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This article deals with continuous conjunctive queries with arithmetic comparisons and optional
aggregation over multiple data streams. An algorithm is presented for determining whether or not
any given query can be evaluated using a bounded amount of memory for all possible instances of
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1. INTRODUCTION

In many recent applications, data takes the form of continuous, unbounded
data streams, rather than finite stored data sets [Gehrke 2003; Golab and Ozsu
2003; Babcock et al. 2002]. Examples of data streams include stock ticks in
financial applications, performance measurements in network monitoring and
traffic management, log records or click-streams in Web tracking and person-
alization, data feeds from sensor applications, network packets and messages
in firewall-based security, call detail records in telecommunications, and so on.

Due to their continuous nature data streams are typically queried using
long-running continuous queries rather than the traditional one-time queries.
A continuous query is a query that is logically issued once but run forever. At any
point of time, the answer to a continuous query reflects the elements of the input
data streams seen so far, and the answer is updated as new stream elements
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arrive. For example, continuous queries over network packet streams can be
used to monitor network behavior to detect anomalies (e.g., link congestion) and
their cause (e.g., hardware failure, intrusion, denial-of-service attack) [Cranor
et al. 2003]. In financial applications, continuous queries over stock tick data,
news feeds, and historical company data can be used to monitor trends and
detect fleeting opportunities [Traderbot 2003].

Continuous-query processing introduces several interesting new challenges
not seen in traditional one-time query processing. This article addresses one
of the most fundamental challenges that stems from the unbounded nature of
input streams—characterizing (worst-case) memory requirements of continu-
ous queries. A query (since this article deals only with continuous queries, we
omit the term “continuous” in the rest of the article) typically has to store some
state based on the input stream elements seen so far. For example, a query
that computes the join of two streams has to remember all the elements of both
the streams seen so far, since a new stream element could join with any of the
previous elements of the other stream (window-based joins are discussed in
Section 1.3). On the other hand, a simple filter query does not need to maintain
any historical state. Note that we use the term “memory” to mean any sort of
storage; our results apply equally to systems resident in main memory and to
those that use secondary storage.

This article proves two interesting results on memory requirements of
queries. First, it proves that all queries we consider (conjunctive queries with
optional aggregation) fall into just two classes based on their asymptotic mem-
ory requirements—queries that can be evaluated with bounded memory (i.e.,
a finite amount of memory), and those that require memory that grows lin-
early with the input data. Therefore, most of the article is focused on distin-
guishing the class of queries that can be evaluated with bounded memory from
those that cannot. Note that we are concerned with exact evaluation of queries
in this article: there exist many queries with aggregates, those involving quan-
tiles for example, that can be approximately evaluated with memory that grows
logarithmically with input data [Greenwald and Khanna 2001].

On first thought, it might seem that only simple filter queries can be evalu-
ated with bounded memory. The second interesting result shown in this article
is that there is a relatively large class of queries, including some queries that
join arbitrary number of streams, that can be computed with bounded memory.
However, the class of queries computable in bounded memory does not admit a
trivial characterization as we illustrate in the following examples.

1.1 Examples

Our set of example queries is shown in Table I. Two data streams, S(A, B, C)
and T (D, E), are used in the example queries. The domain of attributes A–E
is the set of integers. We use standard relational algebra with a few minor
modifications to represent the queries. Specifically, π denotes the duplicate-
eliminating projection operator, π̇ the duplicate-preserving projection operator,
σ the selection operator, and × the cross-product operator. We use 5 as a
place-holder for one of π and π̇ . The answer to a continuous query at any point
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Table I. Example Queries Over Data Streams S(A, B, C) and T (D, E)

Bounded-memory computable?

5 = π̇ 5 = π

Q1 5A(σ(A>10) (S)) Yes No

Q2 5A(σ(A=D) (S×T )) No No

Q3 5A(σ(A=D)∧(A>10)∧(D<20) (S×T )) Yes Yes

Q4 5A(σ(B<D)∧(A=10) (S×T )) No Yes

Q5 5A(σ(B<D)∧(C<E)∧(A=10) (S×T )) No No

Q6 5A(σ(B<D)∧(C<E)∧(B<E)
∧(C<D)∧(A=10)

(S×T )) No Yes

Q7 5A(σ(B<D)∧(D>10)∧(B<20)
∧(A=10)

(S×T )) Yes Yes

of time is the answer using relational semantics over the bag of input stream
tuples seen so far. We assume that the query evaluation system does not need
to store the answer to a query but can “stream” the tuples in the answer as they
are generated. This approach does not cause any ambiguity for the monotonic
queries that we are considering. (Monotonic queries are queries for which a
new input tuple never causes the deletion of an existing output tuple, thus the
set of output tuples grows continuously as more input tuples arrive [Ullman
1988].)

Consider Query Q1,5A(σ (A>10) (S)), a selection and projection over one data
stream. When the projection is duplicate-preserving (5 = π̇ ), Q1 is a simple
filter on S and can be evaluated by tuple-at-a-time processing of the stream.
Thus, it can always be evaluated without using any extra memory for storage
of stream tuples or intermediate state. If the projection in Q1 is duplicate-
eliminating (5 = π ), we need to keep track of each distinct value of A greater
than 10 in S so far, in order to eliminate duplicates in the answer. In this case,
there is no finite bound on the amount of memory required for evaluating this
query over all possible instances of Stream S. Query Q2, 5A(σ (A=D) (S×T )),
is an equi-join over streams S and T . In order to correctly evaluate Query Q2,
it is necessary to store every distinct value of A seen so far in Stream S and
every distinct value of D seen so far in Stream T , which requires unbounded
space.

Query Q3, 5A(σ (A=D)∧(A>10)∧(D<20) (S×T )), is similar to Query Q2 but has
two additional selection predicates on attributes A and D. Observe that a tuple
of stream S can join with a tuple of stream T only if their corresponding A
and D values lie within the interval [11, 19]; this observation can be used to
evaluate Query Q3 in bounded memory. We briefly describe an evaluation strat-
egy for computing Q3 in bounded memory. The evaluation strategies that we
describe for bounded-memory evaluation of queries involve keeping constant-
sized synopses for each stream S and T . A synopsis for a stream is a summary
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of the tuples of the stream seen so far that contains sufficient state information
to compute future answers correctly. For the duplicate-preserving case of Q3,
the synopsis for S contains for each value v in the interval [11, 19] the count of
tuples seen so far with A = v. Similarly, the synopsis for T contains for each
value v ∈ [11, 19] the count of tuples with D = v. It is easy to see that the above
synopses are sufficient to compute Q3 correctly. For example, consider a new
tuple arriving on stream S with A = v. If v does not lie in the interval [11, 19],
then the new tuple cannot join with any tuple of T and it can be ignored. If
v lies in [11, 19], the exact number of past T tuples that the new tuple joins
with is stored in the synopsis for T , and that many copies of the 〈v〉 tuple are
generated in the output. Note that it was crucial that the output project list of
Q3 only has attribute A and not, for instance, A and C which would have made
the query not computable in bounded memory. A similar evaluation strategy
can be designed to compute Q3 in the duplicate-eliminating case.

Consider the series of queries Q4, Q5, Q6 for duplicate-eliminating projec-
tion. Note that Q5 is derived from Q4 by adding an additional predicate (C < E)
and Q6 is derived from Q5 by adding two additional predicates (B < E) and
(C < D). While Q4 and Q6 are computable in bounded memory, Q5 is not. Query
Q4 can be evaluated by maintaining as synopsis of S the minimum value of
attribute B among all tuples of S (so far) which have A = 10, and maintaining
as synopsis of T , the maximum value of attribute D among all tuples of T so
far. In order to see why the above synopses are sufficient, consider the arrival
of a new tuple t on Stream T . Assume t joins with some past tuple s of S with
A = 10. From the join condition it follows that s[B] < t[D]. Clearly, t also joins
with that tuple of S that has the minimum value of attribute B among all tu-
ples with A = 10. Therefore, we can determine if t joins with some tuple of S
by just checking if t[D] is strictly larger than the value stored in the synopsis
for S. Similarly, Q6 can be evaluated by maintaining as synopsis of S the value
min{max{s[B], s[C]}} over all tuples s of S so far, and maintaining the value
max{min{t[D], t[E]}} over all tuples t of T so far. We leave it to the reader to
verify that the above synopses are sufficient to correctly evaluate Q6.

None of the queries Q4, Q5, Q6 can be computed in bounded memory for
duplicate-preserving projection. Note that for duplicate-preserving projection
it is not sufficient to just know whether or not a new stream tuple joins with
any past tuples—we also need to determine the exact number of past tuples
with which it joins. One can easily verify that the synopses described earlier
for queries Q4 and Q6 for duplicate-eliminating projection cannot be used to
determine the exact number of past tuples with which a new stream tuple
joins.

1.2 Contributions

As the examples of the previous section suggest, the problem of determining the
bounded-memory computability of continuous queries is nontrivial. We make
the following contributions on bounded-memory computability of queries:

—We consider conjunctive queries with arithmetic comparisons and optional
aggregation over multiple data streams, and we specify an algorithm that

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.



166 • A. Arasu et al.

determines whether or not any given query can be evaluated using a bounded
amount of memory for all possible instances of the data streams.

—When a query can be evaluated using bounded memory, we produce an exe-
cution strategy based on constant-sized synopses of the data streams, char-
acterizing the memory requirements of the query for all possible instances
of the streams.

—When a query cannot be evaluated using bounded memory, for any query
execution strategy, we identify specific instances of input streams for which
the strategy requires memory at least linear in the sum of lengths of the
input streams.

1.3 Sliding Windows

Continuous queries over streams may apply sliding windows, either to reflect
the semantics of the application or in some cases simply to solve the unbounded
memory problem [Babcock et al. 2002]. Continuous query languages may sup-
port row-based windows, specifying that a fixed number of the most recent
stream tuples are considered instead of the entire stream history, and time-
based windows, specifying that only stream tuples that have arrived within a
specified time are considered, instead of the entire stream history.

A row-based window on a stream S by definition implies that we need only
a bounded synopsis for S. Thus, if in query Q every stream has a row-based
window, clearly Q is computable with bounded memory. We cannot necessarily
bound the state required to store a time-based window, since arbitrary num-
bers of stream tuples may arrive within a finite time interval. Furthermore,
we are interested in studying the case where streams are not required to be
bounded by applying windows. In addition to handling queries without win-
dows, our techniques can determine whether queries with time-based windows
are bounded-memory computable and suggest appropriate bounded synopses
for this case.

1.4 Overview and Organization

Section 2 briefly surveys related work. Section 3 formally defines data streams,
continuous queries over data streams, the query execution model, and the prob-
lem statement. Section 4 introduces notation and terminology used in the rest
of the article.

Sections 5, 6 and 7 deal with bounded-memory computability of a well-known
class of queries, namely, Select-Project-Join (SPJ) queries without self-join. All
the example queries used in Section 1.1 belong to this class. Since it seems hard
to determine bounded-memory computability of arbitrary SPJ queries directly
(as the examples suggest), we take an indirect approach. We first rewrite a
given SPJ query Q as a union of queries each of which belongs to a special class
that we call Locally Totally Ordered queries, or LTO queries for short. Next, we
check if each LTO query in the union is bounded-memory computable. An LTO
query has a special structure that makes it easier to determine if it is bounded-
memory computable. The original query Q is bounded-memory computable
iff all the LTO queries in the union are bounded-memory computable. This
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LTO-rewriting approach to determining bounded-memory computability of SPJ
queries is presented in Section 5.

The basic LTO-rewriting approach to determining bounded-memory com-
putability requires time exponential in the size of the query. Section 6 refines
this approach and presents an efficient polynomial-time algorithm to deter-
mine if an SPJ query is computable in bounded-memory. Section 7 presents an
execution strategy for bounded-memory computable queries.

Finally, Section 8 extends our results to a larger class of queries, namely,
SPJ queries that may include self-joins and an optional aggregation.

Most of the proofs in the article are relegated to the electronic appendix.

2. RELATED WORK

This article extends an original short article of the same title [Arasu et al.
2002a]. Material in this article that is not in Arasu et al. [2002a] includes
a memory-efficient execution strategy for queries that can be executed in a
bounded amount of memory, and extensions to the class of queries under con-
sideration to support grouping and aggregation. This work was done as part of
the STREAM [2003] (STanford stREam datA Manager) project, whose goal is
to develop a general purpose Data Stream Management System (DSMS) that
supports continuous queries.

Continuous queries were first introduced by Terry et al. [1992]. Babcock
et al. [2002] discuss the new research directions in continuous-query processing.
There are several ongoing research projects aimed at developing continuous
query processing systems: Aurora [Carney et al. 2002], NiagaraCQ [Chen et al.
2000], STREAM [2003], and TelegraphCQ [Chandrasekharan et al. 2003]. More
specific related work from the above projects is described below.

To the best of our knowledge, no past work on continuous query processing
has considered the problem of characterizing memory requirements of queries
statically. Some recent work has explored using constraints over streams to
minimize memory requirements. Babu and Widom [2002] identify several static
constraints and present techniques that exploit the constraints to reduce mem-
ory requirements of continuous queries. Tucker et al. [2003] suggest a mecha-
nism for embedding dynamic constraints within streams using punctuations.
This article differs from the above work in that it studies the worst-case memory
requirement without assuming any constraints over the input streams.

Some of the evaluation strategies that we propose for bounded-memory
computable queries are similar to those used in Chomicki [1995]. However,
Chomicki [1995] does not characterize the memory requirements of its evalua-
tion strategies.

There has been lot of recent work on non-memory-related aspects of
continuous-query processing such as adaptivity, approximation and sharing
state among related queries. Madden et al. [2002] study adaptivity and sharing
in continuous queries. Chandrasekharan and Franklin [2002] consider a vari-
ant of continuous queries where the answer to the query need not be computed
continuously but only intermittently on demand. Shah et al. [2003] propose a
new adaptive operator for parallelizing query evaluation.
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A large body of work on data streams has focused on specific tasks over
streams, such as computing quantiles or aggregates. Usually, these tasks
require unbounded memory, and most of the work in this category provides ap-
proximate answers, often with static guarantees on the accuracy of the answer.
Manku et al. [1999] consider maintaining approximate quantiles over streams;
Vitter [1985] studies the problem of maintaining fixed-size random samples
over streams; Alon et al. [1999] consider the problem of computing frequency
moments; Feigenbaum et al. [1999] compute l1-differences between streams;
Gilbert et al. [2002] and Guha et al. [2001] consider the problem of maintain-
ing histograms over data streams; Datar et al. [2002] maintain statistics for
sliding windows over data streams; Babcock et al. [2002] consider sampling for
the same scenario; Gehrke et al. [2001] develop histogram-based techniques
to provide approximate answers for a specific class of queries called correlated
aggregate queries; and Dobra et al. [2002] use synopses based on sketches [Alon
et al. 1999] to provide approximate answers to aggregates over joins.

3. QUERY LANGUAGE, EXECUTION MODEL, AND PROBLEM STATEMENT

We formally define our model for data streams, our initial query class, and the
semantics used for queries over streams. We then formalize our query execution
model and state the problem of determining whether or not a query can be
evaluated with bounded memory.

3.1 Continuous Data Streams

A continuous data stream (hereafter simply a stream) is a potentially infinite
stream of relational tuples. Each stream has a fixed schema, that is, a known
finite set of attributes. We assume that the domain of each attribute is the set
of integers. All the results in the article easily extend to any discrete and totally
ordered domain for attributes. We assume streams are bags, that is, the same
tuple can appear any number of times in a stream. The instance of a stream at
any point in time is the bag of stream tuples seen until that point.

We assume that streams are generated by an independent source, mean-
ing that a query evaluation algorithm has no control over the streams. This
assumption has two important implications. First, a stream can be read only
once from its source, and it is read in the order generated by the source. A query
evaluation algorithm can, of course, store a part of the stream in its local mem-
ory and access it subsequently. Second, if a query involves multiple streams, an
evaluation plan cannot make any assumptions about the relative order in which
the tuples of different streams are read. We use the term interleaving to denote
the exact interleaved sequence in which tuples of different input streams are
read. Thus, a particular input instance consists of both the input streams and
a particular interleaving.

3.2 Queries over Continuous Data Streams

A query in a traditional database is specified over finite data sets and the
query answer is a function of the entire input data. Since data streams are
potentially infinite and continuously arriving, streams are typically queried

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.



Memory Requirements of Continuous Queries • 169

using continuous queries, where the answer to a query at any point in time is
a function of the input streams seen so far. The answer changes continuously
as new input stream tuples arrive.

Languages and semantics for continuous queries is an ongoing topic of
research [Arasu et al. 2002b; Chandrasekharan et al. 2003]. For the purposes of
this article, we consider a simple class of continuous queries whose semantics
are relatively easy to define. The class of queries that we consider is Select-
Project-Join (SPJ) queries with an optional aggregation.

We use standard relational symbols with a few modifications to represent
continuous SPJ queries. We use the relational symbols σ and × to denote
selection and Cartesian product operators, respectively. We use π and π̇ to
denote duplicate-eliminating and duplicate-preserving projection operators, re-
spectively. We use the “variable” symbol5 to represent one of the two projection
operators. Thus, an SPJ query is of the form5L(σ P (S1×S2× · · ·×Sn)), where L
is the list of projected attributes, P is the selection predicate, and S1, S2, . . . , Sn
denote the input data streams. We restrict ourselves to SPJ queries where the
selection predicate P is a conjunction of atomic predicates. An atomic predicate
is of the form (Si.A Op Sj .B) (where i and j can be the same or different) or of
the form (Si.A Op k), where Op is one of the comparison operators in {<,=,>}
and k is some constant integer. Our results can be extended in a straight-
forward way to include the operators {≤,≥}. An atomic predicate of the form
(Si.A Op Si.B) or (Si.A Op k) involving attributes of just one stream is called
a filter; otherwise, it is called a join. To simplify the presentation, we start off
assuming that there are no self-joins in the query, that is, Si 6= Sj for i 6= j .
We extend our results to include self-joins in Section 8.1.

The semantics of continuous SPJ queries without aggregation is a simple
extension of the semantics for the traditional relational case. The output of a
continuous SPJ query is also a stream, and at any point of time the bag of tuples
in the output stream corresponds to the result of applying the SPJ query using
traditional relational semantics on the bag of tuples of the input streams that
have arrived so far. Note that this semantics is unambiguous since SPJ queries
without aggregation are all monotonic [Ullman 1988].

The representation and semantics of continuous SPJ queries with aggrega-
tion is presented in Section 8.2. In all other sections of the article, an SPJ query
implicitly refers to an SPJ query without aggregation.

3.3 Execution Model and Problem Specification

We assume that the query evaluation environment has access to some local
memory that can be used, for example, to store some information about the
input streams seen so far. We say that a unit of the memory can store one
attribute value or a count.1 We are not concerned with memory for storage of

1We assume that a count only takes up one unit of memory although the number of bits necessary
to represent a count grows logarithmically with the number of items being counted. In practice,
no count is likely to require more than one or two words of memory on any modern computer
architecture.
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the answers to SPJ queries since the answer is also a data stream (except for
aggregate queries, covered in Section 8.2).

The goal of this article is to characterize the worst-case memory require-
ments of queries over all possible input stream instances and their interleaving
(Section 3.1). It turns out that the worst-case memory requirement of all the
queries that we consider in this article falls into two asymptotic classes: linear
in the size of the input, and bounded by a constant. Therefore, it suffices to
characterize the class of queries that can be evaluated in a bounded amount of
memory.

Definition 3.1. A query is computable in bounded memory if there exists
a constant M and an algorithm that evaluates the query using fewer than M
units of memory for all possible instances and interleavings (Section 3.1) of the
input streams of the query.

We focus primarily on the problem of identifying exactly the above class
of queries. The proof that any query that is not bounded-memory computable
requires space that is linear in the size of the input is presented in the electronic
appendix.

4. PRELIMINARIES AND DEFINITIONS

This section introduces notation and terminology and reviews some basic con-
cepts from discrete mathematics that are used in our results.

As described in Section 3, we initially consider SPJ queries of the form
5L(σ P (S1×S2× · · ·×Sn), where 5 = π for duplicate-eliminating projection
and5 = π̇ for duplicate-preserving projection. When the streams and the list
of projected attributes are not important to the discussion, we may write a
query Q as Q(P ), where P is the selection predicate. This notation is also used
to represent two queries that are identical except for their selection predicate.
For example, query Q(P2) is obtained from query Q(P1) by just replacing the
selection predicate P1 with the predicate P2. For convenience, we represent the
selection predicate as a set instead of a conjunction of atomic predicates. Re-
call from Section 3 that we only consider queries whose selection predicate is a
conjunction of atomic predicates.

A set of atomic predicates P is satisfiable if there exists some assignment
of integer values to the attributes in P that makes every predicate in the set
P evaluate to true. For example, the set of atomic predicates {(A < B), (B <

C), (C < A)} is not satisfiable. Note that although the general problem of boolean
expression satisfiability is intractable, there exist efficient algorithms to check
satisfiability for a conjunction (and by our convention, a set) of atomic predi-
cates [Ullman 1989]. Observe that any query Q(P ) with an unsatisfiable se-
lection predicate P has an empty output stream and therefore is trivially com-
putable in bounded memory. In the rest of the article, we assume that the
selection predicates of the queries considered are satisfiable unless mentioned
otherwise.
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Table II. Notation for Some Query Q and Stream S

S(Q) set of streams that appear in Q

C(Q) set of constants that appear in Q

A(S) set of attributes in Stream S

A(Q) set of attributes in all streams in Q , i.e.,
⋃

S∈S(Q)A(S)

E(Q) set of elements in Q , i.e., A(Q) ∪ C(Q)

We use the term, element, to refer to either a constant integer value or
an attribute of a stream. Table II lists various notation related to constants,
attributes and elements of a query that we use in the rest of the article.
For example, for Query Q3 in Table I, S(Q3) = {S, T }, C(Q3) = {10, 20},
E(Q3) = {10, 20, A, B, C, D, E}.

The transitive closure of a set of atomic predicates P , denoted P+, is the set of
atomic predicates logically implied by the predicates in P . The linear ordering
of integers is implicitly used in determining transitive closure. For example,
the transitive closure of the set of atomic predicates {(A < 5), (8 < B)} is the
set {(A < 5), (A < 8), (5 < B), (8 < B), (A < B)}. For simplicity, we assume that
the transitive closure P+ contains atomic predicates only involving elements
occurring in P . Continuing the previous example, the predicate (A < 6) does
not occur in the transitive closure although it is logically implied by the set
of predicates {(A < 5), (8 < B)}. This assumption ensures that the transitive
closure of a finite set of atomic predicates is also finite. Note that two queries
Q(P ) and Q(P ′) are equivalent whenever P+ = (P ′)+.

Definition 4.1. An inequality predicate (e1 < e2) ∈ P is said to be redun-
dant in P if one of the following three conditions hold: (1) there exists an
element e such that (e1 < e) ∈ P+ and (e < e2) ∈ P+; (2) there exists a cons-
tant integer k such that (e1 = k) ∈ P+ and (k < e2) ∈ P+; (3) there exists a
constant integer k such that (e1 < k) ∈ P+ and (e2 = k) ∈ P+.

For example, the predicate (A < C) is redundant for both the sets P = {(A <

B), (B < C), (A < C)} and P = {(A < C), (A = 5), (C > 5)}. Removing all
the redundant predicates from P leaves its transitive closure unchanged, and
therefore it is sufficient to consider only nonredundant predicates of a query in
determining its bounded-memory computability (Section 5). The converse is not
true however: any atomic predicate whose removal leaves the transitive closure
unchanged is not necessarily redundant in accordance with our definition. For
example, none of the predicates in the set {(A = B), (A < C), (B < C)} are
redundant, while removing the predicate (A < C) still leaves the transitive
closure unchanged.

Our definition of redundancy depends on constant values in a subtle way:
for example, the predicate (A < C) is redundant for the set P = {(A = 5), (5 <
C), (A < C)}, while it is not so for the set P = {(A = B), (B < C), (A < C)}.
This subtlety arises because evaluating filter conditions requires no additional
memory (see Theorem 5.3); exact details should become clearer from our char-
acterization of bounded-memory computable queries in Section 5.
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Definition 4.2. For a given set of atomic predicates P , the set of atomic
predicates induced by a set of elements E, denoted IND(P, E), is the set of
predicates in P+ that involve only elements in E.

Definition 4.3. A set of elements E is totally ordered by a set of predicates P
if for any two elements e1 and e2 in E, exactly one of the three atomic predicates
(e1 < e2) or (e1 = e2) or (e1 > e2) is in P+.

Definition 4.4. For a given set of predicates P , the equality predicates in
the set partition the elements in P into equivalence classes: two elements e1
and e2 belong to the same equivalence class if (e1 = e2) ∈ P+.

Definition 4.5. Given a set of predicates P , an attribute A is lower-bounded
if there exists an atomic predicate (A > k) ∈ P+, or an atomic predicate (A =
k) ∈ P+ for some constant k. Similarly, an attribute A is upper-bounded by P if
there exists an atomic predicate (A < k) ∈ P+, or an atomic predicate (A = k).
An attribute is bounded if it is both upper-bounded and lower-bounded and
unbounded otherwise.

Note that an attribute that is upper-bounded (respectively, lower-bounded)
but not lower-bounded (respectively, upper-bounded) is unbounded by our defi-
nition.

Definitions 4.1–4.5, when used in the context of a query Q(P ), implicitly
refer to the selection condition P of the query. For example, the term bounded
attributes of a query refers to the attributes of the query that are bounded given
the selection predicate of the query.

5. BOUNDED-MEMORY COMPUTABILITY OF SPJ QUERIES

This section provides a characterization for bounded-memory computable SPJ
queries.

In order to determine the bounded-memory computability of SPJ queries, we
use a special class of queries that we call Locally Totally Ordered queries, or
LTO queries for short. Informally, an LTO query imposes, for each stream in
the query, a total ordering of the attributes of the stream and the constants in
the query. Any SPJ query can be converted into an LTO query by repeatedly
adding filter conditions to its selection predicate; adding different sets of fil-
ter conditions results in different LTO queries. We show that an SPJ query is
bounded-memory computable iff all the LTO queries derived from it, by adding
filter conditions, are also bounded-memory computable. The special structure
of LTO queries makes it easier to determine if they are bounded-memory com-
putable.

Definition 5.1. An SPJ query Q(P ) is Locally Totally Ordered if, for every
S ∈ S(Q), the set of elements (A(S) ∪ C(Q)) is totally ordered (Definition 4.3)
by P .

LTO queries are “maximal filter queries” in a certain sense: adding additional
filter conditions involving only E(Q) to the selection predicate of an LTO query
Q either results in an equivalent query, or makes the selection predicate of the
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resulting query unsatisfiable. Consider an SPJ query Q(P ) over two streams,
S(A, B, C) and T (D, E), where P = {(A = 10), (B < A), (A < C), (D < E)}. The
set of elements (A(S) ∪ C(Q)) = {A, B, C, 10} is totally ordered since B < A =
10 < C; however, the set of elements (A(T ) ∪ C(Q)) = {D, E, 10} is not totally
ordered, since D and E are not comparable to 10. Therefore, Q(P ) is not an LTO
query. However, the query Q(P ∪ {(E < A)}) formed by adding an additional
predicate to P is an LTO query, since now the set of elements {D, E, 10} is
totally ordered: D < E < A = 10.

We can form an LTO query from an SPJ query Q(P ) by adding filter condi-
tions to the selection predicate P to ensure that for each stream S appearing in
Q , the set A(S) ∪ C(Q) is totally ordered. The LTO query formed in this way is
said to be derived from Q . The formal definition of derived LTO queries takes
into account the equivalence of queries with the same transitive closure of their
selection predicates.

Definition 5.2. An LTO Query Q(PL) is said to be derived from an SPJ
Query Q(P ) if (PL)+ = (P ∪ F )+, where F is some arbitrary set of filter predi-
cates.

For instance, from the example query Q3 =5A(σ (A=D)∧(A>10)∧(D<20) (S×T ))
in Table I, we can derive an LTO query by adding the filter predicates {(B >

20), (C < 10), (E = D)} to the selection predicate.
The bounded-memory computability of an SPJ query is directly related to

the bounded-memory computability of the set of LTO queries derived from it,
as formalized by the following theorem.

THEOREM 5.3. An SPJ query Q(P ) is bounded-memory computable iff all
LTO queries derived from it are bounded-memory computable.

PROOF. Assume Q is bounded-memory computable. Then any query
Q(P ∪ F ), where F is a set of filter conditions, is also bounded-memory com-
putable. A straightforward bounded-memory evaluation strategy for Q(P ∪ F )
is as follows: use a bounded-memory evaluation strategy for Q , and check the
additional filter conditions F on the output of Q , which can be done without
any additional memory. Since any LTO query derived from Q is also formed by
adding just filter conditions to P , it is bounded-memory computable as well.
This completes the “only-if” part of the proof.

Since all LTO queries derived from Q involve just the elements of Q , there is
only a finite number of such LTO queries (since we do not differentiate queries
with the same transitive closure of their selection predicates). Let Q1, . . . , Qm
be an enumeration of all LTO queries derived from Q . We claim that Q is equiv-
alent to the union of the LTO queries derived from it, that is, Q ≡ ⋃

1≤i≤mQi.
The union operator

⋃
is duplicate-preserving if the projection operator of

Q is duplicate-preserving, and duplicate-eliminating if the projection of Q is
duplicate-eliminating. The following example illustrates this equivalence. Its
formal proof is generalized easily from the example and is not presented in the
article.

Consider the SPJ query Q(P ) = 5A(σ (B=C)∧(A=10) (S×T )), involving two
streams S(A, B) and T (C). Three LTO queries Q1, Q2, and Q3 are derived from
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Q(P ); these are formed by adding predicates (B < 10), (B = 10), and (B > 10),
respectively, to the selection predicate P . Consider a tuple s of stream S and
a tuple t of stream T that successfully join in Query Q , that is, satisfy all the
predicates in P. Then, depending on the whether the value of s[B] (= t[C]) is
less than, equal to, or greater than 10, tuples s and t join in exactly one of Q1–
Q3, and fail to do so in the other two. Conversely, any two tuples s of stream
S and t of stream T join in at most one of the queries Q1–Q3, and if they join
in some query they also join in Q (since the predicates of Q are a subset of
the predicates of any of Q1–Q3). Therefore, Q is equivalent to the duplicate-
preserving (when 5 = π̇ ) or duplicate-eliminating (when 5 = π ) union of
Q1–Q3. Note that when5 = π , although each derived LTO query is duplicate-
eliminating, the same output tuple may be produced by different LTO queries,
and hence a duplicate-eliminating union is necessary to remove the duplicates
from the outputs of these queries.

The equivalence Q ≡ ⋃
1≤i≤mQi can be used to derive a bounded-memory

evaluation strategy for Q , if all the LTO queries Qi (1 ≤ i ≤ m) are
bounded-memory computable. The evaluation strategy is simpler when Q has a
duplicate-preserving projection: evaluate in bounded-memory each LTO query
Q1, . . . , Qm, and transfer any output of these queries into the output of Q .
When Q has a duplicate-eliminating projection, the evaluation strategy, as
before, evaluates each LTO query independently. However, in addition, it re-
members the set of all output tuples produced so far by any LTO query, and
uses this set to remove duplicates. Remembering this set of output tuples does
not require unbounded memory, since, as we will prove in Theorem 5.10, the
number of output tuples of a bounded-memory computable LTO query with
duplicate-eliminating projection is bounded.

Theorem 5.3 reduces the problem of determining if an SPJ query is bounded-
memory computable to that of determining if an LTO query is bounded-memory
computable. The bounded-memory computability of an LTO query depends
on two special sets of attributes identified by the selection predicate of the
query.

Definition 5.4. Consider a query Q(P ) and a stream Si ∈ S(Q). MaxRef (Si)
is the set of all unbounded attributes (Definition 4.5) A of Si that participate
in a nonredundant (Definition 4.1) inequality join (Sj .B < Si.A), i 6= j , in P+.
MinRef (Si) is similarly defined as the set of all unbounded attributes A of Si
that participate in a nonredundant inequality join of the form (Si.A < Sj .B),
i 6= j , in P+.

Note that MaxRef and MinRef of a stream depend only on the selection pred-
icate of the query. In particular, they do not depend on the query being an LTO
query.

Example 5.5. Figure 1 illustrates MaxRef and MinRef for an example
set of predicates involving attributes from three streams S1, S2, and S3. An
inequality join predicate between two elements is represented in Figure 1 by
a directed edge between the elements; for example, the edge from 10 to E
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Fig. 1. MaxRef and MinRef.

represents the atomic predicate (10 < E). Attributes belonging to the same
stream are indicated using an enclosing rectangle; for example, the attributes
of S1 are A, B, C, and D.

For stream S1, MaxRef (S1) = {C, A}, due to the predicates (G < C) and
(H < A), and MinRef (S1) = φ. Attribute B does not appear in MaxRef (S1)
since the predicate (G < B) is redundant. For stream S2, MaxRef (S2) = φ

and MinRef (S2) = {G}. Attribute F does not appear in MaxRef (S2) since F is
bounded. For stream S3, MaxRef (S3) = φ, and MinRef (S3) = {H, J}.

We consider the cases of LTO queries with duplicate-preserving projection
and duplicate-eliminating projection separately.

5.1 LTO Queries with Duplicate-Preserving Projection

Duplicate-preserving LTO queries that involve only one stream can always be
computed in bounded memory, since without joins every predicate is a filter
and can be computed one tuple at a time. The following theorem characterizes
bounded-memory computability for queries involving more than one stream.

THEOREM 5.6. Let Q = π̇ L(σ P (S1× · · ·×Sn)) be an LTO query where n > 1.
Q is bounded-memory computable (Definition 3.1) iff:

C1: Every attribute in the project list L is bounded.
C2: For every equality join predicate (Si.A = Sj .B), where i 6= j , Si.A and Sj .B

are both bounded.
C3: |MaxRef (Si)| = |MinRef (Si)| = 0 for i = 1, . . . , n.

This section informally discusses the ideas behind Theorem 5.6. A formal
proof for the “if” part can be derived in a straightforward way from the discus-
sion here, and is not presented; a formal proof for the “only-if” part is given in
the electronic appendix.

Informally, conditions C1–C3 state that, if we ignore the attributes that are
involved only in filter conditions (since we can handle filter conditions with
no memory), all the attributes that influence the output of Q are bounded.
Conditions C1 and C2 directly state that any attribute in the project list or any

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.



176 • A. Arasu et al.

attribute involved in an equality join condition is bounded. For LTO queries,
Condition C3 is equivalent to the statement that any nonredundant inequality
join predicate involves only bounded attributes (see Lemma A.1 in the electronic
appendix).

For the “if” part of Theorem 5.6, we describe a bounded-memory evalua-
tion strategy for Q , when conditions C1–C3 hold. The evaluation strategy uses
the observation above that only bounded attributes influence the output of Q ,
once the filter conditions are accounted for. The evaluation strategy maintains
synopses for the n streams. The synopsis for Si is, conceptually, the bag of tu-
ples formed by projecting on the bounded attributes of Si all the tuples of Si
seen so far that satisfy the filter conditions of Si. To keep memory bounded,
Si stores only distinct tuples and maintains the number of times each dis-
tinct tuple appears in the bag. The number of distinct tuples in the synopsis
is bounded, since each attribute is bounded. When a new stream tuple si ar-
rives on stream Si, the synopsis for Si is updated; also, the synopses for other
streams are used to determine any new output tuples resulting from the join
of si with the earlier tuples of these streams. To update the synopsis for Si,
tuple si is checked against all the filter conditions of Si that appear in P+; if
si satisfies all the filter conditions, its projection on the bounded attributes of
Si is computed and stored in the synopsis. It is straightforward to see that the
synopses for n streams, maintained similarly, contain sufficient information to
compute new output tuples resulting from the join of si with all earlier tuples
of other streams, since all the nonredundant join conditions and projections in-
volve only bounded attributes. The following example illustrates our evaluation
strategy.

Example 5.7. Consider Q(P ) = π̇ A(σ (A<20)∧(A=C)∧(C>10)∧(B>20) (S×T )), an
LTO query over streams S(A, B) and T (C). The synopsis for stream S is formed
by projecting onto attribute A the bag of tuples of S seen so far that satisfy all
the filter conditions of S, that is, the tuples having a value strictly between 10
and 20 on their A attribute and a value greater than 20 on their B attribute.
Note that we enforce the filter condition (A > 10) although it occurs only in P+

and not in P . The synopsis for S is therefore a bag of tuples over A with values
between 10 and 20. This synopsis is compactly represented by storing, for each
value v ∈ [11, 19], the number of tuples in the synopsis with A = v. Similarly,
the synopsis for T contains for each v ∈ [11, 19], the count of tuples of T seen
so far with C = v. Consider the arrival of a new T tuple, t = 〈v〉. If v lies outside
the range [11, 19], it does not join with any S tuple, and can be ignored; if v lies
within the range, it joins with all earlier S tuples having A = v and B > 20:
this is just the number of tuples in synopsis for S with A = v. Therefore, the
new output tuples resulting from the arrival of t can be determined using the
synopsis for S. Similarly, the new output tuples resulting from the arrival of a
new S tuple can be determined from the synopsis for T .

Now consider the “only-if” part of Theorem 5.6. A formal proof appears in the
electronic appendix. Here we give intuition and examples. If some condition C1–
C3 is not satisfied, some unbounded attribute influences the output of Q , either
as a projection attribute or as an attribute in a nonredundant join predicate.
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Thus, any evaluation algorithm for Q might be forced, in the worst case, to
remember an unbounded number of values of this attribute, thus requiring
unbounded memory. Example 5.8 illustrates how the existence of an unbounded
attribute in the project list can force any evaluation algorithm to use unbounded
space, and Example 5.9 illustrates the same for an unbounded attribute in a
nonredundant join predicate.

Example 5.8. Consider the LTO query Q = π̇ A(σ (A>10)∧(B=C)∧(B=10)
(S×T )) over streams S(A, B) and T (C). The projection attribute A is clearly
not bounded. Consider an instant in the evaluation of Q , where input tuples,
〈v1, 10〉, . . . , 〈vN , 10〉, such that each vi > 10 (1 ≤ i ≤ N ), have arrived on stream
S, and no tuple has arrived on stream T . Any evaluation algorithm for Q has to
remember all N values of A, {v1, . . . , vN } at this instant, since a future arrival
of a 〈10〉 tuple on stream T would require the algorithm to produce all the N
values in the output. Since N can be made arbitrarily large, any evaluation
algorithm requires unbounded memory in the worst-case.

Example 5.9. Consider the LTO query Q = π̇ A(σ (A=10)∧(B<C)∧(B>10)∧(C>10)
(S×T )) over streams S(A, B) and T (C). The projection attribute A of this
query is bounded; however, there exists a nonredundant inequality join predi-
cate (B < C) involving unbounded attributes. Therefore, MinRef (S) = {B} and
MaxRef (T ) = {C} are both nonempty, violating Condition C3. We assert that Q
cannot be computed in bounded memory. For the sake of contradiction, suppose
there exists an algorithm A that can evaluate Q with fewer than a constant
M units of memory. We will construct a class of input scenarios and show that
Algorithm A will fail to produce the correct output of Q for at least one of the
input scenarios.

Define two sets of N tuples, S = {〈10, 11〉, 〈10, 12〉, . . . , 〈10, 10 + N 〉} and
T = {〈12〉, 〈13〉, . . . , 〈11 + N 〉}. Consider a class of input scenarios where some
subset of tuples chosen fromS arrives on stream S (the order in which the tuples
arrive does not matter), followed by one tuple chosen from T that arrives on
stream T . For each input scenario, consider the instant when all the tuples of
stream S have arrived, but the single tuple of stream T has not. Algorithm A
will be in some state at this instant; since Algorithm A has fewer than M units
of memory, the number of distinct states that it can be in is finite. However,
since there are 2N subsets of S, for some sufficiently large N , there exist two
distinct subsets of S such Algorithm A ends up in the same state after seeing
the tuples of either subset. Let S ′ and S ′′ be two such subsets, and let 〈10, k〉 be
the tuple with the smallest value of k that is present in one of S ′ or S ′′ but not
in the other. Assume, without loss of generality, that 〈10, k〉 ∈ S ′. Now consider
two input scenarios from the class above: S ′ followed by tuple 〈k+1〉 on stream
T , and S ′′ followed by the same tuple 〈k + 1〉. The output of Q after the arrival
of the 〈k + 1〉 tuple on T differs for the two scenarios; the count of 〈10〉 tuples
in the output for the former case, constructed from S ′, is always one greater
than the output for the latter case, constructed from S ′′. Since Algorithm A is
unable to distinguish between S ′ and S ′′, it will give the same answer in both
cases and one answer will be incorrect.
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5.2 LTO Queries with Duplicate-Eliminating Projection

This section presents a characterization of LTO queries with duplicate-
eliminating projection.

THEOREM 5.10. Let Q = π L(σ P (S1× · · ·×Sn)) be an LTO query. Q is
bounded-memory computable (Definition 3.1) iff:

C1: Every attribute in the project list L is bounded.
C2: For every equality join predicate (Si.A = Sj .B), i 6= j , Si.A and Sj .B are

both bounded.
C3: |MaxRef (Si)|eq + |MinRef (Si)|eq ≤ 1 for i = 1, . . . , n.

In condition C3, |E|eq denotes the number of equivalence classes into which the
element set E is partitioned by the set of predicates P.

Theorem 5.10 differs from Theorem 5.6 in two respects. First, unlike
Condition C3 of Theorem 5.6, Condition C3 of Theorem 5.10 allows each stream
to have one non-bounded attribute (or a set of attributes belonging to the same
equivalence class) participating in a nonredundant inequality join predicate.
Second, Theorem 5.10 is applicable to all duplicate-eliminating LTO queries,
including queries with just one stream, while Theorem 5.6 holds only for
duplicate-preserving LTO queries involving more than one stream. Duplicate-
preserving LTO queries involving just one stream are always bounded-memory
computable.

As we did for the duplicate-preserving case, we only discuss the ideas behind
Theorem 5.10 in this section; the formal proof for the “if” part of the theorem
can be derived from the discussion, while the formal proof for the “only-if” case
is presented in the electronic appendix.

For the “if” part of Theorem 5.10, we describe a bounded-memory evalua-
tion strategy for Q , when conditions C1–C3 are satisfied. As in the duplicate-
preserving case, the evaluation algorithm maintains a synopsis for each stream
summarizing the set of tuples seen so far in the stream; in addition, it also re-
members the output tuples produced so far, to ensure duplicate elimination.
Note that Condition C1 guarantees that the set of possible output tuples is
bounded in size.

The synopsis for Stream Si depends on the values of MaxRef (Si) and
MinRef (Si). The simplest case occurs when both MaxRef (Si) and MinRef (Si)
are empty. To maintain the synopsis of Si for this case, each new input tuple
si of Si is checked against all the filter conditions of Si in P+; if si satisfies all
the filter conditions, its projection on the bounded attributes of Si is inserted
into the synopsis. However, duplicate insertions into the synopsis are ignored.
In other words, the synopsis for Si is the set (not bag) of tuples resulting from
first projecting on the bounded attributes of Si all tuples seen so far on Si that
satisfy its filter conditions, and then removing duplicates among the resulting
projected tuples. The size of this set is clearly bounded since the projected tu-
ples involve only bounded attributes. It is easy to verify, using the fact that all
nonredundant join predicates of Si involve only bounded attributes, that any
output tuple produced by the original bag of tuples of Si, by joining with tuples
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of other streams, is also produced by the projected set of tuples in the synopsis
for Si, by joining with same set of tuples of other streams.

Next, consider the case where MaxRef (Si) is not empty. From Condition C3,
it follows that MinRef (Si) is empty. Now, some unbounded attribute A of Si
is involved in a nonredundant, inequality predicate (Si.A > Sj .B), (i 6= j ).
For this case, the synopsis of Si contains attribute A in its schema in addition
to the usual bounded attributes of Si, and is maintained as follows. For each
input tuple si on stream Si that satisfies all the filter conditions of Si in P+,
the tuple sp formed by projecting si onto A and the bounded attributes of Si is
computed. If there is no tuple sp

′ in the current synopsis that agrees with sp
on all the bounded attributes, sp is inserted into the synopsis; however, if there
exists some such tuple sp

′, the tuple among sp and sp
′ having the larger value

on attribute A is retained in the synopsis, and the other is discarded. Since
the two tuples differ only on their value on attribute A, and this value is used
only to check the predicate (Si.A > Sj .B), any output tuple produced using
the discarded tuple can be produced using the tuple retained in the synopsis.
Therefore, among all tuples of Si that agree on all the bounded attributes and
satisfy the filter conditions of Si, the tuple with the maximum value of A is
chosen, and its projection is stored in the synopsis for Si. Again, it is relatively
straightforward to verify that at any instant, the set of tuples in the synopsis
behave exactly like the entire bag of tuples of Si, as far as the output of Q is
concerned.

Finally, the case where MinRef (Si) is not empty and MaxRef (Si) is empty is
handled analogously. The following example illustrates the evaluation strategy
described above.

Example 5.11. Consider the query Q = π A(σ (A=10)∧(B<C)∧(B>10)∧(C>10)
(S×T )) over streams S(A, B) and T (C), obtained from the query in Example 5.9
by replacing the duplicate-preserving projection by a duplicate-eliminating one.
The duplicate-eliminating version of the query is bounded-memory computable
unlike the duplicate-preserving version. The schema of the synopsis for S con-
tains both attribute A, since it is bounded, and attribute B, since it occurs in
MinRef (S). As there is only a single possible value of A that satisfies the filter
conditions of S, the synopsis for S contains at most one tuple: the tuple, if it
exists, with the minimum value of B among all tuples with A = 10 and B > 10.
The synopsis for T also contains at most one tuple: the tuple with the maximum
value of C so far with C > 10. Any new tuple of T is joined with the synopsis
of S, and analogously, a new tuple of S is joined with the synopsis of T . For
this query, the output of any successful join is always the tuple 〈10〉. Therefore,
the first successful join results in the output 〈10〉, and all subsequent joins are
ignored.

Conditions C1–C3 are less restrictive for duplicate-eliminating queries than
for duplicate-preserving queries because for the duplicate-eliminating case,
when a new stream tuple arrives, it is sufficient to know whether or not the
new tuple produces a given output tuple by joining with the earlier tuples of the
other streams, while for the duplicate-preserving case, it is necessary to know
the number of different ways the new tuple joins with tuples of other streams
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to produce the same output tuple. For Query Q of this example, to check if a
new S tuple joins with some earlier T tuple producing output tuple 〈10〉, the T
tuple tmax with the maximum value of attribute C greater than 10 that we store
in our synopsis suffices, since if the new S tuple joins with any other T tuple,
it joins with tmax as well. However, to determine the exact number of T tuples
that the new S tuple joins with, we need to remember the entire distribution
of C values seen so far on Stream T , as we illustrated in Example 5.9.

For the “only-if” part of Theorem 5.10, the following example illustrates how
violation of Condition C3 can force any evaluation strategy for Q to use un-
bounded memory. A formal proof, covering conditions C1 and C2 as well, is
presented in the electronic appendix.

Example 5.12. Consider query

Q = π A

(
σ (A=10)∧(B>D)∧(C>E)∧(B>10)

∧(C<10)∧(D>10)∧(E<10)
(S×T )

)
over streams S(A, B, C) and T (D, E). This query has two nonredun-
dant inequality join predicates between S and T , which violates Condi-
tion C3. Consider an instant in the evaluation of Q where N tuples,
〈10, 11,−11〉, . . . , 〈10, 10 + N ,−(10 + N )〉, have arrived on stream S, and no
tuple has arrived on stream T . For each S tuple 〈10, c,−c〉, there exists a po-
tential T tuple 〈c−1,−c−1〉 that joins only with 〈10, c,−c〉 and not with any of
the other N −1 tuples. Therefore, any evaluation strategy for Q has to remem-
ber all the N tuples of S, and, since N can be made arbitrarily large, requires
unbounded memory.

5.3 Summary

To summarize this section, we first reduced the problem of characterizing
bounded-memory computability of SPJ queries to the problem of character-
izing bounded-memory computability of a special class of queries called LTO
queries. Then, in Sections 5.1 and 5.2, we presented a characterization of
bounded-memory computable duplicate-preserving and duplicate-eliminating
LTO queries, respectively. The results of this section can not only be used to
determine if an SPJ query Q is computable in bounded memory—by check-
ing using either Theorem 5.6 or Theorem 5.10 if each LTO query derived
(Definition 5.2) from Q is computable in bounded memory—but also suggest
an evaluation strategy if Q is computable in bounded memory: rewrite Q
as a duplicate preserving union of all LTO queries derived from it, evaluate
each LTO query independently, and accumulate the output of all LTO queries
(Theorem 5.3).

This naive technique for checking bounded-memory computability of SPJ
queries and evaluating them is, however, very inefficient. The number of LTO
queries derived from an SPJ query is usually exponential in the number of
attributes of the SPJ query. In the next two sections, we use the basic ideas from
this section to derive more efficient techniques for checking and evaluation that
avoid explicitly rewriting the query into LTO queries.
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Input: SPJ query Q =5L(σ P (S1× · · ·×Sn)),5 ∈ {π̇ ,π }
Output: Yes, if Q is computable in bounded memory. No, otherwise.

(1) If P is not satisfiable, or if n = 1 and5 = π̇ , return Yes.

(2) If some attribute A ∈ L is unbounded, return No.

(3) If there exists a predicate Si .A = Sj .B ∈ P (i 6= j ), and at least one attribute
A or B is unbounded, return No.

(4) For each X ⊆ A(Q) with |X | ≤ 4, form a query Q ′ with an empty projection
list, IND(X ∪ {kmax, kmin}, P ) as the selection predicate, and joining the (at
most 4) streams that have at least one of their attributes in X . If any such
Q ′ is not computable in bounded memory (using Theorems 5.10 and 5.6),
return No. kmin and kmax denote the minimum and the maximum constant
values, respectively, that appear in Q .

(5) Return Yes. 3

Fig. 2. Algorithm to check bounded memory computability of SPJ Queries.

6. CHECKING ALGORITHM

This section presents a simple polynomial algorithm that determines if an SPJ
query Q = 5L(σ P (S1× · · ·×Sn)) is bounded-memory computable, without ex-
plicitly checking each LTO query derived from Q .

The algorithm is shown in Figure 2. It handles both duplicate-preserving
and duplicate-eliminating queries. The terms kmax and kmin in the algorithm
denote the maximum and minimum constant values, respectively, appearing
in Q .

The algorithm proceeds in five steps. Step (1) checks if Q is trivially com-
putable in bounded memory. Steps (2), (3), and (4), respectively, check if one
of the conditions C1, C2, or C3 of Theorem 5.6 (if 5 = π̇ ) or Theorem 5.10
(if 5 = π ) is violated by some LTO query derived from Q . If one of the three
conditions is violated, then Q is not bounded-memory computable, and a No is
returned in the corresponding step; otherwise, a Yes is returned in Step (5).

We briefly describe how Steps (2)–(4) check the conditions C1–C3 without ex-
plicitly enumerating each derived LTO query. Steps (2) and (3) are based on the
observation that an unbounded attribute of Q(P ) remains unbounded in some
LTO query derived from Q , and, conversely, any unbounded attribute of an LTO
query derived from Q is unbounded in Q as well. For Step (2), this observa-
tion implies that an unbounded attribute belonging to L remains unbounded in
some LTO query derived from Q violating Condition C1. Similarly, for Step (3),
two unbounded attributes A and B involved in an equality join (A = B) remain
unbounded in some LTO query derived from Q , thereby violating Condition C2.

Step (4) of the algorithm uses the fact that just two nonredundant
predicates—one in MaxRef of a stream and the other in MinRef—suffice as
a witness to the violation of Condition C3. Two predicates involve at most four
attributes, so any violation of Condition C3 can be detected by checking all
queries with four attributes or less constructed from Q in an appropriate way.
For concreteness, let Q have a duplicate-eliminating projection (the case of
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Fig. 3. Example illustrating checking algorithm of Figure 2.

duplicate-preserving projection can be argued similarly). Assume that some
LTO query, Q L, derived from Q violates Condition C3 (of Theorem 5.10). Then,
there exist two nonredundant inequality join predicates p1 and p2, involving
a common stream Si, that cause |MaxRef (Si)|eq + |MinRef (Si)|eq > 1. Let X
denote the set of (at most 4) attributes participating in p1 and p2. The query
Q ′ constructed from X in Step (4) is not computable in bounded memory, and
therefore our algorithm correctly returns No. Conversely, if some query Q ′ con-
structed in Step (4) is not bounded-memory computable due to a violation of
Condition C3 by some LTO query Q ′L derived from Q ′, then Condition C3 is
also violated by some LTO query Q L derived from Q . The following example
illustrates Step (4) of our algorithm for an example input query.

Example 6.1. Figure 3 illustrates Step (4) of our algorithm for an example
input query. A query is represented in Figure 3 using its selection predicate
alone (since the projected attributes are not relevant to Step (4)). An inequality
join predicate between two elements is represented by a directed edge between
the elements, and attributes belonging to the same stream are indicated using
an enclosing rectangle.

Figures 3(a) and 3(b) show an input query Q , with duplicate-eliminating
projection, over three streams S1(A, B, C, D), S2(E, F, G) and S3(H, I, J ), and
an LTO query Q L derived from Q . Query Q is not bounded-memory computable,

ACM Transactions on Database Systems, Vol. 29, No. 1, March 2004.



Memory Requirements of Continuous Queries • 183

since Q L violates Condition C3 of Theorem 5.10: MaxRef (S1) = {A, C} (due
to (H < A) and (G < C)). Figure 3(c) shows the query Q ′ constructed from
X = {H, A, C, G}, the set of attributes involved in violation of Condition C3 in
Q L, in Step 4 of our algorithm. Query Q ′ is not bounded-memory computable
since an LTO query, Q ′L (Figure 3(d)), derived from Q ′ violates Condition C3.
Observe that Q ′L is related to Q L the same way Q ′ is related to Q .

Clearly, Steps (1)–(3) can be executed in polynomial time in the size of the
input query. Each query Q ′ in Step (4) is of O(1) size, so we can check its LTO
queries in constant time. Since there are 2(|A(Q) |4) subsets of A(Q) having
cardinality at most 4, Step (4) takes polynomial time. Thus, our algorithm is
polynomial in the size of the input query.

7. QUERY EVALUATION STRATEGY

As described in Section 5.3, a naive evaluation strategy for SPJ queries is to
rewrite the query as a union of the LTO queries, evaluate each LTO query in-
dependently, and accumulate their output. In this section, we present an eval-
uation strategy that is more efficient computationally and uses less memory.

Intuitively, the efficient evaluation strategy logically merges all the individ-
ual synopses maintained by each LTO query of the naive evaluation strategy
into a single synopsis. Since there is substantial redundancy among the differ-
ent synopses of the naive strategy, the merged synopsis is not much larger than
any of the individual synopses, and therefore the efficient evaluation strategy
uses significantly less memory than the naive strategy, by a factor roughly equal
to the number of LTO queries.

We first introduce some notation used to describe our evaluation strategy.
We use uppercase letters to denote streams and the corresponding lowercase
letters to denote instances of streams. For example, si denotes an instance of
Stream Si. Recall from Section 3.1 that the instance of a stream at any point
in time is the bag of tuples seen so far on that stream. For a query Q over
streams S1, . . . , Sn, Q(s1, . . . , sn) denotes the output of Q when the instances si
(1 ≤ i ≤ n) of streams have been seen.

We present our evaluation strategy for duplicate-preserving queries and
duplicate-eliminating queries separately.

7.1 Evaluation Strategy for Duplicate-Preserving Queries

Consider a bounded-memory computable, duplicate-preserving query Q =
π̇ L(σ P (S1× · · ·×Sn)). We ignore the trivial case of n = 1. As for the case of
LTO queries, our evaluation strategy for Q maintains a synopsis, Syn(si), sum-
marizing the current instance si of each stream. The synopsis Syn(si) is a bag of
tuples having the same schema as Si, and it has the property that it is equiv-
alent to si for the purposes of evaluating Q . Formally, for any si (1 ≤ i ≤ n),
Q(s1, . . . , sn) = Q(Syn(s1), . . . , Syn(sn)). When a new tuple arrives on a stream,
our evaluation strategy joins the new tuple with the synopses for all other
streams, and outputs any resulting tuples. The property of the synopses de-
scribed above guarantees the correctness of this evaluation strategy.
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In order to maintain the synopsis for Si, the tuples of Si are logically par-
titioned into a bounded number of buckets. Let kmax and kmin denote the max-
imum and minimum constant value appearing in Q , respectively. Let K de-
note the set of integers between kmax and kmin, that is, K = {kmin, kmin +
1, . . . , kmax}. Partition the domain of integers into |K| +2 nonoverlapping ranges:
(−∞, kmin − 1], [kmin, kmin], . . . , [kmax, kmax], [kmax+ 1,∞); the first and the last
ranges are unbounded, and the intermediate ones span exactly one integer. A
bucket b of Si assigns, for each attribute A of Si, one of the |K| +2 ranges. Thus,
there are (|K| +2)|A(Si )| distinct buckets of Si corresponding to all the possible
assignments of ranges to attributes. We use the notation b[A] to denote the
range identified by bucket b for attribute A, writing b[A] = −∞ if the range is
(−∞, kmin − 1], b[A] = k if the range is [k, k], k ∈ K, and b[A] = ∞ if the range
is [kmax+ 1,∞). A tuple t belongs to a bucket if its value for each attribute falls
within the range assigned by the bucket. Clearly, each tuple belongs to a single
bucket.

Example 7.1. Consider Query Q7 = π̇ A(σ (B<D)∧(D>10)∧(B<20)∧(A=10) (S×T ))
from Table I. For this query kmax = 20 and kmin = 10. Therefore, there are
133 different buckets for stream S(A, B, C). An example of a bucket of S is the
bucket b with ranges b[A] = −∞, b[B] = 14, and b[C] = ∞. All tuples of S with
a value less than 10 for attribute A, the value 14 for attribute B, and a value
greater than 20 for attribute C belong to this bucket.

Any two tuples t1 and t2 belonging to the same bucket are equivalent for
the purposes of evaluating Q . In other words, whenever t1 joins with a set of
tuples from other streams to produce an output tuple, t2 also joins with the
same set of tuples to produce the same output tuple. This equivalence property
holds only for bounded-memory computable, duplicate-preserving queries, and
is formally proven in the electronic appendix. The following example illustrates
this equivalence property.

Example 7.2. Consider Query Q7 shown in Example 7.1, again. Consider
bucket b1 with ranges b1[A] = 10, b1[B] = −∞ and b1[C] = ∞. All tuples of
bucket b1 have a value less than 10 on attribute B. Consequently, they all join
with any tuple of stream T of the form 〈d , e〉, d > 10 producing the same output
〈10〉, and fail to join with any other T tuple.

This equivalence property is used to maintain the synopsis for Si. For a
bucket b of stream Si, let count(b) denote the number of tuples of Si seen so
far that belong to b, and let tfirst(b) denote the tuple belonging to b that first
appears on Si. The synopsis for Si consists of count(b) copies of tfirst(b) corre-
sponding to each bucket b of Si, discounting the tuples that fail to satisfy the
filter conditions of Si. From the equivalence property above, count(b) copies of
the tuple tfirst(b) is equivalent to the bag of count(b) tuples that belong to b;
hence, our synopsis for Si is equivalent to the bag of tuples of Si seen so far.
Physically, the synopsis for Si is represented by storing, for each bucket b, tfirst(b)
and count(b), which requires bounded memory since the number of buckets is
bounded.
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7.2 Evaluation Strategy for Duplicate-Eliminating Queries

Consider a bounded-memory computable, duplicate-eliminating query Q = π L
(σ P (S1× · · ·×Sn)). As for the case of duplicate-preserving queries, our eval-
uation strategy for Q summarizes the current stream instances si using a
bounded memory synopsis Syn(si) that is equivalent to si for evaluating Q ,
that is, Q(s1, . . . , sn) = Q(Syn(s1), . . . , Syn(sn)).

To maintain the synopsis for Si, the tuples of Si are partitioned into buckets
exactly as in the case of duplicate-preserving queries. However, unlike the case
of duplicate-preserving queries, the property that any two tuples belonging to
the same bucket are equivalent with respect to Q is not valid for duplicate-
eliminating queries. But a weaker property still holds: for any finite set (bag)
of tuples belonging to the same bucket, it is always possible to pick a subset
of one or two representative tuples that is equivalent to the entire set for the
purpose of evaluating Q . Using this property, our synopsis contains for each
bucket b of Si, at most two tuples representing the bag of tuples of Si seen so
far that belong to b and satisfy all the filter conditions of Si.

Informally, we pick the tuple with the maximum value in each MaxRef at-
tribute (Definition 5.4) and the tuple with the minimum value in each MinRef
attribute as representative tuples. For each bucket b, associate a set of fil-
ter predicates Pb such that only tuples belonging to the bucket satisfy Pb.
The set Pb contains one atomic predicate corresponding to each attribute A
of Si: if b[A] = −∞, the atomic predicate corresponding to A is (A < kmin); if
b[A] = k ∈ K, then the atomic predicate is (A = k); if b[A] = ∞, then the atomic
predicate is (A > kmax). The definition of MaxRef and MinRef for a bucket b
differs slightly from Definition 5.4, and takes into account the additional filter
predicates Pb that the tuples belonging to b satisfy.

Definition 7.3. Consider a query Q(P ) and a stream Si ∈ S(Q). For a bucket
b of Si, MaxRef (Si, b) is defined as the set of all unbounded attributes A of Si
in (P ∪ Pb) that participate in a nonredundant inequality join (Sj .B < Si.A),
i 6= j , in (P ∪ Pb)+. MinRef (Si, b) is similarly defined as the set of all unbounded
attributes A of Si that participate in a nonredundant inequality join of the form
(Si.A < Sj .B), i 6= j , in (P ∪ Pb)+.

The representative tuples for a bucket b of Si are picked as follows:

(1) If MaxRef (Si, b) is nonempty, pick the tuple t that has the maximum value
of min{t[A] : A ∈MaxRef (Si, b)}.

(2) If MinRef (Si, b) is nonempty, pick the tuple t that has the minimum value
of max{t[A] : A ∈MinRef (Si, b)}.

(3) If both MaxRef (Si, b) and MinRef (Si, b) are empty, pick the first tuple that
appears on Si.

Example 7.4. Consider the query

Q(P ) = π A

(
σ (B>F )∧(C>F )∧(D>F )

∧(A=10)∧(E=A)
(S×T )

)
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over streams S(A, B, C, D) and T (E, F ). The reader can verify that Q is
bounded-memory computable. Consider a bucket with ranges b[A] = 10,
b[B] = 10, b[C] = −∞ and b[D] = −∞. The predicate Pb for this bucket is
{(A = 10), (B = 10), (C < 10), (D < 10)}. Attributes C and D are unbounded for
predicate (P ∪ Pb); attribute B is bounded for (P ∪ Pb) although it is unbounded
for predicate P . Both C and D occur in MaxRef (Si, b) due to nonredundant
predicates (C > F ) and (D > F ). MinRef (Si, b) is empty.

One representative tuple is sufficient for bucket b: it is the tuple s with the
maximum value of min{s[C], s[D]} among all tuples of Si seen so far that belong
to b.

8. EXTENSIONS

In this section, we extend our results to a larger class of queries. Section 8.1 con-
siders queries with self-joins, and Section 8.2 considers queries with grouping
and aggregation.

8.1 Queries with Self-Joins

In a self-join query, at least one stream appears more than once in the join
list. We use the notation S1, S2, . . . to denote different occurrences of the same
stream S in a query. For instance, query π S1.A(σ (S1.A=S2.A)(S

1× S2)) is a join of
stream S with itself on attribute A.

The characterization of bounded-memory computable self-join queries differs
slightly from that of non-self-join queries due to an implicit constraint on self-
join streams: at any point of time, the instances of any two self-join streams, S j

and Sk , are the same. This additional constraint affects our characterization
for duplicate-eliminating queries only. For duplicate-preserving queries, our
characterization of bounded-memory computability using Theorems 5.3, 5.6,
and 5.10 continues to hold. However, the “only-if” proofs of Theorems 5.6 and
5.10 have to be modified slightly, since currently they assume that instances of
streams could be arbitrary. Since our characterization remains unchanged, the
checking algorithm of Section 6 and the efficient evaluation strategy of Section 7
can be used for duplicate-preserving queries with self-joins as well.

For duplicate-eliminating queries, our reduction of bounded-memory com-
putability of SPJ queries to that of LTO queries still holds (Theorem 5.3);
however, our characterization of bounded-memory computable LTO queries
(Theorem 5.10) does not, as the following example illustrates.

Example 8.1. Consider the self-join LTO query Q = π S1.A(σ P (S1×S2)),
where P = {(S1.A = 10), (S1.A = S2.A), (S1.B = S2.B), (S1.B > 10)}. The
equality join of unbounded attributes S1.B and S2.B violates condition C2 of
Theorem 5.10, but Q is equivalent to the query Q ′ = π A(σ (A = 10)∧(B > 10)(S)),
which is clearly bounded-memory computable.

Conditions C1–C3 of Theorem 5.10 are still sufficient to ensure that a self-
join LTO query is computable in bounded memory, but they are not necessary,
that is, there exist queries (e.g., query Q of Example 8.1) that violate one or
more of conditions C1–C3, but are computable in bounded memory.
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Informally, one of the two occurrences of stream S in query Q of Example 8.1
was “redundant,” which allowed Q to be rewritten as Q ′ using just one oc-
currence of S. Theorem 5.10 fails only for queries with redundant streams.
In other words, a duplicate-eliminating LTO query without any redundant
streams is bounded-memory computable iff conditions C1–C3 hold. Our strat-
egy for handling duplicate-eliminating LTO queries is, therefore, to first rewrite
these queries without redundant streams and then use Theorem 5.10 to check
bounded-memory computability of the rewritten queries. We formalize redun-
dant streams, and show how a query can be rewritten without redundant
streams.

Definition 8.2. A stream S j
i is said to be redundant in an SPJ query Q(P )

if there exists a stream Sk
i ( j 6= k) such that:

(1) If (S j
i .A Op k) ∈ P+, then (Sk

i .A Op k) ∈ P+, and if (S j
i .A Op S j

i .B) ∈ P+,
then (Sk

i .A Op Sk
i .B) ∈ P+ (i.e., any filter condition of S j

i is also a filter
condition of Sk

i ).

(2) If (S j
i .A Op Sl .B) ∈ P+, then (Sk

i .A Op Sl .B) ∈ P+.

(3) If S j
i .A ∈ L, where L is the list of projected attributes, then (S j

i .A = Sk
i .A) ∈

P+.

In such a case, we say that Sk
i covers S j

i in Q .

In Example 8.1, S1 covers S2, and vice-versa. If Sk
i covers S j

i in an SPJ query
Q , the query Q ′ obtained from Q by eliminating S j

i , and replacing all occur-
rences of S j

i .A by Sk
i .A is equivalent to Q . By repeatedly using this rewriting

step, we can eliminate all redundant streams from a query.
To summarize, a duplicate-eliminating query with self-joins is bounded-

memory computable iff all the LTO queries derived from it are bounded-memory
computable. In order to determine if a duplicate-eliminating LTO query is
bounded-memory computable, we remove all redundant streams from the query
and check if the resulting rewritten query is bounded-memory computable us-
ing Theorem 5.10. Currently, we do not know how to extend the more efficient
checking (Section 6) and evaluation algorithms (Section 7) to handle duplicate-
eliminating SPJ queries with self-joins; extending these algorithms is future
work.

8.2 Queries with Grouping and Aggregation

We now extend our main results to queries involving aggregation and (option-
ally) grouping. For queries involving only the standard aggregate functions
(SUM, COUNT, MIN, MAX, AVG, COUNT-DISTINCT, and MEDIAN), we provide necessary
and sufficient conditions for bounded-memory computability, and argue that
any query that is not bounded-memory computable requires a worst-case space
that is linear in the size of its input (Theorems 8.5 and 8.6). For queries that
involve user-defined aggregate functions, we only provide a set of sufficient
conditions for bounded-memory computability (Theorems 8.3 and 8.4). Stat-
ing necessary conditions for bounded-memory computability that apply to all
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aggregate functions is difficult because one can easily design nonstandard ag-
gregate functions that admit special optimization tricks.

We use the relational symbol G to denote the grouping and aggregation oper-
ator. A query involving grouping and aggregation (hereafter simply an “aggre-
gate query”) is of the general form GGF (σ P (S1× · · ·×Sn)), where G is a (possibly
empty) set of grouping attributes and F is a set of aggregate expressions. An
aggregate expression is of the form f (Si.A), where f is an aggregate function
like SUM or COUNT. The aggregate query GGF (σ P (S1× · · ·×Sn)) is equivalent to
the SQL query:

SELECT G, F FROM S1, . . . , Sn WHERE P GROUP BY G

The answer to an aggregate query at any point of time is the answer using
standard relational algebra semantics over the bag of input stream tuples seen
so far. Most aggregate queries are nonmonotonic, meaning we cannot stream
the output tuples as we did for an SPJ query. We therefore use a different
technique for producing the answer to an aggregate query. At any point of time,
we require the evaluation strategy to store the current answer to the aggregate
query in its memory. We count the memory used to store the query answer
when determining whether an aggregate query can be evaluated in bounded
memory. Trivially, this approach implies that any aggregate query with an
unbounded result size (i.e., an unbounded number of groups) is not bounded-
memory computable.

We use the classification from Gray et al. [1997] that divides aggregate func-
tions into three categories: distributive, algebraic, and holistic. Consider a bag of
values X and a single value x drawn from some domain. An aggregate function
f over the domain is distributive if f (X ∪ {x}) can be computed from f (X ) and
x. An aggregate function f is algebraic if it is not distributive, but there exists a
“synopsis function” g such that for all X : (1) f (X ) can be computed from g (X );
(2) g (X ) can be stored in bounded memory; and (3) g (X ∪ {x}) can be computed
from g (X ) and x. An aggregate function f is holistic if it is neither distributive
or algebraic. A distributive or algebraic aggregate function can be computed in
an online fashion using a bounded amount of memory, while a holistic aggregate
function cannot. Among the standard aggregate functions, SUM, COUNT, MIN, and
MAX are distributive, AVG is algebraic since it can be computed from a synopsis
containing SUM and COUNT, and COUNT-DISTINCT and MEDIAN are holistic.

Further, we classify aggregate functions as duplicate-sensitive or duplicate-
insensitive. Let X be a bag of values, and X ′ the set of distinct elements in X .
An aggregate function f is duplicate-insensitive if f (X ) = f (X ′) for all bags X ,
and duplicate-sensitive otherwise. Functions MIN, MAX, and COUNT-DISTINCT are
duplicate-insensitive, while SUM, COUNT, AVG, and MEDIAN are duplicate-sensitive.

THEOREM 8.3. A single-stream aggregate query Q = GGF (σ P (S)) can be com-
puted in bounded memory if: (1) every grouping attribute in G is bounded; and
(2) there is no aggregate expression f (A) ∈ F such that f is holistic and A is
unbounded.

PROOF. Partition the input tuples that satisfy P into the groups defined by
the grouping attributes. There are a bounded number of groups because the
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grouping attributes are all bounded. Within each group, the values of distribu-
tive and algebraic aggregates can be maintained using bounded memory, by
definition. For each attribute A that is aggregated using a holistic aggregate
function, maintain counts of the number of times each value of A occurs within
each group; by condition (2) attribute A must be bounded, so these counts can
be maintained using bounded memory. The counts completely capture the dis-
tribution of A within the group, allowing the holistic aggregates to be computed
from them.

Now consider a multistream aggregate query Q = GGF (σ P (S1× · · ·×Sn)).
Let A(F ) = {Si.A‖ f (Si.A) ∈ F } denote the set of attributes used in ag-
gregate expressions in F . We define the characteristic query Q ′ for Q as
5G ∪ A(F )(σ P (S1× · · · ×Sn)), where 5 = π if all aggregate functions in F are
duplicate-insensitive and5 = π̇ otherwise.

THEOREM 8.4. Consider an aggregate query Q = GGF (σ P (S1× · · ·×Sn)). If
the characteristic query Q ′ for Q can be computed in bounded memory, then so
can Q.

PROOF. We provide a bounded-memory evaluation strategy for evaluating
Q . Evaluate as a subroutine the characteristic query Q ′ using the appropriate
algorithm from Section 7. As output tuples are generated by the subroutine,
partition them into groups defined by the grouping attributes, and within each
group, maintain counts of the number of occurrences of each value for each of
the attributes being aggregated. If Q ′ is duplicate-preserving, then the counts
are a complete description of the distribution of the aggregated attributes, so
they are sufficient to compute the aggregate functions for each group. If Q ′ is
duplicate-eliminating, then the number of times each attribute value occurred
is lost, but that does not matter since Q ′ is only duplicate-eliminating when
all aggregates in Q are duplicate-insensitive. The fact that Q ′ is computable
in bounded memory implies that all grouping attributes and all aggregated
attributes in Q are bounded, so the total memory required for “post-processing”
the output of Q ′ also is bounded.

Next we present the necessary and sufficient conditions for determin-
ing whether an aggregate query, involving only the standard aggregates, is
bounded-memory computable. Again, we consider single- and multistream
queries separately.

THEOREM 8.5. Let Q = GGF (σ P (S)) be an aggregate query over a single
stream, where the aggregate functions in F are drawn from SUM, COUNT, MIN,
MAX, AVG, COUNT-DISTINCT, and MEDIAN. Q is bounded-memory computable iff: (1)
every grouping attribute in G is bounded; and (2) there is no aggregate expression
f (A) ∈ F such that f is holistic (i.e., COUNT-DISTINCT or MEDIAN) and A is
unbounded.

PROOF. This theorem states that Conditions (1) and (2) from Theorem 8.3
are necessary as well as sufficient for the standard aggregates. The “if” direction
is a special case of Theorem 8.3. The “only if” direction is straightforward. As
we observed earlier, every grouping attribute has to be bounded to keep the size
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of the output bounded. For Condition (2), it is well known that computing the
number of distinct values or the median of a bag requires memory proportional
to the number of distinct values in the bag, which implies that all attributes
aggregated by COUNT-DISTINCT and MEDIAN must be bounded.

The reduced characteristic query of an aggregate query Q = GGF (σ P
(S1× · · ·×Sn)) is defined in the same way as the characteristic query for Q de-
fined earlier, except now the attributes in the project list are only the grouping
attributes G rather than G ∪A(F ). Formally, the reduced characteristic query
Q ′R for Q is 5G(σ P (S1× · · ·×Sn)), where 5 = π if all aggregate functions in
F are duplicate-insensitive and5 = π̇ otherwise.

THEOREM 8.6. Let Q = GGF (σ P (S1× · · ·×Sn)) be an aggregate query over
multiple streams, involving only the standard aggregates SUM, COUNT, AVG, MAX,
MIN, COUNT-DISTINCT, and MEDIAN. Let Q ′R be the reduced characteristic query
for Q. Then, Q is bounded-memory computable iff:

C1: Q ′R is computable in bounded memory.
C2: For every aggregate expression COUNT-DISTINCT(Si.A) or MEDIAN(Si.A) in F ,

Si.A is bounded.
C3: For every aggregate expression MAX(Si.A), if Si.A is unbounded, either

MaxRef (Si) is empty or |MaxRef (Si)|eq = 1 and Si.A ∈ MaxRef (Si); simi-
larly, for every aggregate expression MIN(Si.A), if Si.A is unbounded, either
MinRef (Si) is empty or |MinRef (Si)|eq = 1 and Si.A ∈MinRef (Si).

We discuss the ideas behind Theorem 8.6. A formal proof can be derived from
the discussion here.

Without loss of generality, we can assume that Q consists of just one
aggregate expression. An aggregate query having n > 1 aggregate expres-
sions can be equivalently rewritten as a natural join (on the grouping at-
tributes) of the output of n aggregate queries, each having one aggregate
expression of the original query, but otherwise identical. For example, the
query AGSUM(B), MAX(C)(σ A=10(S(A, B, C))) is equivalent to AGSUM(B)(σ A=10(S))
1A AGMAX(C)(σ A=10(S)). Since the set of possible groups in a bounded-memory
computable aggregate query is bounded, a query with more than one aggregate
expression is bounded-memory computable iff all the queries with one aggre-
gate expression “derived” from it are bounded-memory computable. Therefore,
for the rest of this discussion we assume that F contains only one expression
of the form f (Si.A).

We break the discussion of Theorem 8.6 into three cases depending on the
type of the aggregate function used in the single aggregate expression—holistic
(COUNT-DISTINCT and MEDIAN), nonholistic and duplicate-sensitive (SUM, COUNT,
AVG), nonholistic and duplicate-insensitive (MAX, MIN). For each of these cases,
we discuss both the “if” and “only-if” arguments of the proof.

For the holistic aggregates, COUNT-DISTINCT and MEDIAN, the relevant con-
ditions C1 and C2 of Theorem 8.6 reduce to the sufficiency conditions of
Theorem 8.4. Therefore, the “if” part of the proof for holistic aggregates is
a special case of the proof of Theorem 8.4. For the “only-if” part of the
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proof, first assume that Q ′R is not bounded-memory computable violating
Condition C1. The non-bounded-memory computability of Q ′R results either
from some unbounded attribute in its project list G (which causes the violation
of Condition C1 of Theorem 5.6 for some LTO query), or from some join pred-
icates in P (which cause the violation of conditions C2 or C3 of Theorem 5.6).
In the former case, Q is clearly not bounded-memory computable, since one of
its grouping attributes is not bounded; in the latter case, informally, since even
checking all the join predicates of P requires unbounded memory, evaluating an
aggregation on top of the join is not feasible in bounded memory either. Finally,
by the definition of holistic aggregates, the aggregated attribute Si.A has to be
bounded for bounded-memory computability of Q . Therefore, Condition C2 is
necessary as well.

Next consider the case of duplicate-sensitive aggregates SUM, COUNT, and AVG.
For these aggregates, only Condition C1 is relevant, that is, Q is bounded-
memory computable iff Q ′R is bounded-memory computable. First, consider the
“if” part of the proof. Note that Condition C1 relaxes the sufficiency conditions of
Theorem 8.4: for these aggregates, it is possible to evaluate the query even if the
aggregated attribute is unbounded. A query involving these aggregates need
not be evaluated, as suggested by the proof of Theorem 8.4, by first computing
the join of the streams, projecting the grouping and the aggregated attributes
from the result of the join, and then computing the aggregate on the projec-
tions. Instead, we can partially “push” the aggregation below the join, which
makes it possible to compute these aggregates even for unbounded aggregated
attributes. The following examples illustrates this evaluation strategy.

Example 8.7. Consider the aggregate query Q = A, CGSUM(B)(σ P (S×T ))
over two streams S(A, B) and T (C), where P = {(A < 20), (C < 20), (A >

10), (C > 10)}. Although the aggregation is over an unbounded attribute B,
we assert that Q is computable in bounded-memory. As always, our evaluation
strategy maintains a synopsis for S and T ; in addition, it also maintains the
current answer to the query as required by the semantics of aggregate queries.
The synopsis for S contains, for each value v in the interval [11, 19], the sum of
attribute B of all S tuples seen so far with A = v. The synopsis for T contains,
for each value v in [11, 19], the count of T tuples seen so far with C = v. The
arrival of a new T tuple 〈c〉 (10 < c < 20) changes the output as follows: for
each value v ∈ [11, 19] add the sum corresponding to v in the current synopsis
for S to each group A = v, C = c in the output. Similarly, the arrival of a new
S tuple 〈a, b〉 (10 < a < 20) changes the output as follows: for each v ∈ [11, 19],
let nv denote the current count of tuples in the synopsis for T with C = v; add
a value b ∗ nv to each group A = a, C = v in the output. The reader can verify
that this evaluation strategy correctly computes the output of Q .

If the aggregated attribute Si.A is bounded, we can use the evaluation strat-
egy of Theorem 8.4. If it is not, the evaluation strategy of Section 7.1 can be
modified as follows. As before, maintain a synopsis for each stream. The syn-
opses for all streams other than Si (recall that Si.A is the aggregated attribute)
remain unchanged. In order to maintain the synopsis of Si the tuples of Si are
partitioned into buckets exactly as described in Section 7.1. For each bucket,
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in addition to remembering one representative tuple and the count of tuples,
remember the aggregate over attribute A. For example, if the aggregate func-
tion is SUM, remember the sum of attribute A over all tuples belonging to each
bucket. The reader can verify that these synopses are sufficient to answer Q
using a technique similar to the one shown in Example 8.7. For the “only-if”
proof, if Q ′R is not bounded-memory computable, we can argue that Q is not
bounded-memory computable as well, exactly as we did for holistic aggregates.

Finally, consider the case of MIN and MAX. We only discuss MAX since the dis-
cussion for MIN is analogous. Again consider the “if” part. If the aggregated
attribute Si.A is bounded, then Q satisfies the conditions of Theorem 8.4,
and, therefore, we can use the evaluation strategy presented in the proof of
Theorem 8.4. If Si.A is not bounded, then the bounded-memory computabil-
ity of Q depends on MaxRef (Si). If MaxRef (Si) is empty, we can partially
push the MAX aggregate below the join exactly as we did for the duplicate-
sensitive queries above: for each bucket in the synopsis for Si, maintain the
maximum value of attribute A over all the tuples that belong to the bucket. If
MaxRef (Si) is nonempty, Condition C3 states that Si.A must be the only at-
tribute in MaxRef (Si) (ignoring attributes belonging to the same equivalence
class) for Q to be bounded memory computable. Informally, the maximum value
of the attributes in MaxRef is needed (in some buckets) for the evaluation of
the predicate P . If A is the only attribute in MaxRef (Si) (ignoring attributes
belonging the same equivalence class as A), then there is no conflict, and the
maximum value of A can be stored for each bucket exactly as before; this max-
imum value is now used both for checking P and for computing MAX(A). For the
“only-if” part, if Q ′R is not bounded-memory computable, we can argue that Q
is not bounded-memory computable exactly as we did for the case of holistic
aggregates. If A is not the only attribute in MaxRef (Si), the proof is similar to
the only-if proof of Theorem 5.10 for the case |MaxRef (Si)|eq > 1.

9. FURTHER DISCUSSION

Our results have made the assumption that all attributes have discrete, or-
dered domains. We can relax this assumption as follows. Define sat(A, P ) for
an attribute A and a set of predicates P as the set of all possible values that
can be assigned to A that make P true for some assignment of values to the
rest of the attributes in P . Boundedness of an attribute A (Definition 4.5) can
now be generalized: A is bounded by the set of predicates P iff |sat(A, P )| is a
constant. This definition of boundedness extends Theorems 5.6, 5.10, and 8.6
to attributes with arbitrary domains. (We assume that an atomic predicate of
the form A > B or A < B is used only if the domain of attributes A and B is
ordered.) In addition to allowing attributes from arbitrary domains, it would be
useful to handle a richer set of predicates (e.g., atomic predicates using domain-
specific operators, disjunctions of atomic predicates, etc.). Expanding the class
of predicates is an important avenue of future work.

Our results in Sections 5.1, 5.2, and 8 assume that the data inputs to a
query consist solely of continuous data streams. In the case of queries over
streams, the query evaluation algorithm has no control over the instances and
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interleavings of the input streams. For queries over relations stored in conven-
tional databases, the instances of the relations are finite and may be partially
known to the query processor (e.g., in the form of statistics on the attributes).
Also, in a conventional database system, the query evaluation algorithm usually
has some control over the ordering (interleaving) of the relations. Nevertheless,
there are cases in “traditional” settings where it is desirable to perform query
processing using only one pass over each relation. In such cases, our results can
be used to generate evaluation plans that use a constant amount of additional
memory regardless of relation sizes.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital
Library. The appendix contains the proofs of many theorems from the main
body of the article.
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