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ABSTRACT

Implicit feedback algorithms utilize interaction between
searchers and search systems to learn more about users’
needs and interests than expressed in query statements
alone. This additional information can be used to formu-
late improved queries or directly improve retrieval perfor-
mance. In this paper we present a geometric framework
that utilizes multiple sources of evidence present in this in-
teraction context (e.g., display time, document retention)
to develop enhanced implicit feedback models personalized
for each user and tailored for each search task. We use rich
interaction logs (and associated metadata such as relevance
judgments), gathered during a longitudinal user study, as
relevance stimuli to compare an implicit feedback algorithm
developed using the framework with alternative algorithms.
Our findings demonstrate both the effectiveness of our pro-
posed algorithm and the potential value of incorporating
multiple sources of interaction evidence when developing im-
plicit feedback algorithms.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Storage and Retrieval]: relevance feedback, search pro-
cess, retrieval model.

General Terms: Theory, Experimentation, Human Fac-
tors.

Keywords: Implicit relevance feedback, geometry of infor-
mation retrieval.

1. INTRODUCTION

The effective use of most Information Retrieval (IR) sys-
tems requires people to be able to express their informa-
tion needs as concise textual query statements. However,
searchers can struggle to select the terms that will lead to
the most effective retrieval, in particular if their information
needs are vague [1] or their knowledge of system vocabu-
lary or indexing is poor [2]. To address these shortcomings
systems that use Relevance Feedback (RF) [3] can leverage
explicit indications of user interest to circumvent problems
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in the direct specification of needs as queries, and drive an
iterative search process that can support more effective re-
trieval [4]. Despite the promise of RF, users are reluctant
to provide explicit feedback, generally because they do not
understand its benefits or do not perceive it as being rele-
vant to the attainment of their information goals [5]. Given
the potential usefulness of RF it is prudent to research other
ways in which relevance information can be gathered from
users at minimal cost to them in terms of time or cogni-
tive resources. One way to do this is to use the contextual
information generated during the interaction between the
user and information as implicit RF (IRF) [6], where vis-
ited documents to which certain relevance criteria apply are
assumed to be relevant. Contextual features such as docu-
ment display time (i.e., the amount of time a document is
in focus in the Web browser or on the desktop), document
retention (e.g., saving, printing), and document interaction
(e.g., scrolling, click-through) can be mined and used as the
basis for relevance criteria in IRF algorithms. These al-
gorithms can suggest query expansion terms, retrieve new
search results, or dynamically reorder existing results.

For simplicity, IRF algorithms traditionally use just one
implicit feature as relevance criteria. The two most common
features used are document display time or document visita-
tion, both available for every document the user examines.’
However, the use of these features as a relevance indicator is
potentially problematic since there is mixed opinion about
whether display time is an accurate predictor of relevance [7,
8], and whether visiting a document implies relevance [9,
10]. In addition, it has been shown through user experimen-
tation that a single feature can vary greatly between users
and search tasks [11]. Although this makes a strong case for
personalization [12] it also means that implicit evidence can
be unreliable as there are usually only a small number of rel-
evant documents available for each user, each task, and each
user/task pair. If we could capitalize on multiple aspects of
user interaction substantially more evidence about prefer-
ences becomes obtainable, and more robust IRF algorithms
could potentially be created [13].

In this paper we present a formal framework based on
vector spaces that captures multiple aspects of user inter-
action and allows a new mathematical model of IRF to be
developed. It uses display time, document retention, and in-
teraction events to build a multi-faceted user interest profile.
Since it uses more than one feature, IRF algorithms devel-
oped using the framework are less susceptible to feature bias

IThis is not the case for other features such as document
retention.



than those using a single feature. We compare the retrieval
performance of an IRF algorithm generated using the frame-
work against RF baselines that use pseudo-relevance feed-
back (i.e., assume top search results are relevant), and the
centroid of visited documents’ interaction features to create
a single interaction feature. As we will describe, combining
multiple features results in an algorithm that leads to higher
retrieval effectiveness.

The remainder of this paper is structured as follows. In
Section 2 we describe related work on implicit feedback and
vector spaces in IR. In Sections 3 and 4 we describe the
formal framework used to model interaction context and its
direct application in the work reported here. In Section 5 we
describe a comparative experiment to test the effectiveness
of our algorithm against alternatives. We present our find-
ings in Section 6, discuss them in Section 7, and conclude in
Section 8.

2. RELATED WORK

Interest in IRF to support information-seeking has grown
in recent years given the attractiveness of being able to re-
duce the user burden of explicitly providing feedback whilst
still being able to proactively support their search activities.
Much of the research in this area has focused on the sub-
stitutability of IRF for explicit RF [13, 14], or the impact
of task and user information on the reliability of interaction
features [15, 16]. Fox et al. [13] showed that implicit ratings
such as session duration and number of result sets returned
can be indicative of user satisfaction. They also showed that
the combination of several implicit features, including read-
ing time and the way the user exited from the result page,
can predict search result relevance. Joachims et al. [14] an-
alyzed users’ decision processes during search-result click-
through and compared implicit feedback against manual rel-
evance judgments. They concluded that although the inter-
pretation of clicks as absolute relevance judgments is diffi-
cult, relative preferences derived from clicks are reasonably
accurate. Kelly and Belkin [15] reported that display time
was not indicative of document relevance, and that display
times differ significantly according to specific task, and ac-
cording to a specific user. White et al. [16] showed that fac-
tors such as task, user experience, and stage in the search
can affect the potential usefulness of IRF. These studies are
important in informing our understanding about IRF’s po-
tential, but they do not put these findings into practice in
realistic settings.

Some attempts have been made to use IRF in search ap-
plications. Morita and Shinoda [7] explored how behav-
iors exhibited by users while reading articles from news-
groups could be used as IRF for profile acquisition and filter-
ing. Budzik and Hammond [17] developed a system capable
of automatically retrieving documents and recommending
URLs to the user based on what the user was typing in a
non-search application. White et al. [18] used reading time
as a technique for automatically re-ranking sentence-based
summaries for retrieved documents. Additional research in
areas such as user modeling [19] and attentive systems [20,
21] has mainly focused on the use of IRF to infer the inter-
ests of an individual user based on that user’s interactions,
and typically restricts the source of IRF to a single behavior
such as document display time, editing, or visitation. Re-
lated work by Horvitz et al. [22] employed multiple aspects
of user interaction behavior but did not do so for IRF and

not in the search domain. The IRF algorithm we propose in
this paper supports the individual user in a similar way to
many of these applications but uses multiple aspects of user
interaction behavior.

The use of aggregate click-through statistics has recently
emerged as an alternative to personalization as an appli-
cation of IRF. Joachims [23] and Agichtein et al. [10] im-
proved search engine ranking using the collective result click-
through behavior of many Web searchers. Radlinksi and
Joachims [24] augmented click-through data with additional
evidence of query reformulation behavior. White et al. [25]
used the browsing behavior of many users to direct individu-
als to authoritative resources for the query topic. These ap-
proaches may help all users in some way but do not directly
help the individual user specify their needs more effectively;
this is the aim of the framework we describe.

As can be seen above, most of the research on IRF has
focused on empirical user studies where the behavior of
the user is observed when interacting with the system. In
contrast, this paper presents a geometric framework based
on vector spaces that utilizes multiple sources of evidence
present in this interaction context (e.g., display time, docu-
ment retention) to develop enhanced implicit feedback mod-
els personalized for each user and tailored to each search
task.

The use of vector spaces for modeling dates back to the
early days of IR. The Vector-Space Model (VSM) gives an
intuitive yet formal view of indexing and retrieval. The VSM
has attracted many researchers and newcomers since when
it was introduced in [26] and [27]. It has proved a very effec-
tive, sound framework in retrieving documents in different
languages, on different subjects, of different sizes, and of
different media, thanks to a number of proposed and tested
weighting schemes and applications.

However, the VSM has often been seen as a “spreadsheet”-
based way for designing systems. The use of matrices is
due to the need to describe documents as tuples of word
frequencies; the potential of vectors was limited by this view
of the model. As a consequence, the potential of vector
spaces for retrieval has not fully been exploited in practice,
even though some attempts have been made in the past with
some success. For example, an early effort to reevaluate the
VSM is reported in [28]. The discussion on the assumptions
and the potential is the subject of [29].

A recent reconsideration of the Geometry of IR was pre-
sented in [30]. In that book Hilbert’s vector spaces are used
to see documents as vectors, relevance as a linear transfor-
mation, relevance statuses as the eigenvalues of the linear
transformation, and the computation of the probability of
relevance of a document as the projection of the document
vector onto an eigenvector of the linear operator. In other
words, the size of the projection of the document vector
onto an eigenvector of the operator is the probability that
the document is about the relevance state represented by
the corresponding eigenvalue.

Despite its apparent simplicity, the mathematical proper-
ties of vector spaces can be used to achieve good retrieval
performance. In particular, the idea of using a basis of a
vector space to represent context was proposed in [31, 32]
and further investigated in [33] with regard to the extension
towards Quantum Mechanics. In this paper these constructs
are leveraged for addressing the issue of IRF and taking a
step toward context-aware IR modeling.



The approach we adopt uses feature correlation as basic
information for designing an IRF algorithm. The hypothe-
sis that the feature-document frequency matrix contains in-
formation about the correlation among features and among
documents was cited in [34], stated in [28] and was further
exploited in [35] in defining Latent Semantic Indexing (LSI).
The latter is a technique based on Singular Value Decom-
position (SVD) which aims to decompose the correlation
matrix and disclose the principal components used to repre-
sent fewer independent concepts than many inter-dependent
variables. In this paper, the features are observed from user
interaction and the contextual factors extracted through de-
composition describe the factors which can be exploited for
the IRF algorithm.

The next section describes how context is represented in
our proposal.

3. THE GEOMETRY OF CONTEXT

Information-seeking activities do not occur in isolation
from surrounding environmental and situational factors. On
the contrary, context affects information seeking and re-
trieval. Therefore, it is little surprising that the use of con-
textual information has emerged as an area of great interest
in IR and information-seeking research [36]. In this section
we present a mathematical framework that can be used to
represent this context in a way that can be leveraged by IR
systems. In general, a mathematical framework plays the
role of a formal description of an IR system that is neces-
sary for arriving at algorithms and data structures that can
effectively be implemented. In particular, vector spaces are
used for defining the mathematical framework proposed in
this paper because they have the properties for uniformly
describing different IR frameworks [30] which may make it
appropriate for modelling context over other mathematical
models.

The features characterizing users, time, places, or any-
thing emerging from user-system interaction form a notion
which can be referred to as context. Since context is an am-
biguous concept, the following definitions used in this paper
are provided:

e Variable: refers to either an entity of the context, for
example, user, task, topic, or document, or a relation-
ship between entities, for example, relevance or about-
ness.

e Dimension: refers to a property of an entity, for exam-
ple, user behavior, task difficulty, topic clarity, docu-
ment genre, or relevance.

e Factor: refers to a value of a property, for example,
browsing, complex search task, difficult topic, relevant,
non-relevant, or mathematical document.

These definitions are sufficiently precise for describing in
this section a framework that can be used in algorithms
automated by IR systems to support searching in context.
Through their interaction behavior users can define their
own interaction context that may be representative of con-
textual influence from the task or other constraints on them.
For example, many short document display times may be in-
dicative of a user attempting a time-constrained task. When
some evidence is gathered from context, IRF can be per-
formed for expanding queries, reordering retrieval results,
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Figure 1: A vector is generated by infinite dimen-
sions.

or re-searching. The framework described is based on Lin-
ear Algebra concepts which gives an algebraic representation
of vectors, operators, and subspaces. As distances between
vectors and subspaces can be measured through operators, a
geometry of context is illustrated in this paper. Once some
variables and dimensions of context are selected from the
domain for which a context-aware IR tool is designed, the
methodology presented in this paper can summarized as fol-
lows:

1. for each dimension of context a set of orthogonal vec-
tors is defined — each orthogonal vector of such a set
models one factor of the dimension of context;

2. a basis is built for representing a context by selecting
one or more factors from each dimension — in this way,
a context is modeled by a set of possible contextual
factors and one factor refers to one dimension;

3. an informative object is matched against a context by
computing a function of the distance between the vec-
tor and the subspace spanned by the basis — the closer
the vector to the subspace, the more the object is “in

the context”.

To support the description of the framework let us begin
with an example. In Figure 1 we show how the framework
represents a document seen from two points of view given by
two dimensions. There are two sets of axes — one set of rays
is spanned by the vectors E = {e1, ez, e3}, while the other
set is spanned by the vectors U = {u1, uz, us}; for example,
e1 spans L({e1}), namely, L({e1}) is the subspace of the
vectors which are obtained by multiplying e; by a scalar.
A set of coordinates describes a dimension of context; for
example, the dimension of context spanned by E may be
“document genre”. A ray depicts a one-dimensional sub-
space, e.g. L({u;}). As a subspace (e.g. a ray) is spanned
by a vector, e.g. u;, the vector describes a value (contextual
factor) of this dimension — for example, if the dimension
is document genre, u; may refer to “introductory” while us
may refer to “advanced”. In this way, a mathematical repre-
sentation of contextual factors and dimensions is provided.
The mathematical properties of vectors and subspaces can



be exploited for representing the properties of contextual
factors and dimensions.

In general, factors of distinct dimensions are mutually lin-
early independent.” This means that a contextual factor
cannot be described by a vector which is derived by linearly
combining the vectors of other factors. In particular, the
rays, namely, the vectors corresponding to a given dimen-
sion of context are mutually orthogonal for signifying that
the values taken by the dimension are mutually exclusive.
Orthogonality implies that, the inner product between the
vectors spanning the rays is null, thus measuring the event
that a mutual exclusion relationship exists between the con-
textual factors represented — for example, “introductory”
excludes “advanced” and viceversa. The way orthogonality
can be used as a measure of mutual exclusion is introduced
in [30].

Figure 1 depicts how many distinct dimensions co-exist
in the same space. This superposition of dimensions can
naturally be represented by the infinite sets of coordinates
which can be defined in the vector space. In the figure, F
superposes U since F and U can at the same time “generate”
the vector x in the same space. The myriad of dimensions
model a document or a query from different point of view
and each perspective corresponds to a dimension of context.
Mathematically, a vector x is generated by the contextual
factors {u1, uz, us} as x = p1ur+p2uz+psus where |u;| = 1,
u; L u; when i # 5, and p? + p3 + p3 = 1. At the same

time, x = q1e1 + gz€2 + g2e3 where |e;| = 1, e; L e; when
i#jand gf +q3+q¢3=1°
Let us consider a set of vectors B = {bu,..., by} where

b; represents a contextual factor of a dimension of context
— as the b;’s can be of different dimensions, they are in-
dependent and not necessarily mutually orthogonal. One
projector can be computed from each vector. A projector
is an operator that maps a vector to another vector which
belongs to a given subspace. A projector is a symmetric
and idempotent operator, that is, B} = B; and B? = B;
— the projectors onto the subspaces L({b;})’s are defined
as b; - b . If L({b;}) is the ray containing b;, then the
projection of y onto L({b;}) is B; - y. If b; and b; refer to
the same dimension, B; - B; = 0 when i # j thus defining
the notion of projector orthogonality. In general, two pro-
jectors B; and B; are oblique and non-commutative, that
is, B; - B;j # 0 and B; - B; # B; - B;. As there is a one-
to-one correspondence between a subspace spanned by a set
of vectors and its projector, a projector can be taken as
the algebraic operator for a contextual factor and a linear
combination of projectors is a mathematical operator which
refers to a mixture of contextual factors.

Indeed, a contextual factor is an atomic notion that can-
not be decomposed into simpler notions. However, more
complex notions can be built by combining contextual fac-
tors. Mathematically, the most natural combination which
can represent a context is the linear combination. Thus, the
operator adopted in this paper is a linear function of projec-
tors by using a predefined set of coefficients which measure
the weight of each dimension of context. Therefore, the op-
erator is

Cp = wiB1+ -+ wBy (1)

2A set of vectors are mutually linearly independent if no
vector is a linear combination of the others.

3 An explanation of these expressions is given in [33].

Figure 2: A geometric representation of the ranking
function.

where the w;’s are non-negative coefficients such that w; +
--- 4+ w, = 1 and the B;’s are the projectors onto the sub-
spaces L({b;})’s. Cp is called context matriz or context op-
erator in this paper, since it describes the context described
by B. The contextual factors do not need to be mutually
orthogonal and thus they can refer to different dimensions.

If the objects are described by the y’s, ranking in context
reorders the vectors by the averaged distance between them
and the subspaces L({b;})’s which describe the contextual
factors. Therefore, if y and Cp are the object vector and
the context operator, the ranking function is

yT -Cp-y.
From Equation 1, the function becomes
yT~CB~y:’w1yT ~B1~y+-~+wkyT~Bk-y.

As B; = b; - b/, it follows that y' - B; -y = (b, - y)?, and
therefore

yT~CB~y:’LU1(yT'b1)2+"'+1Uk(yT'bk)2 (2)

A pictorial description of the ranking function is illustrated
in Figure 2. The vector B; -y is the projection of y to
the subspace (i.e. ray) spanned by by and is scaled by ws.
If wiB;1 -y is summed to w2B2 -y, one obtains a vector
which belongs to L(B), namely, the two-dimension subspace
spanned by B — this vector is expressed by Cp -y. Eq. 2
illustrates the degree to which the object represented by y
is close to the contextual factors of B is a weighted average
of the size of the projections of y to the L({b;})’s.

4. IRF ALGORITHM

In the previous section, a theoretical framework for IR in
context has been presented. The framework is generic and
can be applied to a range of IR problems. We elect to apply
it to IRF because there is an opportunity to capitalize on the
framework’s ability to handle multiple aspects of interaction
(as are visible in interaction context). In this section we
describe how the framework can be used to implement an
IRF algorithm that captures these aspects. With regard to
the experiments described in the next section, we explain
(1) how the vectors which represent the contextual factors
have been computed, and (2) the specific ranking function
used for ranking documents.

The vectors which represent the contextual factors have
been computed by Singular Value Decomposition (SVD) of
the correlation matrix between the features observed from
a set of documents seen by the user during the course of
his search. As an example, suppose the following six feature



(column) vectors have been observed after seeing six (row)
documents:

1 0 3 7 6 7
2 0 9 7 5 6
2 07 6 4 5
A= 3 4 8 6 7 7
4 1 3 6 5 5
1 28 7 7 5 4
where the columns corresponds to, say, (1) display time, (2)

scrolling, (3) saving, (4) bookmarking, (5) access frequency
and (6) webpage depth,® respectively — all of these values
may refer, for example, to time or frequencies, and can be
seen as of features of user behavior, which is considered as
a dimension of context.® The following feature correlation
matrix is then computed:

1.00 -0.42 -0.14 -0.78 0.11 0.05
—0.42 1.00 0.19 0.38 —0.05 —0.62
-0.14 0.19 1.00 0.07 —-0.03 -0.04
—0.78 0.38 0.07 1.00 0.00 0.00

0.11 -0.05 -0.03 0.00 1.00 0.75

0.05 —-0.62 —0.04 0.00 0.75 1.00

An element s;; of S is the correlation between columns %
and j of A; as a column refers to a feature, the element
i, is the correlation between these two features.® To rep-
resent the contextual factors we used SVD to compute the
eigenvectors of the correlation matrix. The values of an
eigenvector are scalars between —1 and +1; the further a
value is from 0 the more “important” it is. In this cir-
cumstance, important means that the feature to which the
value corresponds is a significant descriptor of the contex-
tual factor represented by the eigenvector. The value can
be likened to an index term weight. As the values may
be negative, the sign can express the contrast between fea-
tures and then the presence of subgroups of features in the
same contextual factor. For example, the first eigenvector is
b = (—0.479,0.516,0.170,0.436, —0.308, —0.436) and tells
that saving is little important (b;3 = 0.170), while the most
important features tend to cluster: scrolling and bookmark-
ing tend to be performed together (b2 = 0.516, by = 0.436)
and tend not to be performed when display time, access
frequency, and browsing (b;1 = —0.479, b4 = —0.308, b =
—0.436) increase.

Let b; be one of these eigenvectors and y be an unseen
document. The function of the distance between the doc-
ument vector and the subspace spanned by the eigenvector
is then used as a measure of the distance between the doc-
ument and the contextual factor. Therefore, y' - B; -y is
computed. If the unseen document vector is, say, y' =
(0.71,0,0,0,0.71,0), then the distance is 0.31.

The first eigenvector extracted through SVD explains the
largest fraction of the variance of the points around their
mean vector. It is therefore an average vector interpolating
a set of the points corresponding to the seen documents. The
eigenvalue is a measure of the variance explained, to be pre-

4The depth of a webpage is the number of links from the
root of the website to the webpage itself.

5This example is inspired by the dataset used for the exper-
iments reported in this paper.

In general, the number of features is different from the
number of documents and then A will not be square, but S
will always be.

cise, the fraction of variance explained by by is A1/ Zle i
where \; € R is the i-th eigenvalue.

It is worth noting that S is symmetric and therefore can
be expressed as

S=\B1+---+\xBr . (3)

This expression means that the relationships between the
features are function of the contextual factors thus revealing
that the IRF algorithm can discover more information than
encapsulated by an average feature vector. The correlation
matrices are usually small because the behavioral features
do not need to be numerous. Therefore, the computational
cost of SVD is quite limited.

In the next section we describe an experiment comparing
the IRF algorithm generated using our contextual frame-
work with comparator algorithms that use different types of
RF.

S. EXPERIMENTS

The aim of the experiment was to compare the retrieval
effectiveness of multiple IRF algorithms that used different
sources of implicit feedback and translate this feedback into
document rankings. We preferred to measure retrieval ef-
fectiveness rather than approximation of assigned relevance
judgments (as measured in earlier work [13]) since we were
focused on being able to translate our findings directly into
end-user utility.

5.1 Methodology

To evaluate the performance of our framework we em-
ployed a methodology similar to [11]. The interaction logs
of real subjects were used to simulate a user who accesses
a series of documents (Web pages) and performs some ac-
tions such as reading, scrolling, bookmarking, and saving.
The IRF algorithms under investigation are assumed to be
part of a system that monitors subject behavior and uses
these interaction data as a source of IRF to retrieve and
order the unseen documents. When the task or the subject
are known, the system records the data by subject / task
and then retrieves and ranks the unseen documents for the
given subject / task. Although seemingly similar, “topic”
and “task” are two different notions. Using Kelly’s [37] def-
initions: “Task was defined for this study as the goal of
information-seeking behavior, and topic was defined as the
specific subject within a task.””

The details of the simulation are as follows:

1. The features of all the documents seen by the user
when performing a task and searching for information
relevant to a topic are observed. n documents from
these are used for computing a representation of con-
text — note that the documents are not ranked by
topic at this stage.

2. The observed features of the n documents are used for
computing the contextual factors as follows:

(a) the feature correlation matrix is computed.

T“An example task might be writing a research paper. The
topic of this task might be information retrieval and/or in-
terfaces. Another example task might be travel. The topic
might be Oregon or Paris. Another task might be shopping,
with the topic being shoes or clothes.” [37]



(b) the eigenvectors by, ..., by are extracted from the
correlation matrix — an eigenvector represents a
contextual factor.

3. The whole document collection is ranked by the func-
tion defined in Section 3 for each projector B; at a
time. In the experiments reported in the next sec-
tion no mixture has been investigated and therefore
Cp = w;B; where w; = 1 and w; = 0 for any ¢ # j.
Then, for each projector:

(a) The ten most frequent keywords of the m top-
ranked documents are used for expanding the tex-
tual description of the topic, which is then con-
sidered as a new, expanded query.

(b) The expanded query retrieves a list of docu-
ments.®

(¢) The usefulness scores assigned to the documents
are used as ground truth information for evaluat-
ing this query expansion-based retrieval.

Normalized Discounted Cumulative Gain (NDCG) was de-
vised as a measure of retrieval effectiveness [39] that was able
to handle usefulness scores ranging in a non-binary scale.”
In this way, NDCG could be a performance metric which is
able to make better use of multi-level judgments than pre-
cision, which generally must use binary relevance values. In
addition to the projector-based method (PRJ) described in
Section 4, two other algorithms were also tested:

QRY The topic description was expanded using the query
expansion capabilities of MySQL'® — in this way,
a traditional ad-hoc retrieval system equipped with
pseudo-relevance feedback (PRF) has been simulated.

CTR The computation of the projectors is replaced with the
computation of the unique centroid vector of the clus-
ter of n vectors of the documents seen by the subject
when performing a task and searching for information
relevant to a topic. That centroid vector has then been
used for selecting the feedback documents — the in-
ner product between the centroid vector and the un-
seen document vectors is then computed for ranking
the unseen documents. Note that no clustering is per-
formed.

QRY was chosen as the baseline since (1) it is common prac-
tice to compare new RF algorithms to PRF, which is one
of the most successful RF techniques, and (2) IRF is a vi-
able substitute for PRF in operational environments, so it
is prudent to get a sense of their comparative performance.
CTR was chosen because it exploits the same data used by
PRJ but aggregates all interaction feature vectors into a
single factor, allowing us to determine the value of utilizing
multiple factors.

8The MySQL full-text functions have been used for these
indexing and retrieval tasks.
9The discount factor was 2.
107t should be recalled that MySQL implements the Vector-

Sp?ce]Model and a version of the weighting scheme described
in [40].

5.2 Document Features

The dataset used in this experiment was gathered during
a longitudinal user study reported in [37].'' The set col-
lects the data observed from seven subjects over fourteen
weeks and has information about the tasks performed by
the subjects, the topics for which the subjects searched the
collection, and the actions performed by the subject when
interacting with the system. The dataset consists of a set of
tuples that each refers to the access performed by a subject
when visiting a webpage. The full-text of the documents
referred to by the tuples in the dataset has been indexed.
The following document features of the dataset were used in
our study:

e the unique identifier of the subject who performed the
access;

e the unique identifier of the attempted task, as identi-
fied by the subject;

e the display time, that is, the length of time that a
document was displayed in the subject’s active web
browser window (display);

e a binary variable indicating whether the subject has
added a bookmark for the webpage to the bookmark
list of the browser (bookm);

e a binary variable indicating whether the subject has
saved a local, complete copy of the webpage on disk
(save);

e the frequency of access, namely, the number of times
a subject expected to conduct on-line information-
seeking activities related to the task (accessfr);

e the number of keystrokes for scrolling a webpage
(scroll);

e the depth of the webpage, that is, the number of
slashes in the URL (slashes).*?

In addition to these features, we also have usefulness scores
assigned to each document based on how useful it was for
a given task for each subject. These scores were assigned
by participants in the study based on their own assessment
on the usefulness of the document for the task. This gave
us document-task-topic judgment tuples that could be used
in the assessment of system performance. Some behavioral
data were not used because they were elicited from sub-
jects through interview and they could not conceivably in-
corporated into our search system (e.g., persistence and en-
durance), are too generic (e.g., task group and week), or
have many null values (e.g., stage in task); for details about
the data used in this study see [37].
In the next section we present the findings of our study.

119 578 documents were used in the experiments. The
dataset contained 2,741 visited documents. The missing 163
were not available for technical reasons.

12The number of slashes has been used because it is a measure
of webpage quality and is an endorsement of the webpage
when the end user selects it. The number of slashes is also
known as URL depth and is used for successfully retrieving
entry webpages, which are often preferred by the users when
finding resources [38].



6. RESULTS

The experimental aim was to test if using a combination
of features of user behavior is a more effective means for IRF
than established RF models of a centroid of feature vectors.
The first question to be answered is whether the model pro-
posed in Section 4 has the potential to retrieve more useful
documents than a traditional RF technique — in our in-
vestigation, this technique is pseudo-relevance feedback. A
first, preliminary answer to this question may be given by
Figure 3 which depicts NDCG across all subjects and all
tasks for variations in n (i.e. the number of visited docu-
ments) and m (i.e. the number of ranked documents used for
computing NDCG) for: PRJ, the projector-based method
described in Section 3, QRY, the pseudo-relevance feedback
baseline method, and CTR, the centroid-based method. The
NDCG’s computed for PRJ were averaged over all the pro-
jectors. The values of n and m are distinct — n is used for
tuning IRF, m is a parameter for computing NDCG.
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Figure 3: Averaged NDCG for each method and n,m
pair.

Figure 3 shows that PRJ and CTR are on average com-
parable with each other and that QRY is much less effective
than PRJ and CTR. The low values for QRY are caused
by the high number of ranked document lists without any
useful documents among among the top m search results. '3
Figure 3 shows that PRJ and CTR have comparable effec-
tiveness as confirmed by the paired t-tests performed be-
tween the NDCG values for the figure; the p-values ranged
from 0.44 and 0.91 when computed for the range of n,m
values. This may be explained by the fact that CTR uses
the same documents as that used by PRJ, yet it is based
on the centroid of vectors which is actually an average vec-
tor and does not distinguish among the diverse factors by
which context may impact on interaction and then on re-
trieval effectiveness. On the other hand, the potential of
PRJ is that the correlation matrix is a linear combination
of different projectors which represent implicit contextual
factors (Equation 3). As these projectors can be extracted,
say, by SVD, PRJ can be refined by varying the projector
used for matching documents.

13The performance of QRY tends to increase when n in-
creases because of the weak, yet positive correlation between
n and the number of useful documents. Indeed, for com-
parability reasons, the baseline runs were performed when
the number of documents per subject/task/topic was higher
than max{n, 3}.
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Figure 4: Average NDCG of CTR and maximum av-
erage NDCG of PRJ when n =2, m = 10, computed
across all subjects and topics, for each task.
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Figure 5: Average NDCG of CTR and maximum av-
erage NDCG of PRJ when n =2, m = 10, computed
across all tasks and topics, for each subject.

In order to establish the role played by the projectors,
an analysis was conducted to compare the effectiveness of
CTR with the effectiveness of PRJ by varying the projec-
tor. That is, one projector was fixed at a time and the doc-
uments were ranked using this projector. We did this for
each search task and each subject. Figure 4 depicts the av-
erage NDCG of CTR and the average NDCG of PRJ. Each
projector produces a different ranking and as a consequence
a different NDCG. As our interest was to test whether there
exists a projector which outperforms CTR for each subject
and for task, the projector which achieved the highest av-
erage NDCG of PRJ was selected over all the projectors;
therefore, the bars of Figure 4 of PRJ represent the aver-
age NDCG of the best performing projector (BPP). The
notion of “best” refers to the projector that produces the
ranking with the highest NDCG for a subject / task. The
value n = 2 has been chosen because it is small enough for
evaluating the capability of the simulated system to per-
form effectively even if the feedback is limited; m = 10 has
been chosen because it is standard practice in IR evaluation
to assess retrieval performance up until the 10th retrieved
document.

Figure 5 reports on the same result for subjects as re-
ported in Figure 4 for each task. That is, the average ND-



CGs for CTR and the BPP of PRJ are reported for each
subject. Figures 4 and 5 suggest that for each subject or
task a projector which is more effective than the centroid
exists thus indicating that PRJ has the potential of being
more effective than a cluster-based method. When PRJ per-
formed better than CTR, e.g., for User 1 or Tasks 9, 11 and
21, the highest weights of BPP correspond to the features
of the documents which provided the most effective query
expansion terms. This result suggests that a relationship
between the BPP and query expansion terms exists. The
relationship between BPP and these terms requires further
investigation because as it may by symptomatic of a complex
interaction between PRJ and pseudo-relevance feedback.
So far we have only considered aggregate performance
across all subjects and tasks. However, as Figure 6 shows,
the BPP is no consistent across tasks. In Figure 6, a graph-
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Figure 6: The composition of the BPP when PRJ
outperforms CTR as showed in Figure 4.

ical representation of the BPP for each task is given; for ex-
ample, the BPP of task 1 only consists of access frequency
of which weight is 1, while the BPP of task 2 consists of two
contrasting groups: one group includes display time and the
other group includes access frequency and slashes. As more
than one topic may have been used for each subject-task
pair, the BPP is an average of the BPPs of each topic of the
subject-task pair. As the figure suggests, each interaction
feature contributes differently for each of the tasks, and as
such each task would need to be represented differently in
the IRF algorithm to obtain high retrieval effectiveness. In
Figure 7 a similar description is provided for each experi-
mental subject.

From the figure it is clear that there are marked differ-
ences in the interaction features that comprise the BPP for
each subject. This, and earlier presented findings on the
BPPs for each search task (in Figure 6) emphasizes the im-
portance of focusing on multiple aspects of user interaction
when developing IRF algorithms. In the next section we
discuss our experimental results.

7. DISCUSSION

The results indicate that using a combination of features
of user behavior is a more effective means for IRF than a
traditional pseudo-relevance feedback. Moreover, the results
suggest that the selection of contextual factors from inter-
action may further improve the performance over CTR.
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Figure 7: The composition of the BPP when PRJ
outperforms CTR as showed in Figure 5.

Figures 6 and 7 also suggest that a combination of fea-
tures is generally more effective than a single feature such
as display time. For example, although the BPP for task n.
1 comprises only accessfr, this is not the case for other tasks.
The same is true for subjects. While the bookmarking activ-
ity strongly correlates with usefulness for subject n. 6, the
BPPs of other subjects involve a combination of features.
This outcome makes this paper different from the previous
research literature since the correlation between features are
not considered as confounding, and they are also regarded as
the starting, necessary information for extracting a represen-
tation of the contextual factors. This capability is captured
by Equation 3.

We have demonstrated that PRJ is more effective, in
terms of NDCG, than CTR. This result is somewhat sur-
prising since both use the same volume of information. At
first sight, a centroid should be enough for achieving effective
IRF and its low computational cost would favor it. When
no personalization is required, nor is task adaptability a ne-
cessity, CTR is a good solution. PRJ offers the potential to
adapt the projector to a user, a task, or both.

The results also suggest that the BPP varies its shape de-
pending on the subject or the task. It was clear that each
subject had a unique interaction style when attempting each
task, and more than one aspect of this style is necessary to
distinguish between subjects. These results suggest that tai-
loring projectors to users and tasks leads to improved per-
formance over algorithms that do not use such information.
This finding is important because justifies the design of IRF
algorithms that utilize personalization and task adaptation

One may of course wonder whether the BPP varies its
shape when both subject and task change together. A fur-
ther analysis of the results has showed that there exists a
BPP which is different for each subject-task pair. For exam-
ple, Figure 8 depicts the shape of the BPP for each subject
and task. An important finding of this paper is the existence
of an algebraic operator for each subject-task pair which can
be used for tailoring document rankings to the user attempt-
ing the task. Figure 8 shows another interesting finding: the
BPPs for Subjects 3 and 4 are characterized by a single fea-
ture; this is consistent for different tasks. This finding can
be explained by studying the IRF algorithm. After n doc-
uments are visited, some projectors are computed from the
feature correlation matrix. Suppose that the BPP is known:
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Figure 8: The composition of the BPPs for each
subject and task.

when Subjects 3 and 4 are considered, this projector con-
sists of a single feature. When these subjects continue to
visit documents, the BPP is able to place the most effective
documents at the top ranks, these documents are charac-
terized by the feature of the BPP and contains the most
effective terms when added to the expanded query. Table 1
reports the composition of the BPP for each pair subject-
task thus making a clear description of the behavior of each
subject when attempting a task. The contents of the table
demonstrate the diversity of interaction styles evident be-
tween users and search tasks even with this relatively small
number of human subjects.

8.  CONCLUSIONS AND FUTURE WORK

In this paper a new geometric framework that utilizes mul-
tiple sources of evidence present in an interaction context
(e.g., display time, document retention) has been presented
to develop enhanced implicit feedback models personalized
for each user and tailored for each search task. These mod-
els take the form of projectors or equivalently of eigenvectors
extracted from a feature correlation matrix observed from
interaction. These implicit feedback models has been com-
pared with alternatives using rich interaction logs (and asso-
ciated metadata such as relevance judgments) gathered dur-
ing a longitudinal user study. Two baselines have been used:
one based on classical pseudo-relevance feedback where the

Subject | Eigenvector of the BPP

Task

1/1 bookm (0.08); scroll (0.08); accessfr (0.21); display
(0.40); slashes (0.88);

1/2 display (0.85); accessfr (0.50); scroll (0.14); slashes (-
0.08);

1/3 display (0.95); scroll (0.28); bookm (0.10); accessfr
(0.07); slashes (-0.11);

1/4 saved (1.00);

1/5 bookm (1.00);

1/6 saved (1.00);

2/1 saved (1.00);

2/2 bookm (1.00);

2/3 scroll (1.00);

2/4 display (1.00); bookm (0.04); slashes (0.04);

2/5 display (0.73); slashes (0.68);

2/6 accessfr (0.93); slashes (0.3 ) display (-0.09);

2/10 bookm (0.61); slashes (0.2 33 scroll (0.19); display
(0.03); accessfr (-0.73);

3/1 bookm (1.00);
3/2 scroll (1.00);
3/3 bookm (1.00);
3/4 saved (1.00);
3/8 saved (1.00);
3/12 saved (1.00);

3/15 saved (1.00);
3/17 display (0.97); slashes (-0.24);
3/19 saved El.OO ;

4/1 saved (1.00);

4/2 slashes El.OOg;
4/3 bookm (1.00);
4/5 accessfr (1.00);
4/9 slashes (1.00);
4/10 bookm (1.00);

4/15 accessfr (1.00);
4/18 slashes (1.00);
4/24 display (1.00);

5/1 slashes (0.01); display (-0.12); accessfr (-0.99);
5/2 saved (1.00);

6/0 bookm (1.00);

6/3 slashes (0.99); display (0.16);

6/5 scroll (1.00);

6/8 saved (1.00);

6/12 saved (1.00);

6/13 accessfr (1.00);
6/15 display (0.71); slashes (0.71);
6/18 accessfr (1.00);
6/19 display (0.85); slashes (-0.53);

=

7/2 scroll (0.78); display (0.18); slashes (-0.60);

7/5 accessfr (0.74); display (-0.11); slashes (-0.19); saved
(-0.64);

7/6 accessfr (1.00);

/7 display (0.59); scroll (0.05); slashes (-0.01); accessfr

0.81

7/13 z(atccess)fr (0.38); display (0.37); scroll (0.15); slashes (-

0.84);

7/21 display (0.8
7/22 scroll (1.00);
7/23 scroll (1.00);
7/24 saved (1.00)7
7/25 slashes (1.00);

7/26 accessfr (1.00); display (0.04);

8); slashes (0.48);

Table 1: The composition of the BPPs for each sub-
ject and task. Feature subgroups corresponding to
negative weighs are italicized. The notation z/y used
the first column means “Subject x performed Task
y”. See Section 4 for an explanation.

seen documents were the source for query expansion, the
other based on a centroid vector of the seen documents. Our
findings demonstrate both the effectiveness of our models
and the potential value of incorporating multiple sources of
interaction evidence in their development. In particular, it



was shown that implicit feedback was more effective when
the projectors are tailored to the task and personalized to
the user. This perspective of multiple information sources
of interaction seems to be in line with the ideas of polyrep-
resentation illustrated in [36].

The following issues are reserved for the future work. Al-
though the IRF algorithms presented in this paper used the
documents in the order they appeared in the interaction logs
as RF, they did not explicitly consider this order in their
computations (as in [41]). Order is important since it could
allow the IRF algorithms to incorporate a notion of tempo-
ral decay, and give more recent interaction a higher weight
when making suggestions. Another interesting extension to
the work reported here is an algorithm to automatically se-
lect the BPP, i.e., the projector which maximize NDCG for
a given pair subject / task. We have shown in this paper
that such a projector exists although the selection is as yet
an unsolved challenge. A naive idea would be to select the
projector of the first eigenvector. However this is not viable
given there is no apparent relationship between NDCG and
eigenvalues, and therefore no apparent relationship between
NDCG and the variance explained by the eigenvector.
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