Automating Distributed Partial Aggregation

Chang Liu', Jiaxing Zhang?, Hucheng Zhou?, Sean McDirmid?,
Zhenyu Guo?, Thomas Moscibroda?

!University of Maryland, College Park liuchang@cs.umd.edu

2Microsoft Research

Abstract

Partial aggregation is of great importance in many dis-
tributed data-parallel systems. Most notably, it is commonly
applied by MapReduce programs to optimize I/O by succes-
sively aggregating partially reduced results into a final result,
as opposed to aggregating all input records at once. In spite
of its importance, programmers currently enable partial ag-
gregation by tediously encoding their reduce functionality
into separate reduce and combine functions. This is error
prone and often leads to missed optimization opportunities.
This paper proposes an algorithm that automatically ver-
ifies if the original monolithic reduce function of a MapRe-
duce program is eligible for partial aggregation, and if so,
synthesizes enabling partial aggregation code. The key in-
sight behind this algorithm is a novel necessary and suffi-
cient condition for when partial aggregation is applicable to
a reduce function. This insight provides us with a formal
foundation for an automaton, which derives a satisfiability
problem that can be fed into a standard SMT solver. By do-
ing so, we transform the problem of synthesis into a pro-
gram inversion problem, which is however nondeterministic.
Although such inversion is hard to solve in general, we ob-
serve that most reducers in practical distributed computing
contexts can be classified into a few categories for which we
can design efficient synthesis algorithms. Finally, we build
and evaluate a prototype of our method to demonstrate its
feasibility in the SCOPE distributed data-parallel system.

1. Introduction

MapReduce [11] is a programming model for the scalable
processing of large data sets on machine clusters where
grouping and aggregation are encoded as map and key-

[Copyright notice will appear here once ’preprint’ option is removed.]

{jiaxz,huzho,smcdirm,zhenyug,moscitho } @ microsoft.com

grouped reduce functions. MapReduce is the de-facto stan-
dard for web-scale distributed computing. Input records are
first mapped to intermediate (key, value) pairs by mappers
running on multiple machines. Intermediate results are then
shuffled across the cluster so that all values for the same
key are transmitted to the same machine to be processed
“all-at-once” by a single reducer into that key’s result.

In most real-world cases, network I/O due to shuffling
dominates a program’s execution’s overall latency. Partial
aggregation is a fundamental optimization that mitigates this
problem. After intermediate results are grouped by key, an
initial-reduce function is applied over them to get one par-
tial result for each key. The system can then transmit partial
results whose size is typically much smaller than the original
intermediate results that would have been transmitted with-
out partial aggregation. At multiple levels (computer, rack,
cluster), partial results can be further combined using a com-
bine function. Finally, reducers compute final results using a
final-reduce function.

Most MapReduce-like systems allow programmers to
leverage partial aggregation optimizations by providing or
annotating the three functions: initial-reduce, combine, and
final-reduce. For example, Hadoop programmers can pro-
vide a Combiner function, and SCOPE programmers can
annotate recursive reducers to indicate that they can serve as
combine functions [5]. At first glance, it appears that writ-
ing or annotating these functions is quite easy. However,
doing this correctly and optimally in terms of efficiency is
often hard even for expert programmers. Our own empirical
study over real MapReduce-style SCOPE programs reveals
that among 183 jobs that employ partial aggregation opti-
mizations, 28 of them (15.3%) produce incorrect results. In
some cases, partial aggregation is used wrongly, in others it
cannot be applied at all.

Given these problems, there should ideally be an auto-
matic tool that could verify the applicability of partial ag-
gregation optimizations. Better yet, given normal reducers
written by non-expert programmers, the tool could correctly
and efficiently synthesize the initial-reduce, combine, and
final-reduce functions. The work in this paper aims to pro-
vide such a tool.

2014/10/7

Achieving this goal is challenging because there is no
existing amenable theory for either verification or synthe-
sis tasks for partial aggregation. A reduce function that sup-
ports partial aggregation is called decomposable in the dis-
tributed systems community. Yu et al. [33] defined the con-
cept of function decomposability to characterize distributed
programs that are eligible for partial aggregation. However,
these definitions reveal only declarative constraints and can-
not be directly used to check a function for decomposability
or perform decomposition.

Based on an in-depth examination of real-world SCOPE
programs, we identify common properties that can be used
to simplify the problem of decomposability. First, all reduce
functions have a loop that enumerates all records in a group
using an accumulator. Second, the initial/final-reduce func-
tion of most decomposable reduce functions can be simply
constructed by rearranging reduce function code, and so only
the combine function needs to be synthesized. Finally, de-
composability of a reduce function is determined by the al-
gebraic properties of the combine function and accumulator.

Based on these properties, we solve the problem of veri-
fication and synthesis for partial aggregation in three steps:

e We provide a theoretical foundation for our solution by
proving a necessary and sufficient condition for decom-
posability: Namely, a reduce function’s decomposability
is entirely determined by the accumulator’s commutativ-
ity, while the combine function can be constructed by
finding an inverse function of the accumulator.

e We use a program analysis-based technique to convert
the decomposability verification problem into a program
verification problem that can be solved using an off-the-
shelf Satisfiability Modulo Theories (SMT) solver.

¢ Finally, we show that the combine function synthesis
problem can be reduced into a general version of the pro-
gram inversion synthesis problem, which unfortunately,
is nondeterministic and hard to solve though its deter-
ministic counterpart has been solved [27]. However, we
observe that most target functions have inverse functions
that conform to at least one of three non-trivial special
cases. We can then design combiner synthesis algorithms
for each of these practically relevant cases.

We implement our algorithms for SCOPE and evaluate it
on real-world production jobs. The results show that our
prototype can identify 78 additional reducers that can take
advantage of partial aggregation but do not so originally. Our
prototype succeeds in generating combiners for 90.9 % of
these reducers, and performance experiments show that by
enabling partial aggregation, there is a latency improvement
of up to 55%, and a shuffling IO reduction of up to 99.98%.
We summarize the contribution of this work as follows.

1. We prove that the commutativity of the accumulator is
necessary and sufficient for the decomposability of a
reduce function. This is the first known easy-to-verify
necessary and sufficient condition for decomposability.

2. We provide a program analysis-based method to verify
the reduce function decomposability, as well as novel
program synthesis methods to synthesize combine func-
tions.

3. We implement a prototype of our techniques for SCOPE,
and conduct empirical studies and evaluations on real-
world jobs. The results indicate that our prototype is
effective in identifying optimization opportunities and
synthesizing combine functions. The optimized programs
can dramatically reduce overall latency.

The rest of the paper is organized as follows. Section 2 pro-
vides background on MapReduce and partial aggregation.
Section 3 formally studies the problem of automated partial
aggregation while we develop in Sections 4 and 5 algorithms
based on our formal conclusions to solve the verification and
synthesis problems. Implementation and evaluation are dis-
cussed in Section 6. Section 7 presents related work and Sec-
tion 8 concludes.

2. Partial Aggregation in Distributed Systems
2.1 Distributed Aggregation

In MapReduce as well as in more generalized distributed
settings, the aggregation problem can be seen as one or
more aggregate nodes that collect data from a cluster of data
nodes. The aggregate nodes apply a Reduce function to the
collected data in order to get the aggregated result; e.g. SUM,
COUNT and AVERGAGE. We can view Reduce functions as
having the following standard form:

Reduce(Iterable<Value> values) {
1 s = s0;
2 foreach (x in values)
3: s = F(s, x);
4 emit(0(s));
}

Here s is a set of solution variables that store a partial
solution and are initialized to constant values represented
by so on Line 1 (initializer). The main foreach loop (Lines
2-3) enumerates input values and aggregates s according
to function F(s,x) (accumulator). Finally, Line 4 outputs
the solution according to function O (finalizer). A reduce
function is then represented by the triple R = (s¢, F, O).

2.2 Partial Aggregation

In most large-scale distributed data-parallel computations,
the network I/O from data nodes to the aggregate nodes is
the key bottleneck. Partial aggregation aims to reduce net-
work I/O by decomposing the reduce function into three
functions: InitialReduce, Combine, and FinalReduce.
In each data node, InitialReduce partially aggregates the
data into partial results. Partial results are transmitted to
reducers where they are combined via Combine. Finally,
FinalReduce computes the final result. Network I/O is
reduced substantially because only partial results, which
are usually smaller than lists of values, are transmitted.
InitialReduce reuses the original Reduce function, while

2014/10/7

x2 x1 x4

R

Figure 1. An example of a combining tree. Partial results
come in order x3, x2, x1, x4.The aggregation combines
them as C(C(x3,x2),C(x1,x4)).

public IEnumerable<Row>

Reduce (RowSet input, Row outputRow) {
1 int sum = 0;
2. Dbool isFirst = true;
3. foreach (Row row in input.Rows) {
4. if (isFirst) {
5. row[0] .CopyTo (outputRow[0]) ;
6 isFirst = false;
7 sum = 10 + row[1].Integer;
8 } else sum += row[1].Integer;

}

9. outputRow[1].Set(sum);
10. yield return outputRow;

Figure 2. An example reducer.

FinalReduce is exactly the finalizer. The only unknown
function in a partial aggregation is therefore Combine.

To further optimize network I/O and temporary storage,
these partial result can be combined hierarchically. However,
in this case, multiple partial results from different mappers
can arrive in an arbitrary order due to different data node
speeds and uncertain network latency. Consequently, the ag-
gregation has an arbitrary combining tree depending on the
incoming order of partial results. Figure 1 illustrates an ex-
ample of hierarchy combining and shows that a combiner
should be both commutative and associative.

2.3 Outline of Method

We first provide an intuitive example of our method be-
fore delving into technical details. Notice that although we
present all examples for SCOPE, the techniques discussed
in this paper are applicable to other MapReduce-like dis-
tributed systems where partial aggregation is available.
Figure 2 is a SCOPE reducer. The records, RowSet
input, are grouped by their key, row [0] . This reducer com-
putes the summation, sum, of all values in each group, and
emits the group key as well as the summation plus 10. There-
fore, partial aggregation is applicable. To automate partial
aggregation with our approach, the first step is to identify
the accumulator, the main-loop body (Line 4-8). The par-

tial results, i.e. solution variables, are composed by three
variables, isFirst, sum, and outputRow[0].

Based on next section’s theoretical result, we must verify
the commutativity of the accumulator (Line 4-8). To do so,
we use PEX [28]-a white-box software testing tool that
employs an SMT-solver Z3 [9]-to try and synthesize two
RowSet objects x and y such that: i) x[0] = y[0]; and ii)
applying the reducer over x,y and over y,x will lead to two
results differing in at least one of outputRow[0], isFirst,
or sum. PEX reports an impossible result, thus the verifier
concludes that partial aggregation is applicable.

For partial aggregation, the InitialReduce is easily
rewritten from the Reduce function in Figure 2 as:

public Row InitialReduce(RowSet input,
Row outputRow) {
int sum = 0;
bool isFirst = true;
foreach (Row row in input.Rows) {
if (isFirst) {
row[0] .CopyTo (outputRow[0]) ;
isFirst = false;
sum = 10 + row[1].Integer;
} else sum += row[1].Integer;
}
outputRow[1] .Set (sum) ;
outputRow[2] .Set (isFirst);
return outputRow;

}

Different from the original reduce function, all solution
variables including isFirst are output. The combiner syn-
thesizer then synthesizes for two groups of solution vari-
ables separately: (1) sum and isFirst, and (2) isFirst
and outputRow [0]. Both groups fall into the Single Input
category (Section 5.3). By employing the techniques from
Section 5, the following combine function can be synthe-
sized:

public Row Combine(Row x, Row y) {
if (x[2].Boolean) {
x[0] = y[0]; // for outputRow[0]
x[1] = y[11; // for sum
x[2] = false; // for isFirst
} else x[1] += y[1].Integer - 10;
return x;

}

In this function, the partial result y (solution variables in
InitialReduce) is combined into existing partial result
x. These partial results have three columns corresponding
to solution variables outputRow[0], sum, and isFalse
respectively. Finally, FinalReduce can simply extract the
columns from combined result x:

public Row FinalReduce(Row x, Row output) {
output [0] = x[0];
output[1] = x[1];
return output;

}

2014/10/7

3. Decomposability as a Foundation of Partial
Aggregation

This section first provides an intuitive reducer example to
illustrate the eligibility for partial aggregation. We then dis-
cuss the decomposability of a reduce function, which is a
formal requirement of partial aggregation. To achieve de-
composability, it is important that a combiner exists, which
can be used to combine partial aggregation results to com-
pute the final result on behalf of the original reduce function.
To guide and simplify the development of a tool, we next
prove that a combiner exists if and only if the accumulator
of the reduce function is commutative. Further, we show that
the combiner can be constructed using any general inverse
function of the accumulator.

3.1 Intuition

We have shown that the example reducer in Figure 2 that
computes 10+ Eroyeinpusrow[1], can be rewritten to take ad-
vantage of partial aggregation. Such rewriting of simple pro-
grams is easy for a human programmer, but is non-trivial for
a computer; or by both human and computer as the program
becomes more complicated. We therefore study what prop-
erties such programs must have for partial aggregation to be
legal. First, row order must not affect output, i.e. the com-
putation should be commutative. Commutativity is crucial
for partial aggregation—Xiao et al. [31] reported many bugs
due to non-commutative reducers in Microsoft production
programs that were running periodically (often daily) for at
least three months. Our study in Section 6.2 also finds bugs
due to non-commutativity.

Another common property needed to guarantee correct-
ness is that the combiner must be associative (i.e. data can
reside on different machines), and commutative (i.e. data can
arrive in any order). The combiner must also produce the
same result as the reducer would directly.

To facilitate synthesis of the three functions, we adopt the
philosophy that InitialReduce and FinalReduce should
be trivially derived from the original reduce function. In
this way, we formally prove that the combiner always exists
and can be uniquely determined when the original reduce
function is commutative. We now define the problem and
state the main theorem, providing a sketch of the proof.

3.2 Formalization

Consider an accumulator F that maps from a solution
and input domain S X I to solution domain S. For input
value sequences I*, we generalize the accumulator F to
F(s,e) = s and F(s,(x) ®X) = F(F(s,x),X). Here € is
the empty sequence, @ is the concatenation operator of
two sequences, x € I, X € I*, and (x) is a list containing
only one element x. The solution space S is defined by
S = {s|s=F(s0,X),X € I*}. Hereby for all input sequences
X,Y €I*, then F(F(s,X),Y) =F (s, X ®Y).

Partial aggregation decomposes the reduce function R =
(s0;F;0) into InitialReduce, Combine, and FinalReduce.
It is eligible if and only if it yields the same result as R,
in which case we say R is decomposable. Inspired by Yu et
al. [33], we define decomposability as follows.

Definition 1 (Decomposability). An accumulator F in re-
duce function R with the initial solution s is decomposable,
if and only if there exists a function C such that the following
four requirements are satisfied:

1. For any two input sequences X1,X, € I”,
F(s0,X1 ®X2) = C(F (s0,X1),F (s0,X2)). (1)

2. F is commutative: for any two input sequences X1,Xo €
I F(S(),Xl @Xz) = F(S(),Xg EBXl);

3. C is commutative: for any two solutions si,sy € S, i.e.,
C(Sl,S2) = C(Sz,sl),‘

4. C is associative: for any three solutions s1,s2,53 €S, i.e.,
C(C(S] ,Sz),S3) = C(Sl ,C(Sz,S3)).

We say that C is the decomposed combiner of F.

Requirement 1 guarantees the combiner semantic of C :
S xS — S that returns the combined result of two partial
aggregated results F(so,X;) and F (s, X2). Requirements 2,
3 and 4 ensure the same partial aggregation result even with
arbitrary combining order.

However, there is no techniques to verify these properties
over an infinite length of inputs. Clearly, the accumulator
and the initial value sy are much more interesting than the
finalizer 0. We focus on F and sg first and ignore O in the
following discussion. Our theory can be easily extended to
consider O.

Our main finding is that Requirement 2 implies all other
requirements, i.e. the commutativity of accumulator F is the
necessary and sufficient condition of decomposability.

Theorem 1 (Informally). Reducer R is decomposable if and
only if the corresponding accumulator F is commutative.
The decomposed combiner C is uniquely determined by F.

3.3 An Overview of the Proof

In this subsection, we sketch the main idea to prove Theo-
rem 1 by providing a list of lemmas. The full proof can be
found in our online technical report [21]. Our first step is to
show that Requirements 1 and 2 imply Requirements 3 and
4. In fact, we prove the following lemma.

Lemma 1. Given a combiner C that satisfies Equation I, C
is commutative and associative if and only if accumulator F
is commutative.

We further simplify Requirement 2 to avoid arbitrary se-
quences: we consider two inputs values x and y, rather than
two input sequence X and Y. As a result, commutativity can
be verified by tools such as symbolic execution engines and
constraint solvers as described in Section 4.

2014/10/7

Lemma 2. F is commutative if and only if for any solutions
s € S, and any two input values x,y € I, F(s,xy) = F(s,yx).

We then show that the commutativity of an accumulator
(i.e. Requirement 2) implies that there exists a combiner
C that satisfies Requirement 1. The intuition is that, given
two solutions s1,s2 € S, where we know s; = F(s0,X) and
sp = F(s9,Y), the combiner C(sy,s2) can be computed as
F(s0,X®Y) = F(s1,Y). We define the class of general in-
verse functions, # = {H|Vs € S.F(so,H(s)) = s}.

Notice that #% can contain more than one element. For
instance, the following reducer

int F(int s, int x) {
if(s == 0)
return 2;
else return s+x;

with an initial value sg of 0, has at least two general
inverse functions Hy,H, where H;(2) = (0), and H>(2) =
(1). That means, since F' might not be a one-to-one function,
it is almost impossible to pick out the exact Y that generates
s2. Given each possible H € /77, a derived combiner Cy
related to H is defined as Cy (s1,52) = F (s1,H(s2)). Our next
goal is to show that if F' is commutative, then all derived
combiners produce the same outputs. The observation is that
when two input sequences generate the same aggregated
output for a given initial solution value, they always generate
the same output for any solution value.

Lemma 3. Given an accumulator F that is commutative
and two input sequences X,Y € I*, if there is a sy such that
F(s0,X) = F(s0,Y), then F(s,X) = F(s,Y) holds true for
any s € S.

Proof. As this conclusion is less obvious, we present the
proof here. For any value s € S, we know there is an input
sequence Z such that F(sg,Z) = s. So we have

F(s,X)=F(F(s0.Z),X) = F(s0,Z®X)
F(s50,X®Z)=F(F(s0,X)®Z)=F(F(s9,Y)BZ)
= F(s0,Y®Z)=F(s0,ZDY) = F(F(s0,Z),Y) = F(s,Y)

O

Consequently, if F' is commutative, for two possible input
sequences (or values) Y; and Y, of s, the corresponding
computed combined result based on Y; and Y, are the same;
i.e.if F(so,Y1) = F(s0,Y2) =52, then C(s1,82) = F(s1,Y1) =
F(s1,12).

Lemma 4. [fan accumulator F is commutative, then for any
H,H/ €y, Cy =Cy.

Based on the above lemmas, we know that for any commu-
tative accumulator F, the combiner C can be generated using
any general inverse function H of F, implying Requirement
1. In conclusion, we have

F = flx,...,x].F,...,F;s;returne,...,e
e u= x|eopge|n
s u= xi=e|x,.,x:=f(e,...,e) | s;s
| if (p) then s else s | skip
p = eop,e|true]|false

Figure 3. Language syntax.

Theorem 2. Reducer R is decomposable if and only if the
corresponding accumulator F is commutative. The decom-
posed combiner C is uniquely determined by F, and takes the
form C(s1,s2) = F(s1,H(s2)) where H is any inverse func-
tion of F.

4. Verifying Decomposability

This section discusses how to verify the decomposability
of a given accumulator . By Theorem 2, it is sufficient if
F(s,xy) = F(s,yx) for all s, x, and y. However, this cannot
be easily verified directly because F' is a program. Prior
studies [14, 26, 27] have shown that certain programs can
be represented as formulae. A straightforward idea then is
to transform the accumulator program into a formula that
can be used to convert the condition F(s,xy) = F(s,yx) into
a formula. The satisfiability of this condition can then be
checked by an SMT solver.

We first introduce the syntax of a programming language
and show that F (s, xy) and F (s, yx) can be represented in this
language. We then show how to use path formula to reduce
the decomposability verification problem into an SMT sat-
isfiability solving problem. We also show how to convert a
program into a path formula. Different from prior work, our
newly defined path formula can be easily converted back into
a program, which is leveraged to solve our combiner synthe-
sis problem in the next section.

4.1 Language

This work considers programs in the language whose syntax
is defined in Figure 3. A program in this language is a
function of the form:

F = f[x,...,x].F,...,F.s;returnce,...,e

where f is the function name, x,...,x are input variables,
F,...,F are nested function definitions, s is the body of the
function, and e, ..., e are returned values. This language can
encode assign, if, skip, sequence, and function call state-
ments as in most imperative language. We exclude while-
loop statements because most loops in real accumulators can
be unrolled statically. A function call statement returns a list
of expressions, and assigns their values to a list of variables
respectively. An expression e is either a variable x, a con-
stant n, or a binary operation between two expressions. We
assume the variables only take integer or real values. The
formal semantics of this language is defined and discussed
in our online technical report [21].

2014/10/7

Fyee = acclrowy, sum, isFirst,xp, x1].
if (isFirst = 1) then {

rowg 1= Xo;
isFirst :=0;
sum = 10+ x;;
} else {

sum .= sum-xy;
s

return rowg, sum, isFirst

Figure 4. The accumulator in Figure 2.

Note that our language is not Turing-complete; i.e. un-
bounded loops or recursion cannot be expressed. Regardless,
we argue that most aggregation functions that are eligible for
partial aggregation can be expressed in our language.

Given an accumulator F with name f, F(s,xy) and
F(s,yx) can be represented as the following two programs:

Fy =F(s,xy)
E‘ = F(S7yx)

fils,x,y].F.s1:= f(s,x);52 := f(s1,y); return s,
Srls, x,¥].F.s1:= f(s,y);52 := f(s1,x); return s,

Example 1. We rewrite the accumulator acc of our exam-
ple reducer in Figure 2 into our language as shown in Fig-
ure 4. This function takes five inputs, including three so-
lution variables rowq, sum, and isFirst, corresponding to
outputRow[0], isFirst, and sum in Figure 2, and two
input variables xp and x; corresponding to row[0] and
row[1] in Figure 2. Since our language supports only in-
teger values and real number values, without loss of general-
ity, we assume rowy, xo, and isFirst are all integers. Further
isFirst takes values of either O or 1, where isFirst = 1 corre-
sponds to isFirst==true in Figure 2. The initial solution
is rowyg = 0, isFirst = 1, and sum = Q.

4.2 Path formula and verifying decomposability

Given a function F = f[xy,...,x,].F1, ..., Fj.s;returney, ..., ey,
we are interested in a formula for F' of the form:

o =\ (A pijn N\ 0j =eij) @
j=1

icl jel

where I and J are two index sets, p;; is a predicate, e;;
is an expression, and p;; and e;; contains only variables
in {x1,...,%n,01,...,0p }. Here xi,...,x, are input variables,
and o1,...,0,, are output variables. Intuitively, a path for-
mula ¢ is “correct” if an assignment to {xi,...,X;,01,...,0 }
makes ¢ be true if and only if evaluating F'(xy, ..., X,) returns
01, ...,0p. Then the satisfiability of ¢ exactly implies that the
function will compute the same output.

Existing work [27] has shown that symbolic execution
can convert programs of various imperative languages into
formulae. For our language, we also leverage symbolic exe-
cution to convert a program into a path formula. The formal

definition of a path formula and the details about the conver-
sion can be found in [21].

We put two further restrictions on a valid path for-
mula: (1) Vie;(Ajes pij) is a tautology; and (2) Vi # iz €
1. N\jey Piyj NN\ jey Piyj- Intuitively, 1 is the set of indices of all
possible paths. For each i € I, A jc; pi; is the pre-condition
of the path, i.e. when it is true, the program will compute
the output as o; = ¢;; (j = 1,...,n). These two restrictions
actually guarantee that no two paths will be taken simulta-
neously, and all possible paths will be covered by the path
formula, providing us with a convenient way to convert a
path formula back into a program:

if (p11 and ... and p, ;) then return ¢y, ...ej,
else if (p21 and ... and p,|;)) then return ey, ...e2,
else ...

Based on the above discussion, the decomposability verifica-
tion problem can be reduced to an SMT satisfiability prob-
lem via the following theorem.

Theorem 3. Vsxy.F (s,xy) = F(s,yx) if and only if(])}’l‘ o0 A
(I);r‘ A (P 0; # 0)) is not satisfiable.
The proof can be found in our online technical report [21].
Concretely, we convert our example accumulator Fy. in
Figure 4 into the following path formula:
(]);"”2’03 = (isFirst = 1 Noy =xoNop = 10+x; Aoz =0)

acc

V (isFirst £ 1 Aoy = rowg Aoy = sum—+x) A o3 = isFirst)

S. Combiner Synthesis Algorithms

As discussed in Section 3, given a decomposable accumu-
lator F, the combiner C can be constructed as C(sy,s2) =
F(s1,H(s2)), where H is any general inverse function of F.
Unfortunately, constructing H is a nondeterministic program
inversion problem whose input cannot be uniquely deter-
mined by its output. As far as we know, no existing work
considers this problem.

Solving the general nondeterministic program inversion
problem is probably too difficult. However, we observe that
most accumulators of a decomposable reducer can be classi-
fied into three categories according to how they aggregate:

1. Counting aggregation over an input sequence that is only
determined by the length of the sequence;

2. State machine aggregation that essentially simulates a
state machine with a limited number of states; and

3. Single input aggregation over an input sequence that can
be simulated by aggregating over one input record.

For each of the first two categories, we develop criteria that
can determine if a decomposable accumulator belongs to it,
and then develop an algorithm to synthesize a combiner. For
the third category, we also provide a criteria, but show that
the general problem to synthesize a general inverse function

2014/10/7

is hard. Instead of solving it completely, we provide two
heuristics that work well for real-world accumulators.

5.1 Counting Aggregation

The prototypical accumulator belonging to this category is
the COUNT function built into most DBMSs. We formally
define the criterion of this category as follows:

Definition 2 (Counting category). An accumulator F be-
longs to the counting category if and only if, F(s0,X) =
F(s0,Y) holds for any two input sequences X,Y € I*, |X| =
Y.

This criterion can be transformed into an amenable form via
the following lemma:

Lemma 5. An commutative accumulator F belongs to the
counting category if and only if, for any two input records
x,y €I, F(s0,x) = F(s0,y) holds true.

With this lemma, we can use an SMT solver as described ear-
lier to verify that Vx,y.F(so,x) = F(so,y). For the combiner
synthesis problem, the combiner can be computed using the
following pseudo-code:

input(sl, s2);
s = s0; r = s1;
while (s<>s2) {

s = F(s, 0);
r = F(r, 0);
}
return r;

Here we use s0, s1, and s2 to represent the initial solution
50, and the two input solutions s; and s, respectively. We use
s and r to represent two local variables. As an argument for
correctness, suppose that the loop body is executed n times
and X is an input sequence of n zeros. We notice that when
the loop stops, r stores the value of F(s;,X), and F(s9,X) =
s2. We can then build a general inverse function H of F such
that H(s,) = X, and then r = C(s1,s2) = F(s1,H(s2)).

Notice that although we restrict the input functions of
our synthesizing algorithm to be in our language, the out-
put combiners can leverage any language features, such as
loops, that are supported by MapReduce-style systems. It is
clear that verifying if an accumulator belongs to the count-
ing category calls the SMT solver only once The combiner
synthesis algorithm is constant time.

As an optimization, if we know that the accumulator
is exactly the COUNT program, i.e. Vsx.F(s,x) = s+ 1, the
combiner can be synthesized as C(s1,s2) = 51 + 52 — 0.

5.2 State Machine Aggregation

Every accumulator can be treated as a transition function of
a state machine. If this state machine has a small size, then
it is easy to synthesize a combiner as we will show. Given
an explicit finite state machine, a general inverse function is
equivalent to finding a sequence of inputs that will transform
the state machine to a given state. However, the finite state
machine defined by an accumulator is implicit and so (1) we

Algorithm 1 Detecting finite state machine and generating
its combiner function.
1: Q.clear(); Q.add(so); Sol.add(sp, null, null);
2: while not Q.isEmpty() do
3 ps=Q.poll();
while (ns, x) = find_new(ps, Sol) do
if Sol.size() > T then
return (false, null);
end if
Sol.add(ns, ps, x);
Q.add(ns);
10: end while
11: end while
12: return (true, generate_combiner(Sol));

R AN

do not know the size of the state machine; and (2) we do not
know its transition table.

To tackle these problems, we design a breadth first search
algorithm (Algorithm 1) to identify all states by using a set
data structure Sol to store all explored states as a set of
triples (s, ps, x). Intuitively, (s, ps,x) encodes that ps can be
transformed into s by taking an input x and so s = F(ps, x). If
we identify that F is a state machine containing no more than
a threshold of T states, the algorithm succeeds along with the
code for the combiner; otherwise, if the algorithm has found
more than T states, the algorithm will immediately fail. The
key parts of this algorithm are the find_new call (Line 4) that
finds a new state, and the generate_combiner call at the end
that generates the code for the combiner.

Function find_new finds a new state ns starting from a
state ps by taking x as input so:

ns = F(ps,x) A /\ a#ns

(a,b,c)eSol

We transform this into the following query that can be sub-
mitted to a SMT solver:

\/(CIDi(ps,x)/\ns: Oi(ps,x) A /\

iel (a,b,c)eSol

a # ns)

Find_new returns (ns,x) as the answer if the SMT solver
returns a solution; otherwise, it returns an empty answer.

When all possible states have been explored, they are all
stored in Sol. Sol contains all information of the transition
table of the finite machine so computing H can be done by a
table lookup. To synthesize the combiner, since there are at
most T different states, we can materialize all these up to T2
combinations of (s1,s2) and the results of C(s;,s2) can be
computed in constant time. The complexity to decide if an
accumulator belongs to the state machine category requires
calling an SMT solver at most T times, and the combiner
synthesizer runs in O(T?) time and space.

2014/10/7

Example 2. Let us consider the following code as the accu-
mulator, and sg = —1:

Fyn = sms, x].

if (s =—1) then

if (x > 100) then s := 0; else s := 2;
else if (s = 0) then

if (x > 100) then s := 0; else s := 1;
else if (s = 2) then

if (x > 100) then s := 1; else s := 2;
return s

By running our algorithm, a Sol is calculated that includes
three triples: (0,—1,101), (2,—1,100), and (1,0,100). The
synthesized combiner looks as follows:

input(sl, s2)
if (s1 == -1 and s2 == -1) then return -1;

else if (sl == 2 and s2 == 0) then return 1;

5.3 Single Input Aggregation

Most standard accumulators such as SUM and MAX belong to
this category, which is formally defined as follows:

Definition 3 (Single input category). An accumulator F
belongs to the single input category if and only if, for any
input sequence X € I* and |X| > 1, there is an input record
x €I such that F (s9,X) = F(s0,x).

The following lemma can be used to produce a more amenable
criterion:

Lemma 6. An accumulator F belongs to single input cate-
gory if and only if, for any two input records x,y € I, there
exists an input record z such that F (so,xy) = F(s0,2).

We then need to verify that Vx,y.3z.F (so,xy) = F(s0,2).
However, the techniques that we have discussed so far can-
not eliminate the quantifier for z. Most existing methods used
by SMT solvers to handle quantifiers rely on the E-match al-
gorithm [8], which cannot deal very well with our queries.
In fact, our use of Z3 [9] results in a timeout to check if MAX
belongs to the single input category.

We must eliminate the quantifier on z. First, we write the
condition Vx,y.3z.F (so,xy) = F(s0,2) in the following form:

Vxy. \/ Jz. /\

(el (j,j)elxJ’

/ /
Pij APy Neij= ey,

where p;; and e;; are from the path formula of F(so,xy),
and p); ;, and e, , are from the path formula of F (so,z). It is
sufficient to show that for all x and y, the following formula
is true for one assignment to i and i

Jz. /\

(i) erxJ!

Dij /\[);/j/ Nejj= e;/j’ 3)

We develop two heuristics to eliminate the quantifier in for-
mula (3). Intuitively, if the formula has the form of dz.z =

e A 9(z), where e does not contain z, then the quantifier Jz.
along with the clause z = e can be eliminated together, and
the formula is equivalent to ¢(e). The first heuristic then
works to translate one clause in the formula into the equiv-
alent form of z = e. For the second heuristic, if the formula
has the form of 3z.¢(z) A ¢’, where ¢ (z) contains only z, and
¢’ does not contain z, then the quantifier along with ¢ (z) can
be eliminated if ¢ (z) is satisfiable. On the other hand, if ¢ (z)
is not satisfiable, then neither is this formula.

Notice that we do not guarantee these two heuristics will
successfully eliminate the quantifier: we can only deal with
programs where these two heuristics eliminate all existence
quantifiers successfully.

Example 3. We consider the accumulator F,.. in Figure 4.
The (simplified) condition to verify is

VX0,%1,Y0,Y1-
(Jz0,z1-isFirst =1 ANz = xp
ANO+z1 =104+x1+y1 AO= 0)
V (3zo,z1.isFirst # 1 Azg = rowg
Asum+z) = sum~+x1 +xp AisFirst = isFirst)

The initial solution is isFirst = 1, rowy = 0, and sum = 0.
Then the formula

(Fzo,z1.isFirst # 1 Az = rowg
Asum+z) = sum~+x) +x N isFirst = isFirst)

is vacuously false, since isFirst = 1 is true. The above for-
mula can be revised to

vx()vxlvy()vyl'
Jz0,21.20 =x0A10+z; = 10+x1 +y; AO=0

We apply the heuristic to translate the clause, 10+ z; =
10+ x1 +y1, into z; = 10+ x; 4+ y; — 10. Then the above
formula is further rewritten into

Vx0,X1,Y0,)1-
dz0,21.20 =x0Az1 = 104+x1+y; —10A0 =0

Since each of zp and z; appears only once in one clause
in which the two variables themselves are on the left hand
side, we can drop the clauses along with the existential
quantification in front of them. Therefore, the formula is
translated into

Vxo0,%1,0,y1.0 =0

which is satisfiable.

It is appealing to develop an algorithm synthesizing the
general inverse function for those accumulators falling into
this category, since it covers a majority of accumulators. In
fact, many one-way functions (e.g. the discrete exponential
function) fall into this category, but their inverse functions
(e.g. the discrete logarithmic function) are commonly be-
lieved hard to compute, and thus automatically synthesizing
such (polynomial time) functions are probably impossible.

2014/10/7

We notice that the above mentioned heuristics also work
for synthesizing the general inverse function. We first con-
vert F' into its path formula. Then we employ the above
mentioned heuristics to this formula as follows: in each sub-
formula ®;, which is a conjunction of clauses, (1) if we can
transform it into x = e A ¢(x), where e does not contain x,
then we will convert it into x = e A ¢(e); and (2) if we can
transform it into ¢; (x) A ¢, where ¢; contains only x and ¢,
does not contain x, then we check the satisfiability of @; (x).
If it is satisfiable, and xq is a model, then we convert that for-
mula into x = x¢ A ¢,. Otherwise, if ¢;(x) is not satisfiable,
then we remove ®; from ¢!, If all sub-formulas are ei-
ther converted into the form of x = ¢; A ¢; (where ¢ contains
only {o1,...,0,}) or are removed. Then this function is a path
formula with respect to input variables oy, ..., 0,, and thus we
can convert it back into a program. In our evaluation, such a
heuristic approach works well in many cases, and produces
efficient code (Section 6.2).

Example 4. We consider the accumulator F,.. in Figure 4.
The path formula is
O 7% = (isFirst =1 Aoy =xg Aoy = 10+x1 Aoz = 0)

acc

\ (isFirst £ 1 Aoy = rowg Aoy = sum—+x) Ao3 = isFirst)

Since isFirst = 1, then the second conjunction of the clauses
is vacuously false. We apply the heuristic to translate it into

0% = (isFirst = 1 Axo = 01 Ax; = 0y — 10 Aoz = 0)

In this case, the combiner can be synthesized as

C = comb[rowy, sum,isFirst,row;y, sum’,isFirst'].Fyc.
if (isFirst' = 0) then {
X0 1= rowy;
x1 :=sum’ — 10;
rowg, sum, isFirst := Fye.(rowg,sum, isFirst,xo,x1)
1.

return row, sum, isFirst;

As to its complexity, we notice that only the second heuristic
rule involves a call to the SMT solver so there will be at most
|| X [I'| x m calls, where m is the number of input variables.
As analogous rules are applied, the combiner synthesizer
makes the same number of calls to the SMT solver.

6. Implementation And Evaluation

6.1 Implementation

We prototyped both decomposability verification and com-
biner synthesis for production SCOPE jobs in Microsoft,
where map and reduce functions are written in C#. Our im-
plementation includes 2,326 lines of C# code that use Z3 [9]
as the SMT solver. We discuss several of the implementation
challenges in the rest of this section.

Solution Variable Identification. Simply marking all
variables in the initializer as solution variables can incor-
rectly include local variables. Instead, solution variables are

marked only (1) in the statement emit (0(s)) ; to generate
output; and (2) in the statement s = F(s, x); to update
the partial solution. The first condition is checked by exam-
ining a reducer’s finalizer. The second condition identifies
variables in the loop that depend recursively on themselves;
i.e. they are loop-carried dependencies that can be identified
by standard static program analysis techniques [12].

Independent Solution Variables. Some decomposable
accumulators with multiple solution variables do not belong
to any of the three categories that have only one solution
variable. For instance, accumulator AVERAGE includes sum
and count. However, these solution variables can be calcu-
lated independently so for each solution variable s, we only
consider those variables that s depends on; e.g. we consider:

F = flisFirst,s,c,x].
if (isFirst == 1) then {
isFirst :=0; s :=10+4+x; ¢ :=2;
} else {
s:=s+x;c:=c+1;
}s

return isFirst,s,c;

We first synthesize three combiners for f, s, and ¢, using
algorithms for counting, state machine, and single input cat-
egories, which are then combined together.

Arrays and Loops. Arrays and loops with constant lengths
can be handled easily: a loop can be unrolled; and an array
with length n corresponds to n new variables where A[i] can
be converted into the following if-statement:

if (i==0) then return x0;
else if (i==1) then return x1;

Many seemingly unfixed lengths are often specified by ar-
guments in MapReduce (SCOPE) programs, and so can be
made constant via constant propagation. Beyond this, arrays
and loops of unknown length cannot be handled.

Approximating Decomposability Criteria. Notice that
checking the condition F (s,xy) = F(s,yx) forall s € S,x,y €
I in Theorem 2 requires the verifier to consider all elements
in S. When S cannot be efficiently computed, it is impracti-
cal to verify the exact condition. Luckily, it is usually pos-
sible to sacrifice a degree of accuracy to consider S to be
either {so}, or whole elements of s’s type; e.g. if s is a 32-
bit integer, then treat S to be the set of all 32-bit integers.
The former can report a non-commutative accumulator to
be commutative (false-positive), while the later can report
a commutative accumulator to be non-commutative (false
negative). Our empirical study finds that the first approxi-
mation identifies no false-positives, while the later rejects
only 19 out of 261 valid partial aggregation jobs. Neither of
these two approximations involves computing S to decide
decomposability, and so both are tractable in real applica-
tions. What approximation to use depends on the application

2014/10/7

scenario, and systems can provide both verification results
to programmers.

6.2 Evaluation

We conducted an empirical study on a trace of 4,429 SCOPE
jobs from production clusters in Microsoft. 183 of these jobs
already employ partial aggregation via manually provided
combiners. There are 497 unique reducers in the trace.

Problematic Jobs. We developed automatic tools to ver-
ify commutativity of the 183 jobs employing partial aggre-
gation, and found 28 of them (15.3 %) to be suspicious. We
manually investigated these jobs, contacting their authors to
confirm that they indeed had bugs in them. An example sus-
picious reducer is the following:

String keyl = "",
int sum = 0;
foreach (Row row in input) {

key2 = nn,

keyl = row[0].String;
key2 = row[1] .String;
sum += row[2].Integer;
}
output [0] = keyl;
output[1] = key2;
output[2] = sum;

yield return output;

Here, row[0] and row[1] are assumed to be the same for
the same group of input, which, however, is not ensured by
the computation preceding this reducer. By constructing two
rows of input that have different values stored in row[1], we
easily verify that commutativity, and thus decomposability,
is not satisfied. Note that [31] reported similar bugs as here.

Decomposability Verification. We investigated the re-
maining 4,246 jobs where partial aggregation had not been
manually applied. We used PEX [28] to automatically verify
these jobs using both criteria Vx, y.F (so,xy) = F(so,yx) and
Vs, x,y,F(s,xy) = F(s,yx) to verify decomposability (Sec-
tion 6.1). There are 261 jobs (containing 22 unique reducers)
satisfying Vx, y.F (so,xy) = F(so,yx). The results were man-
ually double-checked to ensure that all were true positives.

261 over 4,246 (6%) seems to be a small fraction. Our
verification is very restrictive and does not consider reducer
pre- and post-condition in the context of entire jobs. The
study from [31] shows that some implicit properties are as-
sumed by the programmers but not hinted in the program.
These properties could guarantee that the reducers are es-
sentially commutative. This phenomenon inspires us to ei-
ther allow programmers to annotate or develop automatic
tools to discover these implicit properties. Although this is
beyond the scope of this paper, we believe it to be a good fu-
ture direction. Further, our prototype simply checks concrete
commutativity. For example, the insertion operations over a
set are semantically commutative, but cannot pass our tool’s
verification. Semantic commutative verification techniques
(e.g. [20]) can alleviate this problem.

Table 6.2 reports the running time of our prototype over
the 22 commutative reducers of the identified jobs, which
is conducted on a PC with an 4-core 3.0 GHz Intel Core
i7-870 and 8 GB memory. All execution times are under
one second except for reducers 7 and 8, which issue far
more SMT queries than other reducers. Reducer 7 con-
tains 44 state variables; and reducer 8 is a four state finite
state machine. Three reducers (20, 21, and 22) cannot pass
Vs, x,y.F (s,xy) = F(s,yx).

Combiner Synthesis. We ran our synthesizer prototype
over these 22 reducers on the same machine and succeed in
synthesizing combiners for 20 out of 22 (91.0%) reducers.
Reducers 21 and 22 exhibit patterns outside of our three
categories and thus fail in combiner synthesis. Both of these
two jobs exhibit the same pattern illustrated as follows:

foreach (Row current in input.Rows) {
if (num == 0) {

sum = current[1]
} else {

sum += current[1];
}
num++;

}

This example contains two num and sum state variables.
While num computes a typical COUNT aggregation, sum,
which depends on num, belongs to the single input category.
To synthesize the combiner for sum, however, the synthe-
sizer must also synthesize num’s computation, which belongs
to a different category and our prototype cannot deal with.

Performance Gain. We finally evaluate the performance
gain of our partial aggregation optimization. To avoid inter-
ference with production job execution, we randomly picked
one job (contains Reducer 2) with tens of TBs input data
for evaluation (some of the jobs are out-of-date or their in-
put data is missing). The performance gains are substantial:
overall latency is reduced from 165 seconds to 64 (61.6%
reduction), and the data volume transmitted during shuffling
decreases from 7.99 GB to 1.22 MB (99.98%). Three man-
ually written jobs with real production data are further eval-
uated, which calculate SUM, COUNT, and MAX, respec-
tively. In these cases, we also observe an average of reduc-
tion of 62.4% in latency and 76.0% in network I/O.

7. Related Work

Partial aggregation is closely related to data aggregation
techniques used in functional and declarative parallel pro-
gramming languages [6, 29]. Incoop [4] makes use of
Hadoop’s Combiner to memorize the result of partial ag-
gregation and avoid re-computation.

There are different interfaces for programmers to spec-
ify the decomposition for partial aggregation in differ-
ent systems [33]. Distributed databases typically adopt
accumulator-based user-defined aggregators [24] where pro-
grammers must supply four methods Initialize, Iterate,

2014/10/7

l # ‘ Vsxy Vaxy ‘ # ‘ Vsxy Vaxy ‘ # ‘ Vsxy Vaxy ‘ # ‘ Vsxy Vxy
1008 004| 7 |031 029 13]0.17 007]| 19| 0.17 0.17
21011 004 | 8 | 254 031] 14| 0.04 0.04 |20 | 0.16% 0.05
31018 006 | 9 |0.06 0.03 15| 005 0.02] 21| 0.70* 0.07
41020 0.10 | 10 | 005 0.02 | 16 | 0.05 0.02 | 22 | 0.22* 0.04
51009 004 |11 |0.02 0.02]| 17| 0.17 0.17
6| 0.10 0.08 |12 | 0.08 0.04 | 18 | 0.17 0.17

Table 1. Performance of our prototype’s decomposability verification. The Vsxy and Vxy columns show running time to verify
the decomposability using Vsxy.F (s,yx) = F (s,xy) and Vxy.F (so,xy) = F (so, yx) respectively. All times are reported in seconds

with stars meaning that verification failed.

l # [Type Time [# [Type Time [# [Type Time [# [Type Time ‘
1| C 0.03 7 | SI 1.10 13 | C+SI 0.15 19 | SI 0.09
2| C 0.04 8 | SM 0.77 14 | SI 0.14 20 | SI 0.07
3|C 0.06 9 | C 0.02 15| C 0.02 21 0.14%*
4 | C+SI 0.31 10 | C 0.02 16 | C 0.02 22 0.08*
5| SI 0.08 11 | SI 0.05 17 | SI 0.09
6 | C+SI 0.09 12 | C 0.03 18 | SI 0.09

Table 2. Performance of our prototype’s combiner synthesis. The type column shows which kinds of techniques are used to
synthesize the combiner; the time column shows the running time in seconds, including both the times to check technique
validity and to generate combiner code; and the stars after Reducer 21 and Reducer 22 mean that combiner synthesis failed.

Merge and Final [25]. Similarly, Pig Latin [13], a Hadoop
layer, requires [InitialReduce, Combine and FinalReduce;
while in DryadLINQ [32, 33], programmers annotate the
Decomposable function and define three functions Initial-
ize, Iterate and Merge for partial aggregation.

There is also limited support for automatic partial ag-
gregation for a bounded number of built-in aggregators
in parallel databases and data-parallel computing systems.
SCOPE [5] and Pig Latin automate partial aggregation for
some built-in algebraic aggregators [15] such as COUNT,
SUM, MAX, and AVERAGE. DryadLINQ [33] also au-
tomates combiner generation for aggregation expressions
composed by associative-decomposable sub-expressions.
However, they cannot handle user-defined aggregation func-
tions written in imperative languages such as C# or Java.

Kim and Rinard [20] showed how to semantically detect
operation commutativity and how to inverse operations. We
can benefit from this work to semantically extend decom-
posability checking. For inverse operations, [20] focused on
how to restore to a previous state, while we focus on synthe-
sizing operations given initial and final states.

Saurabh et al. [26] proposed a template-base method to
interpret program synthesis as generalized program verifi-
cation, which brings verification tools to inverse function
synthesis. Based on this idea, PINS [27] proposed an ap-
proach to deterministic program inversion. Instead of at-
tempting to reason about the program under all environment
conditions, it reasons about a small set of carefully chosen
paths, which is much simpler. However, those approaches do
not fit our non-deterministic program inversion problem; in-
stead, we leverage the high coverage of three accumulator

categories and develop specific solutions. Advances in SMT
solvers [10] helps both decomposability verification and in-
verse function synthesis. Many solvers, including Z3 [9, 34],
CVC3 [3], and OpenSMT [23], have built-in theories like
arithmetic, bitverctors, arrays as well as quantifiers.

There is a line of research for distributed computing sce-
narios that studies static analysis techniques for user defined
functions (UDFs), including data-flow analysis [1, 2, 22],
abstract interpretation [7], and symbolic execution [17, 18].
Ke et al. [19] deals with data skew using data statistics
and computational complexity of UDFs. Scooby [30] stud-
ies the dataflow relations of SCOPE UDFs between input
and output tables. To optimize I/O, Sudo [35] identifies use-
ful functional properties of UDFs, reasoning about data-
partition properties to eliminate unnecessary data shuffling.
PeriSCOPE [16] also aims to reduce 1/O, but it focuses on
automatic global optimizations enabled by observing the full
pipeline of the computation. In comparison, our work studies
how to automatically enable partial aggregation specifically
in distributed computing scenarios.

8. Conclusion

This work considers the problem of partial aggregation
that is central to distributed data-parallel computations. We
model distributed partial aggregation as a reducer decom-
posability problem, and formulate a novel necessary and
sufficient condition for decomposability. These conditions
provide the theoretical foundation for automating partial ag-
gregation, which until now required tedious manual effort.
We have implemented a tool for automatic decomposability

2014/10/7

verification and partial aggregation synthesis, and evaluate
it using production SCOPE jobs to demonstrate feasibility.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Princiles,
Techniques, and Tools. Addison-Wesley, 1986. ISBN 0-201-
10088-6.

[2] R. Allen and K. Kennedy. Optimizing Compilers for Modern
Architectures: A Dependence-based Approach. Morgan Kauf-
mann, 2001. ISBN 1-55860-286-0.

[3] C. Barrett and C. Tinell. CVC3. In CAV, 2007.

[4] P. Bhatotia, A. Wieder, R. Rodrigues, U. A. Acar, and
R. Pasquini. Incoop: MapReduce for incremental computa-
tions. SOCC, 2011.

[5] R. Chaiken, B. Jenkins, P-A. Larson, B. Ramsey, D. Shakib,
S. Weaver, and J. Zhou. SCOPE: easy and efficient parallel
processing of massive data sets. PVLDB, 2008.

[6] M. Cole. Algorithmic skeletons: structured management of
parallel computation. MIT Press, Cambridge, MA, USA,
1991. ISBN 0-262-53086-4.

[7] P. Cousot. Abstract interpretation. ACM Comput. Surv., 28,
June 1996.

[8] L. de Moura and N. Bjgner. Efficient e-matching for smt
solvers. In CADE-21, volume 4603, pages 183-198. 2007.

[9] L. M. de Moura and N. Bjgrner. Z3: An efficient smt solver.
In TACAS, pages 337-340, 2008.

[10] L. M. de Moura and N. Bjgrner. Satisfiability modulo theories:
introduction and applications. Commun. ACM, 54(9):69-77,
2011.

[11] J. Dean and S. Ghemawat. MapReduce: Simplified data pro-
cessing on large clusters. In OSDI, 2004.

[12] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program
dependence graph and its use in optimization. TOPLAS, pages
319-349, 1987.

[13] A. Gates, O. Natkovich, S. Chopra, P. Kamath, S. Narayanam,
C. Olston, B. Reed, S. Srinivasan, and U. Srivastava. Building
a highlevel dataflow system on top of MapReduce: The Pig
experience. PVLDB, 20009.

[14] P. Godefroid. Compositional dynamic test generation. In
POPL, pages 47-54, 2007.

[15] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart,
M. Venkatrao, F. Pellow, and H. Pirahesh. Data cube: A
relational aggregation operator generalizing group-by, cross-
tab, and sub-totals. Data Min. Knowl. Discov., pages 29-53,
1997.

[16] Z. Guo, X. Fan, R. Chen, J. Zhang, H. Zhou, S. McDirmid,
C. Liu, W. Lin, J. Zhou, and L. Zhou. Spotting code opti-
mizations in data-parallel pipelines through periscope. OSDI,
2012.

[17] T. Hansen, P. Schachte, and H. Sgndergaard. State joining and
splitting for the symbolic execution of binaries. In RV, 2009.

[18] R. H. H. Jr. Multilisp: A language for concurrent symbolic
computation. TOPLAS, 1985.

[19] Q. Ke, V. Prabhakaran, Y. Xie, Y. Yu, J. Wu, and J. Yang.
Optimizing data partitioning for data-parallel computing. In
HotOS, 2011.

[20] D. Kim and M. C. Rinard. Verification of semantic commuta-
tivity conditions and inverse operations on linked data struc-
tures. 2011.

[21] C. Liu, J. Zhang, H. Zhou, S. McDirmid, Z. Guo, and
T. Moscibroda. Automating distributed partial aggrega-
tion. In Technical Report. URL http://wuw.cs.umd.edu/
~liuchang/paper/pa-socc2014-tr.pdf.

[22] S. S. Muchnick. Advanced Compiler Design and Implemen-
tation. Morgan Kaufmann, 1997. ISBN 1-55860-320-4.

[23] OpenSMT. http://code.google.com/p/opensmt/.

[24] L. A. Rowe and M. Stonebraker. The postgres data model.
VLDB, pages 83-96, San Francisco, CA, USA, 1987.

[25] J. Russell. Oracle9i Application Developer’s Guide-
Fundamentals. Oracle Corporation, 2002.

[26] S. Srivastava, S. Gulwani, and J. S. Foster. From program
verification to program synthesis. In POPL, pages 313-326,
2010.

[27] S. Srivastava, S. Gulwani, J. S. Foster, and S. Chaudhuri. Path-
based inductive synthesis for program inversion. In PLDI,
2011.

[28] N. Tillmann and J. de Halleux. Pex: White box test generation
for .NET. In TAP, pages 134-153, 2008.

[29] P. W. Trinder, H.-W. Loidl, and R. F. Pointon. Parallel and
distributed haskells. J. Funct. Program., 12(4&5):469-510,
2002.

[30] S. Xia, M. Fihndrich, and F. Logozzo. Inferring dataflow
properties of user defined table processors. In SAS, 2009.

[31] T. Xiao, J. Zhang, H. Zhou, Z. Guo, S. McDirmid, W. Lin,
W. Chen, and L. Zhou. Nondeterminism in mapreduce con-
sidered harmful? an empirical study on non-commutative ag-
gregators in mapreduce programs. In /CSE Companion, 2014.

[32] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K.
Gunda, and J. Currey. DryadLINQ: A system for general-
purpose distributed data-parallel computing using a high-level
language. In OSDI, 2008.

[33] Y. Yu, P. K. Gunda, and M. Isard. Distributed aggregation for
data-parallel computing: interfaces and implementations. In
SOSP, 2009.

[34] Z3. http://research.microsoft.com/en-us/um/
redmond/projects/z3/documentation.html.

[35] J. Zhang, H. Zhou, R. Chen, X. Fan, Z. Guo, H. Lin, J. Y.
Li, W. Lin, J. Zhou, and L. Zhou. Optimizing data shuffling
in data-parallel computation by understanding user-defined
functions. In NSDI, 2012.

2014/10/7

