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Abstract. We consider the convergence time for solving the binary consensus problem using
the interval consensus algorithm proposed by Bénézit, Thiran and Vetterli (2009). In the binary
consensus problem, each node initially holds one of two states and the goal for each node is to
correctly decide which one of these two states was initially held by a majority of nodes.

We derive an upper bound on the expected convergence time that holds for arbitrary connected
graphs, which is based on the location of eigenvalues of some contact rate matrices. We instantiate
our bound for particular networks of interest, including complete graphs, paths, cycles, star-shaped
networks, and Erdös-Rényi random graphs; for these graphs,we compare our bound with alternative
computations. We find that for all these examples our bound is tight, yielding the exact order with
respect to the number of nodes.

We pinpoint the fact that the expected convergence time critically depends on the voting margin
defined as the difference between the fraction of nodes that initially held the majority and the
minority states, respectively. The characterization of the expected convergence time yields exact
relation between the expected convergence time and the voting margin, for some of these graphs,
which reveals how the expected convergence time goes to infinity as the voting margin approaches
zero.

Our results provide insights into how the expected convergence time depends on the network
topology which can be used for performance evaluation and network design. The results are of
interest in the context of networked systems, in particular, peer-to-peer networks, sensor networks
and distributed databases.
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1. Introduction. Algorithms for distributed computation in networks have re-
cently attracted considerable interest because of their wide-range of applications
in networked systems such as peer-to-peer networks, sensor networks, distributed
databases, and on-line social networks. A specific algorithmic problem of interest is
the so called binary consensus [1, 2, 3, 4] where, initially, each node in the network
holds one of two states and the goal for each node is to correctly decide which one
of the two states was initially held by a majority of nodes. This is to be achieved by
a decentralized algorithm where each node maintains its state based on the informa-
tion exchanged at contacts with other nodes, where the contacts are restricted by the
network topology. It is desired to reach a final decision by all nodes that is correct
and within small convergence time.

A typical application scenario of the binary consensus corresponds to a set of
agents who want to reach consensus on whether a given event has occurred based
on their individual, one-off collected, information. Such cooperative decision-making
settings arise in a number of applications such as environmental monitoring, surveil-
lance and security, and target tracking [5], as well as voting in distributed systems [6].
Furthermore, it has been noted that one can use multiple binary consensus instances
to solve multivalued consensuses; we refer to [7, 8] for an account on such algorithms.

We consider a decentralized algorithm known as interval or quantized consensus
proposed by Bénézit, Thiran, and Vetterli [3]. The aim of this algorithm is to decide
which one of k ≥ 2 partitions of an interval contains the average of the initial values
held by individual nodes. In this paper, we focus on binary interval consensus, i.e.
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the case k = 2. An attractive feature of the interval consensus is its accuracy; it was
shown in [3] that for any finite connected graph that describes the network topology,
the interval consensus is guaranteed to converge to the correct state with probability 1.
However, the following important question remained open: How fast does the interval
consensus converge to the final state? We answer this question for the case of binary
interval consensus.

The interval consensus could be considered a state-of-the-art algorithm for solving
the binary consensus problem as it guarantees convergence to the correct consensus
(i.e. has zero probability of error) for arbitrary finite connected graphs. Besides, it
only requires a limited amount of memory and communication by individual nodes
(only four states). Some alternative decentralized algorithms require fewer states of
memory or communication but fail to reach the correct consensus with strictly pos-
itive probability. For instance, the traditional voter model requires only two states
of memory and communication. It is however known that there are graphs for which
the probability of error is a strictly positive constant, e.g. proportional to the number
of nodes that initially held the minority state in the case of complete graphs. An-
other example is the ternary protocol proposed in [2] for which it was shown that for
complete graphs, the probability of error diminishes to zero exponentially with the
number of nodes, but provides no improvement over the voter model for some other
graphs (e.g. a path).

In this paper, we provide an upper bound on the expected convergence time for
solving the binary interval consensus on arbitrary connected graphs. This provides a
unified approach for estimating the expected convergence time for particular graphs.
The bound is tight in the sense that there exists a graph, namely the complete graph,
for which the bound is achieved asymptotically for large number of nodes.

We demonstrate how the general upper bound can be instantiated for a range of
particular graphs, including complete graphs, paths, cycles, star-shaped networks and
Erdös-Rényi random graphs. Notice that the complete graph and the Erdös-Rényi
random graph are good approximations of various unstructured and structured peer-
to-peer networks and that star-shaped networks capture the scenarios where some
node is a hub for other nodes.

Our results provide insights into how the expected convergence time depends
on the network structure and the voting margin, where the latter is defined as the
difference between the fraction of nodes initially holding the majority state and the
fraction of nodes initially holding the minority state. For the network structure, we
found that a key effect on the expected convergence time have the spectral properties
of some matrices that dictate the contact rates between nodes. For the voting margin,
we found that there exist graphs for which the voting margin significantly affects the
expected convergence time. Specifically, we found that for some graphs, the expected
convergence time goes to infinity as the voting margin approaches 0.

Complete graph example. For concreteness, we describe how the voting margin
affects the expected convergence time for the complete graph of n nodes. Let us
denote with α > 1/2 the fraction of nodes that initially held the majority state, and
thus α− (1− α) = 2α− 1 is the voting margin. We found that that the convergence
time T satisfies

IE(T ) =
1

2α− 1
log(n)(1 + o(1)).

Therefore, the expected convergence time is inversely proportional to the voting mar-
gin, and thus, goes to infinity as the voting margin goes to 0 (see Fig. 1.1 for an
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Fig. 1.1. The expected convergence time vs. the voting margin 2α − 1 for the complete graph
of n nodes. The curve illustrates how the expected convergence time goes to infinity as the voting
margin approaches zero.

illustration). Hence, albeit the interval consensus guarantees convergence to the cor-
rect state, the expected convergence time can assume large values for small voting
margins.

Outline of the Paper. In Section 2 we discuss the related work. Section 3 in-
troduces the notation and the binary interval consensus algorithm considered in this
paper. In Section 4, we consider the complete graph and establish exact mean-field
limit as the number of nodes grows large. Section 5 presents our main result that
consists of an upper bound on the expected convergence time that applies to arbi-
trary connected graphs (Theorem 5.2). Section 6 instantiates the upper bound for
particular graphs, namely complete graphs, paths, cycles, star-shaped networks and
Erdös-Rényi random graphs, and compares with alternative analysis. We conclude in
Section 7. Some of the proofs are deferred to the appendix.

2. Related Work. In recent years there have been a large body of research on
algorithms for decentralized computations over networks, under various constraints on
the memory of individual nodes and communication between the nodes. For example,
in the so called quantized consensus problem [1], the goal is to approximately compute
the mean of the values that reside at individual nodes, in a decentralized fashion, where
nodes communicate quantized information. In [4], the authors provided bounds on
the convergence time in the context of averaging algorithms where nodes exchange
quantized information.

The work that is most closely related to ours is [3] where the authors showed
that the so called interval consensus algorithm guarantees correctness for arbitrary
finite connected graphs. In particular, their work shows that for solving the binary
consensus problem, it suffices to use only two extra states to guarantee convergence to
the correct consensus in a finite time, for every finite connected graph. Our work ad-
vances this line of work by establishing the first tight characterizations of the expected
convergence time for the binary interval consensus.

Previous work on the binary consensus problem considered algorithms under more
stringent assumptions on the number of states stored and communicated by individ-
ual nodes. The standard voter model is an algorithm where each node stores and
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communicates one of two states (0 or 1), where each instigator node switches to the
state observed from the contacted node. The voter model has been studied in the con-
text of various graph topologies [9, 10, 11] and the probability of reaching the correct
consensus (i.e. corresponding to the initial majority state) is known in a closed-form
for arbitrary connected graphs [12]. Specifically, the probability of reaching the cor-
rect consensus is proportional to the sum of degrees of the nodes that initially held
the initial majority state. In particular, for the complete graphs, this means that
the probability of reaching an incorrect consensus is proportional to the number of
nodes that initially held the minority state. Moreover, for some network topologies,
the convergence time of the voter model is known to be quadratic in the number of
nodes, e.g. for a path [13].

In [2], the authors considered a ternary protocol for binary consensus problem
where each node stores and communicates an extra state. It was shown that for
the complete graph interactions, the probability of reaching the incorrect consensus
is exponentially decreasing to 0 as the number of nodes n grows large, with a rate
that depends on the voting margin. Moreover, if the algorithm converges to the right
consensus, then the time it takes to complete is logarithmic in the number of nodes
n, and is independent of the voting margin. Notice that this is unlike to the binary
interval consensus, for which we found that the expected convergence time, for the
complete graph of n nodes, is logarithmic in n, but with a factor that is dependent
on the voting margin and going to infinity as the voting margin approaches zero. The
main advantage of the binary interval consensus algorithm over the ternary protocol
is the guaranteed convergence to the correct final state with probability 1, albeit this
seems to be at some expense with respect to the convergence time for some graphs.

Finally, we would like to mention that in a bigger picture, our work relates to the
cascading phenomena that arise in the context of social networks [14]; for example,
in the viral marketing where an initial idea or behavior held by a portion of the
population, spreads through the network, yielding a wide adoption across the whole
population [15].

3. Algorithm and Notation. In this section, we introduce the interval con-
sensus algorithm for the binary consensus problem. Each node is assumed to be in
one of the following four states 0, e0, e1 and 1, at every time instant. It is assumed
that the states satisfy the following order relations 0 < e0 < e1 < 1. We can interpret
the state e0 as referring to the values in the interval [0, 1/2) and e1 as referring to the
values in the interval (1/2, 1]. Since we assume that initial values held by the nodes
are discrete, either 0 or 1, we have that both 0 and e0 indicate value 0 and both e1
and 1 indicate value 1. Without loss of generality, suppose that state 0 is initially
held by a majority of nodes.

State update rules. The states held by the nodes are updated at pairwise contacts
between nodes according to the following state update rules:

1. If a node in state 0 and a node in state 1 get in contact, they switch their
states to state e1 and state e0, respectively.

2. If a node in state e0 and a node in state 1 get in contact, they switch their
states to state 1 and state e1, respectively.

3. If a node in state e0 and a node in state 0 get in contact, they swap their
states to state 0 and e1, respectively.

4. If a node in state e1 and a node in state 1 get in contact, they swap their
states to state 1 and state e1, respectively.

5. If a node in state e0 and a node in state e1 get in contact, they swap their
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states to state e1 and state e0, respectively.
6. For any other states of a pair of nodes that get in contact, their states remain

unchanged.

Temporal process of pairwise interactions. We admit the standard asynchronous
communication model [2, 16] where any pair of nodes (i, j) interacts at instances of
a Poisson process with rate qi,j ≥ 0. We denote with V = {1, 2, . . . , n} the set of
nodes. The interaction rates are specified by the matrix Q = (qi,j)i,j∈V assumed
to be symmetric. The transition matrix Q induces an undirected graph G = (V,E)
where there is an edge (i, j) ∈ E if and only if qi,j > 0. We assume that graph G is
connected.

Two convergence phases. The state update rules ensure that in a finite time, a
final state is reached at which all nodes are either in state 0 or state e0 (state 0 is
initial majority). We distinguish two phases in the convergence to the final state,
which will be a key step for our analysis of the expected convergence time that relies
on separately analyzing the two phases. The two convergence phases are defined as
follows:

Phase 1 (depletion of state 1). This phase begins at the start of the execution of the
algorithm and lasts until none of the nodes is in state 1. Whenever a node
in state 0 and a node in state 1 get in contact, they switch to states e1 and
e0, respectively. It is therefore clear that the number of nodes holding the
minority state (state 1) decreases to 0 in a finite amount of time and from that
time onwards, the number of nodes in state 0 remains equal to the difference
of the (initial) number of nodes in state 0 and state 1.

Phase 2 (depletion of state e1). This phase follows the end of phase 1 and lasts until
none of the nodes is in state e1. In this phase, the number of nodes in state
e1 decreases following each contact between a node in state e1 and a node in
state 0. Since, in this phase, no interaction between a pair of nodes results
in increasing the number of nodes in state e1, there are eventually no nodes
in state e1.

The duration of each of the two phases is ensured to be finite for arbitrary finite
connected graphs by the definition of the state update rules where swapping of the
states enables that state 1 nodes get in contact with state 0 nodes and similarly,
enables that state e1 nodes get in contact with state 0 nodes.

Additional notation. We denote by Si(t) the set of nodes in state i ∈ {0, e0, e1, 1}
at time t. With a slight abuse of notation, in some cases we will use the compact
notation |Si| ≡ |Si(0)|, i = 0, 1, which should be clear from the context. We define
α ∈ (1/2, 1] as the fraction of nodes that initially hold state 0, assumed to be the
initial majority. Therefore, |S0| = αn and |S1| = (1− α)n.

4. Mean-field Approximation for Complete Graphs. In this section we
study the dynamics of the algorithm described in Section 3 in the context of the
homogeneous mixing assumption, i.e. for complete graph interactions. This is a special
case that is commonly considered in the literature. The analysis in this section will
already yield interesting results that will be later used for comparison with our main
result in Section 5, where we establish an upper bound on the expected convergence
time for arbitrary connected graphs.

In this case, we will establish that the expected convergence time is asymptotically
equal to the expected duration of the first phase, as the number of nodes n tends to
infinity. This follows from the analysis of the limit system that we present in the
following. The analysis yields the dynamics of the fraction of nodes in each of the
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states over time when the number of nodes grows large.
We consider the complete graph of n nodes, where the contact rate matrix is

given by qi,j = 1/(n − 1), for every i, j ∈ V and i 6= i. From the definition of the
node interaction process in Section 3, it is not difficult to note that the system state
evolves according to a continuous-time Markov process (X(t))t≥0,

X(t) = (|S0(t)|, |Se0(t)|, |Se1(t)|, |S1(t)|)

with the transition rates as follows

X→


(|S0| − 1, |Se0 |+ 1, |Se1 |+ 1, |S1| − 1) with rate |S0||S1|

n−1
(|S0|, |Se0 | − 1, |Se1 |+ 1, |S1|) with rate

|Se0 ||S1|
n−1

(|S0|, |Se0 |+ 1, |Se1 | − 1, |S1|) with rate
|S0||Se1 |
n−1 .

In the remainder of this section, we will consider the limit dynamics as the number
of nodes n grows large.

4.1. The Limit System. We consider the limit dynamics as the number of
nodes grows large, and to this end, consider the scaled system state x(n)(t), defined
for t ≥ 0 as follows

x(n)(t) =
(
s
(n)
0 (t), s(n)e0 (t), s(n)e1 (t), s

(n)
1 (t)

)
=

1

n
(|S0(t)|, |Se0(t)|, |Se1(t)|, |S1(t)|) .

Assume that the initial state is such that limn→∞ x(n)(0) = x(0), for some fixed
initial values x(0) = (s0(0), se0(0), se1(0), s1(0)) and let x(t) = (s0(t), se0(t), se1(t), s1(t))
be the solution of the following system of ordinary differential equations, for t ≥ 0,

d

dt
s0(t) = −s1(t)s0(t)(4.1)

d

dt
s1(t) = −s0(t)s1(t)(4.2)

d

dt
se1(t) = s1(t)(1− s1(t))− (s0(t) + s1(t))se1(t)(4.3)

with se0(t) = 1− s0(t)− se1(t)− s1(t), t ≥ 0.
From Kurtz’s convergence theorem [17, Chapter 5], we have that x(n)(t) converges

to x(t) uniformly over compact intervals, i.e. for every finite τ > 0,

lim
n→∞

sup
t∈[0,τ ]

||x(n)(t)− x(t)|| = 0, with probability 1.

The system of differential equations (4.1)-(4.3) admits a closed-form solution that
we present in the following proposition.

Proposition 4.1. The limit system dynamics, specified by (4.1)-(4.3), for α ∈
(1/2, 1], admits the following closed-form solution, for t ≥ 0,

s0(t) = s0(0)
2α− 1

s0(0)− s1(0)e−(2α−1)t
(4.4)

s1(t) = s1(0)
2α− 1

s0(0)− s1(0)e−(2α−1)t
e−(2α−1)t(4.5)

se1(t) = se1(0)

(
2α− 1

s0(0)− s1(0)e−(2α−1)t

)2

e−(2α−1)t(4.6)

+s1(0)
s0(0)(2α− 1)t− s1(0)2α(1− e−(2α−1)t)

(s0(0)− s1(0)e−(2α−1)t)2
e−(2α−1)t.
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Fig. 4.1. Depletion of state e1 and state 1 over time, for large complete graphs.

The proof is provided in Appendix B.

Numerical example. We present a numerical example that shows how the states e1
and 1 deplete over time for α = 0.55, i.e. the voting margin 2α − 1 = 0.1, according
to the limit system dynamics in Proposition 4.1. Figure 4.1 shows the fraction of
nodes in state 1 and state e1 versus time. This numerical example suggests that the
expected convergence time is of the same order as the expected time to deplete either
state 1 or state e1 node, which we will establish formally in the following theorem.

Let us define tn,α to be the smallest time t ≥ 0 such that se1(t) + s1(t) = 1/n.
Notice that tn,α may be interpreted as the time at which all but one node is in either
state 0 or state e0. Similarly, let us define txn,α as the smallest time t ≥ 0 at which
sx(t) is equal to 1/n, for x = 1 and e1.

Theorem 4.2. The limit dynamics (4.4)-(4.6) with the initial value (s0(0), s1(0)) =
(α, 1− α), for arbitrarily fixed α ∈ (1/2, 1], has the following properties:

1. The fractions of nodes in state 1 and state e1 satisfy, for large t,

s1(t) = (2α− 1)
1− α
α

e−(2α−1)t(1 + o(1))

se1(t) = (2α− 1)
1− α
α

te−(2α−1)t(1 + o(1)).

2. The fraction of nodes that are either in state 1 or e1 satisfies s1(t) + se1(t) =
se1(t)(1 + o(1)), for large t, and

tn,α =
1

2α− 1
log(n)(1 + o(1)).

3. The convergence times t1n,α and te1n,α satisfy

t1n,α =
1

2α− 1
log(n) +O(1)

te1n,α =
1

2α− 1
[log(n) + log(log(n))] +O(1).
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The proof is provided in Appendix A.
The theorem tells us that both state 1 and state e1 deplete in time that is loga-

rithmic in the network size n. Furthermore, we note that the extra time needed for
depletion of state e1, after the depletion of state 1, is small, of the order

te1n,α − t1n,α =
1

2α− 1
log(log(n)) +O(1).

This tells us that for the complete graph, the expected duration of convergence phase
2 is negligible in comparison with the expected duration of convergence phase 1. This
statement will be further supported with empirical results in Figure 6.1.

5. General Bound for the Expected Convergence Time. In this section we
present our main result that consists of an upper bound on the expected convergence
time for arbitrary connected graphs.

The bound is in terms of eigenvalues of a set of matrices QS that is defined using
the transition matrix Q as follows. Let S be a non-empty subset of the set of vertices
V of size smaller than n and let Sc = V \S. We consider the matrix QS = (qSi,j)i,j∈V
that is derived from the contact rate matrix Q as follows

qSi,j =

 −
∑
l∈V qi,l, i = j

qi,j , i ∈ Sc, j 6= i
0, i ∈ S, j 6= i.

(5.1)

We first establish that eigenvalues of the matrices QS , for S ⊂ V such that
0 < |S| < n, are strictly negative. This will be a key property that ensures finiteness
of our bound which we present later in this section.

Lemma 5.1. For every finite graph G, there exists δ(Q,α) > 0 such that for every
non-empty subset of vertices S, for which it holds |S| < n, if λ is an eigenvalue of the
the matrix QS, defined in (5.1), then it satisfies

λ ≤ −δ(Q,α) < 0.

We next present our main result that establishes an upper bound on the expected
convergence time that holds for arbitrary connected graphs. Before stating the result,
notice that at the end of phase 1 none of the nodes are in state 1, (2α−1)n nodes are
in state 0, and the remaining 2(1 − α)n nodes are in either state e0 or state e1. At
the end of phase 2, there are exactly (2α− 1)n nodes in state 0 and 2(1− α)n nodes
in state e0. The following theorem establishes a general bound for the expected dura-
tion of each convergence phases in terms of the number of nodes n and the parameter
δ(Q,α), which we introduced in Lemma 5.1.

Theorem 5.2. Let T1 be the smallest time at which all the nodes in state 1 are
depleted. Then,

IE(T1) ≤ 1

δ(Q,α)
(log n+ 1).

Furthermore, letting T2 be the time for all the nodes in state e1 to be depleted, starting
from an initial state with no nodes in state 1, we have

IE(T2) ≤ 1

δ(Q,α)
(log n+ 1).
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In particular, if T is the smallest time at which none of the nodes is in either state
e1 or state 1, then

IE(T ) ≤ 2

δ(Q,α)
(log n+ 1).

It is worth noting that the above theorem holds for every positive integer n and
not just asymptotically in n.

The proof of the theorem is presented in Section 5.1 and here we outline the main
ideas. The proof proceeds by first separately considering the two convergence phases.
For phase 1, we characterize the evolution over time of the probability that a node is in
state 1, for every node i ∈ V . This amounts to a “piecewise” linear dynamical system.
Similarly, for phase 2, we characterize the evolution over time of the probability that
a node is in state e1, for every given node i ∈ V , and show that this also amounts
to a “piecewise” linear dynamical system. The proof is then completed by using a
spectral bound on the expected number of nodes in state 1, for phase 1, and in state
e1, for phase 2, which is then used to establish the asserted results.

Tightness of the bounds. The bounds for individual convergence phases, asserted
in Theorem 5.2, are tight in the sense that there exist graphs for which the asymptot-
ically dominant terms of the expected convergence time and the corresponding bound
are either equal or equal up to a constant factor. These tightness results will follow
from the results in Section 6.

5.1. Proof of the Main Result.

5.1.1. Proof of Lemma 5.1. Let S be a non-empty subset of V of size xn,
x ∈ (0, 1). Note that every eigenvalue λ and the associated eigenvector ~x of the
matrix QS satisfy the following equations

λxi = −qixi, for i ∈ S
λxi = −qixi +

∑
l∈V qi,lxl, for i ∈ Sc(5.2)

where qi :=
∑
l∈V qi,l, for every i ∈ V .

On the one hand, it is clear from the form of the matrices QS , given by (5.1), that
for every i ∈ S, λ = −qi is an eigenvalue of QS . Since by assumption, the transition
matrix Q induces a connected graph G, we have that for every i ∈ V there exists a
j ∈ V such that qi,j > 0. Hence, it follows that λ < 0.

On the other hand, if λ 6= −qi for any i ∈ S, it is clear from (5.2) that xl = 0 for
every l ∈ S. In fact, since Q is symmetric, the remaining eigenvalues of QS are the
eigenvalues of the symmetric matrix MS = (mS

i,j)i,j∈Sc defined by

mS
i,j =

{
−
∑
l∈V qi,l, i = j ∈ Sc

qi,j , i, j ∈ Sc, j 6= i

Let λ be such an eigenvalue of QS and let ~x be the corresponding eigenvector and,
without loss of generality, assume that ||~x||22 =

∑
i∈V x

2
i =

∑
i∈Sc x

2
i = 1. Since Q is

symmetric, it is readily seen that

λ = −
∑

i∈Sc,j∈V
qi,jx

2
i +

∑
i,j∈Sc

qi,jxixj

= −
∑

i∈Sc,j∈S
qi,jx

2
i −

∑
i,j∈Sc

qi,jxi(xi − xj)
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= −
∑

i∈Sc,j∈S
qi,jx

2
i −

1

2

∑
i,j∈Sc

qi,j(xi − xj)2.(5.3)

Therefore, it is clear that λ ≤ 0 with λ = 0 only if∑
i∈Sc,j∈S

qi,jx
2
i +

1

2

∑
i,j∈Sc

qi,j(xi − xj)2 = 0.

Let W ⊂ Sc be such that xi 6= 0, for i ∈W , and xi = 0, for i ∈ Sc \W . Since ~x is an
eigenvector, then W is non empty. If λ = 0, then∑

i∈W,j∈S
qi,jx

2
i +

∑
i∈W,j∈Sc\W

qi,jx
2
i +

1

2

∑
i,j∈W

qi,j(xi − xj)2 = 0.

The above implies that there are no edges between S and W , and that there are no
edges between W and Sc\W , i.e. W is an isolated component, which is a contradiction
since Q corresponds to a connected graph. Therefore, λ < 0.

We showed that for every S ⊂ V such that 0 < |S| < n, QS has strictly negative
eigenvalues. For every finite n, there is a finite number of subsets S. Therefore, there
exists δ(Q,α) > 0 such that for every non-empty set S ⊂ V of size xn, x ∈ (0, 1),
every eigenvalue λ of the matrix QS satisfies λ ≥ −δ(Q,α) > 0, which proves the
lemma.

5.1.2. Proof of Theorem 5.2. We first separately consider the two convergence
phases and then complete with a step that applies to both phases.

Phase 1: Depletion of nodes in state 1. We describe the dynamics of the first
phase through the following indicators of node states. Let Zi(t) and Ai(t) be the
indicators that node i is in state 0 and 1 at time t, respectively. The indicator of
being in either state e0 or state e1 at time t is encoded by Ai(t) = Zi(t) = 0. The
system state evolves according to a continuous-time Markov process (Z(t), A(t))t≥0,
where A(t) = (Ai(t))i∈V and Z(t) = (Zi(t))i∈V , with the transition rates given as
follows

(Z,A)→

 (Z − ei, A− ej) with rate qi,jZiAj
(Z − ei + ej , A) with rate qi,jZi(1−Aj − Zj)
(Z,A− ei + ej) with rate qi,jAi(1−Aj − Zj)

where i, j ∈ V and ei is the n-dimensional vector whose elements are all equal to 0
but the i-th element that is equal to 1.

Since Q is a symmetric matrix, we have for every i ∈ V and t ≥ 0,

d

dt
IE(Ai(t)) = −

∑
j∈V

qi,jIE(Ai(t)Zj(t))−
∑
j∈V

qi,jIE (Ai(t)(1−Aj(t)− Zj(t)))

+
∑
j∈V

qi,jIE (Aj(t)(1−Ai(t)− Zi(t)))

or, equivalently,

d

dt
IE(Ai(t)) = −

(∑
l∈V

qi,l

)
IE(Ai(t)) +

∑
j∈V

qi,jIE (Aj(t)(1− Zi(t))) .
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Let us now consider the behavior of the set S0(t) of nodes in state 0, i.e. S0(t) =
{i ∈ V : Zi(t) = 1}. From the above dynamics, we see that there are intervals
[tk, tk+1) during which the set S0(t) does not change (the instants tk are stopping
times of the Markov chain describing the evolution of the algorithm). Let Sk ⊂ V be
the set of nodes in state 0, for t ∈ [tk, tk+1), and let Sck = V \ Sk, i.e. S0(t) = Sk and
V \ S0(t) = Sck, for t ∈ [tk, tk+1). We then can write, for t ∈ [tk, tk+1),

d

dt
IEk(Ai(t)) = −

(∑
l∈V

qi,l

)
IEk(Ai(t)) +

{ ∑
j∈V qi,jIEk (Aj(t)) , i ∈ Sck

0, i ∈ Sk
(5.4)

where IEk is the expectation conditional on the event {S0(t) = Sk}. In a matrix form,
this gives

d

dt
IEk(A(t)) = QSkIEk(A(t)), for tk ≤ t < tk+1,

where QSk is given by (5.1).
Solving the above differential equation, we have

IEk(A(t)) = eQSk (t−tk)IEk(A(tk)), for tk ≤ t < tk+1.

Using the strong Markov property [18], it is not difficult to see that

IE(A(t)) = IE
[
eλ(t)A(0)

]
, for t ≥ 0,

where

λ(t) = QSk(t− tk) +

k−1∑
l=0

QSl(tl+1 − tl), for tk ≤ t < tk+1.

Note that λ(t) is a random matrix that depends of the stopping times tk.
Phase 2: Depletion of nodes in state e1. To describe the dynamics in the second

phase, let Bi(t) be the indicator that a node i ∈ V is in state e1 at time t. The
notation Zi(t) has the same meaning as in phase 1, thus Zi(t) is the indicator that
node i ∈ V is in state 0 at time t. The indicator that a node i ∈ V is in state e0 at
time t is encoded by Bi(t) = Zi(t) = 0.

The dynamics in this phase reduces to a continuous-time Markov process (Z(t), B(t))t≥0,
where Z(t) = (Zi(t))i∈V and B(t) = (Bi(t))i∈V , with the transition rates given as
follows, for i, j ∈ V ,

(Z,B)→

 (Z − ei + ej , B − ej) with rate qi,jZiBj
(Z − ei + ej , B) with rate qi,jZi(1−Bj − Zj)
(Z,B − ei + ej) with rate qi,jBi(1−Bj − Zj).

From this, we have for every i ∈ V and t ≥ 0,

d

dt
IE(Bi(t)) = −

∑
i∈V

qi,jIE(Bi(t)Zj(t))−
∑
j∈V

qi,jIE (Bi(t)(1− Zj(t)−Bj(t)))

+
∑
j∈V

qi,jIE (Bj(t)(1− Zi(t)−Bi(t))) .
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Therefore, for every i ∈ V and t ≥ 0,

d

dt
IE(Bi(t)) = −

(∑
l∈V

qi,l

)
IE(Bi(t)) +

∑
j∈V

qi,jIE (Bj(t)(1− Zi(t))) .

Similar to the first phase, we see that there are intervals [t′k, t
′
k+1) during which

the set S0(t) does not change (the instants t′k are stopping times). Let S′k be such
that S0(t) = S′k, for t ∈ [t′k, t

′
k+1). Similarly to the first phase, we have

IE(B(t)) = IE
[
eλ
′(t)B(t′0)

]
, for t ≥ 0,

where λ′(t) is a random matrix given by

λ′(t) = QS′
k
(t− t′k) +

k−1∑
l=0

QS′
l
(t′l+1 − t′l), for t′k ≤ t < t′k+1.

Note that t′0 = T1 is the instant at which phase 2 starts (phase 1 ends).

Duration of a phase. In both phases, the process of interest is of the form

IE(Y (t)) = IE
[
eλ(t)Y (0)

]
, for t ≥ 0,

where for a (random) positive integer m > 0 and a sequence 0 = t0 ≤ t1 ≤ · · · ≤ tm,
we have

λ(t) = QSk(t− tk) +

k−1∑
l=0

QSl(tl+1 − tl), for tk ≤ t < tk+1, k = 0, 1, . . . ,m− 1.

For phase 1, Y (t) ≡ A(t) while for phase 2, Y (t) ≡ B(t). For every t ≥ 0, we have

||IE(Y (t))||2 ≤ IE
[∣∣∣∣∣∣eλ(t)Y (0)

∣∣∣∣∣∣
2

]
≤ IE

[∣∣∣∣∣∣eλ(t)∣∣∣∣∣∣ ||Y (0)||2
]

≤ IE

[
||eQSk (t−tk)||

k−1∏
l=0

||eQSl (tl+1−tl)|| ||Y (0)||2

]
≤ e−δ(Q,α)tIE (||Y (0)||2) ≤

√
n e−δ(Q,α)t

where || · || denotes the matrix norm associated to the Euclidean norm || · ||2. In the
above, we used Jensen’s inequality in the first inequality, followed by the property of
matrix norms for the second and third inequalities, then Lemma 5.1 and finally the
fact that Y is a n-dimensional vector with elements taking values in {0, 1}.

Furthermore, combining with Cauchy-Schwartz’s inequality, we have∑
i∈V

IE(Yi(t)) ≤ ||IE(Y (t))||2 ||1||2 ≤ n e−δ(Q,α)t, for every t ≥ 0.

Therefore, we have

IP(Y (t) 6= 0) ≤
∑
i∈V

IE(Yi(t)) ≤ n e−δ(Q,α)t, for every t ≥ 0.
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Let T0 be the time at which Y (t) hits 0 = (0, . . . , 0)T , which corresponds to T1
for the process A(t) and T2 for the process B(t). Then, we have

IE(T0) =

∫ ∞
0

IP(T0 > t)dt =

∫ ∞
0

IP(Y (t) 6= 0)dt

≤ log(n)

δ(Q,α)
+ n

∫ ∞
log(n)
δ(Q,α)

e−δ(Q,α)tdt

=
log(n) + 1

δ(Q,α)

which completes the proof of the theorem.

6. Application to Particular Graphs. In this section we instantiate the
bound of Theorem 5.2 for particular networks including complete graphs, paths, cy-
cles, star-shaped networks and Erdös-Rényi random graphs. For all these cases, we
compare with alternative computations and find that our bound is of exactly the same
order as the expected convergence time with respect to the number of nodes. For the
complete graph, we also examine the expected convergence time as the voting margin
goes to zero.

6.1. Complete Graphs. We consider the complete graph of n > 1 nodes where
each edge e ∈ E is activated at instances of a Poisson process with rate 1/(n− 1), i.e.
we have qi,j = 1/(n− 1) for all i, j ∈ V such that i 6= j.

Lemma 6.1. For the complete graph of n > 1 nodes and every fixed α ∈ (1/2, 1],
we have

δ(Q,α) = (2α− 1)
n

n− 1
.

Proof. For the complete graph, the matrix QS is as follows

qSi,j =


−1, i = j
1

n−1 , i ∈ Sc, j 6= i

0, i ∈ S, j 6= i.

It is not difficult to see that the vector ~x such that xi = 0 for i ∈ S and xi = 1 for
i ∈ Sc is an eigenvector of matrix QS with the eigenvalue − |S|n−1 . Since in each of the
two convergence phases, the matrices QSk are such that |Sk| ≥ (2α − 1)n, we have
|Sk|
n−1 ≥ (2α− 1) n

n−1 ≥ (2α− 1), which establishes the assertion.

Combining the last lemma with Theorem 5.2, we have the following corollary.

Corollary 6.2. For the complete graph of n > 1 nodes, the expected duration
of phase i = 1 and 2 satisfies

IE(Ti) ≤
1

2α− 1
(log(n) + 1).

In the following, we will show that the latter bound is asymptotically tight, for
large number of nodes n, for convergence phase 1.
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Comparison with an alternative analysis. For complete graphs, the convergence
time can be studied by an analysis of the underlying stochastic system that we describe
in the following.

We first consider the convergence phase 1. Let 0 = τ0 ≤ τ1 ≤ · · · ≤ τ|S1| denote
the time instances at which a node in state 0 and a node in state 1 get in contact.
Recall that |S0| and |S1| denote the initial number of nodes in state 0 and state 1,
respectively. It is readily observed that |S0(t)| = |S0| − i and |S1(t)| = |S1| − i, for
τi ≤ t < τi+1 and 1 ≤ i < |S1|.

It is not difficult to observe that τi+1 − τi, i = 0, 1, . . . , |S1| − 1, is a sequence of
independent random variables such that for each 0 ≤ i < |S1|, τi+1− τi is a minimum
of a sequence of (|S0|−i)(|S1|−i) i.i.d. random variables with exponential distribution
with mean n − 1. Therefore, the distribution of τi+1 − τi is exponential with mean
1/µi, for 0 ≤ i < |S1|, where µi = (|S0| − i)(|S1| − i)/(n− 1). In particular, we have

IE(T1) =
∑|S1|−1
i=0 µ−1i , i.e.

IE(T1) = (n− 1)

|S1|−1∑
i=0

1

(|S0| − i)(|S1| − 1)
.(6.1)

The above considerations result in the following proposition.

Proposition 6.3. For every complete graph with n > 1 nodes and initial state
such that |S0| > |S1| > 0, the duration of the first convergence phase is a random
variable T1 with the following expected value

IE(T1) =
n− 1

|S0| − |S1|
(
H|S1| +H|S0|−|S1| −H|S0|

)
(6.2)

where Hk =
∑k
i=1

1
i . Furthermore, for every fixed α ∈ (1/2, 1], we have

IE(T1) =
1

2α− 1
log(n) +O(1).

From the result of the proposition, we observe that the expected duration of the
first phase is log(n)/δ(Q,α), asymptotically for large n, where δ(Q,α) is given in
Lemma 6.1, thus matching the upper bound of Theorem 5.2.

For the prevailing case of a complete graph, we can characterize the expected
convergence time of the first phase as α approaches 1/2, i.e. as the voting margin
2α− 1 approaches 0 from above. We first consider the limit case where initially there
is an equal number of nodes in state 0 and state 1, i.e. |S0| = |S1|. From (6.1), it is
straightforward to note

IE(T1) =
π2

6
n(1 + o(1)).

Therefore, we observe that in case of an initial draw, i.e. equal number of state 0
and state 1 nodes, the expected duration of the first phase scales linearly with the
network size n. Note that in this case, the second phase starts with nodes in state e0
and state e1 and obviously no majority can follow.

We now discuss the case where |S0| − |S1| is strictly positive but small. To this
end, let µn denote the voting margin, i.e. µn = (|S0| − |S1|)/n. From (6.2), is easy to
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Fig. 6.1. Complete graph: the expected duration of convergence phases vs. the number of nodes
n. The initial majority state is held by dαne nodes, where α = 3/4. The solid line is the asymptote
log(n)/(2α− 1) while the bars are simulation results with 95% confidence intervals.

observe that

IE(T1) =
1

µn
log(nµn) +O(1).

Therefore, we note that for the voting margin µn = O(1/n), IE(T1) = Θ(n) while for
µn > 0 a fixed constant, we have IE(T1) = Θ(log(n)). For the intermediate values of
the voting margin, say for µn = 1/na, for 0 < a < 1, we have IE(T1) = 1−a

2 na log(n).
We conclude the consideration of the convergence of phase 1 by showing that T1

concentrates around log(n)/(2α − 1) as n grows large, in the following result whose
proof is provided in Appendix C.

Proposition 6.4. For the duration of phase 1 given by T1, we have that for
every ε > 0, we can find β ∈ (0, ε) such that

T1 ≤ (1 + ε)
1

2α− 1
log(n)

with probability at least 1− 1/nβ, for large enough n.
Furthermore, for every ε > 0,

T1 ≥ (1− ε) 1

2α− 1
log(n)

with probability at least 1− 1/n, i.e. with high probability.

We now turn our attention to the convergence of phase 2. At time T1, there are
|S0|−|S1| nodes in state 0 and the remaining n−(|S0|−|S1|) nodes are either in state
e0 or state e1. It is easy to observe that the expected duration of phase 2 is largest
for an initial value for phase 2 in which none of the nodes is in state e1, i.e. we have
|S0| − |S1| nodes in state 0 and the remaining n− (|S0| − |S1|) nodes in state e1. We
denote with τ ′0 ≤ τ ′1 ≤ · · · ≤ τ ′n−(|S0|−|S1|) the time instances at which a node in state
0 and a node in state e1 get in contact resulting in the decrease of the number of nodes
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in state e1. Notice that τ ′0 = T1 and that τ ′n−(|S0|−|S1|) − τ
′
0 = T2. Similarly as for

phase 1, we have that τ ′1− τ ′0, τ ′2− τ ′1, . . . , τ ′n−(|S0|−|S1|)− τ
′
n−(|S0|−|S1|)−1 is a sequence

of independent random variables where the distribution of τ ′i+1 − τ ′i is exponential
with parameter µ′i = (|S0| − |S1|)(n− |S0|+ |S1| − i)/(n− 1). Therefore,

IE(T2) ≤ 1

2α− 1
log(n) +O(1)

which establishes a matching bound to that in Theorem 5.2.
Finally, using similar steps as in the proof of Proposition 6.4, we can show the

following.

Proposition 6.5. For the duration of convergence phase 2, T2, we have that for
every ε > 0, we can fix β ∈ (0, ε) such that

T2 ≤ (1 + ε)
1

2α− 1
log(n)

with probability at least 1− 1/nβ, for large enough n.

Finally, we compare the bound log(n)/(2α − 1) with simulation results, in Fig-
ure 6.1. We observe that the bound is tight for phase 1 and not tight for phase 2, due
to our choice of the initial condition in phase 2 . Note also that Figure 6.1 indicates
that the expected duration of convergence phase 2 scales as Θ (log(log n)), which is
consistent with the result in Theorem 4.2.

6.2. Paths. We consider a path of n > 1 nodes where each edge is activated at
instances of a Poisson process of rate 1. Therefore, the contact rate matrix Q is given
by qi,i+1 = 1, for i = 1, . . . , n−1, qi−1,i = 1, for i = 2, 3, . . . , n, and all other elements
equal to 0.

Lemma 6.6. For a path of n > 1 nodes, we have, for α ∈ (1/2, 1],

δ(Q,α) = 2

(
1− cos

(
π

4(1− α)n+ 1

))
=

π2

16(1− α)2n2
(1 + o(1)).

The proof is provided in Appendix D.1.The previous lemma, together with The-
orem 5.2, yields the following result.

Corollary 6.7. For a path of n > 1 nodes and α ∈ (1/2, 1), we have for phase
i = 1 and 2,

IE(Ti) ≤
16(1− α)2

π2
n2 log(n) +O(1).

Finally, we compare the asymptotic bound with simulation results in Figure 6.2.
The results indicate that the bound is rather tight for phase 1 and is not tight for
phase 2.
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Fig. 6.2. Path: the expected duration of convergence phases vs. the number of nodes n, for
α = 3/4. The solid line is the asymptote in Corollary 6.7 while the bars are simulation results with
95% confidence intervals.

6.3. Cycles. We consider a cycle of n > 1 nodes where each edge is activated
at instances of a Poisson process with rate 1. Therefore, the contact rate matrix Q is
given by qi,i+1 = 1, for i = 1, . . . , n− 1, q1,n = qn,1 = 1, and all other elements equal
to 0.

Lemma 6.8. For a cycle network of n > 1 nodes, we have, for α ∈ (1/2, 1],

δ(Q,α) = 2

(
1− cos

(
π

2(1− α)n+ 1

))
=

π2

4(1− α)2n2
(1 + o(1)).

The proof is provided in Appendix D.2.

Corollary 6.9. For the cycle with α ∈ (1/2, 1), we have for phase i = 1 and 2,

IE(Ti) ≤
4(1− α)2

π2
n2 log(n) +O(1).

Finally, we compare the last bound with simulation results in Figure 6.3. Similar
as in other cases, we observe that the bound has the same scaling with the number of
nodes as the expected duration of convergence phase 1, and is not tight for convergence
phase 2.

6.4. Star-Shaped Networks. We consider a star-shaped network that consists
of a hub node and n − 1 leaf nodes. Without loss of generality, let the hub node be
node 1 and let i = 2, 3, . . . , n be the leaf nodes. The contacts between a leaf node
and the hub are assumed to occur at instances of a Poisson process of rate 1/(n− 1).
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Fig. 6.3. Cycle: the expected durations of convergence phases vs. the number of the nodes n.
The initial state is such that state 0 is held by a set of dαne consecutive nodes along the cycle with
α = 3/4.

This setting is motivated in practice by networks where a designated node assumes
the role of an information aggregator to which other nodes are connected and this
aggregator node has access capacity of rate 1. The elements of matrix Q are given by
q1,i = qi,1 = 1/(n− 1), for i = 2, 3, . . . , n and other elements equal to 0.

We have the following lemma for the star-shaped network that we defined above.

Lemma 6.10. For the star network of n > 1 nodes, we have

δ(Q,α) =
n

2(n− 1)

(
1−

√
1− 4(2α− 1)

n

)

≥ 2α− 1

n

where the inequality is tight for large n.

The proof is provided in Appendix D.3. The previous lemma yields the following
corollary.

Corollary 6.11. For the star network with n > 1 nodes and every fixed α ∈
(1/2, 1], the expected duration of phase i = 1 and 2 satisfies

IE(Ti) ≤
1

2α− 1
n(log(n) + 1).

Comparison with an alternative analysis for phase 1. For the star-shaped network
of n nodes, we can compute the exact asymptotically dominant term of the expected
duration of phase 1, for large n, which is presented in the following proposition.

Proposition 6.12. For the star-shaped network of n nodes, the expected time to
deplete nodes in state 1 satisfies

IE(T1) =
1

(2α− 1)(3− 2α)
n log(n) +O(n).(6.3)
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Fig. 6.4. Star-shaped network: expected duration of convergence phases versus the voting mar-
gin 2α − 1, for n = 1000. The solid curves indicate log(n)/(2α − 1); the dashed line indicates
log(n)/[(2α− 1)(3− 2α)]; the bars indicate 95%-confidence intervals of estimates obtained by simu-
lations.

The proof is provided in Appendix E.

Notice that the dominant term in Proposition 6.12 is smaller than the upper
bound in Corollary 6.11 for the factor 1/(3− 2α).

Remark. We only consider the expected convergence time for phase 1. Similar
analysis could be pursued for phase 2 but is more complicated, because the lumping
of the states as done in the proof for phase 1 cannot be made.

Finally, we compare our bound with simulation results in Figure 6.4. The results
indicate that the bound of Corollary 6.11 is not tight. We also observe that the
asymptote in Proposition 6.12 conforms well with simulation results.

6.5. Erdös-Rényi Random Graphs. We consider random graphs for which
the matrix of contact rates Q is defined as follows. Given a parameter pn ∈ (0, 1) that
corresponds to the probability that a pair of nodes interact with a strictly positive
rate, we define the contact rate of a pair of nodes i, j ∈ V , i 6= j, as follows

qi,j =
1

npn
Xi,j

where Xi,j is a sequence of i.i.d. random variables such that IP(Xi,j = 1) = 1 −
IP(Xi,j = 0) = pn, for every i, j ∈ V , j 6= i. The rates are normalized with the
factor 1/(npn), so that for each node, the interaction rate with other nodes is 1,
asymptotically for large n.

Furthermore, we assume that pn is chosen such that, for a constant c > 1,

pn = c
log(n)

n

which ensures that the induced random graph is connected with high probability.

We have the following lemma.
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Fig. 6.5. Erdös-Rényi random graphs: the expected duration of convergence phases vs. the
voting margin 2α−1, for n = 1000 and c = 100. The solid curves indicate the bound of Corollary 6.5;
the dashed lines indicate log(n)/(2α− 1); the bars indicate 95%-confidence estimates.

Lemma 6.13. Suppose c > 2
2α−1 and α ∈ (1/2, 1]. We then have

1

δ(Q,α)
≤ 1

(2α− 1)ϕ−1
(

2
c(2α−1)

) + o(1), with high probability,(6.4)

where ϕ−1(·) is the inverse function of ϕ(x) := x log(x) + 1− x, for x ∈ [0, 1].

The proof is provided in Appendix D.4.

From the last lemma and Theorem 5.2, we have the following corollary.

Corollary 6.14. Under c > 2
2α−1 and α ∈ (1/2, 1], we have for the duration of

phase i = 1 and 2,

Ti ≤
1

(2α− 1)ϕ−1
(

2
c(2α−1)

) log(n) +O(1)(6.5)

with high probability.

Remark. We note the following intuitive observation: the asserted bound for the
expected convergence time for each of the phases boils down to that of the complete
graph, for large expected degree of a node, i.e. large c. Indeed, this holds because for
every fixed α ∈ (1/2, 1], the term ϕ−1( 2

c(2α−1) ) goes to 1 as c grows large.

Finally, we compare the bound of Corollary 6.14 with estimates obtained by
simulations in Fig. 6.5. The results confirm that the bound is indeed a bound and
that it is not tight, which is because of a bounding technique that we used in the
proof.
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7. Conclusion. We established an upper bound on the expected convergence
time of the binary interval consensus that applies to arbitrary connected graphs. We
showed that for a range of particular graphs, the bound is of exactly the same or-
der as the expected convergence time with respect to the network size. The bound
provides insights into how the network topology and the voting margin affect the
expected convergence time. In particular, we showed that there exist network graphs
for which the expected convergence time becomes much larger when the voting mar-
gin approaches zero. The established bound provides a unifying approach to bound
the expected convergence time of binary interval consensus on arbitrary finite and
connected graphs.

An important direction of future work is to consider lower bounds on the con-
vergence time. In particular, it would be of interest to better understand how to fine
tune the interaction parameters qij to achieve the best possible convergence time for
a given connected graph under given memory and communication constraints.
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Appendix A. Proof of Theorem 4.2. We prove separately each item of the
theorem as follows:

Item 1. The large time asymptotes follow readily from (4.5) and (4.6) under the
assumed initial state.

Item 2. By definition, s1(tn,α)+se1(tn,α) = 1/n and from item 1, s1(t)+se1(t) =
(2α − 1) 1−α

α te−(2α−1)t(1 + o(1)). Combining the latter two equations, the asserted
asymptote follows.

Item 3. . First, the asymptote for t1n,α follows from s1(t1n,α) = 1/n and s1(t) =

(2α−1) 1−α
α e−(2α−1)t(1+o(1)) (item 1). Second, the asymptote for te1n,α is established

as follows. By definition, se1(te1n,α) = 1/n and se1(t) = (2α−1) 1−α
α te−(2α−1)t(1+o(1)),

we have

(2α− 1)te1n,α − log(te1n,α) = log(n) +O(1).(A.1)

Let xn be such that te1n,α = 1
2α−1 (log(n) + xn). Then, from (A.1),

xn − log

(
1 +

xn
log(n)

)
= log(log(n)) +O(1).

From this, it is readily seen that xn = log(log(n)) +O(1), which completes the proof.

Appendix B. Proof of Proposition 4.1. For brevity, we will denote the voting
margin by γ, i.e. γ = 2α − 1. From (4.1)-(4.2), notice that s0(t) and s1(t) evolve
autonomously of se0(t) and se1(t), for every t ≥ 0. Furthermore,

d

dt
(s0(t)− s1(t)) = 0, for every t ≥ 0.

Therefore, s0(t) − s1(t) = s0(0) − s1(0) = γ, for every t ≥ 0. Combining with (4.1),
we obtain

d

dt
s0(t) = (γ − s0(t))s0(t), t ≥ 0.

This yields (4.4) and (4.5). Note that (4.3) is a linear differential equation with time
inhomogeneous parameters given as follows

d

dt
se1(t) + a(t)se1(t) = b(t)(B.1)

where a(t) = s0(t) + s1(t) and b(t) = s1(t)(1− s1(t)), for t ≥ 0.
From (4.4) and (4.5), we have

a(t) = γ
s0(0) + s1(0)e−γt

s0(0)− s1(0)e−γt
and b(t) = s0(0)γ

s0(0)− s1(0)(1 + γ)e−γt

(s0(0)− s1(0)e−γt)2
e−γt.

Now, it is well known that the solution to the linear differential equation (B.1) is

se1(t) = se1(0)e
−
∫ t
0
a(s)ds

+

∫ t

0

b(s)e
−
∫ t
s
a(x)dx

ds.(B.2)
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Following some elementary integrations, we have

exp

(
−
∫ t

0

a(s)ds

)
=

(
γ

s0(0)− s1(0)e−γt

)2

e−γt.(B.3)

Using the latter identity,∫ t

0

b(s)e
−
∫ t
s
a(x)dx

ds =
e−γt

(s0(0)− s1(0)e−γt)2
φ(t)(B.4)

where

φ(t) =

∫ t

0

b(s)(s0(0)− s1(0)(1 + γ)e−γs)2eγsds

= s1(0)[s0(0)γt− s1(0)(1 + γ)(1− e−γt)].

Combined with (B.4), (B.3), and (B.2), we obtain (4.6), which completes the proof.

Appendix C. Proof of Proposition 6.4. We first note that

T1 =

|S1|−1∑
i=0

σi

where σ0, σ1, . . . , σ|S1|−1 is a sequence of independent random variables and the dis-
tribution of σi is exponential with parameter µi given as follows

µi =
(|S0| − i)(|S1| − i)

n− 1
, i = 0, 1, . . . , |S1| − 1.

We will use the inequality stated in the following lemma. Recall that |S0| = αn and
|S1| = (1− α)n for α ∈ (1/2, 1].

Lemma C.1. For every real value s such that −(2α − 1)2n < s < 2α − 1 and
s/(2α− 1) a non-positive integer, we have

IE(esT1) ≤ Kα(s)n
s

2α−1 (1 + o(1))

where

Kα(s) = Γ

(
1− s

2α− 1

)(
1− α
α

(2α− 1)

) s
2α−1

.

Proof. Since τ0, τ1, . . . , τ|S1|−1 is a sequence of independent random variables and
τi is an exponential random variable with parameter µi, we have, IE(esτi) = µi

µi−s , for
every s < µi. Therefore, it is readily observed that

IE(esT1) =

|S1|−1∏
i=0

(
1− s(n− 1)

(|S0| − i)(|S1| − i)

)−1
, for every s < 2α− 1.(C.1)

Now, we have for every i = 0, 1, . . . , |S1| − 1,(
1− s(n− 1)

(|S0| − i)(|S1| − i)

)−1
≤
(

1− sn

(|S0| − i)(|S1| − i)

)−1
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=

(
1− sn/(|S0| − |S1|)

|S1| − i
+
sn/(|S0| − |S1|)
|S0| − i

)−1
≤
(

1− sn/(|S0| − |S1|)
|S1| − i

)−1(
1 +

sn/(|S0| − |S1|)
|S0| − i

)−1
=

(
1− s/(2α− 1)

(1− α)n− i

)−1(
1 +

s/(2α− 1)

αn− i

)−1
where the-right side is finite and positive under the assumption of the lemma −(2α−
1)2n < s < 2α− 1. Plugging the last above inequality in (C.1), we establish

IE(esT1) ≤
(1−α)n∏
i=1

(
1− s/(2α− 1)

i

)−1 αn∏
i=(2α−1)n+1

(
1 +

s/(2α− 1)

i

)−1
.(C.2)

Now, use Euler’s formula Γ(1 + z) = zΓ(z) = limn→∞ nz
∏n
i=1

(
1 + z

i

)−1
, for z

a real number except for negative integers. Then, we note that for all real values s
except for s/(2α− 1) a positive negative integer

(1−α)n∏
i=1

(
1− s/(2α− 1)

i

)−1
= Γ

(
1− s

2α− 1

)
[(1− α)n]

s
2α−1 (1 + o(1))(C.3)

and for all real values s except for s/(2α− 1) a negative integer, we have

αn∏
i=(2α−1)n+1

(
1 +

s/(2α− 1)

i

)−1
=

∏αn
i=1

(
1 + s/(2α−1)

i

)−1
∏(2α−1)n
i=1

(
1 + s/(2α−1)

i

)−1
=

[αn]−
s

2α−1 Γ
(

1 + s
2α−1

)
(1 + o(1))

[(2α− 1)n]−
s

2α−1 Γ
(

1 + s
2α−1

)
(1 + o(1))

=

(
2α− 1

α

) s
2α−1

(1 + o(1)).(C.4)

Combing (C.2) with (C.3) and (C.4), the assertion of the lemma follows.
In remainder of the proof, we separately consider the upper and lower bounds

asserted in the theorem.

Lower bound. By Chernoff’s bound, we have for every θ > 0

IP

(
T1 < (1− ε) 1

2α− 1
log(n)

)
≤ n

(1−ε)θ
2α−1 IE(e−θT1).

Combining with Lemma C.1, for every 0 < θ < (2α − 1)2n and θ/(2α − 1) not a
positive integer,

IP

(
T1 < (1− ε) 1

2α− 1
log(n)

)
≤ Kα(−θ)n−

εθ
2α−1 (1 + o(1)).

Therefore, taking θ ≥ (2α − 1)/ε, we have IP
(
T1 > (1 + ε) 1

2α−1 log(n)
)
≤ 1/n, for

large enough n, which completes the proof for the lower bound.
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Upper bound. Again, by Chernoff’s bound, for every θ > 0,

IP

(
T1 > (1 + ε)

1

2α− 1
log(n)

)
≤ n−

(1+ε)θ
2α−1 IE(eθT1).

Combining with Lemma C.1, we observe that for every 0 < θ < 2α−1 and θ/(2α−1)
not a positive integer,

IP

(
T1 > (1 + ε)

1

2α− 1
log(n)

)
≤ Kα(θ)n−

εθ
2α−1 (1 + o(1)).

Therefore, provided that c < ε, IP
(
T1 > (1 + ε) 1

2α−1 log(n)
)
≤ 1/nc, for large enough

n. This completes the proof.

Appendix D. Characterization of δ for Particular Graphs.

D.1. Proof of Lemma 6.6 (Path). Recall that the matrix Q is the tridiagonal
matrix with qi,i+1 = 1, for i = 1, 2, . . . , n − 1, qi,i−1 = 1, for i = 2, 3, . . . , n, and all
other elements equal to 0.

We will separately consider four cases depending on whether the respective end-
node 1 and n is in S or Sc. In the following, we denote with ξA(λ), the characteristic
polynomial of a matrix A.

Case 1 : 1 ∈ S and n ∈ Sc. In this case, we repeatedly expand the matrix λI − QS
along the rows i ∈ S, using Laplace’s formula, to obtain

ξQS (λ) = (λ+ 1)(λ+ 2)|S|−1ξB(λ)(D.1)

where the matrix B is a block-diagonal matrix with blocks B1, B2, . . . , Bb, for
1 < b ≤ |S| that are symmetric tridiagonal matrices of the form

−2 + c1 1 0 0 · · · 0 0
1 −2 1 0 · · · 0 0
0 1 −2 1 · · · 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 1 −2 + c2

(D.2)

where c1 = c2 = 0, for i = 1, 2, . . . , b − 1 (type 1), and c1 = 0 and c2 = 1, for i = b
(type 2).

Since B is a block-diagonal matrix, notice that ξB(λ) =
∏b
i=1 ξBi(λ). Hence,

together with (D.1), we have that QS the largest eigenvalue of a block that is either
of type 1 or type 2.

The eigenvalues of tridiagonal matrices of the form (D.2) are well known for some
values of the parameters c1 and c2, see e.g. [19]. In particular, for a m×m tridiagonal
matrix of type 1, i.e. for c1 = c2 = 0, we have eigenvalues

λk = −2

(
1− cos

(
πk

m+ 1

))
, k = 1, 2, . . . ,m.(D.3)

For a m × m tridiagonal matrix of type 2, i.e. for c1 = 0 and c2 = 1, we have
eigenvalues

κk = −2

(
1− cos

(
(2k − 1)π

2m+ 1

))
, k = 1, 2, . . . ,m.
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It is readily checked that the largest eigenvalue is κ1 with m = |Sc|. This corre-
sponds to the case where the nodes in the set S are 1, 2, . . . , |S| (i.e. form a cluster).

Case 2 : 1 ∈ Sc and n ∈ S. In this case, we have that (D.1) holds but the blocks of
matrix B redefined so that c1 = 1 and c2 = 0, for B1, and c1 = c2 = 0, for B2, B3,
. . ., and Bb. It is readily observed that the eigenvalues of the block matrix B1 are
the same as for c1 = 0 and c2 = 1 (type 1 tridiagonal matrix in Case 1). Hence, the
largest eigenvalue is same as under Case 1. Notice that in this case, it corresponds to
taking nodes n− |S|+ 1, n− |S|+ 2, . . ., and n to be in the set S.

Case 3 : 1 ∈ Sc and n ∈ Sc. In this case, by the same arguments as in Case 1, we
have

ξQS (λ) = (λ+ 2)|S|ξB(λ)

where B is a block-diagonal matrix with blocks B1, B2, . . . , Bb, 1 < b ≤ |Sc|, which
are of the form (D.2) such that c1 = 1 and c2 = 0 for B1, c1 = c2 = 0, for B2, B3, . . .,
and Bb, and c1 = 0 and c2 = 1, for Bb. In this case, the largest eigenvalue is κ1 with
m = |Sc| − 1.

Case 4 : 1 ∈ S and n ∈ S. In this case, we have

ξQS (λ) = (λ+ 1)2(λ+ 2)|S|−2ξB(λ)

where B is a block-diagonal matrix with blocks B1, B2, . . . , Bb, 1 < b ≤ |Sc| that are
all of the form (D.2) with c1 = c2 = 0. In this case, the largest eigenvalue is λ1 with
m = |Sc|.

Finally, we observe that for each of the four cases, since |Sc| ≤ 2(1−α)n, we can
take δ(Q,α) as asserted in the lemma, which completes the proof.

D.2. Proof of Lemma 6.8 (Cycle). The proof is similar to that for a path
in Section D.1. We will see that for the cycle, we will deal with blocks of tridiagonal
matrices of the form (D.2) with c1 = c2 = 0. Recall that for the cycle, we have
matrix Q such that qi,i+1 = 1, for i = 1, 2, . . . , n − 1, qi−1,i = 1, for i = 2, 3, . . . , n,
q1,n = qn,1 = 1, and all other elements equal to 0.

Again, we separately consider the following four cases.

Case 1 : 1 ∈ S and n ∈ Sc. By successive expansion along rows i ∈ S, we obtain

ξQS (λ) = (λ+ 2)|S|ξB(λ)(D.4)

where B is a block-diagonal matrix with blocks of the form (D.2) with c1 = c2 = 0 (re-

ferred to as type 1). Since B is a block-diagonal matrix, we have ξB(λ) =
∏b
i=1 ξBi(λ),

1 < b ≤ |Sc|, where Bi is a matrix of type 1. The largest eigenvalue is λ1, given in
(D.3), for m = |Sc|.

Case 2 : 1 ∈ Sc and n ∈ S. In this case, the same arguments hold as in Case 1.

Case 3 : 1 ∈ Sc and n ∈ Sc. In this case, (D.4) holds, with matrix B with diagonal
blocks and other elements as in Case 1, except that b1,|Sc| = b|Sc|,1 = 1. This matrix
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can be transformed into a block-diagonal matrix of the same form as in Case 1 by
permuting the rows of the matrix, hence, it has the same spectral properties as the
matrix B under Case 1. Specifically, this can be done by moving the block of rows
that correspond to B1 to the bottom of the matrix B.

Case 4 : 1 ∈ S and n ∈ S. In this case, the same arguments apply as in Case 1.

Finally, we observe that for each of the four cases, since |Sc| ≤ 2(1− α), we can
take δ(Q,α) as asserted in the lemma, which completes the proof.

D.3. Proof of Lemma 6.10 (Star). We separately consider the two cases for
which either the hub is in the set S or not.

Case 1. Suppose that the hub is in the set S, i.e. 1 ∈ S. It is easy to observe that
in this case, the matrix QS is a triangular matrix with all upper diagonal elements
equal to 0, and the diagonal elements equal to (−1,− 1

n−1 , . . . ,−
1

n−1 ). Hence, the

largest eigenvalue is − 1
n−1 .

Case 2. Suppose now that the hub is not in the set S, i.e. 1 ∈ Sc. If λ is an
eigenvalue of QS with an eigenvector ~x, then we have

λx1 = −x1 +
1

n− 1

∑
i∈Sc\{1}

xi

λxi = − xi
n− 1

+
x1
n− 1

, for i ∈ Sc \ {1}

λxi = − 1

n− 1
xi, for i ∈ S.

This implies

λx1 = −x1 +
1

n− 1

∑
i∈Sc\{1}

xi

x1 = ((n− 1)λ+ 1)xi, for i ∈ Sc \ {1}

λxi = − 1

n− 1
xi, for i ∈ S.

Suppose that ~x is such that xi = 0, for every i ∈ S. From the last above identities, it
readily follows that λ is a solution of the quadratic equation

λ2 +
n

n− 1
λ+

1

n− 1

(
1− |S

c| − 1

n− 1

)
= 0.

It is straightforward to show that the two solutions are

λ1 = −1

2

n

n− 1

(
1−

√
1− 4|S|

n2

)
and λ2 = −1

2

n

n− 1

(
1 +

√
1− 4|S|

n2

)
.

Clearly, the largest eigenvalue is λ1 and since |S| ≥ (2α − 1)n, it is maximized for
|S| = (2α− 1)n.
Finally, we note that the largest eigenvalue is attained in Case 2, which establishes
the first equality in the lemma, from which the asserted inequality and its tightness
readily follow.
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D.4. Proof of Lemma 6.13 (Erdös-Rényi). From (5.3), note that for every
S ⊂ V such that 0 < |S| < n, if λ is an eigenvalue of matrix QS , then

λ ≤ −min
i∈Sc

∑
j∈S

qi,j

 .

In the following, we would like to find a value xn > 0 such that mini∈Sc
{∑

j∈S qi,j

}
>

xn holds with high probability. To this end, we consider the probability that the latter
event does not hold, i.e., for xn > 0, we consider

pe := IP

min
i∈Sc

∑
j∈S

qi,j

 ≤ xn
 .

We first show that the following bound holds pe ≤ p̄e with

p̄e = 2(1− α)n exp

(
−(2α− 1)npnϕ

(
xn

2α− 1

))
(D.5)

where we define ϕ(x) = x log(x) + 1− x, for x ≥ 0.

To see this, note that for every fixed θ > 0,

pe = IP

 ⋃
i∈Sc

∑
j∈S

qi,j < xn


 ≤ |Sc|IP

∑
j∈S

qi,j < xn


≤ |Sc|eθxnIE

(
e−

θ
npn

Xi,j
)|S|

= |Sc|eθxn
(

1 + pn

(
e−

θ
npn − 1

))|S|
where the first inequality follows by the union bound, the second inequality by the
Chernoff’s inequality, and the third equality by the fact thatXi,j is a Bernoulli random
variable with mean pn.

Since |Sc| ≤ 2(1− α)n and |S| ≥ (2α− 1)n, we have

pe ≤ 2(1− α)neθxn
(

1 + pn

(
e−

θ
npn − 1

))(2α−1)n
.

Furthermore, using the fact 1 + pn(e−
θ

npn − 1) ≤ exp(pn(e−
θ

npn − 1)), it follows

pe ≤ 2(1− α)ne
θxn+(2α−1)npn

(
e
− θ
npn −1

)
.

It is straightforward to check that the right-hand side in the last inequality is mini-

mized for θ = −npn log
(

xn
2α−1

)
and for this value is equal to p̄e given in (D.5).

Requiring p̄e ≤ 1
n is equivalent to

ϕ

(
xn

2α− 1

)
≥ 2 log(n) + log(2(1− α))

(2α− 1)npn
.
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From this it follows that λ ≤ −xn holds with high probability provided that
xn ≥ 0 can be chosen such that

ϕ

(
xn

2α− 1

)
≥ 2

c(2α− 1)

(
1 +

log(2(1− α))

2 log(n)

)
.(D.6)

Such a value xn exists as ϕ(x) is a decreasing function on [0, 1], with boundary
values ϕ(0) = 0 and ϕ(1) = 0, and under our assumption, c(2α−1) > 2, the right-hand
side in (D.6) is smaller than 1 for large enough n.

Finally, from (D.6), we note

xn ≥ (2α− 1)ϕ−1
(

2

c(2α− 1)

)
+O

(
1

log(n)

)
from which the asserted result follows.

Appendix E. Proof of Proposition 6.12. Let H(t) denote the state of the
hub at time t. Due to the symmetry of the considered graph, it is not difficult
to observe that the dynamics is fully described by a continuous-time Markov pro-
cess (H(t), |S0(t)|, |S1(t)|, |Se0(t)|, |Se1(t)|)t≥0. We need to compute the expected
value of the smallest time t such that |S1(t)| = 0, i.e. the time when the state 1
becomes depleted. To this end, it suffices to consider (H(t), |S0(t)|, |S1(t)|, |Se(t)|)
where Se(t) = Se0(t) ∪ Se1(t), i.e. the system states e0 and e1 are lumped into one
state, which we denote with e. The system will be said to be in mode i at time
t, whenever the number of depleted state 1 nodes before time t is equal to i, for
i = 0, 1, . . . , |S1(0)| − 1. Notice that if the system is in mode i at time t, then
|S0(t)| = |S0(0)|− i, |S1(t)| = |S1(0)|− i, and |Se(t)| = |Se(0)|+ 2i. For simplicity, we
will use the following notation xi0 = |S0(0)|− i, xi1 = |S1(0)|− i, and xie = |Se(0)|+2i,
for every given mode i.

We will compute the expected sojourn time in each of the modes by analyzing a
discrete-time Markov chain φi = (φik)k≥0, for given mode i, defined as follows. This
Markov chain is embedded at time instances at which the hub node interacts with a
leaf node. The state space of φi consists of the states 0, 1, e, e∗ with the transition
probabilities given in Figure E.1. The state of the Markov chain φi indicates the state
of the hub at contact instances of the hub with the leaf nodes, where we introduced
an extra state e∗ to encode the event where the hub is in state e and that this state
was reached by the hub from either state 0 or 1, thus indicating a depletion of state
1. Note that the expected duration of mode 0 is equal to the mean hitting time of
state e∗ for the Markov chain φ0 started at either state 0 or 1, while the expected
duration of mode i, for 0 < i < |S1(0)|, is equal to the mean hitting time of state e∗

for the Markov chain φi started at state e. We compute these mean hitting times in
the following.

Fix an arbitrary mode i, and then let ϕs(i) be the mean hitting time of state e∗

for the Markov chain φi started at state s = 0, 1, and e. By the first-step analysis,
we have that the latter mean hitting times are the solution of the following system of
linear equations

ϕ0(i) =
xi0−1
n−1 ϕ0(i) +

xie
n−1ϕe(i) + 1

ϕe(i) =
xi0
n−1ϕ0(i) +

xie−1
n−1 ϕe(i) +

xi1
n−1ϕ1(i) + 1

ϕ1(i) =
xie
n−1ϕe(i) +

xi1−1
n−1 ϕ1(i) + 1.

(E.1)
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Fig. E.1. Star-shaped network: the transition probabilities of φi.

From this, it is straightforward to derive

ϕ0(i) = (n− 1)
n2xie + xi0x

i
1

xi0x
i
1(n− xi0)(n+ xie)

,(E.2)

ϕ1(i) = (n− 1)
n2xie + xi0x

i
1

xi0x
i
1(n− xi1)(n+ xie)

,(E.3)

ϕe(i) = (n− 1)
n2 − xi0xi1

xi0x
i
1(n+ xie)

.(E.4)

The expected sojourn time in each given mode is as follows. For mode i = 0, it
holds x00 = αn, x01 = (1− α)n, x0e = 0, and thus, from (E.2) and (E.3), the expected
sojourn in mode 0 is ϕ0(0) and ϕ1(0), for the initial state of the hub equal to 0 and
1, respectively, where

ϕ0(0) =
n− 1

(1− α)n
and ϕ1(0) =

n− 1

αn
.(E.5)

On the other hand, for 0 < i < |S1(0)|, the expected sojourn time in mode i is ϕe(i),
and from (E.4) and xi0 = |S0(0)| − i, xi1 = |S1(0)| − i, xie = |Se(0)|+ 2i, we have

ϕe(i) = (n− 1)

(
n2

(αn− i)((1− α)n− i)(n+ 2i)
− 1

n+ 2i

)
.(E.6)

Finally, the expected duration of phase 1 is equal to ϕs(0) +
∑(1−α)n−1
i=1 ϕe(i),

where s denotes the initial state of the hub, either 0 or 1. On the one hand, from (E.5),
we have that for every fixed α ∈ (1/2, 1], both ϕ0(0) and ϕ1(0) are asymptotically
constants, as the number of nodes n grows large, thus ϕ0(0) = Θ(1) and ϕ1(0) = Θ(1).
On the other hand, using (E.6) and some elementary calculus, we obtain

(1−α)n−1∑
i=1

ϕe(i) =
n− 1

(2α− 1)(3− 2α)
H(1−α)n−1 −

n− 1

(2α− 1)(1 + 2α)
[Hαn−1 −H(2α−1)n]

+

(
2

(2α− 1)(3− 2α)
− 2

(2α− 1)(1 + 2α)
− 1

) (1−α)n−1∑
i=1

n− 1

n+ 2i
.
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where, recall, Hk =
∑k
i=1

1
i . From this, it can be observed that

(1−α)n−1∑
i=1

ϕe(i) =
1

(2α− 1)(3− 2α)
n log(n) +O(n).(E.7)

This completes the proof of the proposition.


