Micro Execution

Patrice Godefroid
Microsoft Research
One Microsoft Way

Redmond, WA 98052, USA

pg@microsoft.com

ABSTRACT

Micro execution is the ability to execute any code fragment
without a user-provided test driver or input data. The user
simply identifies a function or code location in an exe or
dll. A runtime Virtual Machine (VM) customized for test-
ing purposes then starts executing the code at that loca-
tion, catches all memory operations before they occur, al-
locates memory on-the-fly in order to perform those read-
/write memory operations, and provides input values ac-
cording to a customizable memory policy, which defines what
read memory accesses should be treated as inputs.

MicroX is a first prototype VM allowing micro execution
of x86 binary code. No source code or pdb required. No test
driver/harness required: MicroX automatically discovers dy-
namically the Input/Output signature of the code being run.
Input values are provided as needed along the execution and
can be generated in various ways, e.g., randomly or using
some other test-generation tool. To the best of our knowl-
edge, MicroX is the first VM designed for test isolation and
generation purposes.

This paper introduces micro execution and discusses how
to implement it, strengths and limitations, applications, re-
lated work and long-term goals.

1. INTRODUCTION

Among the various kinds of testing usually performed
during the software development cycle, unit testing applies
to the individual components of a software system (e.g.,
see [26]). In theory, unit testing plays an important role in
ensuring overall software quality since its role is precisely to
detect errors in the component’s logic, check all corner cases,
and provide 100% code coverage. Yet, in practice, unit test-
ing is so hard and expensive to perform that it is rarely
done properly, especially for components of large, complex,
legacy code bases. Indeed, in order to be able to execute
and test a component in isolation, one needs to write test
driver/harness code to simulate the environment of the com-
ponent. More code is needed to test functional correctness,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

for instance using assertions checking the component’s out-
puts. Since writing all this testing code manually is expen-
sive, unit testing is often either performed poorly or skipped
altogether.

In this paper, we propose a radically new approach to unit
testing whereby the user does not need to write any test
driver /harness code at all, nor provide any input data. The
new key idea explored in this work is to discover dynam-
ically the Input/Output (I/O) interface of the code being
executed, by means of a Virtual Machine (VM) modified for
testing purposes.

The user simply identifies a function or code location (an
offset) in an exe or dll. A runtime Virtual Machine (VM)
then starts executing the code at that location, catches all
memory operations before they occur, allocates memory on-
the-fly in order to perform those read/write memory opera-
tions, and provides input values according to a customizable
memory policy, which defines what read memory accesses
should be treated as inputs. Input values are provided as
needed along the execution and can be generated in various
ways, e.g., randomly or using another test-generation tool.

We call micro execution the ability to execute any code
fragment without a user-provided test driver or input data.
MicroX is a first prototype VM allowing micro execution
of x86 binary code. No source code or pdb required. No
test driver/harness required: MicroX automatically discov-
ers dynamically the I/O signature of the code being run.
Just point and run. To the best of our knowledge, MicroX
is the first VM for testing purposes, which replaces the func-
tionality of a static test driver by a runtime environment for
dynamically discovering the I/O interface of the program un-
der test with high precision, and providing input values only
when needed, in a lazy manner. Our current MicroX pro-
totype is a modification of the Nirvana VM [3] as well as of
the iDNA /TruScan/SAGE tool stack [3, 27, 20]. In particu-
lar, the whitebox fuzzer SAGE can be used to guide micro-
executions of the code being tested using dynamic symbolic
execution, constraint generation and solving techniques.

MicroX significantly lowers the upfront cost of unit testing
by allowing automatic testing of arbitrary code fragments
without writing any test-driver code. Micro execution can
reveal software bugs such as memory corruptions or buffer
overflows due to incomplete input validation or erroneous
manipulations of data structures that are local to the unit
under test. It is complementary and should be used in con-
junction with runtime analysis tools (like Purify, Valgrind,
AppVerifier) for checking standard program properties (like
buffer overflows, memory leaks, etc.). It can also check for

application-specific properties (“test oracles”) specified as as-
sertions embedded in the code under test.

Micro execution of a code fragment makes sense mostly
if all its inputs are unconstrained, i.e., can take any value.
Otherwise, micro execution may trigger program behaviors
and bugs that are uninteresting (“false positives”) because
they cannot occur in a realistic environmemt for that pro-
gram. In that case, input constraints (preconditions) or a
modified memory policy are needed to restrict the set of
possible initial states. Those can be provided by the user,
for instance, in the form of a partial test driver or code con-
tracts, or by a whole program analysis tool like SAGE.

Conversely, micro execution may also fail to exercise some
behaviors and miss bugs (“false negatives”) if its input set is
too small or if the memory policy is too loose, i.e., MicroX
recovers from memory corruptions that could happen in a
realistic environment.

How to specify input preconditions (initial states) and
output postconditions (test oracle) are long-standing prob-
lems in both static program analysis and testing (e.g., [4]).
Micro execution can be viewed as lifting those fundamen-
tal problems from low-level unit-specific test-driver code to
higher-level rule-based memory policies, but its goal is not
to directly address, avoid or solve those problems.

Instead, we identify in this paper (see Section 5) several
security-motivated applications of micro execution which do
not suffer from those limitations, because the “unit” (code
fragment) under test is specifically defined in each case to
have (1) no precondition (all input values are possible) and
(2) a memory policy which is as tight as possible for these
application domains.

The paper is organized as follows. In Section 2, we start
by an overview of the functionality provided by micro execu-
tion and MicroX from a user’s point of view. In Section 3,
we discuss how to modify an existing VM to perform mi-
cro execution. In Section 4, we discuss in more details the
limitations of micro execution mentioned above. We then
present in Section 5 several applications which do not suffer
from those limitations. In Section 6, we present experimen-
tal results obtained with our current MicroX prototype in
the context of one of those applications, namely API fuzzing.
Section 7 discusses related work, and we conclude in Sec-
tion 8 by summarizing the main contributions of this work.

2. OVERVIEW

We present in this section an overview of micro execution
from a user’s point of view.

2.1 What is Micro Execution?

The user selects a function of code location in any exe-
cutable file, such as an exe or a dll on a Windows machine. A
special runtime Virtual Machine (VM) customized for test-
ing purposes then starts executing the code at that location.
The VM hijacks all memory operations, and provides input
values according to a customizable memory policy.

Here is an example of default memory policy, which is of-
ten adequate and sufficient when the micro execution starts
at the beginning of a C function:

An input is defined as any value read from an
uninitialized function argument, or from a deref-
erence of a previous input used as an address
(recursive definition). (*)

Note that, under this memory policy, values read from unini-
tialized global-variables are not inputs. Other memory poli-
cies can be defined, as will be discussed later.

Imagine the user wants to micro execute the C function
foo below:

void foo(char *p) { // p is a 4-bytes input
char v = *p; // *p is a 1-byte input
return;

}

Let us assume that the user wants to micro execute this
function under the previous default memory policy and that
she selects the random test generation mode, by which any
input is simply generated randomly (other modes will be dis-
cussed later). In what follows, such a user-selected function
is called the top-level function of the micro execution.

Micro execution of this code starts executing the first in-
struction of function foo. The runtime VM detects that the
execution wants to read a 4-bytes value for p (assuming the
program is run on a 32-bit machine). Since p is an argu-
ment of function foo, it is an input according to the above
memory policy. Therefore, a 4-bytes input value is randomly
generated for p and is “returned to the program.” (How this
is done is described in the next subsection.) Next, the VM
detects that the 4-bytes value of p is used as an address
*p where the code wants to read one byte. According to
our memory policy, a dereference *p of a previous input p
is also an input, thus a 1-byte value is randomly generated
for *p and “returned to the program”. This value is then
copied in local variable v. After the execution of the return
statement, the micro execution terminates.

In summary, this micro execution detects dynamically 2
inputs: p which has a 4-bytes value (on a 32-bit machine),
and *p which has a 1-byte value.

Micro execution means the ability to execute any code
fragment without writing a test driver or input data. The
user does not need any test-driver code for allocating and
initializing memory for p and *p, and then invoking (calling)
function foo with those arguments. In fact, the user does
not need to know anything about how many arguments foo
takes as inputs and what their types are. She only needs to
select a starting location, a memory policy and a test-input
generation mode.

2.2 How is Micro Execution performed with
MicroX?

MicroX is a first VM implementing micro execution for
x86 binary code. Source code or debugging information (i.e.,
pdb files on Windows) is not required.

The C function foo above is compiled (with the C c1 com-
piler included in Microsoft Visual Studio 2010 on an Intel 32-
bit machine running Windows 7) into the x86 assembly code
shown in Figure 1. MicroX executes x86 instructions one by
one, and catches all memory operations. In x86, ebp, esp,
eax, ecx etc. denote 32-bit registers, while the expression
[ebp] denotes accessing the memory address specified by
the value of register ebp. For the following discussion, x86
instructions that “perform memory operations” are syntacti-
cally identified by the presence of an expression with square
brackets [], as in [ebp]. Note that x86 instructions in-
volving only registers (like mov ebp, esp in line 2) or the
stack (like push ebp in line 1) do not perform “memory op-
erations” for the following discussion.

[...]
1: push ebp ; foo starts here
2: mov ebp, esp
3: push ecx
4: mov eax, DWORD PTR [ebp+8] ; p
5: mov cl, BYTE PTR [eax] i *p
6: mov BYTE PTR [ebp-1], cl ;v
T: mov esp, ebp
8: pop ebp
9: ret O

[...]

Figure 1: x86 assembly code for function foo.

For the example above, the first memory operation exe-
cuted during the micro execution of function foo is at line 4.
MicroX detects that the 32-bit address ebp+8 is above the
current value of the stack pointer register esp, which means
that this address stores a function argument. With our de-
fault memory policy (*), the 4-bytes value (DWORD) at ad-
dress ebp+8, denoted by [ebp+8], is thus an input. How-
ever, since function foo was not called with any argument
by MicroX (the number of arguments and their type is un-
known when micro execution starts), the address ebp+8 has
not been properly allocated and initialized yet. MicroX
therefore allocates a fresh 4-bytes buffer at a new address
X in an external memory invisible to the program under
test. MicroX then “associates” the program-visible address
ebp+8 with that program-invisible address X, initializes the
4-bytes buffer at address X (which represents argument p in
the source code), and then “substitutes” the value of ebp+8
by address X so that the new 4-bytes value stored at [X]
is returned and moved to register eax in line 4. In the
next section, we discuss in detail how the program binary
is instrumented, how addresses are substituted (“hijacked”)
by others, how inputs are initialized, and how the external
memory maps program-visible addresses to invisible ones,
including in the presence of pointer arithmetic.

Figure 2 presents a report generated by MicroX with in-
formation about all the memory accesses it detected during
micro execution of function foo. In this micro execution,
the initial value of ebp is 0x001EF988 (in hexadecimal) —
see line 2 of Figure 2. The first memory access is detected
for address 001EF990 (line 3), which is indeed ebp+8 as ex-
pected. Using the random test-input generation mode, Mi-
croX returned the 4-bytes random value 00201478 (line 5).
At this point, MicroX does not know (yet) whether this 4-
bytes value will be used as a pointer; preventively, it records
this value in a list of known input addresses (line 6). This
4-bytes value is stored in a 4-bytes buffer located at address
X = 00201440 (line 7) in this case. From now on, any access
to the program-visible address 001EF990 will be mapped to
the program-invisible address X in the MicroX-controlled ex-
ternal memory. (Address X is invisible to the program in the
sense that the value of X never appears in any of the program
registers.)

The micro execution then proceeds by executing line 5 of
Figure 1 where the previously returned 4-bytes input value
00201478, which is in the current list of known input ad-
dresses, is detected to be used as an address through the
statement [eax]. MicroX also detects this address is used
as a BYTE PTR, that is, a pointer to a single byte — see line 8

1: initEIP is 72B51005

2: initEBP is O0O1EF988

3: Read Mem Access at address O001EF990 of 4 bytes
4: Initializing 4 input bytes:

5: [01=78 [11=14 [2]=20 [3]=00

6: Adding 00201478 to list of known addresses
7: SetGuestEffectiveAddress returned 00201440
8: Read Mem Access at address 00201478 of 1 bytes
9: Initializing 1 input bytes: [0]=29

10: SetGuestEffectiveAddress returned 0020C490

11: Write Mem Access at address 001EF987 of 1 bytes
12: SetGuestEffectiveAddress returned O01EF987

13: END: ExitProcess is called

14: ***** External Memory Stats: xxxxk

15: Number of Mem Accesses: 2 (2 Reads, O Writes)
16: Number of Addresses: 2 (total 5 bytes)

17: Number of Inputs: 2 (total 5 bytes)

18: ***** Native Memory Stats: *¥¥xx
19: Number of Module Accesses: 0 (0O Reads, O Writes)
20: Number of Other Accesses: 1 (0 Reads, 1 Writes)

21: *xxxxx General Stats: kkkx

22: Number of Unique Instructions After Start: 9
23: Number of Warnings: O

24: Number of Errors: O

Figure 2: MicroX report on all the memory accesses
detected during micro execution of function foo.

of the report in Figure 2. Since a dereference of an input is
also an input according to our default memory policy (*),
MicroX allocates a new buffer of size 1 byte, whose address
is 0020C490 (line 10), initializes randomly a 1-byte value,
which is 29 in this case (see line 9), substitutes address
00201478 by address 0020C490, and continues the micro ex-
ecution.

Next, while executing line 6 of Figure 1, another memory
access is detected by MicroX, but this time the address is
001EF987 (see line 11 of Figure 2), i.e., ebp-1. Addresses
on the stack below ebp are used for local variables and are
not function arguments, i.e., are not inputs according to our
memory policy. Moreover, this is a write operation, thus def-
initely not an input. Since MicroX knows this address is al-
ready stack-allocated inside the code under test, it does not
interfere with it: it is as if the address 001EF987 is mapped
to itself, which is reported in the third and last memory
access entry of the report in lines 11 and 12 of Figure 2.

The micro execution later ends after the execution of line 9
of Figure 1. In this micro execution, only 9 x86 instructions
have been micro executed (see line 22 of Figure 2), in a
fraction of a second.

3. HOW IS MICROX IMPLEMENTED?

3.1 Program Instrumentation

Starting execution (jumping) at an arbitrary code location
typically crashes after a few instructions at the first access to
unallocated memory, like the access to *p in the previous foo
example. This is why a VM is needed to catch every memory
access after its address has been computed but before the

memory access is performed in order to prevent such crashes
and continue the micro execution.

The MicroX runtime VM executes x86 instructions one
by one, and catches all memory operations before they occur
in order to be able to re-direct specific memory read/write
operations. This is done by “interpreting” dynamically every
single x86 instruction being executed and decomposing each
of those into a sequence of micro-operations (e.g., [3]), which
decouple the computation of addresses from accessing those
addresses.

For instance, the x86 instruction

mov eax, [ecx]

means (1) use the 32-bit value of register ecx as an address,
(2) get the 32-bit (4 bytes) value located at that address
(denoted [ecx]), and then (3) store that value in register
eax.

This single x86 instruction is rewritten as a sequence of
micro-operations, including additional instrumentation call-
backs, such as

GenerateEffectiveAddress
PREMemoryAccessCallBack

mov eax, [EffectiveAddress]

GenerateEffectiveAddress is an x86 macro which com-
putes which address (if any) is accessed next by the current
instruction. That address is then stored in a variable named
EffectiveAddress (implemented as a memory location or
register) in the pseudo-code above.

Next, PREMemoryAccessCallBack is a new MicroX call-
back which is executed after EffectiveAddress is computed
but before [EffectiveAddress] is accessed. This callback
executes new MicroX code which looks up the current mem-
ory policy to determine whether the current EffectiveAd-
dress should be either (A) untouched or (B) replaced by
a new one. For instance, all in or out parameters of the
user-specified top-level function (like foo in the earlier ex-
ample) typically falls in the (B) category (with the MicroX
default memory policy (*)): MicroX automatically allocates
memory for those in its External Memory, and keeps a map
from effective addresses (visible to the code under test) to
addresses in this External Memory (invisible to the code
under test); in that case, the value of EffectiveAddress is
replaced by its corresponding address in the External Mem-
ory, which the code under test is never aware of.

Next, the x86 instruction mov eax, [EffectiveAddress]
is performed, to simulate perfectly the execution of that in-
struction. By perfect, we mean that this simulation pre-
serves the semantics of the original x86 instruction precisely,
to the bit-level and including side-effects to the EFLAGS of
the x86 processor.

We emphasize that the code being micro executed is never
aware of the External Memory. For instance, in the above
example, the value of register ecx is not modified to contain
the value of an address in External Memory. Indeed, MicroX
does not know what the program does later with the value of
ecx. Modifying the value of register ecx could have danger-
ous side effects later, especially for stack-allocated addresses
and in the presence of pointer arithmetic (for instance, if ecx

1 int r; // Heap_Address_Range; default 250

2: int r_EBP; // EBP_Address_Range; default 100
3: int InitEBP; // initial value of EBP

4: 1list_of_ADDR KnownInputAddresses;

5: bool IsInputAddress(ADDR a) {

6: if ((InitEBP <= a) && (a < (InitEBP + r_EBP)))
T: return true;

8: for any x in KnownInputAddresses {

9: if (((x >= a) && ((x - a) < 1))

10: [l ((x < a) & ((a - x) <1)))

11: return true;
12: }

13: return false;

14: }

15: ADDR PREMemoryAccessCallback
16: (ADDR a, int size, bool isRead)

17: {
18: a’ = ExternalMemory(a);
19: if (a’ is defined) return a’;

20: if (!IsInputAddress(a)) return a;

21: Add ADDR [a,at+size-1] to ExternalMemory;
22: a’ = ExternallMemory(a);

23: if (isRead) {

24: initialize the values at ADDR [a,a+size-1]
25: in ExternalMemory;

26: if (size == 4)

27: { add the 4-bytes value at [a,a+3]

28: to KnownInputAddresses; }

29: }

30: return a’;

31: }

Figure 3: External memory manager (simplified).

is compared to some other value later). It is therefore im-
portant to fully hide the existence of the External Memory
to the code under test in order not to corrupt its behaviors
in any way.

Note that decomposing x86 instructions into sequences of
micro-operations is a standard technique for dynamic binary
program instrumentation (e.g., see [3]). However, the spe-
cific MicroX PREMemoryAccessCallBack, which occurs after
EffectiveAddress is computed but before [EffectiveAd-
dress] is accessed, is new, to the best of our knowledge
(e.g., compared to Nirvana [3] or PIN).

3.2 External Memory Management

The External Memory manager maintains a mapping from
program-visible addresses to (invisible) External Memory
addresses. This mapping is also used to ensure read/write
memory consistency: when an input value v is first returned
for an address a (i.e., written to address a), subsequent reads
at that address a must return the same value v.

A memory policy defines the set of addresses which are to
be mapped to an address in the External Memory. When
the user selects a top-level function as the start of the micro
execution as in our running example with function foo, these
addresses are typically the addresses storing the input or
output arguments of the top-level function, plus any input
value used as an address, when using the default memory
policy (*) defined in Section 2. If the first operation to

be performed at any such address is a read operation, the
address stores an input value; otherwise, the first operation
is a write operation and the address stores an output value.

Figure 3 illustrates how the External Memory manager
works. Whenever a PREMemoryAccessCallBack is issued (see
Section 3.1), the function with the same name in line 15
of Figure 3 is executed. It returns either the original Ef-
fectiveAddress a with which it is called, or the address
a’ mapped to a in the External Memory if any. The de-
fault memory policy (*) is captured by the code in function
IsInputAddress in line 5, which checks whether address a
is either in the interval [InitEBP,InitEBP+r_EBP] (line 6),
i.e., an argument to the top-level function, or in the interval
[x-r,x+r] (lines 8-12), where x is any address in the cur-
rent list of known input addresses and r is a constant (250
by default, see line 1). Indeed, as previously mentioned, the
External Memory manager maintains a list (set) of known
input addresses with all the 32-bit (4 bytes) input values
returned by MicroX so far during the micro execution (see
lines 26-28). Later during the micro execution, any memory
access performed at any of such known input addresses x or
in their neighborhood, i.e., at any address in the interval [x-
r,x+r] where r is a user-customizable “heap address range”,
will be considered as an input, according to the default Mi-
croX memory policy (*) discussed in Section 2. The range r
allows input addresses a to point to data structures (input
buffers or structs) of size up to r.

Addresses a which are already mapped in the External
Memory are “substituted” by their new addresses a’ (see
line 19). Otherwise, non-input addresses are left untouched
(line 20). In contrast, for any input address a, all addresses
in the interval [a,a+size-1], where size is the current
number of bytes being accessed from address a, are added to
the mapping maintained by the External Memory (line 21).
If the current memory access is a read operation (line 23),
then it is an input and the values of the bytes at addresses
[a,at+size-1] are initialized (lines 24-25), as will be dis-
cussed in the next sub-section. And if size is 4, this new
4-bytes input value is added to the list of known input ad-
dresses (line 26-28) as previously explained.

Figure 3 depicts a simplified version of the actual Exter-
nal Memory manager used in MicroX. MicroX actually uses
a byte-precise memory model (code not shown here): every
byte-address is being tracked individually. This means that,
whenever the program accesses n bytes at address a mapped
to a new address in External Memory, the read/write status
of every individual bytes is being tracked, as well as their
values. This way, if the program wants to access later any n’
bytes at address a’, the External Memory manager will be-
have consistently, no matter what the overlap is between the
interval [a’,a’+n’-1] and all previous intervals [a,a+n-1].
In our experience, this level of precision is often necessary
for dealing with low-level parsing code including all kinds
of pointer arithmetic, such as accessing 2 bytes at address
a followed by accessing 4 bytes at address a-2, or accessing
1 byte at address a_1 and 1 byte at address a_2 while later
accessing n bytes at address a such that a_1 and a_2 are
included in the interval [a,a+n-1].

3.3 Input Value Generation

Input values can be generated using different user-controlled

strategies or even using other tools. For instance, our Mi-
croX prototype currently supports several input modes, in-

cluding the following.

Zero mode: all input values are zeros (useful for debug-
ging).

Random mode: all input values are randomly gener-
ated. For a 32-bit value, the 32-bit value returned by a call
tomalloc (1) is used as the random input value. This guar-
antees that, if this 32-bit input value were to be used as an
address later in the micro execution, this address would not
conflict with a previously existing address (in the stack, in
the heap or in a module of the live process).

File mode: input values are read from a file in a sequen-
tial manner. Those values can be generated by the user or
another tool or MicroX itself. Indeed, for each micro execu-
tion with the random input generation mode, MicroX also
records all the input values in a file, which can then be re-
played later with the file mode in order to reproduce that
specific micro execution.

Process-dump mode: initial input values are read from
a process dump, stored in a .dmp file generated with the
windbg debugger. Each input address in the “live” process is
translated to the corresponding address in a process dump:
a stack address is mapped to the corresponding address rela-
tive to the value of register esp, (respectively) live and in the
dump; a module (.dll or .exe) address is mapped to the cor-
responding address relative to the base address of the same
module in the dump since module base addresses can vary
due to “Address Space Layout Randomization” (ASLR) in
Windows; a heap-allocated address is mapped (by default)
to the same address in the dump. If the address translation
is successful, an input value (of the appropriate size) is read
from the dump at the translated address, and returned as
input value to the live process.

In this mode, MicroX can be viewed as providing function-
ality similar to a partial “fork()” (as in Unix), where only
the top part of the stack starting at the user-specified top-
level function is partially re-created, while the part of the
stack below the top-level function (calling context) is not.
This mode is useful, and even mandatory, in the presence of
some C++ idioms, whenever heap-allocated function point-
ers are being used to access methods associated with heap-
allocated objects; since MicroX cannot guess what those
function pointers are, it must rely on a process dump to
determine what code to execute next and carry on the mi-
cro execution.

SAGE mode: the whitebox fuzzer SAGE [20] can also
be used to generate input values in order to steer the code
under test systematically through all (or many) of its code
paths. This mode can be used in conjunction with one of
the previous modes: the very first time an input value is
needed, it is chosen using one of the previous modes (e.g.,
randomly); then SAGE symbolically executes the code path
taken by the given micro execution, it generates a path con-
straint for that (concrete) micro execution, it solves new
alternate path constraints which, when satisfiable, generate
new input values that will guide future (concrete) micro ex-
ecutions along new program paths. (See [20] for a detailed
presentation of SAGE.)

Different input modes may trigger different program be-
haviors. For instance, some may generate a same input
address more than once (like the zero mode), while others
may not (like the random mode), simulating different mem-
ory “aliasing” strategies, which in turns may trigger differ-
ent behaviors in the presence of pointer arithmetic in the

code being micro executed. The precise pointer-reasoning
algorithms implemented in SAGE [15] cover all those cases
systematically.

3.4 Other Implementation Details

Our current MicroX prototype is implemented as a mod-
ification of the Nirvana/iDNA /TruScan/SAGE tool stack.
About 5,000 lines of additional code were required in total.

Nirvana [3] is a dynamic binary rewriting tool which can
be used for dynamic binary instrumentation. Every native
instruction is translated into a sequence of micro-operations.
Those also include callbacks for various events such as in-
struction loading, instruction execution, memory accesses,
stack operations, function calls or returns, etc. We extended
the set of Nirvana callbacks to add PREMemoryAccessCall-
Back (read or write) memory access callbacks in order to
perform micro execution as discussed in Section 3.1.

iDNA [3] is a Nirvana application that records binary
execution traces. All sources of nondeterminism in a pro-
gram execution (input values, return values from kernel/sys-
tem calls, thread-scheduling information, etc.) are recorded.
Those high-precision traces (which can be large) can be then
replayed in a debugger (like windbg) and perform time-travel
debugging. We extended iDNA to record input values driv-
ing micro executions performed under the control of MicroX.
This capability is key in practice to understand and replay
micro executions: which input values where provided to the
code at what time, what program paths were executed, re-
produce and debug bugs found, etc.

TruScan [27] takes as input an iDNA trace and analyzes
it for various properties, such as checking for buffer over-
flows, memory leaks, uninitialized variables, etc. TruScan
itself was not modified in this work. TruScan includes a
precise memory tracker, which intercepts every call to func-
tions like malloc() and free() in order to build a byte-
precise memory model of the current program execution.
This memory model can detect accurately buffer overflows
and other memory-safety violations. We can use TruScan’s
memory tracker as a test oracle with MicroX in order to
detect memory safety violations for data structures that are
allocated and then wrongly accessed in the unit under test.
In contrast, accesses to data structures allocated prior to the
start of the micro execution cannot be checked as accurately,
since those are now handled with the External Memory man-
ager under the control of MicroX (see Section 4).

SAGE [20] is an automatic test generation tool using dy-
namic symbolic execution and constraints solving [19], and is
implemented as a TruScan extension. It is widely deployed
inside Microsoft, and has found numerous new security vul-
nerabilities in various applications [5]. Prior to this work,
SAGE had been used mostly for so-called file fuzzing: given
an application reading an untrusted (attacker controllable)
file, SAGE attempts to generate file contents that trigger
buffer overflows in the file parser embedded with the appli-
cation. SAGE uses one symbolic variable for each byte read
from the input file. As mentioned in Section 3.3, we mod-
ified SAGE so that every input value returned by MicroX
can be treated as a symbolic input during symbolic execu-
tion. SAGE can then be used to track the influence of those
input values on the control-flow path taken during micro ex-
ecution, then generate constraints and new input values to
drive the code through other code paths. MicroX opens up
new application domains to SAGE, beyond file fuzzing.

4. LIMITATIONS OF MICRO EXECUTION

We revisit here in more details the limitations of micro
execution mentioned in the introduction.

False positives (too many behaviors, unrealistic
bugs). Micro execution of a code fragment makes sense
mostly if all its inputs are unconstrained, i.e., can take any
value. Otherwise, micro execution may trigger program be-
haviors and bugs that are uninteresting (“false positives”)
because they cannot occur in a realistic environmemt for
that program.

We distinguish two possible causes for false positives:

1. the input set is too large (too many inputs), or

2. the set of possible input values is too large (too many
input values).

If the input set is too large, the default memory policy needs
to be modified to restrict further the set of inputs. When
input parameters can only take specific values, these input
preconditions can be provided by the user, for instance, in
the form of a partial test driver or code contracts, or by a
whole program analysis tool like SAGE. Either way, the goal
is to reduce the set of possible initial states.

False negatives (too few behaviors, missed bugs).
Conversely, micro execution may fail to exercise some pro-
gram behaviors and miss bugs if the set of inputs or input
values are too small. If the input set is too small (for in-
stance, because it does not include some global variables),
the default memory policy must be modified to include the
missing input parameters. In order to improve execution
code (test) coverage, the input values fed to the program
by MicroX can be generated by other tools specialized on
test generation, such as dynamic test-generation tools like
SAGE.

Moreover, if the memory policy is too loose, MicroX recov-
ers from memory corruptions that could happen in a realistic
environment. For instance, consider again the function foo
below

void foo(char *p) { // p is a 4-bytes input
char v = *p; // *p is a 1-byte input
return;

}

If the input pointer p can be NULL in some realistic call-
ing context, executing the statement *p will crash inside
function foo in real-life, but not with MicroX if NULL is
considered as a valid input address (which MicroX would
then match to some other address in its External Memory).
Whether or not NULL should be allowed as a valid input ad-
dress may depend on the environment (calling convention)
of the code under test, and can be adjusted by the user.

What kind of program bugs can micro execution
detect? Roughly speaking, micro execution can expose
any memory corruption bugs due to erroneous manipula-
tions of data structures that are local to the unit under test.
For instance, micro execution can expose buffer overflows in
buffers allocated by the unit.

In contrast, it cannot in general detect memory corruption
bugs due to input data structures, such as buffer overflows
in input buffers, because those are handled by the External
Memory under the control of MicroX and for which critical
information (such as buffer sizes) is missing by default.

S. APPLICATIONS

We now discuss several applications of micro execution for
which the previous limitations can be largely avoided. In-
deed, the unit under test is defined in each case in such a
way that (1) there is no input precondition (all input pa-
rameters can take any value) and (2) with a tight memory
policy for the corresponding application domain. The ap-
plications we describe are all security-motivated and do not
require application-specific test oracles. We present here a
brief overview of each of these.

Automated API fuzzing. Given a dll (like user32.d11),
it is easy to extract automatically all its exported functions
with the help of tools like dumpbin, and then run MicroX
and SAGE on each of these for a limited amount of time.
Thousands of functions can be micro executed this way, in a
fully automatic manner with no user-written test drivers or
the need to identify statically the input and output param-
eter types of those functions. Micro execution provides an
automatic way to provide a test suite for any API. If the API
is secured with strong input validation, any bugs (crashes)
found this way is an error of interest. For other APIs, au-
tomatic test suite generation is useful for regression testing,
in order to automatically detect unintended API changes.
Sample results of experiments with micro execution for API
fuzzing are presented in the next section.

Packet parser isolation and fuzzing. Security test-
ing, often called “fuzzing”, of code parsing untrusted network
packets is notoriously hard to perform thoroughly because it
is hard (thus expensive) to set up testing properly for such
stateful applications. The current standard approach often
consists of connecting multiple machines together, generat-
ing traffic somehow, monitoring network packets, and then
randomly fuzzing (modifying) specific packet segments and
forwarding those to the destination machine, with the hope
that these corrupted packets will trigger interesting pars-
ing bugs, such as buffer overflows. This whole-application
testing set-up is heavy, complicated by hard-to-control OS
resources and timing issues, is expensive, and offers typically
poor test control and coverage.

We are currently exploring an alternative approach using
MicroX and SAGE by which each packet parser is fuzzed in
isolation. For a given a protocol implementation, the user
first identifies the set of functions that parse untrusted input
bytes. Each of these functions typically have two types of
inputs: (1) data structure(s) capturing the current proto-
col state, and (2) a pointer to a buffer containing the input
bytes to be parsed. Given this information, we can then
micro execute such packet-parsing functions one by one us-
ing MicroX, and intelligently fuzz with SAGE the part (2)
of their input corresponding to untrusted input bytes, with
the goal of uncovering new buffer overflows.

Targeted fuzzing. When whitebox fuzzing complex file
parsers embedded in large applications, like Microsoft Ex-
cel, each symbolic execution performed by SAGE takes a
long time, and there are many program paths to explore.
For instance, a single symbolic execution of a large Office
application while parsing a 47 Kbytes input file takes about
1h, in order to execute about 1.5 billion x86 instructions,
generate about 2500 constraints (after pruning) and a few
thousands new test input files (see [5]). During symbolic
execution and state-space exploration, sub-parsers can be
identified. For each sub-parser, one or several concrete/sym-
bolic calling contexts can be saved in a file. Using MicroX,

each sub-parser can be micro executed, starting from a saved
concrete calling context thanks to the “process-dump mode”
of Section 3.3. Inputs can be limited to addresses which
have symbolic values in the corresponding saved symbolic
calling context, and SAGE can then fuzz only those. By
using MicroX and SAGE this way, fast sub-searches focused
on specific sub-parsers can quickly be spawned in order to
speed up the global search for bugs (like buffer overflows).

Unit verification. Similarly to targeted fuzzing, compo-
nents of large applications can be identified, possibly with
the help of the user, and wverified with MicroX and SAGE
by using bit-precise symbolic execution and exhaustive path
exploration, which are typically hopeless for complex whole
programs but quite doable for small code components. Next,
such verification results for sub-components can be packaged
as component summaries [18], which can be re-used when
verifying higher-level components. Recently, we were able
to prove in such a compositional way, for the first time, that
a specific Windows image parser is mathematically guaran-
teed to be memory safe, i.e., free of any buffer-overflow secu-
rity vulnerabilities (modulo the soundness of our tools and
a few additional assumptions, including fixing a few buffer-
overflow bugs discovered during the course of this WOI“kl),

Malware detection. When applications are submitted
to app stores (like the Windows app store), their code is be-
ing statically scanned to check for the presence of “malware”
(such as sending a packet to a rogue web-site or performing
a call to an illegal system call). But malware code is often
obfuscated and static code scanning is then ineffective. Each
application is also being tested to a limited extend (because
testing has a cost), but malicious behaviors are often trig-
gered only after the user has entered some information or
performed a few typical tasks with the application. In such
cases, malicious behaviors are hard to detect dynamically
with the limited automated testing performed at the time
the application is submitted to the app store.

We are currently exploring the use of micro execution in
a way similar to what Rozzle [23] did for detecting malware
dynamically in JavaScript code using lightweight localized
symbolic execution. In the context of malware detection,
think of MicroX as an “eval()” function for arbitrary x86
code fragments, which can execute accurately even obfus-
cated code. Given an untrusted application submitted to an
app store, one could start a micro execution at every pro-
gram location that is the target of a goto statement, i.e.,
each branch of conditional statements, each loop body, etc.
If, for some calling context that MicroX and SAGE can come
up with, the resulting micro execution exhibits a malicious
behavior (like sending a packet to a rogue web-site), such be-
havior can be detected dynamically using existing runtime
monitors, and the application is clearly suspicious (no false
alarms).

We are currently exploring each of those applications and
plan to report on those in more detail in the future.

6. EXPERIMENTAL RESULTS

To illustrate further the new possibilities enabled by micro
execution, we present in this section sample experimental
results obtained with MicroX in the context of one of the
applications discussed in Section 5, namely API fuzzing.

Specifically, we have developed a new simple tool for API

!To appear in a separate paper [11].

Function Name | Unique Instructions | Inputs Memory Accesses | Tests | Crashes
(avg [min-max]) (avg [min-max]) | (avg [min-max])
_i64toa_s 179 [124-211] 5 [5-5] 202 [69-323] 23 0
_snwscanf_s 164 [76-388] 5 [1-7] 60 [23-155] 18 0
_splitpath_s 142 [142-142] 89 [37-221] 431 [170-1090] 4 0
_strnset_s 82 [48-139] 74 [3-215] 201 [8-636] 10 0
_strset_s 81 [30-128] 27 [1-253] 105 [4-754] 56 0
_uibdtoa_s 165 [121-208] 5 [5-5] 242 [68-753] 19 0
_uibdtow_s 169 [121-209] 5 [5-5] 258 [68-1105] 18 0
_ultoa_s 107 [67-164] 36 [4-502] 121 [20-1026] 31 2
_ultow_s 119 [74-167] 25 [4-252] 107 [22-529] 23 2
_vsnprintf_s 222 [116-275] 34 [3-101] 660 [66-2030] 24 0
_i64tow_s 181 [124-212] 5 [5-5] 199 [69-319] 21 0
_vsnwprintf_s 144 [139-153] 90 [7-130] 2172 [59-3189] 6 6
_wcsnset_s 79 [36-141] 57 [2-378] 1691 [5-100000] 66 4

Table 1: Sample experimental results with 13 exported functions part of ntdl1.411.

fuzzing which takes as input the name of a dll and a list

like _strnset_s and _vsnprintf_s.

The latter functions

of dll-exported functions in that dll, and then automati-
cally runs MicroX and SAGE on each of those functions
for a user-specified amount of time. For instance, the li-
brary ntd11l.d11 on Windows includes already about 2000
dll-exported functions which can be called by other pro-
grams. This single dll is typically located in the directory
c:\Windows\system32 on a 32-bit Windows machine, and
this directory contains more than 1800 other dlls.

Table 1 presents some experimental results for a random
set of just 13 dll-exported functions which are part of nt-
d11.d11. The names of those functions are given in the
first column (no particular order). For each function, our
API fuzzing tool ran MicroX and SAGE for 1 minute (on
a 32-bit machine running Windows 7). The next to last
column entitled Tests gives the number of micro executions
performed in the minute of time allocated to each function.
The last column entitled Crashes is the number of micro ex-
ecutions ending in a crash among those. Thus, in a total
of 13 minutes, 309 micro executions were performed, among
which 14 ended in a crash.

The second column Unique Instructions shows the number
of unique x86 instructions executed during micro execution
of the corresponding function, as reported on line 22 of the
sample MicroX report of Figure 2. The numbers shown are
(in order) the average, minimum and maximum number of
unique instructions executed during the micro executions for
that function. For instance, for the first function _i64toa_s,
23 micro executions were performed (see column Tests), and
the average, minimum and maximum numbers of unique x86
instructions executed during each micro execution were 179,
124 and 211, respectively. We can see that these three num-
bers vary for nearly all 13 functions (except _splitpath_s)
which means that successive micro executions exercised dif-
ferent sets of unique instructions. In all cases, we see that
the absolute numbers of unique instructions executed dur-
ing micro execution are small, ranging from tens to a few
hundreds x86 instructions.

The third column Inputs reports on the (average/min/-
max) number of inputs provided by MicroX during the mi-
cro executions of the corresponding function (see line 17 of
the sample MicroX report of Figure 2). We can observe
that some functions have a constant number of inputs, like
_i64toa_s, while others can take varying number of inputs,

take strings as inputs, and the varying number of inputs pro-
vided by MicroX correspond to different input string lengths.

The fourth column Memory Accesses shows the (aver-
age/min/max) number of memory accesses performed dur-
ing the micro executions of the corresponding function (see
line 15 of Figure 2). For all functions, these three numbers
vary, and more widely. Since every input involves a read
memory access, the number of memory accesses is always
larger than the number of inputs. In our current MicroX
prototype, we enforce a maximum limit of 100000 memory
accesses for each micro execution (to force termination and
avoid infinite loops), and this limit is reached in one micro
execution of the last function _wcsnset_s.

As can be seen from column Tests, the number of micro
executions performed for each function in 1 minute varies
widely, from 4 for _splitpath_s to 66 for _wcsnset_s. Ev-
ery micro execution performed with MicroX is fast in ab-
solute terms (always less than 1 second), as it involves a
roughly 10x slow down compared to uninstrumented native
x86 execution (see [3]). In contrast, every symbolic exe-
cution performed by SAGE involves a roughly 1000x slow
down compared to uninstrumented x86 execution (see [20]),
and also requires constraint solving and new test genera-
tion, which can take seconds or sometimes tens of seconds
in some of these experiments. For instance, for function
_splitpath_s, an analysis of the execution logs reveals that
only one single symbolic execution was performed, created
160 constraints and 114 new tests, which took most of the
single minute of time allocated to this function. Additional
log data from this relatively long symbolic execution also re-
veals that it executed more than 500000 instructions, even
though they were only 142 unique instructions executed (see
Table 1), which means that the first micro execution (driven
by random inputs) hit a program loop which took longer to
be symbolically executed by SAGE. Similarly, most of the
runtime in each of those short 1-minute API-fuzzing exper-
iments is typically spent in SAGE, not in MicroX.

Figure 4 presents the number of unique instructions (green
middle line), inputs (yellow bottom line) and memory ac-
cesses (blue top line) for each of the 309 micro executions
covered in Table 1. These data points are presented one
by one from left to right and for each of the 13 functions
in the order of Table 1, i.e., the 23 leftmost entries on the

Sample Micro Execution Statistics

600

500

400

300

200

100

HHHHHH

V\VMM\N\/\/WWWM s

ﬁﬁﬁﬁﬁﬁﬁﬁ

100000

10000

1000

100

A

IH}\.

181
186
191
196
201
206
211
216
221
226
231
236
241
246
251
256
261
266
271
276
281
286
291
296
301
306

— Memory Accesses

Figure 4: Detailed data about the micro executions summarized in Table 1.

horizontal axis are for the 23 micro executions (tests) of the
first function _i64toa_s, and so on. The bottom two lines
with the number of unique instructions and inputs use the
linear scale on the left of the figure, while the top line with
the number of memory accesses uses the logarithmic scale
on the right of the figure (with a maximum value of 100000).

The purpose of this figure is to visualize possible corre-
lations between the number of unique instructions, inputs
and memory accesses during micro execution. As seen from
the figure, for most micro executions, there is no correlation:
the number of inputs is sometimes flat, while both the num-
ber of unique instructions and memory accesses vary widely
and in a seemingly unrelated manner. However, a spike in
the number of inputs usually corresponds to a spike in the
number of memory accesses (since, by definition, the latter
must always be larger than the former, as mentioned earlier
in this section). In particular, the highest spike on the right
(near test 276) corresponds to a micro execution of _wec-
snset_s reaching the maximum limit of 100000 with 378
inputs but only 45 unique instructions.

All the function names selected in this sample have the
“secure” _s suffix, which means that they are supposed to
include better input parameter validation and security fea-
tures (error reporting, etc.). According to our preliminary
experiments, crashes in those are more rare than in their
“non-secure” counter parts (data not shown here). However,
crashes in such “secure” functions can still be found rather
easily with MicroX and SAGE, as can be seen in the last col-
umn of Table 1. An analysis of those crashes reveals that,
for each of the 4 functions with some crashing micro execu-
tions, the last instruction before the crash is unique for that
function, i.e., there is a single crashing instruction for each
function. For instance, the 6 crashes observed for _vsnw-
printf_s are all due to a write access violation occurring
in sub-function write_char, called from _woutput_s called
from _swoutput_s called by the top-level function _vsnw-
printf_s. Such crashes clearly point to some incomplete-
ness in the input validation performed by such functions.

However, at the time of this writing, the severity of such
“bugs” and whether they should be fixed or not is still un-
determined. On the one hand, input validation and error
reporting (via errno etc.) are clearly incomplete in such
cases. On the other hand, most APIs like ntd11.d11l are
provided “as-is” with no strong reliability or security guar-
antees: an application using the API should not misuse an
API by calling it with “wrong” input values. The severity
of input validation bugs also vary widely depending on the
application context. For instance, crashes or memory spikes
like the one shown to the right of Figure 4 could perhaps
be exploited for a “Denial-Of-Service” (DOS) attack of a
server-side application if untrusted data is allowed to flow
as an input argument to a call to, say, function _wcsnset_s
inside that application, while crashes or memory spikes may
have little security or performance impact for a client-side
(desktop) application.

Another interesting problem is “API diffing”’, or how to
detect unintended changes in visible API behavior (like new
return values or error codes) which might break backward
compatibility of existing applications relying on that API.
These topics (related to, e.g., [28, 24]) and the other appli-
cations of micro execution suggested in Section 5 should be
explored in future work.

In contrast, the purpose of this section was only to present
some sample experimental results obtained with micro exe-
cution, in order to dllustrate the new possibilities it opens.
Here are some specific high-level takeaways.

o The key new capability offered by micro execution is
the ability to test arbitrary code at a near-zero cost.

e Micro execution is fast and automatic.

e When combined with intelligent test generation (as im-
plemented in SAGE), micro execution can be used to
generate test suites with good coverage in a fully au-
tomated way for many software components and inter-
faces (e.g., all functions of an API).

e This unprecedented level of test automation can in
turn be used to quickly generate huge amounts of test
data of various kinds.

Thanks to micro execution, we can now envision, for the first
time, an automated tool which could automatically fuzz all
the dll-exported functions in all the dlls included in a version
of Windows (i.e, hundreds of thousands of functions), for
instance. What data should be collected for what purposes,
and how to mine this data intelligently are other interesting
challenges for future research.

7. RELATED WORK

We are not aware of any prior work on using custom Vir-
tual Machines for dynamic test isolation and generation pur-
poses. However, there is plenty of related work in various
dimensions.

Prior work on automatic test-harness generation (e.g., [12,
29, 19]) uses static code analysis in order to discover the
I/0 interface of the code under test, and then generate a
test harness and test inputs for that interface. Due to the
use of static analysis, these techniques are imprecise [12, 29]
or assume specific API conventions [19], they require user-
guidance to be usable in practice, and have not been widely
deployed to date.

Frameworks for mock-object creation and unit testing (e.g.,
[31, 30]) help the user setup a custom test harness, but are
not fully automatic. They have been successfully adopted
in some contexts, mostly for code written in modern object-
oriented languages where unit testing is arguably easier (C#,
NET, Java, etc.). But adoption of such tools has remain
elusive for system code (C, C++, etc.) and large systems
(like the Windows and Office code bases).

Work on dynamic test generation (e.g., [19, 8, 30, 7, 10])
also uses dynamic program instrumentation techniques, such
as reflection (in Pex [30]) and dynamic binary instrumenta-
tion (in SAGE [20]), for test generation. However, these
tools require the user to identify syntactically which inputs
should be treated as “symbolic”. MicroX goes further by
not requiring any syntactic definition of such inputs: they
are instead defined indirectly and dynamically by a broad,
rule-based code-independent memory policy.

Static program analysis (e.g., [6, 22, 13]) can simulate
the execution of code paths at a higher level of abstraction,
possibly interactively (e.g., [21]), and find program bugs.
Current tools are typically efficient but imprecise. This im-
precision causes them to report false alarms (spurious bugs).
In contrast, micro execution does not involve any abstract
interpretation, and therefore there is no imprecision due to
abstraction. The “only” remaining possible imprecision with
micro execution is exclusively due to (the lack of) environ-
ment assumptions (see [17]).

How to specify such environment assumptions at the im-
plementation code level, often referred to as input precondi-
tions and output postconditions, or code contracts, has been
the topic of much research (e.g., [25, 2]). By replacing test-
harness code by general memory policies, micro execution
can be viewed as lifting those fundamental problems to a
higher-level of program abstraction. While this higher ab-
straction offers new possibilities to address those problems,
it does not fully avoid nor solve them. The applications dis-
cussed in Section 5 were chosen to largely avoid the need for
custom pre- and post-conditions.

Whole-process “forking” can be used for backtracking in
software model checking [16], test generation [8] and “in-
memory fuzzing” [14]. In contrast, micro execution allows
a partial form of forking, especially with the process-dump
input mode of Section 3.3. This in turns opens new possi-
bilities for partial/localized backtracking in dynamic program
analysis, like the targeted fuzzing and unit verification ap-
plications discussed in Section 5, which are inspired by simi-
lar techniques used for compositional static program analysis
(e.g., [6, 22, 13, 33)]).

Virtual Machines (VMs), program simulators and emula-
tors can “execute” a program, or precisely (bit-level) sim-
ulate its execution, from one platform/OS/architecture to
another, and /or provide infrastructure for dynamic program
instrumentation and analysis (like Nirvana [3] or PIN). In
particular, Java PathFinder [32, 1] is a software model checker
and program analysis platform which uses a modified Java
VM for instrumentation purposes. VMs are also often used
to test the portability of whole applications from one operat-
ing system to another. However, all such tools can only run
programs that are fully defined/compiled and with a proper
test driver. In contrast, micro execution can “execute” any
partial code fragment, by discovering dynamically its inputs
and outputs. Our MicroX prototype is built upon existing
VM technology, modified and extended in a different and
novel way, in order to provide those new additional features.
MicroX can be viewed as a runtime VM modified for test
isolation and generation purposes.

8. CONCLUSION

This paper introduces micro execution, the ability to ex-
ecute any code fragment without providing a test driver or
input data. Micro execution can start (and stop) executions
at any point, and enables local, fast, precise, dynamic anal-
ysis of small code fragments and executions. The key to
implement micro execution is a runtime environment which
can intercept and redirect input/output memory operations
before they occur, and can provide input values according to
general rules. We presented such an implementation, named
MicroX. To the best of our knowledge, MicroX is the first
VM specifically designed for testing (isolation and genera-
tion) purposes.

MicroX lowers the cost of test setup, for testing in gen-
eral and for unit testing is particular, by not requiring user-
written test driver code or input data. Instead, such a tra-
ditional test environment is replaced by a generic memory
policy, which is interpreted dynamically and can be refined
by the user as needed, and only if needed. We presented
in Section 5 several applications for which default memory
policies require no or little user modifications. We are cur-
rently exploring each of those applications and will report
on those in more detail in the near future.

When combined with intelligent test generation (as imple-
mented in tools like SAGE), micro execution can be viewed
as combining the locality and efficiency of static program
analysis with the precision of dynamic program analysis. It
allows for automatic unit testing of arbitrary code fragments,
which in turn opens up new possibilities for automatic pro-
gram decomposition [9], precise program analysis [33, 20],
and compositional testing [18]. We view micro execution as
a foundation for a new broad thrust of research on auto-
mated software testing.

Acknowledgements

MicroX has been under active development for more than
a year. I thank Tom Ball, William Blum, Ella Bounimova,
Maria Christakis, David Molnar, Roman Porter, and Ben
Zorn for their helpful comments.

9.
(1]

2]

(3]

[4

(5]

[6]

[7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

REFERENCES

S. Anand, C. Pasareanu, and W. Visser. JPF-SE: a
symbolic execution extension to Java PathFinder. In
TACAS’07, pages 134-138, 2007.

M. Barnett, M. Fahndrich, and F. Logozzo. Embedded
Contract Languages. In Proceedings of SAC-OOPS’2010.
ACM, March 2010.

S. Bhansali, W. Chen, S. D. Jong, A. Edwards, and

M. Drinic. Framework for instruction-level tracing and
analysis of programs. In Second International Conference
on Virtual Ezecution Environments VEE, 2006.

S. Blackshear and S. K. Lahiri. Almost-correct
specifications: a modular semantic framework for assigning
confidence to warnings. In Proceedings of PLDI’2018 (ACM
SIGPLAN Conference on Programming Language Design
and Implementation), pages 209-218, Seattle, June 2013.
E. Bounimova, P. Godefroid, and D. Molnar. Billions and
Billions of Constraints: Whitebox Fuzz Testing in
Production. In Proceedings of ICSE’2013 (35th
International Conference on Software Engineering), pages
122-131, San Francisco, May 2013. ACM.

W. Bush, J. Pincus, and D. Sielaff. A static analyzer for
finding dynamic programming errors. Software Practice
and Experience, 30(7):775-802, 2000.

C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted
and automatic generation of high-coverage tests for
complex systems programs. In OSDI’08, Dec 2008.

C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and

D. R. Engler. EXE: Automatically Generating Inputs of
Death. In ACM CCS, 2006.

A. Chakrabarti and P. Godefroid. Software Partitioning for
Effective Automated Unit Testing. In Proceedings of
EMSOFT’2006 (6th Annual ACM € IEEE Annual
Conference on Embedded Software), pages 262271, Seoul,
October 2006. ACM Press.
V. Chipounov, V. Kuznetsov, and G. Candea. S2E: A
Platform for In-Vivo Multi-Path Analysis of Software
Systems. In Proceedings of ASPLOS’2011, 2011.

M. Christakis and P. Godefroid. Proving Memory Safety of
the ANI Windows Image Parser using Compositional
Exhaustive Testing. In preparation.

C. Colby, P. Godefroid, and L. J. Jagadeesan.
Automatically Closing Open Reactive Programs. In
Proceedings of PLDI’98 (1998 ACM SIGPLAN Conference
on Programming Language Design and Implementation),
pages 345-357, Montreal, June 1998. ACM Press.

M. Das, S. Lerner, and M. Seigle. ESP: Path-Sensitive
Program Verification in Polynomial Time. In Proceedings of
PLDI’02 (2002 ACM SIGPLAN Conference on
Programming Language Design and Implementation),
pages 57-69, 2002.

W. Drewry and T. Ormandy. Flayer: Exposing Application
Internals. In Proceedings of WOOT 07 (First USENIX
Workshop on Offensive Technologies), Boston, August
2007.

B. Elkarablieh, P. Godefroid, and M. Levin. Precise Pointer
Reasoning for Dynamic Test Generation. In Proceedings of
ISSTA’09 (ACM SIGSOFT International Symposium on
Software Testing and Analysis), pages 129-139, Chicago,
July 2009.

P. Godefroid. Model Checking for Programming Languages
using VeriSoft. In Proceedings of POPL’97 (24th ACM
Symposium on Principles of Programming Languages),
pages 174-186, Paris, January 1997.

[17] P. Godefroid. The Soundness of Bugs is What Matters
(Position Paper). In Proceedings of BUGS’2005
(PLDI’2005 Workshop on the Evaluation of Software
Defect Detection Tools), Chicago, June 2005.

[18] P. Godefroid. Compositional Dynamic Test Generation. In
Proceedings of POPL’2007 (84th ACM Symposium on
Principles of Programming Languages), pages 47-54, Nice,
January 2007.

[19] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
Automated Random Testing. In Proceedings of PLDI’2005
(ACM SIGPLAN 2005 Conference on Programming
Language Design and Implementation), pages 213-223,
Chicago, June 2005.

[20] P. Godefroid, M. Levin, and D. Molnar. Automated
Whitebox Fuzz Testing. In Proceedings of NDSS’2008
(Network and Distributed Systems Security), pages
151-166, San Diego, February 2008.

[21] E. Gunter and D. Peled. Path Exploration Tool. In
Proceedings of TACAS’1999 (5th Conference on Tools and
Algorithms for the Construction and Analysis of Systems),
volume 1579 of Lecture Notes in Computer Science,
Amsterdam, March 1999. Springer.

[22] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A System and
Language for Building System-Specific Static Analyses. In

Proceedings of PLDI’02 (2002 ACM SIGPLAN Conference

on Programming Language Design and Implementation),
pages 69-82, 2002.

[23] C. Kolbitsch, B. Livshits, B. Zorn, and C. Seifert. Rozzle:
De-Cloaking Internet Malware. In IEEE Symposium on
Security and Privacy, May 2012.

[24] S. K. Lahiri, K. L. McMillan, R. Sharma, and
C. Hawblitzel. Differential Assertion Checking. In
Proceedings of FSE’2013 (Annual Symposium on
Foundations of Software Engineering), 2013.

[25] B. Meyer. Eiffel. Prentice-Hall, 1992.

[26] G. J. Myers. The Art of Software Testing. Wiley, 1979.

[27] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and
B. Calder. Automatically classifying benign and harmful
data races using replay analysis. In Programming
Languages Design and Implementation (PLDI), 2007.

[28] S. Person, M. B. Dwyer, S. G. Elbaum, and C. S.
Pasareanu. Differential symbolic execution. In SIGSOFT
FSE, pages 226—-237, 2008.

[29] S. D. Stoller. Domain Partitioning for Open reactive
Systems. In Proceedings of ACM SIGSOFT ISSTA’02
(International Symposium on Software Testing and
Analysis), 2002.

[30] N. Tillmann and J. de Halleux. Pex - White Box Test
Generation for .NET. In Proceedings of TAP’2008 (2nd
International Conference on Tests and Proofs), volume

4966 of Lecture Notes in Computer Science, pages 134—153.

Springer-Verlag, April 2008.

[31] N. Tillmann and W. Schulte. Parameterized unit tests. In
ESEC/FSE’05, Sept. 2005.

[32] W. Visser, K. Havelund, G. Brat, and S. Park. Model
Checking Programs. In Proceedings of ASE’2000 (15th
International Conference on Automated Software
Engineering), Grenoble, September 2000.

[33] Y. Xie and A. Aiken. Scalable Error Detection Using
Boolean Satisfiability. In Proceedings of POPL’2005, 2005.

