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1 Introduction

Game Theory is the study of strategic behavior of rational agents. De-
scribed this way, Game Theory sounds a little unrealistic, because much of
what is going on in the real world is, intuitively, irrational. The standard
game-theoretic response to this line of criticism is that what we intuitively
call “irrational agents” are just rational players with very strange utility func-
tions. This is a reasonable retort when it refers to the class of all normal-form
games. However, much work in Game Theory, and especially in the inter-
face between Game Theory, Networking, and Computation, is about standard
types of games — such as auctions, congestion games, facility location games,
network creation games, etc. Many of these are studied with the explicit am-
bition to apply the results to the real world. Since the utilities of these games
cannot be arbitrarily “strange,” the original criticism stands.

In this paper we model one type of what is usually meant by “irrationality”
in the above argument, namely malicious players. We define malicious players
in the context of a particular symmetric game; suppose that, in an n-player
symmetric game, the utilities of m < n players, henceforth called malicious,
change from the common utility shared by all players to the negative sum
of the utilities of the n — m non-malicious players. We are interested in the
effect such change has on the quality as well as nature (pure versus mixed) of
the game’s Nash equilibria. We define the price of malice to be the relative
deterioration of the sum of the utilities of the non-malicious players when the
remaining players turn malicious.

That malice has a price is not very surprising; what is somewhat unexpected
is that this price can be negative, and malicious players may improve system
performance, intuitively because their presence may incentivize the other play-
ers to forego antisocial selfish behavior. For example, consider a version of the
prisoner’s dilemma with three players and three strategies: collaborate, defect,
and inspect. When a player inspects, her own utility is negative, but that of
any defecting player deteriorates as well. It is easy to see that the numbers
can be set in such a way that, if any of the three players turns malicious (and
therefore inspects, sacrificing her own well-being in order to hurt the others),
then the other players end up collaborating at equilibrium, for a net increase

in their sum of utilities — in fact, a relative increase that can be arbitrarily
high.

We study the effects of malicious agents on non-atomic congestion games
(Roughgarden and Tardos, 2002). In such games a continuum of players, com-
prising a flow of some specified value v, choose routes in a network with a
single source and sink whose edges have load-dependent delays. It is known
that such a game has a pure Nash equilibrium with equal delays for all; the
quality of this equilibrium (compared to the “social optimum” minimum delay
flow) has been studied extensively (Roughgarden and Tardos, 2002; Rough-



garden, 2005). But suppose instead that some fraction of the flow becomes
controlled by a malicious player whose utility is the total delay by each of the
other players. Does this new game have a pure Nash equilibrium? And, if it
does, how does it compare with the equilibrium without a malicious player?
We define the price of malice to be the limit of this deterioration per unit of
malicious flow, as the portion of flow controled by the malicious player goes
to zero.

If flows are allowed to contain cycles (and therefore a malicious player can
make loads arbitrarily high by going around in circles indefinitely), then it is
easy to construct situations in which a malicious player can wreak havoc on
a network (strictly speaking, such situations do not have a Nash equilibrium,
and so we cannot speak of a price of malice). We show (Theorem 6) that even
in acyclic networks the price of malice can be significant; upper bounding the
price of malice by the network parameters (such as the number of edges and
the “relative slope” of the delays) is an important open problem.

Perhaps the heaviest price of malice may be the fact that the presence of a
malicious player upsets the Nash equilibrium regime of congestion games. Or-
dinarily, congestion games are known to always have a pure Nash equilibrium.
In contrast, in Section 4 we notice that, in the presence of a malicious player,
pure Nash equilibria may not exist. However, we prove two compensating re-
sults: First, there is always a “semi-pure” Nash equilibrium, in which only
the malicious player mixes strategies. Second, if the delays are weakly con-
cave (and in particular if they are linear) then pure Nash equilibria exist. The
existence proofs rely on Kakutani’s Fixed Point Theorem and Prokhorov’s
Theorem, two powerful results that we have not seen before applied in the
context of congestion games.

1.1 Related work

Several recent papers have considered agents that are not acting rationally,
and while the general philosophical direction of our work is somewhat similar
to these works, there are still significant differences between our work and the
papers we describe below.

Two papers (Morgan et al., 2003; Brandt et al., 2007) consider auctions
with agents that derive utility from the disutility of others, and present similar
results. Both papers derive symmetric Bayes Nash equilibria for spiteful agents
in first-price and second-price sealed bid auctions. A spiteful agent’s value for
an outcome is a convex combination of his own original profit and the total loss
of the other agents (taken with coefficient «, the spite coefficient). The papers
consider the equilibrium when all agents are spiteful with the same coefficient
(unlike in our model in which only a small fraction of the flow is controlled
by a malicious player, and this player is purely malicious, i.e. spiteful with
coefficient 1). Interestingly they show that the revenue equivalence between



second-price and first-price auctions breaks down with spiteful agents, with
second-price outperforming first-price.

Eliaz (2002) considers the problem of implementation when some agents are
faulty, playing an arbitrary strategy, possibly in a malicious way. The paper
presents a solution concept to allow implementation in case that up to k agents
are faulty, but neither their identity nor their exact number are known. Unlike
our model (which assumes that a malicious player will choose a strategy that
maximizes the combined discontent of the non-malicious players, given the
strategic choices of all other players) the non-rational agents in their model
can play arbitrarily and the paper focuses on implementation issues, while we
focus on quantifying the implications of malice on given systems.

Closest to our work is the paper by Karakostas and Viglas (2003) (hence-
forth KV) which studies equilibria for network congestion games with mali-
cious users. The KV model of malicious behavior corresponds to a continuum
of infinitesimal malicious players, collectively controlling the malicious flow.
We allow for a more powerful malicious behavior by allowing coordination
(modeled as a single myopic malicious agent controlling all the malicious flow).
We show that coordination indeed leads to a different equilibrium concept for
some networks, but not when latency functions are concave. The difference be-
tween the two equilibrium concepts, for general networks, arises from the fact
that a single malicious player can use mixed strategies that are unavailable to
a continuum of uncoordinated malicious players. The focus of the KV paper
is on generalizing the notion of Price of Anarchy to the case that there is also
a malicious flow in the system, by comparing the case that the good users
are controlled by a single entity, to the case that they are behaving selfishly.
One of the main open problems in this paper is the connection between the
social cost at an equilibrium point with and without malicious users. Our work
addresses this issue by defining the notion of Price of Malice and studying it.

Our study of the Price of Malice has strong thematic similarities to (Mosci-
broda et al., 2006) which aims to study the implications of malicious behavior
on systems consisting of selfish agents. The paper presents a concept of Price
of Malice and says “The Price of Malice is a ratio that expresses how much
the presence of malicious players deteriorates the social welfare of a system
consisting of selfish players.”. Yet, there are many differences between this
paper and ours. Important differences exist in the definition of equilibrium in
the presence of malice and the definition of the Price of Malice. First, selfish
players in their game are extremely risk averse and basically each one per-
ceives the malicious agents as if they are all attacking him or her. Second,
the definition of the Price of Malice is very different, as they look at the ratio
between two different worst-case ratios (the price of anarchy with b malicious
agents and with 0 malicious agents) even though those worst-case ratios may
arise on different problem instances. Instead of this type of indirect compari-
son, we directly compare the outcome of games with a mixture of rational and



malicious agents to the outcome with only rational agents.

2 The Price of Malice
2.1 Definitions

2.1.1 Non-atomic congestion games

The following definitions are standard from the theory of congestion games,
e.g. (Rosenthal, 1973), and readers familiar with this material are encouraged
to proceed to Section 2.1.2. We use R, to denote the set of non-negative real
numbers.

Definition 1 (congestion game) A symmetric non-atomic congestion game
(henceforth, simply called a “congestion game”) is specified by an ordered
quadruple ¢ = (E, 0,11, v), whose components are called:

e the edge set E, a finite set;

e the vector of latency functions Z, a function from R to the vector space RE :
fore € E, the e-th component ofzis denoted by (., and is a non-decreasing
function from R, to R, ;

e the path set II, a subset of 2F; and

e the flow value v, a non-negative real number which we will sometimes denote

by v(¥).

If E is the edge set of a (directed or undirected) graph G, and 11 is a set
of paths in G, then we call ¢4 a network congestion game. We will use the
terminology “edge” and “path” in describing abstract congestion games, though
in the general case we do not expect E to be interpreted as a set of edges of a
graph nor P as a set of paths in a graph.

Definition 2 (flow) A flow in a congestion game & is a function f from 11
to Ry. (One interprets f(P) as the amount of flow using path P.) The flow
value is v(f) = Y pen f(P). The set of all flows in & is denoted by F(9).
The set of all flows whose flow value is equal to some number w is denoted by
F(Y,w).

Note that the set F'(¢,w) is a compact, convex set (in fact, a convex polytope)
in R, F (%) inherits the topology from RIEl. We will abbreviate F(¥,w) to
F when ¢, w are understood from context.

Definition 3 (cost) If f is a flow, the load on an edge e € E is

re(f)= > f(P)

Pell|ecP



The delay on a path P € 11 is

L(P) =} le(xe(f)).

eeP

The cost of f is
C(f)= > [(P)L(P) = >_ we(f)le(ze(f))-

Pell ecll

Definition 4 (Nash flow) If f is a flow, the set of best responses to f is
the set argminpery L(P). A flow f in a congestion game 4 is a Nash flow if
v(f) =v(¥) and every path P € 11 which satisfies f(P) > 0 is a best response
to f. The Nash cost and Nash delay of 4, denoted by C(¥4) and D(¥), are
the quantities C(f) and D(f) = C(f)/v(f), respectively, where f is any Nash
flow of 4. We will see in Proposition 1 below that C(¥) and D(¥) do not
depend on the choice of the Nash flow f.

Definition 5 (potential function) For a congestion game &, the potential
function &g (denoted simply by ® when the game & is understood from con-
text) is a real-valued function on F(9) defined by

wo(n) =% [ bty an

eeE

The following standard facts about the potential function will be useful to
us.

Proposition 1 (Roughgarden and Tardos (2002)) The potential function
O = Py is a convex function on F(9). It is strictly convex if all of the latency
functions L. are strictly increasing. For a flow f of value v(¥4), the following
are equivalent:

(1) f is a local minimum of ®.
(2) f is a global minimum of ®.
(3) f is a Nash flow.

Moreover, for any two Nash flows f, f we have C(f) = C(f), and furthermore
the Nash delay D(f) is equal to the delay L(P) on any path P € 11 satisfying
f(P)>0.

2.1.2  Congestion games with malicious players

Definition 6 (malicious player) A congestion game with a malicious player
is specified by a congestion game G together with a real number w(¥) satisfy-
ing 0 < w(¥) <v(¥4). We interpret w(¥) as the amount of flow controlled by
the malicious player.

When the malicious player routes its flow using a particular (possibly ran-
domized) flow g, the remaining flow (controlled by the rational players) is, in



effect, participating in a modified congestion game whose latency functions
have been changed to reflect the load imposed by the malicious player. We
now define this notion precisely.

Definition 7 (induced game) Let 4 = (E,0,11,v) be a congestion game
with a malicious player, w = w(¥), and v a probability measure on F (94, w).
The induced latency function ¢} on an edge e is defined by

0 (x) = E(le(x + zc(9))),

where g is a random sample from the distribution ~v. The induced game 47
is the congestion game (E, 10 — w). If fis a flow in &4, the induced
cost C7(f) is the cost of f in the induced game 47. When ~y is a point mass
concentrated on a single flow g € F(9,w), we will use the notation 49 (resp.
C9,09) to mean the same thing as 97 (resp. C7, (7).

Definition 8 (malicious best response) If f is a flow in &, the set of
malicious best responses to f is the set

MBR(f) = arg max,cp ., C?(f).

A probability measure on F(¥4,w) is a malicious best response to f if it is
supported on the set MBR(f).

The definition requires the malicious player to send its entire flow of size
w. Note that for any flow f, as the latency function are monotonically non-
decreasing, the more flow the malicious player sends the higher his utility.
Thus, even if we were to allow the malicious player to send less flow (or even
no flow), he would always choose to send the entire amount of flow he controls.

We are now in a position to define the equilibria of a congestion game with
a malicious player. Intuitively, a pair of flows (f, g) — with f representing the
rational players and g representing the malicious player — is an equilibrium if
none of the rational players can unilaterally improve their delay by switching
to a different path, and if the malicious player can not inflict greater damage
on the rational players by shifting from g to some other flow. In order to
guarantee the existence of equilibria, it is necessary to allow the malicious
player to use a mixed strategy, i.e. to sample a random flow from F(¥,w).
Thus an equilibrium is actually a pair (f,~) where f is a flow of value v — w
and 7 is a distribution on the set of flows of value w.

Definition 9 (equilibrium) If ¢ is a congestion game with a malicious
player and w = w(¥) is the amount of malicious flow, then an equilibrium
of G is an ordered pair (f,~y) such that f is a Nash flow in the induced game
47, and v is a malicious best response to f. An equilibrium is pure if v is a
point mass concentrated on a single flow g € F(4,w).

Definition 10 (Nash delay) Let ¢ be a congestion game with a malicious
player, w = w(¥), and & the set of equilibria of 4. The Nash delay D(¥,w)



is defined to be the supremum of the set {C7(f)/v(f) | (f,7) € £}.

Note that, in order for D(¥,w) to be well-defined, it must be the case that
the set of equilibria of ¢ (with w units of malicious flow) is nonempty. We
will see in Section 4 that this is indeed the case.

For a congestion game ¢ with flow value v = v(¥), the price of malice
measures the rate at which the Nash delay deteriorates as a small fraction of
the flow comes under the control of a malicious player.

Definition 11 (price of malice) The price of malice, POM(¥), is defined

by
.. D¢@,ev)-D9) 1 d
POME&) =l — 2@ ~ D@y &

4

(&, 0e))e=0 (1)

when the limit exists.

Note that the price of malice quantifies the first order effect of a small
fraction of malicious flow. Clearly one can change the definition to capture
lower order effects (for example an O(g?) increase in relative delay).

A counterintuitive phenomenon which we will explore later in this paper is
the windfall of malice, whereby the presence of a malicious player in the game
actually improves the delay experienced by the rational players. We say that
a game exhibits windfall of malice if it has a negative price of malice.

2.2 A differential criterion for equilibrium

It is useful to relate the definition of a malicious best response given above
(Definition 8) to a criterion which is based on the derivatives of the latency
functions, and which says that the malicious player’s flow should be distributed
on paths which maximize the marginal cost (to the rational players) per unit
of flow. Throughout this section we assume that ¢ is a congestion game with
differentiable latency functions.

Definition 12 (differential MBR) Let ¥ be a congestion game with differ-
entiable latency functions. Consider any two flows f,g € F(¥). We say that

g is a differential malicious best response (DMBR) to f if for every two paths
P, P €11 such that g(P) > 0, we have

S x (N (f) + 2(9) > S we(H)(x(f) + 2e(9))-

eeP eeP’

This definition is closely related to the definition of malicious best response
implied by equation (9) in (Karakostas and Viglas, 2003). Indeed, we will see
that being a DMBR to f is always a necessary condition for being a malicious
best response to f, and that when the latency functions are concave it is also

4 We look at the right side derivative as the flow value must be non-negative.



a sufficient condition. Thus our definition of malicious best response (hence
also our definition of equilibrium) is equivalent to the definition given by
Karakostas and Viglas (2003) in the special case when latency functions are
concave.

Lemma 2 FEvery malicious best response to f is a DMBR to f.

Proof: Let g be a malicious best response to f, and let P, P’ € Il be two paths
such that g(P) > 0. For t > 0, consider the flow g defined by

9(Q) ifQ#P P
Q) =1 9@ ~tiftQ="r
g(Q)+tif Q=P

If w = v(g) then ¢® € F(4,w) fort € [0, g(P)]. Since g € arg maxheF(g,w)Ch(f)
we have

(@"0), =0

0
The left side is equal to Y ocpr Ze(f) (e (f) + 2(9)) — Seep e (f) (2 (f) +
ze(g)). O

Lemma 3 If g is a DMBR to f, then for every flow h of value v(g),
> el £)l(xe(f) + 2e(9)) [we(g) — ze(R)] = 0. (2)

ecE

Proof: For any path P, define B(P) to be the sum

B(P) =} we(f)le(ze(f) + ze(9)).

eecP

The left side of (2) is equal to Y peyy [g(P) — h(P)] B(P). Hence (2) is equiv-

alent to
> 9(P)B(P) > > h(P)B(P). (3)
Pell Pell
If M = maxpen B(P) then by the definition of a DMBR, we have B(P) = M
for every path P such that g(P) > 0; hence the left side of (3) is equal to
v(g) - M. Similarly the right side is bounded above by v(g) - M. O

Theorem 4 Assume that ¥ is a congestion game with malicious players and
for every edge e, (. is a differentiable, weakly concave function. Then a flow
g is a DMBR to f if and only if g is a malicious best response to f.

Proof: By Lemma 2 every malicious best response to f is a DMBR to f, so
we are left to show that every DMBR to f is a malicious best response to f.

For an edge e, let A\, be the function

Ae(@) = Le(ze(f) + 2e(9)) + e (f) + 2e(9)) (@ — 2e(f) — 2e(9))-



This is a linear function of x which satisfies

Ae(@e(f) +xe(g)) = Le(ze(f) + 7e(9))
Ae(@e(f) + 2e(9)) = (e (f) + e(9))-

Since /. is concave and ). is a linear function whose value and first derivative
agree with those of (. at x.(f) + z.(g), we may conclude that A\.(z) > l.(x)
for all z. Now suppose that g is a DMBR to f, and h is any flow of value v(g).
By Lemma 3 we have

S we(£)(xe(f) + 2e(9)) [we(h) — 7e(9)] <O

ecE

3 @e(f) Pe(@e(f) + ze(h)) = Ae(ze( ) + 2(9))] <O

ecE

ST ()N (f) +xe(h) < 2o(f) (f) +2e(9))-

eck eck
Now using the fact that A\.(x) > f.(x) for all z, with equality when x =
2e(f) + ze(g), we obtain

ST wo(F)le(ae(f) +2o(R) <D xo(f) f)+x.(9))-

ecl eck

As h was an arbitrary flow of value v(g), this confirms that ¢ is a malicious
best response to f. O

Our definition of malicious best response may be regarded as the appropri-
ate definition for modeling a single (myopically) malicious player controlling w
units of flow, while the definition of differential malicious best response models
a continuum of infinitesimal malicious players, collectively controlling w units
of flow. (Definition 12 is tantamount to asserting that one cannot increase
CI9(f) by rerouting an infinitesimal amount of flow.) Since all malicious play-
ers experience the same payoff, it is plausible that w units of flow controlled
by a continuum of such players will behave identically to the same amount of
flow controlled by a single malicious player. Indeed, Lemma 4 shows that this
is exactly what happens when the latency functions are concave. Interestingly,
this is not what happens in general when latency functions can be non-concave
(see Example 1). The reason is that a single malicious player has the power to
play a mixed strategy, while this can never happen with a continuum of mali-
cious players unless we allow them to correlate their random choices. (Even if
each of the infinitesimal players uses a mixed strategy, if their random choices
are independent then the law of large numbers ensures that their combined
flow is equal to a single element of F/(¢,w) with probability 1.)

We next show that in any equilibrium with small enough malicious flow,
the malicious flow uses only paths that maximize the per-unit cost at the Nash
equilibrium.

10



Definition 13 (differentially malicious flow) Let¥ be a congestion game
with differentiable latency functions. Consider a Nash flow fx € F(¥). A path
P* €11 s a differentially malicious path w.r.t. fn if for every P € 11

Y we(fn)le(ze(fn) = D we(fn)l(ze(fn))

ee P* eeP

A flow g is differentially malicious w.r.t. fy if for any P € Il such that
g(P) >0, P is a differentially malicious path w.r.t. fx.

Proposition 5 Let & be a congestion game with a malicious player, with
continuously differentiable latency functions. For any Nash flow fy € F(9)
there is an open set U C F(9) containing fn, such that for any f € U, it

holds that every g € MBR(f) (of value v(fn) — v(f)) is also differentially
malicious w.r.t. fy.

Proof: For any path P € II, define a two-variable function hp : F(¥) X
F(¥4) — R as follows:

hP(.fa g) - Z xe(f)gé(ze(f) + xe(g))'

eeP

Observe that hp is a continuous function because ¢, is continuously differen-
tiable for every edge e. Observe also that ¢ is a DMBR to f if and only if

{P : g(P) >0} Cargmaxper hp(f,g).

Now let II,,, denote the set of all paths which are differentially malicious
w.rt. fy, e I,y = argmaxper hp(fy,0). If 11,5y = II then every path is
differentially malicious and the proposition follows trivially. Otherwise, the
two-variable function A(f,g) defined by

h(f7 g) = min{hP*(f7 g) - hP(f7 g) | P S Hmal>P € Hmal}

is continuous and satisfies h(fy,0) > 0, by the definition of II,,,. Therefore
the set W = {(f,g9) : h(f,g) > 0} is an open neighborhood of (fy,0) in
F(9)x F(9). Let Wy xW, be an open subset of W such that fy € Wy, 0 € Wh.
Without loss of generality (replacing Wi, W with smaller open neighborhoods
of fn,0 if necessary) we may assume that for some real number § > 0,

WiC{feF(@)|v(f)>v(¥)—d}
Wy={g € F(9)|v(g) <0}

We claim that U = W satisfies the conclusion of the proposition. For any
f € Wh,if g is a malicious best response to f of value v(¢)—uv(f), then v(g) < §
hence g € Wy. Thus (f, g) € Wi x Wy C W, which implies h(f, g) > 0. By the
definition of h(f, g), this implies that arg maxper hp(f,g) C 11,4 Recalling
that ¢ is a malicious best response (and hence, by Lemma 2, a DMBR) to f,
we see that every path P with g(P) > 0 is an element of arg maxper hp(f, g),
hence every such P belongs to II,,,. O

11



2.3 Lower bound on the price of malice

In this section we construct network congestion games with a large price of
malice. Intuitively, the price of malice can be large for at least two reasons:

(1) The network contains some edges whose latency functions grow very
rapidly, so that a small amount of additional flow can have a very large
impact on the delay.

(2) The network contains a very long path, so that the malicious player can
send its flow on this path and thereby influence many of the paths being
used by the rational players.

We capture the first property using the notion of relative slope of the latency
functions, which has also been used elsewhere in the literature on selfish rout-
ing, e.g. (Fischer et al., 2006). We capture the second property by building
a congestion game with a unique equilibrium, namely a pure equilibrium in
which the rational players use many disjoint short paths and the malicious
player uses a single long path that intersects all of the short paths.

Definition 14 Let ¢ : [0,1] — Ry be a continuous non-decreasing function
that is continuously differentiable. The relative slope of ¢ is defined to be the
number

xl'(x)
d= su )
selo] L)

Note that the relative slope of ¢ is actually the maximal value of the elasticity
of ¢ in its domain [0, 1].

Theorem 6 Let ¢ :[0,1] — Ry be a continuous non-decreasing function that
s continuously differentiable, and let d be the relative slope of £. For any m
there exists a network congestion game with O(m) edges, such that the latency
function of each edge is either £ or 0, and such that the price of malice is
dim—1).

rf(’(ﬂ)ﬂ)
of the interval [0, 1] because [0,1] is compact. Let X, be a point where the
supremum is achieved. The network is illustrated in Figure 1(a) for m = 5.
In this network congestion game the flow value is mX,. The network has m
parallel paths of length 3, all have the same latency function ¢(z) on the middle
edge. All other edges have a constant latency 0. Backward edges enable the
malicious flow to travel all the edges with non-zero latency functions (a path
of length 2m + 1).

Proof: The continuous function achieves its supremum, d, at some point

Figure 1(b) illustrates the path that the malicious flow of size em X takes.
As the latency functions are the same on every one of the m paths, in equi-
librium the rational flow of size (1 — ¢)mX, will be split equally on the
m paths, thus in equilibrium on each path there is a rational flow of size
(1 — )Xo (in case that ¢ = 0 this means a flow of Xj). This is illustrated

12
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i

(b)

Fig. 1. A network congestion game with a large price of malice. (a) The congestion
game. (b) The malicious player’s equilibrium strategy. (c¢) The rational players’
equilibrium strategy.

in Figure 1(c). The total flow on each of the middle edges of the m paths is
(1—e)Xog+emXo= Xo+eXo(m—1).
The latency with € units of malicious flow is ¢( X, +eXo(m—1)), and the la-

tency with no malicious flow is £(Xy). Using the fact that lim. w =
a-l(x), for a = Xo(m — 1) we obtain that the price of malice is

E(XQ + EXQ(m — 1)) — g(Xo)
EK(X())

. X(](m — 1)£/(X0) .

BT R

POM () = lim

3 The Windfall of Malice

In this section we show that there exists a network with “windfall of malice”,
that is, replacing some of the rational flow with malicious flow causes the delay
of the rational flow to decrease. Moreover, for this network the windfall is
unbounded although the network has bounded size. It increases linearly with
the relative slope of the latency functions. At first look it seems surprising that
there can be a decrease in the latency experienced by the rational agents, as the
malicious agent is trying to mazimize the latency of the rational agents. But
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this phenomenon is not too different from the well-known Braess’ paradox,
which gives an example of a network for which an increase in the latency
function on an edge improves the Nash delay. While in the Braess’ paradox
network there is no windfall of malice, we are able to construct a network
that is based on that network that does have a windfall. In the network that
we construct, the malicious agent, by myopically trying to do as much harm
as possible, increases the latency on every possible edge, and by doing so it
causes the rational agents to take alternative routes that are less harmful to
the other rational agents.

Proposition 7 There exists a network congestion game for which the price
of malice is negative. Moreover, for any d there is a constant size network
congestion game with price of malice —d/9,in which the latency functions are
homogeneous polynomials of degree d.

Proof: We construct a network congestion game ¢ with flow value 1 and
network with source s and target ¢ as presented in Figure 2(a). The latency
function on each edge is presented in the graph. (Some of the edges have a
constant latency of either 0 or 1, and we just write the constant near the
appropriate edge).

Figure 2(b) presents the path that the malicious flow of value e takes (the
path (s u m n d t)). As for this path the malicious flow goes on every edge
with non-constant latency, it is clear that this flow is always a malicious best
response, independent of the rational flow. This implies that there is a unique
Nash delay in the induced game.

Figure 2(c) presents the rational flow. Adjacent to each edge we mark the
value of flow on the edge, this value is a function of ¢, the size of the malicious
flow. The symmetry in the induced latency functions ensures that the rational
flow at any equilibrium must be symmetric as shown in the figure (e.g. the
flow must be the same for the edge (s u) and the edge (d t)). Interestingly
we are able to calculate the price of malice without explicitly calculating the
equilibrium flow when ¢ > 0. We first note that without any malicious flow
(¢ = 0) the unique Nash flow is a(0) = 1,b(0) = 1/2. We next move to consider
the case that € > 0.

Flow conservation implies that
2a(e) —2b(e) =1—¢ (4)

For e > 0 it must be the case that there is a positive flow on the edge (s d)
(a(e) —2b(e) > 0) as if a(e) — 2b(e) = 0 this implies that a(e) = 1 — € and the
rational flow on the sub-path (s u m d) or the sub-path (s u n d) has delay
larger than 1, while the edge (s d) has a delay of 1, which is a contradiction
to the flow being an equilibrium. This implies that the delay on the sub-path
(s um d) (and the sub-path (s u n d)) must be equal 1, or equivalently:
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The Network

D,(X) = X%/2

The Malicious Flow

The Rational Equilibrium Flow

Fig. 2. A network congestion game with a negative price of malice. (a) The conges-
tion game. (b) The malicious player’s equilibrium strategy. (c¢) The rational players’
equilibrium strategy.

Di(a(e) + ) + Da(b(e) + ) = 1 (5)

We denote y(¢) = a(e) +¢. Equation 4 implies that b(e) = y(¢) —1/2—¢/2.
Now Equation 5 is equivalent to

Di(y(e)) + Da(y(e) = 1/2+¢/2) = 1
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Taking the derivative with respect to € we derive that
y'(e) - Diy(e) + (¥'(e) +1/2) - Dy(y(e) —1/2+¢/2) = 0
For ¢ = 0 we conclude that
y'(0) - Di(y(0)) + (y'(0) +1/2) - Dy(y(0) —1/2) =0
Solving for y/(0) we get

1 Dyy(0)—1/2)
2" Di(y(0)) + Dy(y(0) - 1/2)

y'(0) = (6)

The equilibrium delay in this game is D(¥¢,¢) = 1+ D;(y(¢)) and it holds
that Z(D(¥, €))em0 = (/' (€) D} (y(€)))e=0 = ¥/'(0) Di(y(0))

We are now in a position to calculate the price of malice for this game.

y'(0)Di(y(0))

T+ Dy (y(0)) )

d
POM(%) = — - (D o=

Recall that y(e) = a(e) 4+ € and that a(0) = 1, thus y(0) = 1. Additionally,
Dy(x) = 2%/2 and Dy(x) = (22)?/2 thus D}(z) = d - 2471/2 and Dj(x) =
d - (22)471. This means that D’ (y(0)) = D}(1) = d/2 and D}(y(0) — 1/2) =
D}(1/2) = d, which can be used in Equation 6 to derive that

bood 1
2 d/2+d 3

y'(0) =
As D (y(0)) = d/2 and D;(y(0)) = 1/2, by Equation 7 we derive that

_ y(0)Di(y(0))  —1/3-d/2 _
POM(#) =7 +Dy(y(0)  141/2 —d/9

and this concludes the proof of the proposition. O

We note that although from a qualitative point of view the windfall of
malice is tightly related to Braess’ Paradox, the two are very different quan-
titatively. While Roughgarden (2001) has shown that the severity of Braess’
Paradox (i.e., the ratio of Nash cost in a network to Nash cost in any sub-
network) is bounded by a constant depending only on the network size (i.e.,
independent of the relative slope of the latency functions) we have shown that
the windfall of malice can grow unboundedly large in a constant size graph, if
the latency functions are polynomials of unbounded degree.
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4 The Existence of Equilibria

Congestion games without malicious players have pure Nash equilibria be-
cause they are potential games: the potential function ® defined in Definition 5
decreases whenever a player shifts from one path to another one with lower
delay, hence any flow which minimizes ® must be a pure Nash equilibrium of
the congestion game. But congestion games with malicious players are not po-
tential games, and as such there is no guarantee that they will have pure Nash
equilibria. In fact, a simple example illustrates that a pure Nash equilibrium
may not exist even for network congestion games played on a pair of parallel
links with continuous latency functions.

Example 1 Consider a network congestion game in a graph consisting of a
source and sink joined by two parallel edges e, e whose latency functions are
lo(x) = lu(x) = 2. Let v = 2 and w = 1, so that the rational players
control 1 unit of flow and the malicious player also controls 1 unit of flow.
We claim that this game has no pure Nash equilibrium. To prove it, assume
by contradiction that (f,g) is a pair of flows constituting a Nash equilibrium.

Let a = f({e}),b=g({e}). Then f({'}) =1—a and g({e'}) =1—0b, and
CO(f) = afa+b)? + (1 - a)(2 —a— b (®)

One consequence of (8) is that C9(f) is a strictly convez function of the param-
eter b, so its maximum is achieved when b =0 orb =1 (or both) but not when
0 < b< 1. Since we are assuming g s a malicious best response to f, it must
be the case that b =0 or b = 1. Assume without loss of generality that b = 0.
Then the induced game 49 has latency functions 9(x) = 2%, 19, (x) = (14 )2
Since we are assuming [ is a Nash flow for 49, we find that a = 1. But then
the malicious best response to f is b =1, contradicting our earlier assumption
that b = 0.

At an intuitive level, the reason why the game constructed in this example
has no pure Nash equilibrium 1is similar to the reason why there is no pure
Nash equilibrium in the game “matching pennies”. The strict convexity of the
latency functions gives the malicious player an incentive to make the load on
e, € as unbalanced as possible, while the rational players have an incentive
to make the load on e, e as balanced as possible; no distribution of flow can
simultaneously satisfies the objectives of both types of players.

In light of Example 1, we devote the rest of this section to proving two
theorems: first, congestion games with malicious players have pure Nash equi-
libria as long as the latency functions are continuous and weakly concave? ;
second, congestion games with malicious players always have equilibria in the
sense of Definition 9.

° In particular, as a special case, pure Nash equilibria always exist when the latency
functions are linear.
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Theorem 8 If¥ is a congestion game with a malicious player, and for every
edge e, L. is a continuous, weakly concave function, then there exists a pure
equilibrium of 4.

Given Theorem 4, which ensures that our definition of equilibrium is equiv-
alent to the Karakostas-Viglas definition in the case of concave latency func-
tions, it is possible to deduce this theorem from Theorem 1 of (Karakostas
and Viglas, 2003). (Actually, our Theorem 8 makes slightly weaker hypothe-
ses about the latency functions, but the proof technique used by Karakostas
and Viglas (2003) implies our theorem without much difficulty.) In the inter-
est of making this paper self-contained, we present a simple alternative proof
below.

Proof: Let w = w(¥). For a flow g € F(¥,w), let ®9 denote the potential
function of the game ¢49. Recall from Proposition 1 that a flow f is a Nash
flow of ¢7 if and only if f is a minimizer of ®9. Thus a pair (f,g) € F(¥4,v —
w) x F(¥,w) is a pure equilibrium of ¢ if and only if f is a minimizer of
®9(f) and ¢ is a maximizer of CY(f). In other words, a pure equilibrium of
¢ is equivalent to a pure equilibrium of the two-player normal form in which
the strategy sets of the two players are F(¢,v—w) and F (¥, w), respectively,
and their payoff functions are —®9(f) and CY9(f), respectively.

Now let us recall the following easy consequence of Kakutani’s Fixed Point
Theorem. (See, for example, Proposition 20.3 of (Osborne and Rubinstein,
1994).)

Proposition 9 A normal form game with finitely many players has a pure
Nash equilibrium provided that

e Fach player’s strategy set is a nonempty compact convex subset of a Fu-
clidean space.

e [For each i, the payoff function of player i is continuous and is a weakly
concave function of player i’s strategy.

The first condition is satisfied because the sets F(¥,v — w), F(¥,w) are
nonempty convex polytopes. To verify the second condition, first recall that &Y
is a continuous and weakly convex function, so —®? is continuous and weakly
concave. Finally, recall that

CUf) = D welf)le(we(f) + 2e(g)).

ecE

The function z.(g) is a linear function of g, and ¢, is continuous and weakly
concave, so lc(z.(f) + z.(g)) is a continuous, weakly concave function of g.
For fixed f, CY9(f) is a non-negative linear combination of such functions, so
it is also continuous and weakly concave, as desired. O

For congestion games with general latency functions, the existence of an
equilibrium does not follow easily from any of the known equilibrium exis-
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tence theorems for games with a continuum of players, e.g. (Schmeidler, 1973;
Mas-Colell, 1984). This is because our definition of congestion games with
malicious players combines features of nonatomic games (the rational players)
and atomic games (the malicious player), and also because our equilibrium
concept partly requires a pure strategy (the rational flow) and partly a mixed
strategy (the malicious flow). Accordingly, we devote the remainder of this
section to a self-contained proof of the existence of equilibria in congestion
games with malicious players.

Proposition 10 If ¥ is a congestion game with a malicious player, and all
the latency functions {, are continuous and strictly increasing, then 4 has an
equilibrium.

Proof: We use the same two-player game ¢ introduced in the proof of The-
orem 8. The strategy sets F'(¢,v — w) and F(¥,w) are compact Hausdorff
topological spaces, and the payoff functions —®9(f) and CY9(f) are continu-
ous, so the existence theorem for mixed Nash equilibria of games with compact
Hausdorff strategy sets (Glicksberg, 1952) ensures that there exist Borel prob-
ability measures 3,7 on F(¥4,v — w) and F(w), respectively, such that

Po € arg min &7° () (9)
Yo €arg max C7(Bo)- (10)

(Here ®7(3) and C7(3) denote the expected values of ®9(f) and CY(f) when
f,g are sampled independently at random from distributions f3,~, respec-
tively.) The only reason that (5y, ) may not constitute an equilibrium of ¢
is that our definition of equilibrium requires the rational players to use a pure
strategy, not a mixed strategy. In other words, we require the distribution [,
to be a point mass concentrated at a single flow fo € F(¥4,v — w).

Let fo denote the flow fo(P) = Es_g, [f(P)]. Our assumption that the
latency functions are strictly increasing implies that the function ® is strictly
convex, so by Jensen’s inequality,

D7 (fo) < D™ (By), (11)

with equality if and only if the distribution [, is a point mass concentrated
at fo. The left and right sides of (11) are in fact equal, by (9). Consequently
Bo is a point mass concentrated at fo. By (9) and (10), we may now conclude
that (fo,70) is an equilibrium of 4. O

Theorem 11 FEvery congestion game with a malicious player and continuous
latency functions has an equilibrium.

Proof: We have seen that the theorem holds when the latency functions are
strictly increasing, so the idea of the proof is to approximate an arbitrary
congestion game ¢ = (FE, /¢, 11,v) by games with strictly increasing latency
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functions. For every positive integer n, let £ denote the latency function
(@) () = €,(x) + 2/n, and let @™ denote the congestion game (B, £ 11, v).
Proposition 10 ensures the existence of an equilibrium (f,,7,) for 4™, We
next argue that this sequence of equilibria has a convergent subsequence, under
a suitable definition of convergence.

For a separable compact metric space X, we may topologize the set A(X) of
Borel probability measures on X using the weak topology, in which a sequence
1, [, - . . converges to a probability measure p if and only if [ f du, — [ fdu
for every bounded continuous function f on X. The space A(X) is compact
in the weak topology by Prokhorov’s Theorem (Billingsley, 1999). Since both
F(¥4,v—w) and F(¥,w) are separable compact metric spaces, we conclude
that the space F'(¢,v—w)x A(F(¥,w)) is compact and therefore the sequence
(fn,7m) has a convergent subsequence. Replacing the sequence ¥, 42
with a proper subsequence if necessary, we may assume from now on that we

have a sequence of games ¢ = (E,Z("),H,v) with equilibria (f,,~,) such

that (") (1) = {.(x)+a,z for some sequence of constants oy, as, . . . converging
to zero, and such that the sequence (f1,71), (f2,72), ... converges to a point

(f,v) € F(9,v—w) x A(F(¥4,w)). We must now prove that (f,v) is an
equilibrium of ¢.

In Lemma 13 below, we prove that

O (f,) — V(f) (12)
C™(fa) = C(f). (13)

Assuming (12)-(13) for now, consider any f' € F(¢,v—w) and v € A(F(¥,w)).
The function g — ®9(f’) is a bounded continuous function of g € F(¥4,w); by
the definition of weak convergence this implies &7 (f") — ®7(f’). Combining
this with (12) we obtain

7(f) = @7(f) = lim (™ (fn) — 2™ (f)) <0,

n—oo

hence f is a best response to . The functions g — CY9(f,), for n = 1,2,. ..,
are a sequence of uniformly bounded measurable functions of g € F(¥4,w),
and lim,, .., C9(f,) = C9(f) for all g. By Lebesgue’s dominated convergence
theorem, C7'(f,) — C7'(f). Combining this with (13) we obtain

CI(f) = C7(f) = lim (C™(f.) = C”(fa)) = 0,

n—oo

hence v is a best response to f. Thus (f,~) is an equilibrium as claimed. O

It remains to supply the proof of the step which was omitted in the proof
of Theorem 11. This step is established in Lemma 13 below, but we will begin
with a technical lemma which aids in the proof of Lemma 13.

Lemma 12 Let X,Y be compact metric spaces, and let A(Y") denote the space
of Borel probability measures on Y, endowed with the weak topology. If F :

20



X xY — R is a continuous function, then the function F° : X x A(Y) — R
defined by

F(e,v) = [ Fla.y)dviy)
18 continuous.

While Lemma 12 can be derived from more powerful results in measure
theory, we include the simple proof here in order to make our exposition more
self-contained.

Proof: Let {(x,,v,)}2, denote any sequence which converges to a limit
point (z,v) in X x A(Y ) Since A(Y') is metrizable (Billingsley, 1999), the
space X x A(Y) is also metrizable, and to verify continuity of F* it suffices to
check that F°(z,,v,) — F°(z,v) asn — oo. We bound |F°(z,v) — F°(x,, 1,)|
from above as:

1F2(0,0) = F(2a )| =| [ Fla,w) dvly) = [ F(za,y) dva )’
<\[ P dly)~ [ Flay) dy)
| [ Py dn) - [ Fay) da)
g/nyde [ Fla.y) dva(y)
+ [Py = Fanyldnly.  (14)

The first term on the right side of (14) converges to zero because v, — v in the
weak topology. The second term converges to zero by Lebesgue’s dominated
convergence theorem, as the functions F(x,,y) are uniformly bounded above
by a constant function and F'(x,y) is the pointwise limit of F'(z,,y). O

Lemma 13 If (fi1,7), (f2,72),... converges to a point (f,7) in the space
F(Y,v—w)x A(F(4,w)), then ®(f,) — ®V(f) and C™(f,) — C7(f).

Proof: Define real-valued functions A, B on the set F(¥,v —w) x F(¥,w) as
follows.
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for every h € F(4,v—w) and v € A(F(¥,w)). The lemma now follows by a
direct application of Lemma 12. O

5 Conclusions and Open Problems

This paper raises many more questions than it answers. We believe that

our definition of malice can be productive in many other contexts; but even if
one focuses on congestion games, as we did, there are many open problems to
consider.

We have only derived lower bounds on the price of malice, as well as on
its windfall. What are the right upper and lower bounds on the price and
windfall of malice, in terms of the max path length and the relative slope
(See Definition 14) of the latency functions?

Given that the presence of malicious players can affect networks in totally
different ways, ranging, as we have seen, from disastrous to beneficial, it
becomes imperative to understand the circumstances under which these
conditions prevail. That is, we are interested in the characterization problem
of networks for which, say, there is a positive windfall of malice; similarly
for a positive price of malice.

In the same spirit as the characterization problem, it would be equally
interesting to be able to determine algorithmically the price of malice for
individual networks. This brings up the following suite of problems: Given a
network with a fraction of malicious flow, find a semi-pure Nash equilibrium,
as guaranteed by Theorem 11. Or, given such a network with weakly concave
(or even linear) delays, find a pure Nash equilibrium (Theorem 8). Are
these problems PPAD-complete (our proof establishes that they are in the
class PPAD (Papadimitriou, 1994)), or is there an alternative algorithmic
way of establishing existence? Since uniqueness of equilibria is no longer
guaranteed, perhaps the most useful problem is to find an equlibrium with
the largest (or smallest) possible price of malice; this problem may even be
NP-complete.
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