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Abstract—Data miners can infer rules showing how to improve
either (a) the effort estimates of a project or (b) the defect
predictions of a software module. Such studies often exhibit
conclusion instability regarding what is the most effective action
for different projects or modules.

This instability can be explained by data heterogeneity. We
show that effort and defect data contain many local regions with
markedly different properties to the global space. In other words,
what appears to be useful in a global context is often irrelevant
for particular local contexts.

This result raises questions about the generality of conclusions
from empirical SE. At the very least, SE researchers should test
if their supposedly general conclusions are valid within subsets
of their data. At the very most, empirical SE should become a
search for local regions with similar properties (and conclusions
should be constrained to just those regions).

Index Terms—Data mining, defect/effort estimation, validation,
empirical SE.

I. INTRODUCTION

A repeated pattern in software engineering research is

conclusion instability, i.e. the finding that some effect X is

not generally true. For example, in the field of software devel-

opment effort estimation, Mair and Shepperd [1] compared

regression to analogy methods. From 20 empirical studies

they found no conclusion regarding which methods were

best (seven favored regression, four were indifferent and nine

favored analogy).

A similar pattern of conclusion instability can be found in

module defect predictors learned from static code features.

Zimmermann et al. [2] learned defect predictors from 622

pairs of projects 〈project1, project2〉. In only 4% of pairs

did defect predictors learned in project1 work in project2.

Other conclusion instability results in effort/defect estimation

are reported in [1], [3], [4].
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One explanation for conclusion instability is data hetero-

geneity. If data sets contain local regions with very different

properties, then an induction cross-validation study would ex-

hibit high variance when tests are conducted on stratifications

with unusual properties.

To test this conjecture, this paper compares the learning of

treatments (changes that are intended to improve some quality

measure) using:

• Just the local data in adjacent clusters; to

• All the global data found in all clusters;

Based on the literature on outlier removal in software engi-

neering (e.g. [5], [6]), we expected to find a few heterogeneous

clusters spread around other clusters that were mostly homo-

geneous. To our surprise, we found the reverse. Usually, every

cluster was different to the others and in those clusters:

The treatments from local regions were different and

superior to the global treatments.

It is neither novel nor interesting to say that particular cases

can sometimes contradict general principles. What was sur-

prising, however, is that in these results, the global treatments

were nearly always inferior to the local treatments.

Note that such data heterogeneity explains the prevalence

of conclusion instability. It also suggests a change of focus in

SE research:

Rather than focus on generalities (that may be

irrelevant to any particular project), empirical SE

should focus more on context-specific principles.

The rest of this paper is structured as follows. First, we

motivate this work with a small case study on local learning.

Then, we discuss techniques for localized reasoning:

• The WHERE clustering algorithm that divides the data;

• The WHICH learner that finds treatments in clusters.

We use those techniques in an experiment that compares

the treatments learned from global or local contexts. This is

followed by notes on validity and related work.

II. LOCAL LEARNING: MOTIVATIONS

To motivate this paper, we offer the following simple

example of the value of local learning.

There are many general truisms in the field of software engi-

neering. Our results are only interesting if our treatments could



not have been generated in a much simpler way, just by ap-

plying the truisms. For example, the COCOMO/COQUALMO

effort/defect predictors [7] assume that defects and efforts are

mostly reduced by decreasing functionality (measured either in

function points or lines of code). According to this assumption,

the best thing a manager can do to control defects and cost is

to discard needless functionality. This process, of discarding

requirements, is also one of Brooks’ key recommendations in

The Mythical Man Month [8].

In the Experiments section of this paper, WHICH learns

treatments (i.e., changes) from four data sets. Some of those

treatments agree with this truism of “make it smaller”. For

example, WHICH can learn this treatment:

loc = 1

To read this, note that we discretize variables min..max to 1..7.

Hence, loc = 1 means “set lines of code to minimum”.

Significantly, of the 24 treatments learned in the Experi-

ments section, the “make it smaller” treatment appears far

more often in the global treatments than in the local treatments

(as we expected). Our experiments used four data sets (two

on effort estimation and two on defect prediction) and in two

of those data sets, the learned global treatment recommends

minimizing the function points or lines of code of that system.

However, in the 20 local treatments learned by our experi-

ments, only 2 of them recommend “make it smaller”. That is,

what seems to be a good idea overall (e.g. “make it smaller”)

is actually irrelevant to 18 sub-groups within the data (i.e.,

local contexts).

Notice that our results do not disagree with Boehm and

Brooks. In general, “make it smaller” is a valid method of

reducing the effort and defects associated with a software sys-

tem. Indeed, our global analysis reaches the same conclusion

in half the experiments we present below.

However, we would add that for particular kinds of projects,

other factors may be more important than just size. For

example, for one data set explored below we learn a treatment

from a local region of the form

pcap = nominal

which, in COCOMO-speak, means avoid programmers with

poor or very poor programming capability. Note that this

treatment makes no reference to the size of the system since,

this particular data set, the size effects were dominated by

the impact of poorly trained programmers. Examples like this

motivate our research into local lesson learning in software

engineering. Our preferred method of learning those treatments

is to combine two tools: WHICH and WHERE.

III. ALGORITHMS: WHICH AND WHERE

In order to conduct the experiments of this paper, we need

one tool that can learn local lessons from each cluster and a

second tool that can find each cluster. This section describe

two such tools: the WHICH contrast set learner and the

WHERE clusterer.

We currently favor the two tools since they are based on

years of our research and incorporate the best practices we

have found so far in our work. Also, they scale to large data

sets. This does not mean that the community should uncrit-

ically accept them. Like any learner, WHERE and WHICH

rely on certain tuning parameters to control their operation.

We have used our best engineering judgment to set those

parameters but it is possible that other settings or, indeed, other

algorithms are better suited to this task. A challenge problem

we offer other researchers is to review our our methods to

propose refinements/alternatives.

But the details of tuning parameters for WHERE and

WHICH are orthogonal to this discussion. To defend our

conclusions, this paper shows that when the same analysis

method is applied (1) globally to all data or (2) locally to just

some intra-cluster data, then different and better treatments are

found from the local analysis. The rest of this paper presents

that demonstrations.

A. Contrast Set Learning with WHICH

When we show data mining output to business users, their

first question is usually “what does this say about how to

improve a project?”. To answer this question, we use contrast

set learning to infer rules describing differences between a

current context (called the baseline) and a better context

(called the target). A contrast set rule takes the form

if Rx then (change = ǫ1/ǫ0 ∗ support)

We say this rule selects some support% of the data that

contains a different (and hopefully better) distribution of the

dependent quality variables (and by “select”, we mean it

finds all rows consistent with Rx). Here, Rx is a treatment
containing a set of attribute value pairs av; ǫ0 is the median

score of all instances in the baseline and target; and ǫ1 is the

median score in the selected subset of baseline and target. For

effort and defect prediction, where less is better, then the ratio

ǫ1/ǫ0 is smaller if the treatment selects for better instances.

It turns out that the minimal description of the differences

between two things, is often much smaller than a full descrip-

tion of both things. For example, In the experiments shown

below, we generate treatments that reference only one attribute.

As a result, we can show our users succinct rules describing

what needs to change in order to select for certain desired

classes.

Our WHICH [9] contrast set learner loops over attribute

values combinations, combining those that look most promis-

ing:

1) Continuous attributes are discretized to “β” values.

2) A stack is created: one item for every attribute value.

3) The items in that stack are sorted using ǫ1/ǫ0 ∗support.
4) κ number of times, do:

• Generate λ number of new items, as follows.

– Pick two items at random, favoring those with

better ǫ1/ǫ0 ∗ support.
– Combine the pair into a new item. Score it.



technique name notes default

WHICH β number of bins for descretiz-
ing number attributes

β = 7 equal fre-
quency bins

ǫ generates performance score
for a set of instances

e.g. median effort

λ number of loops λ = 5
κ number of pairs to be picked

and combined
κ = 20

γ maximum acceptable height
of WHICH’s stack

γ = ∞

ω minimum acceptable ǫi/ǫ0 ∗
support score

ω = 0

WHERE α stopping rule for quadtree
tree recursion

α =
√
N

δ stopping rule for clustering δ = 0.5

Fig. 1. Default settings (N refers to the number of instances).

• Sort the λ new items rules into the stack.

5) Repeat step 4 until no new improvements seen in the

best score. Return the item with best score.

WHICH is controlled by the settings of Figure 1. Two

settings change the maximum size of WHICH’s stack (γ) and

the minimum acceptable ǫ1/ǫ0 ∗ support score (ω). WHICH

runs fastest when γ and ω only allow for small stacks

processing rules with largest ǫ1/ǫ ∗ support scores. However,

this fast version of WHICH can miss rules which, in isolation,

are not promising but, when combined, are useful. To avoid

that issue, this study uses γ = ∞ and ω = 0 (i.e. do not prune

the stack and all rules are acceptable).

In the following section, we will use WHICH on pairs of

neighboring clusters found by WHERE. In those experiments,

where clusters range in size from 20 to 120 instances, WHICH

runs very quickly indeed: on a 4GB machine with a 2.5GHz

processor, a PYTHON version of WHICH terminates in under

a second (excluding time to read any data from disk).

B. Using WHERE to Find Similar Projects

This section describes WHERE, a fast clustering algorithm

for finding software artifacts with similar attributes. This

process is controlled by the settings of Figure 1.

WHERE clusters data on dimensions synthesized along the

axis of greatest variability in the data. One way to find such

dimensions is via methods such as principal component anal-

ysis (PCA) that transform D basic dimensions (that might be

correlated) into a fewer number of uncorrelated (orthogonal)

components. In PCA, component I accounts for as much

variability as possible in the data and an orthogonal component

I + 1 tries to account for the remaining.

Matrix factoring methods like PCA take polynomial time

to execute [10]. Faloutsos & Lin [11] offer a linear-time

heuristic for generating these dimensions. Given N instances,

their “FASTMAP” heuristic finds the dimension of greatest

variability to a line drawn between the two furthest points.

These two points are found in linear time, as follows:

• Pick any instance Z at random;

• Find the instance X that is furthest away from Z;

• Find the instance Y that is furthest away from X;

Fig. 2. Each dot is an D-dimensional instance mapped into D=2 using
Equation 1. One dimension is the line between X (at the origin) and the
most remote instance Y (at 0, c). Each dot has distance a from the origin and
b from the most remote point. The median point on the x and y axis are x̂
and ŷ, respectively. These median points divide the space into four quadrants.

The line XY is an approximation to the first component found

by PCA and is computed using 2N distance calculations (i.e.

faster than PCA’s polynomial time inference).

As shown in Figure 2, an orthogonal dimension to XY can

be found by declaring that the line XY is of length c and runs

from point (0, 0) to (0, c). Each instance now has a distance

a to the origin (instance X) and distance b to most remote

point (instance Y ). From the Pythagoras and cosine rule, each

instance is at the point (x, y):

x = (a2 + c2 − b2)/(2c)

y =
√
a2 − x2 (1)

Figure 2 shows four quadrants defined by the median values

of each dimension (x̂, ŷ): NorthWest, NorthEast, SouthWest,

SouthEast. WHERE recurses on each quadrant to generate a

balanced tree of quadrants (stopping when a sub-quadrant has

less than α instances). That is, after an O(N) process that

generates the quadtrees, WHERE can use the quadtrees as

an index that maps test instances to related instances in time

O(log4N)).

Schikuta [12] warns that quadtrees needlessly sub-divide

data when neighboring leaf quadrants have similar properties.

Hence, as a post-processor to quadtree generation, WHERE

combines similar leaf quadrants as follows:

1) Create a list of leaf quadrants, sorted by their density

(number of instances divided by cluster size).

2) Set stop to δ∗ maximum density of items in that list.

3) Starting with the densest cluster, perform a geometric

search through immediate neighbors of this first quad-

rant.

4) Remove all quadrants connected in this way from the

list and added into their own separate cluster.

5) If the list is not empty, find next cluster (goto step 2).



Initial two dimensions. After quadtree generation. After clustering of neighboring leaf

quadrants.

Fig. 3. Recursive dimensionality synthesis. Each 2-d dots represents 24 descriptors of a software project. Colors on the right-hand-side show median
intra-cluster development effort (green= lowest effort; red= highest effort). White denotes a region too sparse to cluster. Generated from the NASA93 effort
estimation data set (http://goo.gl/WlzCC) using the default parameters of Figure 1.

Figure 3 shows the results of running WHERE on the NASA93

effort estimation dataset from the PROMISE repository (see

http://goo.gl/WlzCC). Each dot describes one project using 24

independent attributes and one dependent attribute showing the

development effort (in months).

The left-hand-side of that figure places the data within the

top two dimensions learned by FASTMAP. The middle figure

shows the leaf quadrants found after WHERE recursively

explored the NorthWest, NorthEast, SouthWest, SouthEast

quadrants. The right-hand-side figure shows the results of leaf

quadrant clustering. Each cluster has been colored to show

the median intra-cluster development effort. The colors range

from dark red (highest effort) to dark green (lowest effort).

The white clusters contain less than α members (this occurs

when a parent cluster has less than 2 ∗ α items).

One inference supported by Figure 3 is what to change.

Consider the three clusters in Figure 3 labelled C,C ′, C ′′.

Suppose a manager of a project in the pink cluster C is

considering how to decrease the development effort of that

project (of all the neighbors of that cluster, the green cluster C ′

has the lowest development effort). Accordingly, that manager

would run WHICH over the C ′ data to learn treatments that

convert projects of type C to C ′.

Note that such a strategy is not available to the manager

projects in the dark green cluster C ′′. No neighbor of C ′′

has a shorter development effort so, in that cluster, we would

advise to just maintain the status quo.

One advantage of WHERE is that it scales to large data sets.

WHERE always recurses on two dimensions synthesized in

linear time (via FASTMAP). This approach scales linearly on

the number of attributes. WHERE also scales very well on the

number of instances. Figure 4 shows runtimes after applying

WHERE to data sets from the PROMISE repository (CM1,

KB2, MW1, KC3, PC1, KC1 from http://goo.gl/fNgNW)

where the instances are copied once, twice, four, or eight times.

Note that the runtimes scale linearly with data set size.

One potential drawback with WHERE is that since it uses

the FASTMAP heuristic, it may not find the points that best
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Fig. 4. WHERE’s runtimes scale linearly on number of rows. Generated
using the defaults on Figure 1.

represent the dimensions of greatest variability in the data. To

check this if this heuristic generates inaccurate dimensions,

elsewhere [13] we have conducted extensive experiments

with the FASTMAP heuristic versus other, more considered

clustering methods such as k-means. Our results agree with

those of Faloutsos & Lin [11]: in practice, the approximate

dimensions found by FASTMAP does not degrade inferencing

(compared to other more complete, and slower, approaches).

IV. EXPERIMENTS

The goal of our experiment is to test locally learned treat-

ments are better and different to global treatments.

A. Data

This study used data from http://promisedata.org/data:

• CHINA is 499 software development projects, tagged

with the development effort (in months). Each project is

described in terms of function points (i.e. number of high-

level operations within the system) shown in Figure 5.

• NasaCoc are the 156 cost estimation instances in the

combined NASA93 and COC81 datasets converted to

COC-II via Reifer et al.’s RosettaStone algorithm [14]1.

• LUCENE2.4 is a defect log on 340 OO classes in a JAVA

search engine optimized for text mining.

• XALAN2.6 is a defect log on the 875 classes of an OO

Java implementation of an XLST processor.

1http://goo.gl/8hjF5, http://goo.gl/lwxqq



afp adjusted function points adjusted size by the standard value adjustment factor (vaf)

input function points (ufp) of input

output function points (ufp) of external output

enquiry function points (ufp) of external enquiry

file function points (ufp) of internal logical files or

entity references

interface function points (ufp) of external interface added function points (ufp) of new or added functions

changed function points (cfp) of changed functions

deleted function points (cfp) of deleted functions

pdr ufp normalized level 1 productivity delivery rate norm. level 1 effort (for development team ) divided by functional size (unadjusted function points).

npdr afp normalized productivity delivery rate normalized effort divided by functional size (unadjusted function points).

npdu ufp productivity delivery rate (adjusted function points) summary work effort divided by adjusted function point count.

resource team type 1 = development team effort (e.g., project team, project management) ; 2 = development team support

(e.g., database administration, data administration, quality assurance) ; 3 = computer operations

involvement (e.g., information center support, computer operators, network administration) ’ 4 =

end users or clients (e.g., user liaisons, user training time)

dev.type development type 1= new development, 2= enhancement; 3= redevelopment.

duration total elapsed time for the project in calendar months.

effort summary work effort provides the total effort in hours recorded against the project.

Fig. 5. The function point metrics used in CHINA. The last row is the dependent variable.

amc average method complexity e.g. number of JAVA byte codes

avg cc average McCabe average McCabe’s cyclomatic complexity seen in class

ca afferent couplings how many other classes use the specific class.

cam cohesion amongst classes summation of number of different types of method parameters in every method divided by a multiplication of number of

different method parameter types in whole class and number of methods.

cbm coupling between methods total number of new/redefined methods to which all the inherited methods are coupled

cbo coupling between objects increased when the methods of one class access services of another.

ce efferent couplings how many other classes is used by the specific class.

dam data access ratio of the number of private (protected) attributes to the total number of attributes

dit depth of inheritance tree

ic inheritance coupling number of parent classes to which a given class is coupled (includes counts of methods and variables inherited)

lcom lack of cohesion in methods number of pairs of methods that do not share a reference to an instance variable.

locm3 another lack of cohesion measure if m, a are the number of methods, attributes in a class number and µ(a) is the number of methods accessing an

attribute, then lcom3 = (( 1

a

∑
a

j
µ(aj)) − m)/(1 − m).

loc lines of code

max cc maximum McCabe maximum McCabe’s cyclomatic complexity seen in class

mfa functional abstraction number of methods inherited by a class plus number of methods accessible by member methods of the class

moa aggregation count of the number of data declarations (class fields) whose types are user defined classes

noc number of children

npm number of public methods

rfc response for a class number of methods invoked in response to a message to the object.

wmc weighted methods per class

defects defects number of defects per class, seen in post-release bug-tracking systems.

Fig. 6. The C-K metrics used in LUCENE2.4 and XALAN2.6. The last row is the dependent variable.

The last two data sets describe their classes in terms of the

standard C-K metrics for object-oriented systems [15] shown

in Figure 6.

These data sets were selected for this study since they are

as different as we could find in the PROMISE repository

(two relate to effort estimation and the other two to defect

prediction; also, CHINA predicts for total staff effort while

NasaCoc predict for calendar months of development). Also,

they are public domain, so it is possible for other researchers

to reproduce, improve, or even refute our conclusions.

Note that WHERE and WHICH can work on defect and

effort data (and, indeed, any other source of supervised data)

since these techniques make no particular commitment to the

semantics of a particular domain.

B. Method

For this study, we used the WHERE and WHICH settings of

Figure 1. After WHERE was applied to each data set, then for

each cluster C, a local analysis was conducted as follows:

• Let M,M ′ be the median scores of cluster C and neigh-

boring cluster C ′. For LUCENE2.4 and XALAN2.6, that

score reflects a defect count per class. For the other data

set, that score reflects the total staff development effort

(CHINA) or the development time (NasaCoc).

• Let N,N ′ be the number of instances in C,C ′. For C ′

(the neighbor with best M ′ mean score), use WHICH to

learn a local treatment (where ǫ0 = M ′ and ǫ1 comes

from the examples selected by the treatment from C ′).

• This treatment was then tested on C.

Note that cluster C was skipped if it is was too small (for

this study, we used N < 20) or if there is no neighbor with a

better score M ′ < M . In practice, this removed less than 40

instances per data set.

For the global analysis, all available training data was sorted

on some quality measure. In order to permit valid comparisons,

all data from clusters skipped by the local analysis was

removed. WHICH was used to learn a global treatment with

baseline = best ∪ rest and target = best.



cluster NasaCoc CHINA LUCENE2.4 XALAN2.6

global ltex=1 afp=1 rfc=2 loc=1
C1 pcap=4 added=4 amc=7 amc=1
C2 prec=4 deleted=1 ca=1 cam=2
C3 deleted=1 dam=5 cam=3
C4 mfa=1 dit=2 or 4
C5 moa=1 loc=1
C6 loc =1 or 2
C7 moa=1
C8 moa=4
C9 rfc=1
C10 wmc=3

repeat attribute 0 2 (deleted) 0 3 (loc)
2 (cam)
2 (moa)

repeat attribute
values

0 2 (deleted=1) 0 3 (loc=1)

local = global 0 0 0 2 (loc=1)

Fig. 7. Treatments learned by WHICH for clusters found by WHERE.

For both the local and global studies, we reported the

distribution of quality measures in (a) the baseline (b) in the

instances selected by local and global treatments.

C. Results

Figure 7 shows the attribute values found in the treatments

learned from either the global analysis or in a local analysis.

All values are discretized to the range 1..7, min..max so, for

example, pcap=4 in the NasaCoc results translates to pro-

grammer capability is nominal (a.k.a. average) in the standard

COCOMO ontology.

Line one of that figure shows the treatments generated via a

global analysis. The other lines show treatments learned from

local clusters. Different data sets produced differing numbers

of clusters: e.g. XALAN2.6 generated ten while NasaCoc

generated only two. Of the local treatments generated, none

used more than one attribute and only two used more than one

value (see dit and loc in XALAN2.6). For an explanation of

the attribute names, see Figure 5 or Figure 6 or [16].

The bottom of Figure 7 shows how often an attribute, or an

attribute value, was seen in more than one treatment:

• In two data sets (NasaCoc, LUCENE2.4), all treatments

were different.

• In one data set (CHINA) the number of deleted function

points was important in two local treatments.

• In the remaining data set, lines of code (loc), cohesion

amounts classes (cam), and aggregation (moa) was im-

portant in more than one cluster.

Also shown at the bottom of Figure 7 is how often the global

and local treatments were the same. This occurred in only one

data set (XALAN2.6) and only in two of its ten clusters.

From Figure 7, we can make three important observations:

• The treatments are succinct: (never more than one at-

tribute). This is important from a management perspective

since it can be difficult for managers to control multiple

factors in a project.

• The local treatments are insightful: As discussed in §2,

defect and effort reduction is often seen as a matter of

CHINA
(effort)

treated
percentile raw global local

0 th 0 0 0
25 th 1 1 1

median = 50 th 4 4 3
75 th 9 8 7

worst = 100 th 100 100 74
75th - 25th 8 8 6

min = 26
maxs = 49,034

NasaCoc
(months)

treated
percentile raw global local(*)

0 th 0 0 0
25 th 12 10 2

median = 50 th 21 17 7
75 th 30 26 8

worst = 100 th 100 100 9
75th - 25th 19 16 6

min = 4.9
max = 96.4

LUCENE2.4
(defects)

treated
percentile raw global local(*)

0 th 0 0 0
25 th 0 0 0

median = 50 th 3 0 0
75 th 10 3 0

worst = 100 th 100 23 0
75th - 25th 10 3 0

min = 0
max = 30

XALAN2.6
(defects)

treated
percentile raw global local(*)

0 th 0 0 0
25 th 13 13 13

median = 50 th 13 13 13
75 th 33 25 13

worst = 100 th 100 100 63
75th - 25th 20 13 0

min = 0
max = 8

Fig. 8. Effects on effort/defect distributions. All values x normalized
via round(100 ∗ (x−min)/(max−min)). Raw denotes distributions in
original data. Treated denotes distributions in the subset of either (a) the raw
data selected by the global treatment or (b) two neighboring clusters selected
by the local treatment. Local(∗) denotes a distribution than that is statistically
different to the global distribution (Mann-Whitney, 95%).

reducing function points or lines of code. That view

can be seen in the global treatments of CHINA and

XALAN2.6 that recommends setting function points (afp)

and lines of code (loc) to their minimum value. However,

in 18 of 20 clusters, such a simplistic recommendation

was not found in the learned treatments.

• The local treatments are different to the global treat-

ments: for 18 out of 20 locally generated treatments.

When the treatments of Figure 7 where applied to the data, the

distributions of Figure 8 were generated. These distributions

are expressed in terms of their percentile bands:

• The O th percentile row is the minimum observed value;

• The 50 th percentile row is the median observed value.

• The 100 th percentile row is the maximal observed value;

In order to simplify comparisons, all results are normalized 0

to 100 against the minimum to maximum raw value. These

raw min and max values are shown on the right-hand-side of

each table in Figure 8.

In order to interpret those results, we offer the following

notes. In this experiment, an ideal learner:

• Reduces the median defect or costs measures seen in the

untreated raw data.



• One treatment learner is superior if the former has a

statistically different and lower median than the other.

• Another measure of interest is the intra-quartile range;

i.e. the 75-25th percentile range: the smaller this range,

then the more confidence we have that the treatment will

produce effects around the median value.

• Finally, a treatment learner should not select for outstand-

ingly bad outcomes. Therefore it is useful to consider the

worst-case scenario seen in the worst rows (the 100-th

percentile range where defects and effort are maximal).

An examination of the 100-th percentile range shows that the

worst-case scenario of local learning is much less than other

treatments. While this is a clear effect in all the results, it is

particularly marked in NasaCoc and LUCENE2.4. In the latter,

local treatments avoided all defective modules (as witnessed

by the column of zeros in the local LUCENE2.4 results).

Another result to note is that (except for CHINA) the spread

of the results (75th-25th percentile range) is less with local
learning than with global. This effect is particularly marked

in NasaCoc and XALAN2.6.

In summary, local treatments were different and superior

to the global treatments. The differences in those treatments

was shown in Figure 7 while the local superiority is shown in

Figure 8. In all data sets, local treatments reduced the worst-

case scenario and the intra-quartile range. While some of those

reductions are modest, others are quite marked. As to the

median results, local’s medians were never worse than global
and, in one case (NasaCoc) they were significantly better.

V. VALIDITY

Assumptions: Our techniques assumed structure implies

behavior so that changing attribute values will also change the

properties of a project (e.g. number of defects or development

time). Another assumption made by our techniques is that the

dimensions of most interest are the dimensions of greatest

variability. While we cannot prove these assumptions, we note

that they are shared by many other SE researchers:

• Structure implies behavior is a widely-held in the

instance-based effort estimation community, where es-

timates of software effort are generated using nearest

neighbor algorithms; e.g. [17]–[21].

• The value of the dimensions of greatest variability is an

assumption shared by other researchers such as those us-

ing feature weighting based on variance [22] or principal

component analysis; e.g. Nagappan, Ball & Zeller [23].

Clustering: One explanation for our experimental results

is that our clustering techniques are somehow in error, and

that defect/effort estimation should always be based on the

groupings identified manually by human experts. We doubt

this, for two reasons. Much research concludes that inferencing

results improve after dividing data according to automatically

inferred clusters: see [24]–[26], and papers at TSE [17], [18],

[21] and ASE [20]).

Effects of stochastic search: Another explanation for local
being so different to general is that we are sampling both

with a stochastic device (recall that WHICH builds rules via

a stochastic search through the space old rules; and WHERE

builds clusters by picking random points, then searching for

points further away from that initial point). Perhaps all that

stochastic sampling has added some jitter into the treatment

selection? We discount this possibility since we agree with

Motwani and Raghavan [27]: when sampling a space con-

taining uncertainty, a randomized optimizer (like WHICH)

may give you greater stability since it is not distracted by

minor gradients in the data. We have seen evidence for this

stability in the above results. Recall the intra-quartile ranges

of Figure 8: WHICH’s rules learned from WHERE’s clusters

are more stable than those learned from the global analysis.

Parameter settings: Finally, the conclusions reached here

come from two specific algorithms run under very specific

conditions (the parameter settings of Figure 1). Perhaps all our

conclusions are due to quirks in those algorithms and settings?

This point was discussed at the start of §3. Certainly, there

should be more work in the internals of WHERE and WHICH

as well as other algorithms that can reason locally within

data subsets or globally across all available data. However,

the internal details of these techniques is less important than

their effects when applied to data. The goal of the above

experiments is to check our base premise; i.e. that when the

same analysis method is applied to local and global data, then

we discover better and different results with the local analysis.

VI. RELATED WORK

Issues with Empirical SE: This paper opened with a com-

mentary on conclusion instability in software engineering.

Other researchers have made similar comments. Ideally, the

practices of software engineers should be based on methods

with well-founded support in the literature. Unfortunately, this

is not currently possible. In their pessimistically entitled paper

“Is Evidence Based Software Engineering mature enough for

Practice & Policy?”, Budgen et al. [28] warn that the state

of the art in empirical SE does not yet recommend itself

for setting management policies. Budgen et al.’s solution is

to restructure the literature so that it is simpler to search

large collections of research papers. We observe that restruc-

turing will not solve the data heterogeneity problem unless

researchers stumble on the same clusters found by techniques

like WHERE. As shown above, finding those clusters is not a

simple manual task. Therefore, we argue for both the literature

restructuring proposed by Budgen as well as the regrouping

software artifacts into clusters with similar properties.

Tackling instability: Previously, we have tried to reduce

conclusion instability via:

• Feature selection to prune spurious details [29];

• Instance selection to prune irrelevancies [20], [21], [30];

• Extended data collection.

• Monte Carlo simulation over the space of options [31]

Despite all that work, the variance observed in our models

remains very large. Even the application of techniques such

as instance-based learning have failed to reduce variance in

our effort predictions [30]. Feature subset selection has also



been disappointing: while (in our experiments, from 150%

to 53% [30], the residual error rates are large enough that

it is hard to use the predictions of these models as evidence

for the value of some proposed approach. Lastly, further data

collection has not proven useful. Certainly, there is an increase

in the availability of historical data on prior projects (e.g. in the

PROMISE repository used for this study). However, Kitchen-

ham et al. [32] cautions that the literature is contradictory

regarding the value of using data from other companies to

learn local models.

Context-specific SE: Many authors discuss contextualizing

empirical SE. For example, Petersen & Wohlin [33] offer a

rich set of dimensions along which software projects can be

contextualized (processes, product, organization, market, etc).

They offer no way to learn new contextualizations for new

projects whereas, in this paper, we only need to run WHERE

on new data to find new contexts. Also, while their arguments

are convincing, they offer no experimental confirmation that

their contexts are the “right” contexts. This paper, on the other

hand, offers an operational test for any candidate context:

the context is interesting if it results in different and better

treatments.

Other clustering techniques: We prefer WHERE to other

clustering methods like k-means since WHERE’s quadtrees

do not require multiple passes to learn the appropriate number

of clusters. Also, unlike clustering methods such as EM [34]

(that requires some kernel assumptions to define “near” and

“far” from a cluster centroid), our cluster algorithm is a non-

parametric method that works without kernel tuning. Finally,

thanks to leaf quadrant clustering, WHERE can handle clusters

of very irregular shapes (while k-means and EM work best on

clusters that are mostly convex is shape).

Dimensionality synthesis: In text mining, it is standard

practice to infer a reduced set of dimensions via some matrix

factorization process such as PCA or the LSI technique pre-

ferred by Marcus [35]. Such reduction is essential since, when

text mining, the upper bound on the number of dimensions

is the number of unique words in a language. Also, some

research in effort estimation infers dimensions using PCA

as a pre-processor to model construction. For example, Wen

et al. use PCA as a pre-processor to analogy based effort

estimation [36].

To the best of our knowledge, in the fields of empiri-

cal SE, there is no other work combining both clustering

and inferred dimensions. Outside of SE, however, we can

find a few examples of such a combined approach. For the

purposes of logistic planning, Chen and Meng performing

principle components analysis, followed by clustering, as a

pre-processor to their planning process [37]. Also, knowledge

acquisition researchers also use clustering over synthesized

dimensions. For example, in their KSS0 tool, Gaines and Shaw

display examples collected from a user in a 2D space defined

by the first two dimensions of PCA [38]. This space is then

studied to find gaps between the existing instances.

VII. CONCLUSION AND FUTURE WORK

It is to be expected that lessons learned across a population

may be somewhat different to the lessons learned from indi-

viduals within that population. What was unexpected was just

how different where the local treatments, and how important

where those differences.

This paper has compared the learning of treatments (changes

that are intended to improve some quality measure) using:

• Just the local data in adjacent clusters; to

• All the global data found in all clusters;

After clustering with WHERE, and learning treatments with

WHICH, it was found that in 18 out of 20 local treatments, the

treatments were completely different to the treatments learned

from a global analysis of all the data. When those treatments

were applied to the data, distributions were observed with the

following properties:

• The local treatments resulted in distributions with lower

variance. Specifically, the intra-quartile range was much

lower than that seen in the raw data, or the data generated

with the global treatments.

• The worst-case scenario was much less in the data

generated from the local treatments. For example, in

one data set (LUCENE2.4) , for defect prediction, the

treated local clusters had zero defects (while in the data

generated from the global treatments, some defective

modules did appear).

• As to the median results, locals medians were never

worse than the global medians and, in one case

(NasaCoc) they were significantly better.

Hence we conclude that the local treatments are both different

and superior to the global treatments.

This conclusion has implications for the practices and goals

of empirical SE. Rather than seek general principles that apply

to many projects, we now advise that empirical SE should

focus on ways to find the best local lessons for groups of

related projects.

Future work should proceed on four fronts:

• Techniques like WHICH and WHERE are useful for find-

ing and exploiting those local groups of related projects.

A challenge problem we offer other researchers is to

review our our methods to propose refinements and/or

alternatives.

• The core experiment of this paper should be repeated on

many other data sets. Before making any general pro-

nouncement along the lines of “the best way to improve

software developments is...”, researchers should check if

their preferred method holds for subsets of the data.

• In this paper, we have only explored using WHICH and

WHERE to improve a project. The conclusions of such an

analysis is a recommendation to a manager along the lines

of “this is what you should do”. An alternate analysis

would be to find the actions that most degrade a project;

e.g. drives projects in cluster C to a worse cluster C ′.

The conclusions of that other kind an analysis would be

a recommendation “whatever you do, do not do this”.
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