
1

A Cone-Based Distributed Topology-Control
Algorithm for Wireless Multi-Hop Networks

Li (Erran) Li� Joseph Y. Halpern�

Department of Computer Science Department of Computer Science
Cornell University Cornell University

lili@cs.cornell.edu halpern@cs.cornell.edu

Paramvir Bahl Yi-Min Wang
Microsoft Research Microsoft Research

bahl@microsoft.com ymwang@microsoft.com

Roger Wattenhofer�

ETH Zurich
wattenhofer@inf.ethz.ch

Abstract— The topology of a wireless multi-hop network can be con-
trolled by varying the transmission power at each node. In this paper,
we give a detailed analysis of a cone-based distributed topology-control
(CBTC) algorithm. This algorithm does not assume that nodes have GPS
information available; rather it depends only on directional information.
Roughly speaking, the basic idea of the algorithm is that a node � transmits
with the minimum power ���� required to ensure that in every cone of de-
gree � around �, there is some node that � can reach with power ����. We
show that taking � � ���� is a necessary and sufficient condition to guar-
antee that network connectivity is preserved. More precisely, if there is a
path from � to � when every node communicates at maximum power then, if
� � ����, there is still a path in the smallest symmetric graph �� contain-
ing all edges ��� 	� such that � can communicate with 	 using power ����.
On the other hand, if � 
 ����, connectivity is not necessarily preserved.
We also propose a set of optimizations that further reduce power consump-
tion and prove that they retain network connectivity. Dynamic reconfigu-
ration in the presence of failures and mobility is also discussed. Simulation
results are presented to demonstrate the effectiveness of the algorithm and
the optimizations.

I. INTRODUCTION

Multi-hop wireless networks, such as radio networks [11], ad-
hoc networks [16], and sensor networks [4], [18], are networks
where communication between two nodes may go through mul-
tiple consecutive wireless links. Unlike wired networks, which
typically have a fixed network topology (except in case of fail-
ures), each node in a wireless network can potentially change the
network topology by adjusting its transmission power to con-
trol its set of neighbors. The primary goal of topology control
is to design power-efficient algorithms that maintain network
connectivity and optimize performance metrics such as network
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lifetime and throughput. As pointed out by Chandrakasan et. al
[2], network protocols that minimize energy consumption are
key to the successful usage of wireless sensor networks. To sim-
plify deployment and reconfiguration in the presence of failures
and mobility, distributed topology-control algorithms that uti-
lize only local information and allow asynchronous operations
are particularly attractive.

The topology-control problem can be formalized as follows.
We are given a set � of possibly mobile nodes located in the
plane. Each node � � � is specified by its coordinates, (����,����),
at any given point in time. Each node � has a power function
� where ���� gives the minimum power needed to establish a
communication link to a node � at distance � away from �. As-
sume that the maximum transmission power ���� is the same
for every node, and the maximum distance for any two nodes
to communicate directly is �, i.e. ���� � ����. If every
node transmits with power ����, then we have an induced graph
�� � ��	
� where 
 � ���	 ��� ���	 �� � �� (where ���	 ��
is the Euclidean distance between � and �). Although this model
is not always appropriate, Rodouplu and Meng [23] argue that it
does capture various radio propagation environments.

It is undesirable to have nodes transmit with maximum power
for two reasons. First, since the power required to transmit be-
tween nodes increases as the �th power of the distance between
them, for some � � � [22], it may require less power for a node
� to relay messages through a series of intermediate nodes to
� than to transmit directly to �. Second, the greater the power
with which a node transmits, the greater the likelihood of the
transmission interfering with other transmissions.

Our goal in performing topology control is to find an undi-
rected1 subgraph � of �� such that (1) � consists of all the
nodes in �� but has fewer edges, (2) if � and � are connected
in ��, they are still connected in �, and (3) a node � can trans-
mit to all its neighbors in � using less power than is required
to transmit to all its neighbors in ��. Since minimizing power
consumption is so important, it is desirable to find a graph �

�Directed links complicate the design of routing and MAC protocols [19].
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satisfying these three properties that minimizes the amount of
power that a node needs to use to communicate with all its
neighbors. Furthermore, for a topology control algorithm to be
useful in practice, it must be possible for each node � in the
network to construct its neighbor set ���� � �����	 �� � ��
in a distributed fashion. Finally, if �� changes to ��

� due to
node failures or mobility, it must be possible to reconstruct a
connected �� without global coordination.

In this paper we consider a cone-based topology-control (CBTC)
algorithm, and show that it satisfies all these desiderata. Most
previous papers on topology control have utilized position infor-
mation, which usually requires the availability of GPS at each
node. There are a number of disadvantages with using GPS.
In particular, the acquisition of GPS location information in-
curs a high delay, and GPS does not work in indoor environ-
ments or cities. By way of contrast, the cone-based algorithm
requires only the availability of directional information. That is,
it must be possible to estimate the direction from which another
node is transmitting. Techniques for estimating direction with-
out requiring position information are available, and discussed
in the IEEE antenna and propagation community as the Angle-
of-Arrival problem. The standard way of doing this is by using
more than one directional antenna (see [12]). Specifically, the
direction of incoming signals is determined from the difference
in their arrival times at different elements of the antenna. 2

The cone-based algorithm takes as a parameter an angle 
.
A node � then tries to find the minimum power ���� such that
transmitting with ���� ensures that in every cone of degree 

around �, there is some node that � can reach. We show that
taking 
 � ���� is necessary and sufficient to preserve connec-
tivity. That is, we show that if 
 � ����, then there is a path
from � to � in �� iff there is such a path in �� (for all possible
node locations) and that if 
 � ����, then there exists a graph
�� that is connected while �� is not. Moreover, we propose
several optimizations and show that they preserve connectivity.
Finally, we discuss how the algorithm can be extended to deal
with dynamic reconfiguration and asynchronous operations.

There were a number of papers on topology control prior to
our work; as we said earlier, all assume that position informa-
tion is available. Hu [9] describes an algorithm that does topol-
ogy control using heuristics based on a Delauney triangulation
of the graph. There seems to be no guarantee that the heuristics
preserve connectivity. Ramanathan and Rosales-Hain [21] de-
scribe a centralized spanning tree algorithm for achieving con-
nected and biconnected static networks, while minimizing the
maximum transmission power. (They also describe distributed
algorithms that are based on heuristics and are not guaranteed
to preserve connectivity.) Rodoplu and Meng [23] propose a
distributed position-based topology control algorithm that pre-
serves connectivity; their algorithm is improved by Li and Halpern
[13]. Other researchers working in the field of packet radio net-
works, wireless ad hoc networks, and sensor networks have also
considered the issue of power efficiency and network lifetime,
but have taken different approaches. For example, Hou and Li
[8] analyze the effect of adjusting transmission power to reduce

�Of course, if GPS information is available, a node can simply piggyback its
location to its message and the required directional information can be calculated
from that.

interference and hence achieve higher throughput as compared
to schemes that use fixed transmission power [24]. Heinzelman
et al. [7] describe an adaptive clustering-based routing protocol
that maximizes network lifetime by randomly rotating the role
of per-cluster local base stations (cluster-head) among nodes
with higher energy reserves. Chen et al. [3] and Xu et al. [30]
propose methods to conserve energy and increase network life-
time by turning off redundant nodes. Wu et al. [29] and Monks
et al. [15] describe their power controlled MAC protocols to re-
duce energy consumptions and increase throughput. They do
this through power control of unicast packets, but make no at-
tempt at reducing the power consumption of broadcast packets.

After the initial publication of our results on CBTC [27], [14],
there appeared a number of papers proposing different localized
topology-control algorithms [28], [26], [10]. CBTC was the first
algorithm that simultaneously achieved a variety of useful prop-
erties, such as symmetry, sparseness, and good routes; some of
the recent topology also aim to simultaneously achieve a num-
ber of properties, most notably [26] and [10]. CBTC was also
the first topology-control algorithm that did not require GPS in-
formation, but used only angle-of-arrival information. The only
improvement towards this end that we are aware of is the XTC
topology-control algorithm [28]. The XTC algorithm is some-
what similar in spirit to the SMECN algorithm [13], in that it
removes an edge ��	 �� if, according to some path-loss model,
there is a two-hop path from � to � which nevertheless requires
less energy than the direct path.

The rest of the paper is organized as follows. Section II presents
the basic cone-based algorithm and shows that 
 � ���� is
necessary and sufficient for connectivity. Section III describes
several optimizations to the basic algorithm and proves their cor-
rectness. Section IV extends the basic algorithm so that it can
handle the reconfiguration necessary to deal with failures and
mobility. Section V describes network simulation results that
show the effectiveness of the basic approach and the optimiza-
tions. Section VI summarizes this paper.

II. THE BASIC CONE-BASED TOPOLOGY CONTROL

ALGORITHM

We consider three communication primitives: broadcast, send,
and receive, defined as follows:
� bcast��	 �	�� is invoked by node � to send message � with
power �; it results in all nodes in the set ��������	 ��� � ��
receiving �.
� send��	 �	�	 �� is invoked by node � to sent message � to �
with power �. This primitive is used to send unicast messages,
i.e. point-to-point messages.
� recv��	�	 �� is used by � to receive message � from �.
We assume that when � receives a message � from �, it knows
the reception power �� of message �. This is, in general, less
than the power � with which � sent the message, because of
radio signal attenuation in space. Moreover, we assume that,
given the transmission power � and the reception power � �, � can
estimate �����	 ���. This assumption is reasonable in practice.

For ease of presentation, we first assume a synchronous model;
that is, we assume that communication proceeds in rounds, gov-
erned by a global clock, with each round taking one time unit.
(We deal with asynchrony in Section IV.) In each round each
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node � can examine the messages sent to it, compute, and send
messages using the bcast and send communication primitives.
The communication channel is reliable. We later relax this as-
sumption, and show that the algorithm is correct even in an asyn-
chronous setting.

The basic Cone-Based Topology-Control (CBTC) algorithm
is easy to explain. The algorithm takes as a parameter an an-
gle 
. Each node � tries to find at least one neighbor in every
cone of degree 
 centered at �. Node � starts running the al-
gorithm by broadcasting a “Hello” message using low transmis-
sion power, and collecting Ack replies. It gradually increases
the transmission power to discover more neighbors. It keeps a
list of the nodes that it has discovered and the direction in which
they are located. (As we said in the introduction, we assume that
each node can estimate directional information.) It then checks
whether each cone of degree 
 contains a node. This check is
easily performed: the nodes are sorted according to their angles
relative to some reference node (say, the first node from which
� received a reply). It is immediate that there is a gap of more
than 
 between the angles of two consecutive nodes iff there is a
cone of degree 
 centered at � which contains no nodes. If there
is such a gap, then � broadcasts with greater power. This contin-
ues until either � finds no 
-gap or � broadcasts with maximum
power.

Figure 1 gives the basic CBTC algorithm. In the algorithm, a
“Hello” message is originally broadcasted using some minimal
power ��. In addition, the power used to broadcast the message
is included in the message. The power is then increased at each
step using some function Increase. As in [13] (where a similar
function is used, in the context of a different algorithm), in this
paper, we do not investigate how to choose the initial power � �,
nor do we investigate how to increase the power at each step. We
simply assume some function Increase such that Increase�����
� ���� for sufficiently large �. If transmission power can be
set continuously in [0,����], one can set Increase��� � �� for
fast convergence. If the initial choice of �� is less than the total
power actually needed, then it is easy to see that this guarantees
that �’s estimate of the transmission power needed to reach a
node � will be within a factor of 2 of the minimum transmission
power actually needed to reach �. If transmission power can
only be set to several discrete values, Increase��� can be set to
each value in increasing order. We adopt the latter approach in
our simulation.

Upon receiving a “Hello” message from �, node � responds
with an Ack message. Upon receiving the Ack from �, node �
adds � to its set �� of neighbors and adds �’s direction dir����
(measured as an angle relative to some fixed angle) to its set
�� of directions. The test gap-
���� tests if there is a gap
greater than 
 in the angles in ��. (We take gap-
���� � ��
if ���� � �.)

We use the following notation throughout the paper:
� ����� is the final set of discovered neighbors computed by
node � at the end of running CBTC(
).
� ���� is the corresponding final power.
� �� � ���	 �� � � � � � � � ������.
� �� � ��	
��, where � consists of all nodes in the network
and 
� is the symmetric closure of ��; that is, ��	 �� � 
� iff
either ��	 �� � �� or ��	 �� � ��.

CBTC(
)

�� � �; //the set of discovered neighbors of �
�� � �; //the directions from which the Acks have come
�� � ��;

while �� � ���� and gap-
���� do
�� � ������������;
bcast��	 ��	 �“Hello”, ���� and gather Acks;
�� � �� 	 �� � � discovered�;
�� � �� 	 �dir���� � � discovered�

Fig. 1. The basic cone-based algorithm running at each node �.

� cone���	 
	 ��� is the cone of degree 
 which is bisected by
the line ����, as in Figure 2.
� ����

�	 
	 ��� is the set of nodes inside cone���	 
	 ���.
� circ��	 �� is the circle centered at � with radius �.
� rad���� is the distance ���	 �� of the neighbor � farthest from
� in �����; that is, ��rad����� � ����.
� rad��� is the distance ���	 �� of the neighbor � farthest from
� in 
�.
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Fig. 2. cone���� �� 	��

Note that the �� relation is not symmetric. As the following
example shows, it is possible that ��	 �� � �� but ��	 �� �� ��.

Example II.1: Suppose that � � ���	 ��	 ��	 ��	 ��. (See
Figure 3.) Further suppose that ����	 �� � �. Choose � with
� � � � ���� and place ��	 ��	 �� so that (1) � ����� �
� ����� � ��	 
 � � 
��, (2) � ����� � � ����� � ��	 
 �
(so that � ����� � � ����� � ��	), (3) � ����� � � (so that
� ������ � � ������ � ���	 
 �) and (4) ����	 ��� � ���.
Note that, given � and the positions of �� and �, the positions
of ��, ��, and �� are determined. Since � ����� � � ����� �
� �����, it follows that ����	 �� � ����	 �� � � � ����	 ���;
similarly ����	 �� � � � ����	 ���. (Here and elsewhere we
use the fact that, in a triangle, larger sides are opposite larger
angles.) Assume ���	 � 
 � ����. ������ � ���	 ��	 ���,
since there is no 
-gap with this neighbor set. ����� � ����,
since � has to reach maximum power. Thus, ��	 ��� � ��, but
���	 �� �� ��.
Example II.1 shows the need for taking the symmetric closure in
computing ��. Although ���	 �� � ��, there would be no path
from �� to � if we considered just the edges determined by ��,
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Fig. 3. �� may not be symmetric.

without taking the symmetric closure. (The fact that 
 � ���	
in this example is necessary. As we shall see in Section III-B,
taking the symmetric closure is not necessary if 
 � ���	.)
As we have already observed, each node � knows the power
required to reach all nodes � such that ��	 �� � 
�: it is just
the max of ���� and the power required by � to reach each of
the nodes � from which it received a “Hello” message. (As we
said earlier, if � receives a “Hello” from �, since it includes the
power used to transmit it, � can determine the power required
for � to reach �.)

We now prove the two main results of this paper: (1) if 
 �
����, then �� preserves the connectivity of �� and (2) if 
 �
����, then �� may not preserve the connectivity of ��. The
following lemma will be used in the proof of (1).

Lemma II.1: If 
 � ����, and � and � are nodes in � such
that ��	 �� � 
� (that is, ��	 �� is an edge in the graph ��,
so that ���	 �� � �), then either ��	 �� � 
� or there exist
��	 �� � � such that (a) ����	 ��� � ���	 ��, (b) either �� � � or
��	 ��� � 
�, and (c) either � � � � or ��	 ��� � 
�.
Proof: If ��	 �� � 
�, we are done. Otherwise, it must be the
case that ���	 �� � ��
�rad����	 rad�	���. Thus, both � and �
terminate CBTC(
) with no 
-gap. It follows that ����	 
	 ���
����� �� � and ����	 
	 �������� �� �. Choose � �����	 
	 ��
� ����� such that � ��� is minimal. (See Figure 4.) Sup-
pose without loss of generality that � is in the halfplane above
��. If � is actually located in cone��	 ���		 ��, since ���	 �� �
rad�	�� � ���	 ��, it follows that ���	 �� � ���	 ��. For other-
wise, the side �� would be at least as long as any other side in
the triangle ���, so that � ��� would have to be at least as large
as any other angle in the triangle. But since � ��� � ��	, this
is impossible. Thus, taking �� � � and �� � �, the lemma holds
in this case. So we can assume without loss of generality that
� �� ����	 ���		 �� (and, thus, that ����	 ���		 �� ������ �
�). Let � be the first node in ����� that a ray that starts at ��
would hit as it sweeps past �� going counterclockwise. By con-
struction, � is in the half-plane below �� and � ��� � 
.

Similar considerations show that, without loss of generality,
we can assume that ����	 ���		 �������� � �, and that there
exist two points �	 � � ����� such that (a) � is in the halfplane
above ��, (b) � is in the halfplane below ��, (c) at least one of �
and � is inside cone��	 
	 ��, and (d) � ��� � 
. See Figure 4.
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Fig. 4. Illustration for the proof of Lemma II.1.

If ���	 �� � ���	 ��, then the lemma holds with �� � � and
�� � �, so we can assume that ���	 �� � ���	 ��. Similarly,
we can assume without loss of generality that ���	 �� � �. We
now prove that ���	 �� and ���	 �� cannot both be greater than
or equal to �. This will complete the proof since, for example, if
���	 �� � �, then we can take �� � � and �� � � in the lemma.

Suppose, by way of contradiction, that ���	 ��� � and ���	 ��
� �. Let � be the intersection point of circ��	 �� and circ��	 ��
that is closest to �. Recall that at least one of � and � is inside
cone��	 
	 ��. As we show in Appendix A, since node � must
be outside (or on) both circles circ��	 �� and circ��	 ��, we have
� ��� � � ��� (see the closeup on the far right side of Figure 4).

Since ���	 �� � ���	 �� � ���	 �� � �, and ���	 �� � �, it
follows that � ��� � ��	. Thus,

� ��� � � ���
 � ��� � � ���
 ��	 and
� ��� � � 
 �� � ���	

and so
� ���
 ��	 � � 
 �� � ��� and	

� ��� � ���	
 � ������

Since � ��� � � ���, we have that

� ��� � ���	
 � ������ (1)

By definition of �, � ��� � 
�� � �����, so � ��� � ���	

����� � ������ � 
��. Thus, it must be the case that � ��
����	 
	 ��, so � � ����	 
	 ��.

Arguments identical to those used to derive (1) (replacing the
role of � and � by � and �, respectively) can be used to show
that

� ��� � ���	
 � ������ (2)

From (1) and (2), we have

� ��� 
 � ���
� ����	
 � ������ 
 ����	
 �� � ����
� �� 
 � �����
 �� � ����
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Since � ��� 
 � ��� � 
 � ����, we have that ���� � �� 

� ����� 
 �� � ���� Thus,

� �����
�� � ��� � �� � ���
 � ����
	� � ������ � �����

Since � ���
 � ���� 
� ����, it easily follows that � ��� �
���. As we showed earlier, � ��� � � ��� � ��	. Therefore,
� ��� 
 � ��� � ����. This is a contradiction.

Theorem II.2: If 
 � ����, then �� preserves the connec-
tivity of ��; � and � are connected in �� iff they are connected
in ��.
Proof: Since �� is a subgraph of ��, it is clear that if � and �
are connected in ��, they must be connected in ��.

We now prove the converse. Order the edges in 
� by length.
We proceed by induction on the the rank of the edge in the or-
dering to show that if ��	 �� � 
�, then there is a path from � to
� in ��. For the base case, if ��	 �� is the shortest edge in 
�,
then it is immediate from Lemma II.1 that ��	 �� � 
�. For note
that, by construction, if ��	 �� � 
� and ����	 ��� � ���	 ��,
then ���	 ��� � 
� and is a shorter edge than ��	 ��. For the
inductive step, suppose that ��	 �� is the �th shortest edge in

� and, by way of contradiction, that ��	 �� is not in 
�. By
Lemma II.1, there exist ��	 �� � � such that (a) ����	 ��� �
���	 ��, (b) either � � �� or ��	 ��� � 
�, and (c) either � � � �

or ��	 ��� � 
�. As we observed, it follows that ���	 ��� � 
�.
Since ����	 ��� � ���	 ��, by the inductive hypothesis, it follows
that there is an path from �� to �� in ��. Since 
� is symmetric,
it is immediate that there is also a path from � to � in ��. It
immediately follows that if � and � are connected in ��, then
there is a path from � to � in ��.

The proof of Theorem II.2 gives some extra information, which
we cull out as a separate corollary:

Corollary II.3: If 
 � ����, and � and � are nodes in �
such that ��	 �� � 
�, then either ��	 �� � 
� or there exists a
path �� � � � �� such that �� � �, �� � �, ��
	 �
��� � 
�, and
���
	 �
��� � ���	 ��, for  � �	 � � � 	 � 
 �.

Next we prove that degree ���� is a tight upper bound; if 
 �
����, then CBTC(
) does not necessarily preserve connectivity.

Theorem II.4: If 
 � ����, then CBTC(
) does not neces-
sarily preserve connectivity.
Proof: Suppose 
 � ���� 
 � for some � � �. We con-
struct a graph �� � ��	
�� such that CBTC(
) does not
preserve the connectivity of this graph. � has eight nodes:
��	 ��	 ��	 ��	 ��	 ��	 ��	 ��. (See Figure 5.) We call ��	 ��	 ��	 ��
the �-cluster, and ��	 ��	 ��	 �� the �-cluster. The construction
has the property that ����	 ��� � � and for  	 ! � �	 �	 �	 	,
we have ����	 �
� � �, ����	 �
� � �, and ���
	 ��� � � if
 
 ! � �. That is, the only edge between the �-cluster and
the �-cluster in �� is ���	 ���. However, in ��, the ���	 ���
edge disappears, so that the u-cluster and the v-cluster are dis-
connected.

In Figure 5, � and �� are the intersection points of the cir-
cles of radius � centered at �� and ��, respectively. Node ��
is chosen so that � ������ � ���. Similarly, �� is chosen so
that � ������ � ��� and �� and �� are on opposite sides of the
line ����. Because of the right angle, it is clear that, whatever
����	 ��� is, we must have ����	 ��� � ����	 ��� � �; simi-
larly, ����	 ��� � � whatever ����	 ��� is. Next, choose �� so
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Fig. 5. A disconnected graph if � � ���� � �.

that � ������ � ����
	 �� and ���� comes after ���� as a ray
sweeps around counterclockwise from ����. It is easy to see that
����	 ��� � �, whatever ����	 ��� is, since � ������ � ���.
For definiteness, choose �� so that ����	 ��� � ���. Node �� is
chosen similarly. The key step in the construction is the choice
of �� and ��. Note that � ������ � ����. Let �� be a point
on the line through �� parallel to ���� slightly to the left of ��

such that � ������ � 
. Since 
 � ���� 
 �, it is possible to
find such a node ��. Since ����	 �

�� � ����	 �
�� � � by con-

struction, it follows that ����	 ��� � � and ����	 ��� � �. It
is clearly possible to choose ����	 ��� sufficiently small so that
����	 ��� � �. The choice of �� is similar.

It is now easy to check that when �� runs CBTC(
), it will
terminate with ����� � ��
�����	 ���	 ���� � �; similarly
for ��. Thus, this construction has all the required properties.

III. OPTIMIZATIONS

In this section, we describe three optimizations to the basic
algorithm. We prove that these optimizations allow some of the
edges to be removed while still preserving connectivity.

A. The shrink-back operation

In the basic CBTC(
) algorithm, � is said to be a boundary
node if, at the end of the algorithm, � still has an 
-gap. Note
that this means that, at the end of the algorithm, a boundary
node broadcasts with maximum power. An optimization would
be to add a shrinking phase at the end of the growing phase
to allow each boundary node to broadcast with less power, if
it can do so without reducing its cone coverage. To make this
precise, given a set dir of directions (angles) and an angle 
,
define cover��dir� � �" � for some "� � dir, �" 
 "�� ���
�� � 
���. We modify CBTC(
) so that, at each iteration, a
node in �� is tagged with the power used the first time it was
discovered. Suppose that the power levels used by node � during
the algorithm were ��	 � � � 	 ��. If � is a boundary node, �� is the
maximum power ����. A boundary node successively removes
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nodes tagged with power ��, then ����, and so on, as long as
their removal does not change the coverage. That is, let dir 
,  �
�	 � � � 	 �, be the set of directions found with all power levels � 
 or
less, then the minimum  such that cover��dir
� � cover��dir��
is found. Let � �

���� consist of all the nodes in ����� tagged
with power �
 or less. Let � �

� � ���	 �� � � � ��
�����, and let


�
� be the symmetric closure of � �

�. Finally, let ��
� � ��	
�

��.
Theorem III.1: If 
 � ����, then ��

� preserves the connec-
tivity of ��.
Proof: It is easy to check that the proof of Theorem II.2 de-
pended only on the cone coverage of each node, so it goes through
without change. In more detail, given any two nodes � and � in
��
�, if ���	 �� � � � � and and ��	 �� �� 
�

�, then either both �
and � did not use power sufficient to reach distance � in the ba-
sic CBTC algorithm or one or both of them used enough power
to reach distance � but then shrank back. In either case, nodes �
and � must still have neighbors in � �

���� and � �
���� fully cov-

ering the cones �#����	 
	 �� and �#����	 
	 ��, respectively,
since any shrink-back operation can only remove those neigh-
bors that provide redundant cone coverage. Thus, the proof of
Lemma II.1 goes through with no change. The remainder of the
argument follows exactly the same lines as that of the proof of
Theorem II.2.

Note that this argument actually shows that we can remove
any nodes from �� that do not contribute to the cone coverage.
However, our interest here lies in minimizing the power needed
for broadcast, not in minimizing the number of nodes in � �.
There may be some applications where it helps to reduce the
degree of a node; in this case, removing further nodes may be a
useful optimization.

B. Asymmetric edge removal

As shown by Example II.1, in order to preserve connectivity,
it is necessary to add an edge ��	 �� to 
� if ��	 �� � ��, even
if ��	 �� �� ��. In Example II.1, 
 � ���	. This is not an
accident. As we now show, if 
 � ���	, not only don’t we have
to add an edge ��	 �� if ��	 �� � ��, we can remove an edge
��	 �� if ��	 �� � �� but ��	 �� �� ��. Let 
�

� � ���	 �� �
��	 �� � �� and ��	 �� � ���. Thus, while 
� is the smallest
symmetric set containing ��, 
�

� is the largest symmetric set
contained in ��. Let ��

� � ��	
�
� �.

Theorem III.2: If 
 � ���	, then ��
� preserves the connec-

tivity of ��.
Proof: We start by proving the following lemma, which strength-
ens Corollary II.3.

Lemma III.3: If 
 � ���	, and � and � are nodes in � such
that ��	 �� � 
�, then either ��	 �� � �� or there exists a path
�� � � � �� such that �� � �, �� � �, ��
	 �
��� � ��, and
���
	 �
��� � ���	 ��, for  � �	 � � � 	 � 
 �.
Proof: Order the edges in 
� by length. We proceed by strong
induction on the rank of an edge in the ordering. Given an edge
��	 �� � 
� of rank � in the ordering, if ��	 �� � ��, we are
done. If not, as argued in the proof of Lemma II.1, there must be
a node � � ����	 
	 ��������. Since 
 � ���	, the argument
in the proof of Lemma II.1 also shows that ���	 �� � ���	 ��.
Thus, ��	 �� � 
� and has lower rank in the ordering of edges.
Applying the induction hypothesis, the lemma holds for ��	 ��.

This completes the proof.

Lemma III.3 shows that if ��	 �� � 
�, then there is a path
consisting of edges in �� from � to �. This is not good enough
for our purposes; we need a path consisting of edges in 
�

� . The
next lemma shows that this is also possible.

Lemma III.4: If 
 � ���	, and � and � are nodes in � such
that ��	 �� � ��, then there exists a path �� � � � �� such that
�� � �, �� � �, ��
	 �
��� � 
�

� , for  � �	 � � � 	 � 
 �.
Proof: Order the edges in �� by length. We proceed by strong
induction on the rank of an edge in the ordering. Given an edge
��	 �� � �� of rank � in the ordering, if ��	 �� � 
�

� , we are
done. If not, we must have ��	 �� �� ��. Since ��	 �� � 
�,
by Lemma III.3, there is a path from � to � consisting of edges
in �� all of which have length smaller than ���	 ��. If any of
these edges is asymmetric, i.e. in �� 
 
�

� , we can apply the
inductive hypothesis to replace the edge by a path consisting
only of edges in 
�

� . By the symmetry of 
�
� , such a path from

� to � implies a path from � to �. This completes the inductive
step.

The proof of Theorem III.2 is now immediate from Lem-
mas III.3 and III.4.

To implement asymmetric edge removal, the basic CBTC needs
to be enhanced slightly. After finishing CBTC(
), a node � must
send a message to each node � to which it sent an Ack message
that is not in �����, telling � to remove � from ����� when
constructing 
�

� . It is easy to see that the shrink-back optimiza-
tion discussed in Section III-A can be applied together with the
removal of these asymmetric edges.

There is a tradeoff between using CBTC(����) and using
CBTC(���	) with asymmetric edge removal. ��rad����
���) will
be no greater than ����
�� if the �������� function is the same,
links are reliable, and Acks responding to one “Hello” mes-
sage are received before the next one is sent. However, the
power ��������
��� with which � needs to transmit may be
greater than ����
��, since � may need to reach nodes � such
that � � ��
����� but � �� ��
�����. In contrast, if 
 � ���	,
then asymmetric edge removal allows � to still use ����
�� and
may allow � to use power less than �	��
��. Our experimental
results confirm this. See Section V.

C. Pairwise edge removal

The final optimization aims at further reducing the transmis-
sion power of each node. In addition to the directional informa-
tion, this optimization requires two other pieces of information.
First, each node � is assigned a unique integer ID denoted ID�,
and that ID� is included in all of �’s messages. Second, although
a node � does not need to know its exact distance from its neigh-
bors, given any pair of neighbors � and �, node � needs to know
which of them is closer. This can be achieved as follows. Re-
call that a node grows its radius in discrete steps. It includes its
transmission power level in each of the “Hello” messages. Each
discovered neighbor node also includes its transmission power
level in the Ack. When � receives messages from nodes �� and
��, it can deduce which of �� and �� is closer based on the trans-
mission and reception powers of the messages.
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Even after the shrink-back operation and possibly asymmetric
edge removal, there are many edges that can be removed while
still preserving connectivity. For example, if three edges form a
triangle, we can clearly remove any one of them while still main-
taining connectivity. In this section, we improve on this result
by showing that if there is an edge from � to �� and from � to
��, then we can remove the longer edge even if there is no edge
from �� to ��, as long as ����	 ��� � ��
����	 ���	 ���	 ����.
Note that a condition sufficient to guarantee that ����	 ��� �
��
����	 ���	 ���	 ���� is that � ����� � ��	 (since the longest
edge will be opposite the largest angle).

To make this precise, we use the notion of an edge ID. Each
edge ��	 �� is assigned an edge ID � ���	 �� � � �,  �,  ��, where
 � � ���	 ��,  � � ����ID�, ID	�, and  � � � ��ID�, ID	).
Edge IDs are compared lexicographically, so that � 	 !	 �� �
� �	 !�	 ��� iff either (a)  �  �, (b)  �  � and ! � ! �, or (c)
 �  �, ! � !�, and � � ��.

Definition III.5: If � and � are neighbors of �, � ��� � ��	,
and � ���	 �� � � ���	��, then ��	 �� is a redundant edge.
As the name suggests, redundant edges are redundant, in that it
is possible to remove them while still preserving connectivity.
The following theorem proves this.

Theorem III.6: For 
 � ����, all redundant edges can be
removed while still preserving connectivity.
Proof: Let 
��

� consist of all the non-redundant edges in 
�.
We show that if ��	 �� � 
� 
 
��

� , then there is a path from
� to � consisting only of edges in 
��

� . Clearly, this suffices to
prove the theorem.

Let ��	 ��	 
 
 
 	 �� be a listing of the redundant edges (i.e,
those in 
� 
 
��

� ) in increasing lexicographic order of edge
ID. We prove, by induction on �, that for every redundant edge
�� � ���	 ��� there is a path from �� to �� consisting of edges in

��
� . For the base case, consider �� � ���	 ���. By definition,

there must exist an edge ���	 ��� such that � ������ � ��	
and � ����	 ��� � � ����	 ���. Since �� is the redundant edge
with the smallest edge ID, ���	 ��� cannot be a redundant edge.
Since � ������ � ��	, it follows that ����	 ��� � ����	 ���. If
���	 ��� � 
�, then ���	 ��� � 
��

� (since ���	 ��� is the short-
est redundant edge) and ���	 ���	 ���	 ��� is the desired path of
non-redundant edges. On the other hand, if �� �	 ��� �� 
� then,
since ����	 ��� � ����	 ��� � � and 
 � ����, by Corol-
lary II.3, there exists a path from �� to �� consisting of edges in

� all shorter than ����	 ���. Since none of these edges can be
redundant edge, this gives us the desired path.

For the inductive step, suppose that for every � � � ��� 	 ���,
� � ! �  
 �, we have found a path $ �

� between �� and
�� , which contains no redundant edges. Now consider � 
 �
��
	 �
�. Again, by definition, there exists another edge �� 
	 �
�
with � ���
	 �
� � � ���
	 �
� and � �
�
�
 � ��	. If ��
	 �
�
is a redundant edge, it must be one of ��’s, where ! �  
 �.
Moreover, if the path $
 (from Corollary II.3) between � 
 and
�
 contains a redundant edge �� , we must have ��� � � ��
� and
so ! �  
 �. By connecting ��
	 �
� with $
 and replacing
every redundant edge �� on the path with $ �

� , we obtain a path
$ �

 between �
 and �
 that contains no redundant edges. This

completes the proof.

Although Theorem III.6 shows that all redundant edges can be
removed, this doesn’t mean that all of them should necessarily
be removed. For example, if we remove some edges, the paths
between nodes become longer, in general. Since some over-
head is added for each link a message traverses, having fewer
edges can affect network throughput. In addition, if routes are
known and many messages are being sent using point-to-point
communication between different senders and receivers, having
fewer edges is more likely to cause congestion. Since we would
like to reduce the transmission power of each node, we remove
only redundant edges with length greater than the longest non-
redundant edges. We call this optimization the pairwise edge
removal optimization.

IV. DEALING WITH RECONFIGURATION, ASYNCHRONY,
AND FAILURES

In a multi-hop wireless network, nodes can be mobile. Even
if nodes do not move, nodes may die if they run out of energy.
In addition, new nodes may be added to the network. We need a
mechanism to detect such changes in the network. This is done
by the Neighbor Discovery Protocol (NDP). A NDP is usually a
simple beaconing protocol for each node to tell its neighbor that
it is still alive. The beacon includes the sending node’s ID and
the transmission power of the beacon. A neighbor is considered
failed if a pre-defined number of beacons are not received for a
certain time interval % . A node � is considered a new neighbor
of � if a beacon is received from � and no beacon was received
from � during the previous % interval.

The question is what power a node should use for beaconing.
Certainly a node � should broadcast with sufficient power to
reach all of its neighbors in 
� (or 
�

� , if 
 � ���	). As
we will show, if � uses a beacon with power ��rad���� —the
power needed for � to reach all its neighbors in 
�, then this is
sufficient for reconfiguration to work with the basic cone-based
algorithm (possibly combined with asymmetric edge removal if

 � ���	, in which case we can use power ��rad����)).

We define three basic events:
� A join���� event happens when node � detects a beacon from
node � for the first time;
� A &�������� event happens when node � misses some prede-
termined number of beacons from node �;
� An aChange���� event happens when � detects that �’s an-
gle with respect to � has changed. (Note this could be due to
movement by either � or �.)

Our reconfiguration algorithm is very simple. It is convenient
to assume that each node is tagged with the power used when
it was first discovered, as in the shrink-back operation. (This is
not necessary, but it minimizes the number of times that CBTC
needs to be rerun.)
� If a leave���� event happens, and if there is an 
-gap after
dropping dir���� from ��, node � reruns CBTC(
) (as in Fig-
ure 1), starting with power ��rad����� (i.e., taking �� � ��rad�����).
� If a join���� event happens, � computes dir���� and the power
needed to reach �. As in the shrink-back operation, � then
removes nodes, starting with the farthest neighbor nodes and
working back, as long as their removal does not change the cov-
erage.
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� If an aChange���� event happens, node � modifies the set
�� of directions appropriately. If an 
-gap is then detected,
then CBTC(
) is rerun, again starting with power ��rad�����.
Otherwise, nodes are removed, as in the shrink-back operation,
to see if less power can be used.

In general, there may be more than one change event that is
detected at a given time by a node �. (For example, if � moves,
then there will be in general several leave, !# � and aChange
events detected by �.) If more than one change event is detected
by �, we perform the changes suggested above as if the events
are observed in some order, as long as there is no need to rerun
CBTC. If CBTC needs to be rerun, it deals with all changes
simultaneously.

Intuitively, this reconfiguration algorithm preserves connec-
tivity. We need to be a little careful in making this precise, since
if the topology changes frequently enough, the reconfiguration
algorithm may not ever catch up with the changes, so there may
be no point at which the connectivity of the network is actually
preserved. Thus, what we want to show is that if the topology
ever stabilizes, so that there are no further changes, then the
reconfiguration algorithm eventually results in a graph that pre-
serves the connectivity of the final network, as long as there are
periodic beacons. It should be clear that the reconfiguration al-
gorithm guarantees that each cone of degree 
 around a node �
is covered (except for boundary nodes), just as the basic algo-
rithm does. Thus, the proof that the reconfiguration algorithm
preserves connectivity follows immediately from the proof of
Theorem II.2.

While this reconfiguration algorithm works in combination
with the basic algorithm CBTC(
) and in combination with the
asymmetric edge removal optimization, we must be careful in
combining it with the other optimizations discussed in Section III.
In particular, we must be very careful about what power a node
should use for its beacon. For example, if the shrink-back oper-
ation is performed, using the power to reach all the neighbors in
��
� does not suffice. For suppose that the network is temporarily

partitioned into two subnetworks �� and ��; for every pair of
nodes �� � �� and �� � ��, the distance ����	 ��� � �. Sup-
pose that �� is a boundary node in �� and �� is a boundary node
in ��, and that, as a result of the shrink-back operation, both � �

and �� use power ' � � ����. Further suppose that later nodes
�� and �� move closer together so that ����	 ��� � �. If ' � is
not sufficient power for �� to communicate with ��, then they
will never be aware of each other’s presence, since their bea-
cons will not reach each other, so they will not detect that the
network has become reconnected. Thus, network connectivity
is not preserved.

This problem can be solved by having the boundary nodes
broadcast with the power computed by the basic CBTC(
) al-
gorithm, namely ���� in this case. Similarly, with the pair-
wise edge removal optimization, it is necessary for �’s beacon
to broadcast with ��rad����, i.e., the power needed to reach all
of �’s neighbors in 
�, not just the power needed to reach all of
�’s neighbors in 
��

� . It is easy to see that this choice of beacon
power guarantees that the reconfiguration algorithm works.

It is worth noting that a reconfiguration protocol works per-
fectly well in an asynchronous setting. In particular, the syn-
chronous model with reliable channels that has been assumed

up to now can be relaxed to allow asynchrony and both com-
munication and node failures. Now nodes are assumed to com-
municate asynchronously, messages may get lost or duplicated,
and nodes may fail (although we consider only crash failures:
either a node crashes and stops sending messages, or it follows
its algorithm correctly). We assume that messages have unique
identifiers and that mechanisms to discard duplicate messages
are present. Node failures result in leave events, as do lost mes-
sages. If node � gets a message after many messages having
been lost, there will be a join event corresponding to the earlier
leave event.

V. EXPERIMENTAL RESULTS

How effective is our algorithm and its optimizations as com-
pared to other approaches? Before we answer this question, let
us briefly review existing approaches. To our knowledge, among
the topology-control algorithms in the literature [24], [8], [9],
[21], [23], only Rodoplu and Meng’s algorithm [23] attempts to
optimize for energy efficiency while maintaining network con-
nectivity. Following [13], we refer to Rodoplu and Meng’s algo-
rithm as the MECN algorithm (for minimum-energy communi-
cation network). The algorithms in [24], [8], [9] try to maximize
network throughput; they do not guarantee network connectiv-
ity. Ramanathan and Rosales-Hain [21] have considered mini-
mizing the maximum transmission power of all nodes by using
centralized MST algorithms. However, their distributed heuris-
tic algorithms do not guarantee network connectivity. Since we
are only interested in algorithms that preserve connectivity and
are energy efficient, it seems that the only relevant algorithm
in the literature is the MECN algorithm. However, since the
SMECN algorithm outperforms MECN [13], we will compare
our algorithm with SMECN only.

We refer to the basic algorithm as CBTC, and to our complete
algorithm with all applicable optimizations as OPT-CBTC.3 Fur-
thermore, we also make the comparison with the no-topology-
control case, where each node always uses the maximum trans-
mission power to send a packet (we refer to this approach as
MaxPower). In the case of no-topology-control, the reason we
choose maximum power is that it guarantees that there will be
no network partitions due to insufficient transmission power.

A. Simulation Environment

The topology-control algorithms – CBTC, SMECN and Max-
Power – are implemented in the ns-2 network simulator [20], us-
ing the wireless extension developed at Carnegie Mellon [6]. We
generated 20 random networks, each with 200 nodes. Each node
has a maximum transmission range of ��� meters and initial en-
ergy of 0.5 Joule. The nodes are placed uniformly at random
in a rectangular region of 1500 by 1500 meters. Although there
have been some papers on realistic topology generation [31],
[1], most of them have focused on the Internet setting. Since
large multihop wireless networks such as sensor networks are
often deployed in a somewhat random fashion (for example, an
airplane may drop sensors over some geographical region), we
believe that assuming nodes are placed uniformly at random is
not an unreasonable assumption.
�For brevity, we will omit the parameter � in our presentation when it is clear

from the context.
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We assume the two-ray propagation model for terrestrial com-
munication [22]. A transmission from node � to node � takes
power ���	 �� � ����	 ��

� for some constant � at node �, where
� � � is the path-loss exponent of outdoor radio propagation
models, and ���	 �� is the distance between � and �. The model
has been shown to be close to reality in many environment set-
tings [22]. Finally, we take the following parameter settings,
which are chosen to simulate the 914MHz Lucent WaveLAN
DSSS radio interface:
� the carrier frequency is ���MHz;
� the transmission raw bandwidth 2MHz;
� antennas are omni-directional with 0dB gain, and the antenna
is placed ��� meters above a node;
� the receive threshold is 
��dBW;
� the carrier sense threshold is 
���dBW;
� the capture threshold is ��dB.

In order to simulate the effect of power control in the neighbor-
discovery process, we made changes to the physical layer of the
ns-2 simulation code to support eight discrete power levels. This
seems to be more in keeping with current practice. For example,
currently the Aironet PC4800 supports five transmission-power
levels. Eight power levels seems sufficient to provide a realis-
tic simulation of the kind of scenarios that arise in practice. In
our simulation, power level 8 gives the maximum transmission
range of 250 meters. The Increase function in Figure 1 moves
from one power level to the next higher level. For the “Hello”
packet in the CBTC algorithm, the transmission power level is
controlled by the algorithm itself. Specifically, as we discussed
in Section IV, node � broadcasts using the final power �� (as
determined by the Increase function in Figure 1). For point-to-
point transmissions from a node �, the minimum power level
needed to reach all of �’s neighbors is used. We do not use
different power levels for different neighbors because there is a
delay associated with changing power levels in practice (in the
order of 10 milliseconds [5] for certain wireless radio hardware),
which some applications may not be able to tolerate.

To simulate interference and collision, we choose the WaveLAN-
I [25] CSMA/CA MAC protocol. Since topology control by it-
self does not provide routing, we used the AODV [17] routing
protocol in our simulation.

To simulate the network application traffic, we use the fol-
lowing application scenario: we choose 60 connections, i.e. 60
source-destination pairs. All the source and destination nodes
are distinct. For each of these 60 connections in sequence, the
source (if it is still alive) sends constant bit rate (CBR) traffic to
its destination. The sending rate is 2 packets/sec and the packet
size is 512 bytes. This traffic pattern seems to generate sufficient
load in the network for our evaluation. We do not expect that the
results would be qualitatively different if fewer or more connec-
tions were used. We use the same 60 connections in all our
experiments. Since we conduct the experiments in 20 random
networks, there is no need to randomize over the connections as
well.

B. Network Topology Characteristics

Before comparing CBTC with SMECN and MaxPower through
detailed network simulation, we first examine the topology graphs
that result from using each of these approaches in the 20 random

networks described previously.
Figure 6 illustrates how CBTC and the various optimizations

improve network topology using the results from one of the ran-
dom networks. Figure 6(a) shows a topology graph produced by
MaxPower. Figures 6(b) and (c) show the corresponding graphs
produced by CBTC(���	) and CBTC(����), respectively. We
can see that both CBTC(���	) and CBTC(����) allow nodes
in the dense areas to automatically reduce their transmission ra-
dius. Figures 6(d) and (e) illustrate the graphs after the shrink-
back operation is performed. Figure 6(f) shows the graph for

 � ���	 as a result of the shrink-back operation and the asym-
metric edge removal. Figures 6(g) and (h) show the topology
graphs after all applicable optimizations. We can see that the
optimizations are very effective in further reducing the trans-
mission radius of nodes.

Table I compares the network graphs resulted from the cone-
based algorithm parameterized by 
 � ���	 and 
 � ����,
in terms of average node degree and average radius. It also
shows the corresponding results for SMECN and MaxPower.
The results are averaged over the 20 random networks men-
tioned earlier. As expected, using a larger value of 
 results
in a smaller node degree and radius. However, as we discussed
in Section III-B, there is a tradeoff between using CBTC(���	)
and CBTC(����). Using the basic algorithm, we have rad���
��
� ����� � rad���
�� � �����. After applying asymmetric edge
removal with 
 � ���	, the resulting radius is 176.6. Hence,
asymmetric edge removal can result in significant savings. After
applying all applicable optimizations, both 
 � ���	 and 
 �
���� end up with very similar results in terms of both average
node degree and average radius. However, there are secondary
advantages to setting 
 � ����. In general, CBTC(����) will
terminate sooner than CBTC(���	) and so expend less power
during its execution (since ����
�� � ����
��). Thus, if recon-
figuration happens frequently, the advantage of using CBCT(����)
over CBCT(���	) in terms of reduction on power consumption
can be significant.

The sixth row (MaxPower) gives the performance numbers
for the case where each node uses the maximum transmission
power of ������. We can see that using topology control cuts
down the average degree by a factor of more than 3 (3.8 vs.
15.0) and the average radius by a factor of more than 2 (113.1
or 110.7 vs. 250). This clearly demonstrates the effectiveness of
our topology-control algorithms.

The last row shows the results for SMECN. Recall that SMECN
requires GPS position information, while the CBTC algorithms
rely on only directional information. So our objective in the
comparison is to study how well CBTC performs with the lack
of distance information. The average radius numbers in Table I
show that the performance of OPT-CBTC is in fact very close
to (and slightly better than) that of SMECN (113.1 vs. 115.8).
Note that SMECN does achieve a smaller average node degree
(2.7 vs. 3.7). However, with SMECN, each node typically has
more nodes within its radius that are not its neighbors. This
is because for a node � to be considered a neighbor of � in
SMECN, direct transmission has to take less energy than any
two-hop path. Two-hop paths are less desirable than single-hop
paths, they occupy the media for twice as long as one-hop trans-
missions. On the other hand, although OPT-CBTC reduces the
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Fig. 6. The network graphs after different optimizations.
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Average Node Degree Average radius

Basic 
 � ���� 8.8 205.4

 � ���	 10.9 220.6

with #�� 
 � ���� 8.3 194.3

 � ���	 10.1 209.4

with #�� 
 � ���	 6.9 176.6
with #�� and #�� 
 � ���	 6.7 171.8
with all optimizations (OPT-CBTC) 
 � ���� 3.8 110.7


 � ���	 3.7 113.1
MaxPower N/A 15.0 250
SMECN N/A 2.7 115.8

TABLE I

AVERAGE DEGREE AND RADIUS OF THE CONE-BASED TOPOLOGY-CONTROL ALGORITHM WITH DIFFERENT � AND OPTIMIZATIONS (
��–SHRINK-BACK,


��–ASYMMETRIC EDGE REMOVAL).

power demand of nodes as much as SMECN does, SMECN has
the additional property of preserving minimum-energy paths. If
a different power level can be used for each neighbor, and the
amount of unicast traffic is significantly greater than the amount
of neighbor broadcast traffic, using SMECN can be beneficial.

C. Network Performance Analysis

We next use detailed network simulations to evaluate the al-
gorithms in terms of energy consumption, number of delivered
packets, and latency. Since the two CBTC settings 
 � ����
and 
 � ���	 produced similar network graphs (as shown in
Table I), we consider only 
 � ���	 in the remaining exper-
iments. 4 We simulate CBTC, MaxPower, and SMECN using
the same traffic pattern and random networks for performance
measurements. As the power available to a node is decreased
after each packet reception or transmission, nodes in the sim-
ulation die over time. After a node dies, the network must be
reconfigured. In our simulation, the NDP beacons trigger the
reconfiguration protocol. The beacons are sent once per second
for SMECN and CBTC, and each of them is jittered randomly
before it is actually sent to avoid synchronization effects. For
CBTC and OPT-CBTC, the beacons use power ��rad����
���.
For SMECN, the beacons use the appropriate power level as
computed by SMECN’s neighbor discovery process. Note that
no beacon is required in the MaxPower approach. For simplic-
ity, we do not simulate node mobility, although some of the ef-
fects of mobility—that is, the triggering of the reconfiguration
protocol—can already be observed when nodes run out of en-
ergy. In the rest of this section, we compare the performance
of CBTC, OPT-CBTC, SMECN, and MaxPower. All results are
averaged over the 20 random networks described in Section V-
A.

C.1 Energy Consumption

We investigate the energy consumption of the three approaches
in terms of the number of traffic sources alive and the average
transmission power levels over time. As can be seen from Fig-
ure 7, OPT-CBTC has the best performance. CBTC performs

�Since we use only a few discrete power levels, there is no significant benefit
in using � � ����.

worse than the SMECN algorithm, but uses only directional in-
formation. MaxPower has significantly worse performance than
the other algorithms. Figure 7(a) shows the number of traffic
sources that remain alive over time. We can see that when almost
all the traffic sources in MaxPower are dead at time 600, about
��� and 	�� of the traffic sources are still alive in SMECN and
CBTC, respectively, and more than ��� of the traffic sources
are still alive in OPT-CBTC. The basic CBTC algorithm does
not perform as well as OPT-CBTC, but it still performs much
better than MaxPower.

Next, we consider how the transmission power evolves over
time as nodes die over time. Figure 7(b) shows the average
power level averaged over all nodes. The “average power level”
at time � is computed by considering, for each node � still alive
at time �, the minimum power currently needed for � to reach all
its neighbors (recall that this is the power that � uses in the sim-
ulation to send all messages except the NDP “Hello” beacons),
and then averaging this number over all nodes still alive. For
MaxPower, the average power is constant over time because the
maximum power is always used. The curves show that, while
the average power level of CBTC and SMECN increases rapidly
over time as more nodes die, the power level of OPT-CBTC in-
creases rather slowly and remains much lower.

C.2 Total Number of Packets Delivered and Latency

We collected packet delivery and latency statistics at the end
of our simulation. SMECN, CBTC and OPT-CBTC were able to
deliver 1.66, 1.44, and 2.94 times the amount of packets deliv-
ered by MaxPower, respectively, throughout the simulation. The
statistics for packet delivery and the number of traffic sources
still alive together show that it is undesirable to transmit with
large radius because it increases energy consumption and causes
unnecessary interference, and consequently decreases through-
put. The average packet latencies in decreasing order are 271,
170, 126 and 79 msec for MaxPower, OPT-CBTC, CBTC and
SMECN, respectively. MaxPower has the highest latency due
to its low spatial reuse of the spectrum. That is, a successful
transmission by MaxPower reserves a large physical area. Any
node that hears the transmission within this area backs off and
does not transmit itself. Therefore, the larger the area reserved,
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Fig. 7. Performance comparison through detailed network simulation.

the fewer nodes can transmit at any particular time. OPT-CBTC
has higher latency than CBTC and SMECN because it typically
takes longer routes due to the use of lower transmission power.

VI. CONCLUSION

We have analyzed the distributed cone-based algorithm and
proved that ���� is a tight upper bound on the cone degree for
the algorithm to preserve connectivity. We have also presented
three optimizations to the basic algorithm—the shrink-back op-
eration, asymmetric edge removal, and pairwise edge removal—
and proved that they improve performance while still preserving
connectivity. Finally, we showed that there is a tradeoff between
using CBTC(
) with 
 � ���� and 
 � ���	, since using

 � ���	 allows an additional optimization, which can have
a significant impact on reducing the transmission radius. The
algorithm extends easily to deal with reconfiguration and asyn-
chrony. Most importantly, simulation results show that it is very
effective in reducing power demands and increases the overall
throughput.

Since the focus of this paper has been on reducing energy
consumption, we conclude with some discussion of this goal.
Reducing energy consumption has been viewed as perhaps the
most important design metric for topology control. There are
two standard approaches to doing this: (1) reducing the trans-
mission power of each node as much as possible; (2) reduc-
ing the total energy consumption through the preservation of
minimum-energy paths in the underlying network. These two
approaches may conflict: reducing the transmission power re-
quired by each node may not result in minimum-energy paths
or vice versa. Furthermore, there are other metrics to consider,
such as network throughput and network lifetime. Reducing en-
ergy consumption tends to increase network lifetime. (This is
particularly true if the main reason that nodes die is loss of bat-
tery power.) However, there is no guarantee that it will. For
example, using minimum-energy paths for all communication
may result in hot spots and congestion, which in turn may drain
battery power and lead to network partition. Using approach
(1) in this case may do better. If topology control is not done
carefully, network throughput can be hurt. As we have already
pointed out, eliminating edges may result in more congestion
and hence worse throughput, even if it saves power in the short

run. The right tradeoffs to make are very much application de-
pendent. Therefore, an algorithm that adapts to the specific ap-
plication setting is much needed. Reconfiguration in response to
node mobility and failure consumes precious energy resources.
Fast convergence of topology control is critical to keep the net-
work functioning well. It would be interesting to investigate
how much mobility CBTC can handle. We hope to explore these
issues in more detail in future work.
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APPENDIX

I. PROOF FOR THEOREM II.2

Fact A.1: The distance � between any two points �	 � in a
( � ��	 sector of a circle is no greater than the circle radius �.
If both � and � are not the center of the circle, then � � �.

Lemma A.2: In Figure 8, circ��	 �� intersects circ��	 �� on
the arc from � clockwise to ) at point �.
Proof: For any two points ��, ��� on the arc from � clockwise
to ), if � ���� � � �����, then ����	 �� � �����	 ��. This follows
from a simple geometry argument. Consider triangles �� ���
and ������. Since ����	 �� � �����	 �� � � and the triangles
have one side �� in common, � ���� � � ����� implies ����	 �� �
�����	 ��. Since ���	 �� � � (by assumption) and ��)	 �� � � (by
Fact A.1), there must be a point � on the arc from � clockwise to
) such that ���	 �� � �.

Lemma A.3: Let line �� intersect circ��	 �� at point * (if �
is the same as �, then � *�� � ���) in Figure 8. To cover
�#����	 
	 ��, in the case of ���	 �� � � of Lemma II.1, � must
have at lease one neighbor in sector �+�) of circ��	 �� and out-
side circ��	 ��. Among these neighbors, let � be the one such
that � ��� is the smallest. � cannot lie within the �#����	 � *��	 ��.
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Fig. 8. Illustration for the proof of Lemma A.2 and Lemma A.3.

Proof: For the case of ���	 �� � � of Lemma II.1, we only
need to show that � cannot lie within the *�) region (the region
inside sector �*�) of circ��	 �� and outside of circ��	 ��). We
prove by contradiction. Suppose � lies in that region. By the
previous lemma, � lies in the arc from � to ). So both � and �

are in the sector�+�) of circ��	 ��. By Fact 1, ���	 �� � �. Our
assumption is that ���	 �� � �. Thus, ���	 �� � ���	 �� � � �
���	 ��. Therefore,

� ��� � ��	 (3)

Since ���	 �� � ���	 �� � � (� is the intersection of circ��	 ��
and circ��	 ��),

� ��� � � 
 � � � ��� (4)

Since � is inside cone��	 
	 ��,

� ��� � 
��
 � ��� � �����
 � ��� (5)

Draw a line �, parallel to ��. We have � ��, � � ��� 
 � ���

� ��,. By Equation 3, � ��, � ��	 
 � ��� 
 � ���. By Equa-
tion 4 and 5, � ��, � ��� 
 � ���. Since � ��� � �� 

� ������ � ���
 � �����, we have � ��, � � ���. This contra-
dicts our assumption of �’s position. Thus, � must be outside
cone��	 � *��	 ��.
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