasing more than v, the process is constrained

to lie in D before hitting the set A. Clearly, dz/dt < 0 in D as the region D is bounded away from the curve

v = 3/2 + u−
√

1 + 24u/2. Hence the time t0 taken to hit the curve v = (1− u2)/(1 + u) is upper bounded by

t0 ≤ K2(u(0) + v(0))

where K2 <∞ is a constant.

Case 3: (u(0), v(0)) ∈ B3 where B3 = {(u, v) ∈ Ω : 3/2 + u −
√

1 + 24u/2 ≤ v ≤ (1 − u)2/(1 + u)}. In

this region, we have that (d/dt)u ≤ 0 ≤ (d/dt)v, and we also have (d/dt)(v + u) ≤ 0. Let t0 be the time when

u(t), v(t) intersects with the curve v = 3/2 + u−
√

1 + 24u/2. For t ≤ t0,

dw

dt
=

1

2
(1− z(t))w(t) ≥ 1

2
(1− z(0))w(0) > 0.

The inequality follows since z(t) is decreasing and w(t) is increasing with time. Therefore

t0 ≤ K3(1− w(0))

where K3 <∞ is a constant.

2) Item 2: From (15) and (18), we have

d

dt
v(t) ≤ 1

2

[(
1− (1− v(t))2

1 + v(t)

)2

−
(

1 +
(1− v(t))2

1 + v(t)

)
v(t)

]
.
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We can rewrite the last inequality as

d

dt
v(t) ≤ v(t)(1− v(t))(3v(t)− 1)

(1 + v(t))2
.

Hence,
(1 + v(t))2dv(t)

v(t)(1− v(t))(3v(t)− 1)
≤ dt. (42)

Note that
(1 + v(t))2

v(t)(1− v(t))(3v(t)− 1)
=
−1

v(t)
+

2

1− v(t)
+

8

3v(t)− 1
.

It follows that ∫ v(t)

v(t0)

(1 + v(t))2dv(t)

v(t)(1− v(t))(3v(t)− 1)

= −
∫ v(t)

v(t0)

d(log v(t))− 2

∫ v(t)

v(t0)

d(log(1− v(t))) +
8

3

∫ v(t)

v(t0)

d(log(3v(t)− 1)).

The result (20) follows from the above relation and (42).

3) Item 3: Since (19) holds when t ≥ t0, dz(t)/dt = (d/dt)(u+ v)(t) ≥ 0. Thus, from (16), we have

z(t) ≤ 2

3
+

1

3
w(t)2

where, recall, w(t) = v(t)− u(t). Now, from the last inequality and (17), it follows that

dw(t)

(1− w(t)2)w(t)
≥ 1

6
dt.

Note that
1

(1− w(t)2)w(t)
=

1

2

1

1− w(t)
− 1

2

1

1 + w(t)
+

1

w(t)
.

Integrating, it follows

t− t0 ≤ 3 log

(
w(t)2

w(t0)2
1− w(t0)2

1− w(t)2

)
,

and hence the result asserted in (21).

I. Proof of Corollary 3

By Item 1 of Theorem 5, it suffices to show (22), (23) and (24) for (u(0), v(0)) satisfying (18) and (19). The

lower bound in (22), together with (23), follows from (20) and the condition v(t(N)) ≥ 1− 1
N . The upper bound

in (22), together with (24), follows from (21) and from the inequality

v(t(N))− u(t(N)) ∼ 1− 1

N
− u(t(N)) ≤ 1− 1

N
.


