
Anonymity-Preserving Data Aggregation using Anonygator
Krishna P. N. Puttaswamy⋆, Ranjita Bhagwan†, Venkata N. Padmanabhan†

⋆Computer Science Department, UCSB,†Microsoft Research, India

Abstract— Data aggregation is a key aspect of many dis-
tributed applications, such as distributed sensing, performance
monitoring, and distributed diagnostics. In such settings, user
anonymity is a key concern of the participants. In the absence
of an assurance of anonymity, users may be reluctant to
contribute data such as their location or configuration settings
on their computer.

In this paper, we present the design, analysis, imple-
mentation, and evaluation of Anonygator, an anonymity-
preserving data aggregation service for large-scale distributed
applications. Anonygator uses anonymous routing to provide
user anonymity by disassociating messages from the hosts that
generated them. It prevents malicious users from uploading
disproportionate amounts of spurious data by using a light-
weight accounting scheme. Finally, Anonygator maintains
overall system scalability by employing a novel distributed
tree-based data aggregation procedure that is robust to
pollution attacks. All of these components are tuned by a
customization tool, with a view to achieve specific anonymity,
pollution resistance, and efficiency goals. To demonstratethe
usefulness of Anonygator, we have used it to prototype three
applications, one of which we have evaluated on PlanetLab.
The other two have been evaluated on a local testbed.

I. I NTRODUCTION

Data aggregation is a key aspect of many distributed ap-
plications. Examples include aggregation of mobile sensor
data for traffic monitoring in a city [22, 27], network per-
formance statistics from home PCs for a network weather
service [37], and machine configuration information for a
distributed diagnosis system [42].

In such settings, user anonymity is a key concern of
the participants. In some cases, this concern is driven
by privacy considerations. For example, a user may be
willing to have their GPS-enabled phone report traffic
speed information from a particular street so long as the
system is not in a position to identify and tie them to
that location. Likewise, a user may be willing to have
their home PC report the performance of a download from
www.badstuff.com so long as the network weather
service they are contributing to is unable to identify and
tie them to accesses to possibly disreputable content. In
other cases, the desire for anonymity may be driven by
security considerations. For example, a host may reveal
local misconfigurations (e.g., improperly set registry keys
on a Windows machine) while contributing to a distributed
diagnostics system such as PeerPressure [42]. Some of
these misconfigurations may have security implications,
which would leave the host vulnerable to attacks if its
identity were also revealed. Given such security and privacy
concerns, an absence of an assurance of anonymity would
make users reluctant to participate, thereby impeding the
operation of community-based systems mentioned above.

To address this problem, we present Anonygator, an
anonymity-preserving data aggregation service for large-
scale distributed applications in the Internet setting. The
model is that the participating hosts contribute data, which
is aggregated at a designated aggregation root node. The
data contributed by each node is in the form of a histogram
on the metric(s) of interest. For example, a node might con-
struct a histogram of the download speeds it has seen in the
past hour over one-minute buckets. All of the histograms
are aggregated to construct the probability mass function,
or PMF, (which we refer to loosely as the “aggregated
histogram”) at the server.

Prior work on aggregation systems such as Astrolabe [38]
and SDIMS [43] has focused on achieving scalability and
performance by leveraging the participating nodes (i.e.,
peer nodes) to perform aggregation. While Anonygator
also leverages p2p aggregation, it makes several novel
contributions arising from a different focus complementary
to prior work. First, Anonygator focuses on the issue of
providinganonymityto the participating nodes while at the
same time ensuring that anonymity does not undermine
the data integrity of the aggregation process. We believe
that these are important considerations in the context of
distributed aggregation of potentially privacy-sensitive data
over nodes that are not all trustworthy. To the best of
our knowledge, prior work on p2p aggregation has not
considered these issues. Second, Anonygator augments
prior work on tree-based aggregation with a novel construct,
which we term as amulti-tree, that introduces a controlled
amount of redundancy to achieve the desired degree of
robustness to data pollution attacks. Third, to be flexible in
accommodating a range of data aggregation applications,
Anonygator includes acustomization toolto help tune the
system to achieve the desired anonymity and data integrity
properties while staying within the specified bounds on
network communication load.

We present the design of Anonygator, including an analy-
sis of the assurances it provides in terms of anonymity and
pollution resistance. We also present experimental results
derived from running our implementation on a laboratory
testbed as well as on PlanetLab, in the context of a few
aggregation-based applications, including resource monitor-
ing, distributed diagnostics and voting.

II. P RELIMINARIES

A. Assumptions and Problem Context

We assume a setting where a population of nodes is
contributing data, which is then aggregated at a designated
aggregation root. The designated root node could be a
server that is well-provisioned in terms of bandwidth or

1

could be an end host that has much more limited bandwidth
resources. Even in the former case, the bandwidth demands
of aggregation could exceed what the server is able to
spare for aggregation. For example, a million nodes, each
uploading 1 KB of data every 10 minutes, would impose
a bandwidth load of over 13 Mbps on the server for
aggregation alone. This means that Anonygator should be
able to scale while respecting bandwidth constraints at both
the root node and the other participating nodes. In the
remainder of this paper, we use the term “(aggregation)
server” interchangeably with “(aggregation) root”.

We consider the Internet context rather than the sensor
network setting that has been the focus of recent work on
data aggregation [30, 32, 39]. This means that the typical
participating node would belong to a user, who cares about
privacy, a consideration that is largely absent in the sensor
network setting. On the other hand, energy cost, a key
consideration in sensor networks, is absent in our context.

We assume that there is an identity infrastructure that
grants each participating node a public key certificate.
This PKI is assumed to exist and operate independently
of Anonygator, and grant certificates in a manner that
mitigates against Sybil attacks [15] (e.g., by requiring users
to provide a credit card number or solve a CAPTCHA
when they first obtain a certificate). While Anonygator
could choose to use these certified identities as part of the
protocol, we assume that the data being aggregated itself
does not give away the identity of the source.

We also assume the availability of a trusted entity, which
we term as thebank, with well-known public key. As we
elaborate on in§V-A, the bank issues signed tokens to
the participating nodes after verifying their identities.The
bank might be the root of the PKI’s trust chain or be a
separate entity. Regardless, we assume that the bank does
not collude with the participants in the data aggregation
process, including the aggregation root.

While a majority of the participating nodes are honest
and cooperate in the operation of Anonygator, up to a
fraction,p, of the nodes could be malicious. The malicious
nodes, acting individually or in collusion, could try to break
anonymity. They could also try to compromise the aggre-
gation process and the final result (i.e., cause “pollution”)
by injecting large amounts of bogus data themselves or
tampering with the data uploaded by other nodes. Note
that we cannot prevent nodes from injecting bogus data
(indeed, determining that the data is bogus may require
application-specific knowledge and even then may not be
foolproof), so there would be some pollution even in a
centralized aggregation system, where each node uploads
its data directly to the aggregation server, disregarding
anonymity. However, the impact of such pollution on the
aggregate would be limited unless a relatively large amount
of bogus data were injected.

The designated aggregation root, on the other hand, is
assumed to be honest in terms of performing aggregation;

after all, the aggregated result is computed and stored at the
root, so a dishonest root node would render the aggregation
process meaningless. Nevertheless, the root node, whether
it is a server or just an end host, may be curious to learn
the identities of the data sources, so we need to preserve
anonymity with respect to the root as well as the other
participating nodes.

The assurance that Anonygator seeks to provide with
regard to anonymity and data integrity is probabilistic,
under the assumption that the malicious nodes are dis-
tributed randomly rather than being specifically picked by
the adversary. If the adversary could selectively target and
compromise specific nodes, it would not be meaningful to
limit the adversary’s power to only compromise a fractionp

of the nodes. In other words, we would have to assume that
such a powerful adversary could target and compromiseall
the nodes, rendering the aggregation process meaningless.

Finally, in the present paper, we do not consider the
issue of incentives for user participation in a community-
based aggregation system. This is undoubtedly an important
issue, but we defer it to future work. Also, given space
constraints, we focus our presentation here on the novel
aspects of Anonygator’s design that have a direct bearing on
its security properties. Hence we do not discuss details such
as onion route formation [14], random peer selection [28]
and decentralized tree construction [43].

B. Design Goals

The goals of Anonygator are listed below. Although
we state these goals as absolute requirements, we seek to
achieve these properties with a high probability.

• Source Anonymity: No node in the network, barring
the source itself, (i.e., neither the root nor any other
participating node) should be able to discover the
source of a message.

• Unlinkability: Given two messages A and B, no node
in the network, barring the source itself, should be able
to tell whether they originated from the same source.

• Pollution Control: The amount of pollution possible
should be close to that in a centralized system.

• Scalability and Efficiency: The CPU and bandwidth
overhead on the participating nodes and on the aggre-
gation root should be minimized. The system should
also respect the bandwidth limits that are explicitly set
on the participating nodes, including the root.

C. Histograms as the Basis for Aggregation

As noted in§I, the data to be aggregated is in the form
of histograms. For instance, in an application where latency
measurements are being aggregated, a host may upload data
of the form{50ms: 2, 100ms: 6}, representing 2 samples
of 50ms and 6 samples of 100ms.

When performing aggregation, we normalize the indi-
vidual histograms as probability mass functions (PMFs),
before combining the PMFs contributed by all nodes.
Normalization ensures that each node receives the same

2

weightage, preventing any one node from unduly skewing
the aggregate. So, for example, the histogram in the above
example would be normalized to{50ms: 0.25, 100ms:
0.75}. When combined with another normalized histogram,
say {75ms: 0.5, 100ms: 0.5}, the aggregate would be
{50ms: 0.125, 75ms: 0.25, 100ms: 0.625}. In the remain-
der of the paper, we use the terms PMF and histogram
interchangeably.

We believe that the histogram (or PMF) representation
of data is quite general and would fit the needs of many
applications (e.g., enabling PeerPressure [42] to find the
distributions of various registry key settings across a popu-
lation of hosts). Being an approximation of the probability
distribution of a random variable of interest, the aggregated
histogram would, for instance, allow us to compute the
median value and, in general, thexth percentile, for any
value ofx.

Histogram-based aggregation does have its limitations.
Specifically, it makes it challenging to discover correla-
tions across random variables. For instance, an application
may seek to correlate the network failures observed (and
reported through Anonygator) by end hosts with the OS
being run on the host. Doing so would require computing
a histogram with as many buckets as the product of the
number of buckets for each variable, leading to a combi-
natorial explosion in the size of the histogram.

There are also other limitations that arise from our model
rather than from our choice of histograms as the basis
for aggregation. First, normalizing the histogram would
mean we may not be computing the true distribution of
a variable. For example, when aggregating download time
information for a webpage, a host that downloads the page
at a 100 different times (i.e., has 100 samples to offer)
would be given the same weight as one that downloads
the page just once. However, it is difficult to tell a node
that has legitimately performed 100 downloads from one
that is merely pretending with a view to polluting the
aggregate. Given this difficulty, in Anonygator we choose to
normalize, thereby erring on the side of protecting against
data pollution, despite the limitation arising from the equal
weightage given to all nodes. Second, certain metrics such
as the sum, mean, max, and min are not amenable to
aggregation in our setting, since a single malicious node
can skew the result to an arbitrary extent. Again, this is
a problem independent of our choice of histograms as the
basis of aggregation.

III. A NONYGATOR DESIGN OVERVIEW

Anonygator comprises of three components: (a)anony-
mous routing, to preserve source anonymity, and also ensure
unlinkability to a large extent, (b)light-weight accounting,
to prevent data pollution, and (c)multi-tree-based aggrega-
tion, to achieve scalability while avoiding the risk of large-
scale pollution.

Figure 1 provides an overview of how Anonygator oper-
ates. When a source node needs to upload a message (i.e., a

App. Server

Tail

3

4

Multi‐ Tree5

Bank

2 Token, M
Source

1

Fig. 1. Design overview of Anonygator.

histogram) for aggregation, it first obtains tokens from the
Bank (1). Then, it attaches a token to the message (2). The
token mechanism helps prevent pollution. The source then
envelopes the message and the token in multiple layers of
encryption to build anonion [33], and routes the onion to
a tail node, via multiple intermediate nodes (3). The source
creates and uses a different onion route for each message to
improve the unlinkability of messages. Upon receiving the
message, the tail node first validates the token sent with the
message, and then passes the message on for aggregation
(4). The tail node is part of a distributed structure that we
call a multi-tree, which performs distributed aggregation
on the data. The key idea in a multi-tree, as we will
elaborate on later, is to have a many-to-many relationship
between parents and children, to help detect any attempts
at corrupting the aggregated data. The root of the multi-tree
sends the aggregated histograms to the server, which then
combines such aggregates from across several multi-trees,
if any (5).

Note that the figure shows alogical view of our system,
for clarity. In reality, any host in the system can source
messages, be a tail node for other sources, and also be part
of a multi-tree. Also, the tail node that a message is injected
into could be in any position in the multi-tree, not just at
the leaf level.

Finally, if we are only interested in anonymity and
pollution control and are willing to sacrifice scalability,the
tail node could bypass the multi-tree and upload directly to
the server.

IV. A NONYMOUS ROUTING IN ANONYGATOR

As described in the overview in§III, a source node
uses onion routing to convey its message anonymously
to a randomly-chosen tail node, which then injects the
message into the aggregation tree. To set up an onion route
to the chosen tail node, the source node uses TOR [14],
with the nodes participating in Anonygator serving as the
onion routers. §VIII discusses how the customization tool

3

chooses the length of the onion route to achieve specific
anonymity and unlinkability goals.

Ideally, we would want to set up a fresh onion route for
each message that the source contributes for aggregation.
Doing so would minimize the ability of the tail node(s)
that receive messages from a source from linking them,
even if the same tail node receives multiple messages but
over different onion routes. However, setting up an onion
route is expensive, since it involves as many public key
operations as the length of the onion route. So the overhead
of setting up a fresh onion route for each message would
be prohibitive.

To resolve this dilemma, Anonygator defines the notion
of an unlinkability interval, which is the period during
which we wish to avoid reusing any onion routes, making
linking messages difficult. However, an onion route can
be reused outside of this interval. While such reuse would
allow the tail node to link messages, the linked messages
would be spaced apart in time, mitigating the impact on
unlinkability.

An onion route enables bidirectional communication.
Anonygator takes advantage of this to have acknowledg-
ments sent back from the tail node to the source node,
which allows the source node to detect events like a
message being dropped by an intermediate onion router or
a tail node departing the system.

V. ACCOUNTABILITY IN ANONYGATOR

The drawback of providing anonymity is the loss of
accountability. Malicious nodes can “pollute” the data
aggregates at the server by uploading large amounts of
spurious data without the risk of being black-listed. To
prevent this, we introduce accountability in the service
via tokensand hash chains, ideas we borrow from the
literature on anonymous payments, e-cash, and broadcast
authentication [10, 26, 29].

A. Anonygator Bank

The Anonygator Bankis responsible for maintaining
accountability for all data sources in the service. The
bank performs two important functions: it supplies the
source nodes with a suitable number of token/hash chain
combinations and it ensures that the source nodes use these
tokens at most once, thus preventing double-spending [10].

Upon joining the network, a node directly contacts the
bank and proves its identity in a Sybil-attack resistant
manner [7, 15–17]. The bank then generates a fixed number
of signed tokens, based on the node’s credentials, and
assigns them to the node. When sourcing a message, the
node must attach a previously-unused token (or a hash-
chain derivative of it, as explained in§V-B) to the message.
The limited supply of tokens curtails a node’s ability to
pollute. The bank also makes sure that source nodes do not
double-spend tokens. We explain this procedure in the§V-
B following the explanation of how source nodes use their
tokens.

As stated in§II-A and consistent with previous work [19,
23], we assume that the bank is trusted and that it does not
collude with the aggregation server or any other node in
the aggregation system. Given this assumption, we believe
it is safe for the nodes to divulge their identities to the
bank. While the bank knows the identity of the sources,
their capabilities, and their token usage, it does not know
anything about the data and messages that the sources
generate. The aggregation server, on the other hand, has
access to the data, but it does not know the identity of the
sources. This helps us achieve our anonymity goals.

B. Using Tokens and Hash Chains

A source node with a data item to be aggregated includes
a token, signed by the bank, along with the data item
to generate a message,M . It routes this message to tail
nodeT , as explained in§IV. T first verifies that the bank
has indeed signed the token (one asymmetric cryptography
operation) and then contacts the bank to ensure that the
token has not already been used. The bank performs this
check by treating the token (or its ID) as an opaque blob of
bits that is looked up in a local data structure. If the bank
informsT that the token was not previously used,T deems
the corresponding data item as valid and forwards it on for
aggregation. Otherwise,T discards the data item.

Although the verification mechanism described above
does provide anonymous accountability, it involves an
asymmetric operation and communication with the bank
per message, which can be quite expensive, especially if
the message generation rate is high. Anonygator useshash
chainsalong with tokens to reduce this overhead.

A hash chain [26] is a chain of hash values obtained by
recursively hashing a randomseed using a unidirectional
hash function like SHA1. The final hash aftery hashes is
called thehead of the hash chain. The contents of a token
augmented with hash chain information are:
Tokeni = {IDi, headi, sign(hash(IDi . headi))} where
IDi is the token ID,headi is the head of the hash chain
generated for this token, and both token ID and the head
are signed by the bank.

With this token construction, the modified algorithm to
upload messages by a sourceS via a tail T is as follows:
The first time sourceS sends a data item to tailT , it
includes a token with idIDT with the data.T performs
the verification of the token as mentioned earlier. In all
subsequent messages thatS sends toT , S includes only
the tuple(IDT , Hx) in decreasing order ofx. T just needs
to verify that for tokenIDT , it receives a message with the
hash valueHx only after it has received a message with
hash valueHx+1. It can do so simply by applying the hash
function toHx and verifying that the value matchesHx+1.

As a result, of all messages thatS sends toT , only
the first message involves an asymmetric cryptographic
operation and direct communication with the bank. Note
that, as explained in§IV, the source uses the same onion
route to communicate withT , thereby allowing messages

4

1

2

4 5 6 7

Supernodes

3

Fig. 2. The structure of a multi-tree.

to be linked. So there isno additional diminution of
unlinkability because of using the same token.

C. Token Management under Churn

Once a source uses a token with a certain tail node,
Anonygator does not allow the source to use that token with
another tail node. The token is, therefore, “tied” to the tail
node on which the source first used it. So if this tail node
leaves the system, say due to churn, the source cannot use
even the unused portion of the hash chain associated with
this token, with any other tail node.

To avoid this problem, we introduce the notion of an
epoch(Te). Each source node obtains a set of tokens from
the bank at the start of an epoch. At the end of each epoch,
all tail nodes report to the bank the last hash value they
received (i.e., the last value that was expended by another
node) for every token ID. So the bank knows the extent to
which each token was used. For example, if the length of
a token’s hash chain is 100 and the last value reported by
a tail node is the 30th one in the chain (counting from the
head), the bank can deduce 30 values have been used and
70 values remain unused.

After two epochs, the bank tallies how many hash chain
values have been used for each token, and provides a
“refund” to source hosts for the remainder. A refund is
nothing but appropriate accounting at the bank to reflect
the partial- or non-use of a token, so that the source can
get a fresh token issued to it while remaining within any
quotas imposed by the bank.

Since accounting at the bank depends on the tail nodes
reporting usage of tokens, there is the risk of aspurious
refund attack, where a tail node, in collusion with the source
node, fails to report the usage of a token. To address this
issue, Anonygator introduces redundancy, including at the
level of tail nodes, as we elaborate on next.

VI. D ISTRIBUTED AGGREGATION USING

M ULTI -TREES

In this section, we address the issue of scalability of data
aggregation in Anonygator. Using tree-based aggregation is
a natural way to improve scalability of aggregation: as data
flows from the leaves to the root, the data gets aggregated,
and the root receives aggregated data while processing
incoming traffic only from a small set of nodes. However,
using a regular trees for aggregation raises several security
concerns. For example, asingle malicious node near the
root in the tree can completely change the aggregate

histogram from the entire sub-tree below it. This can cause
unbounded amount of pollution.

In order to be robust against such attacks, we propose a
distributed aggregation mechanism using a structure that we
call amulti-tree, as in Figure 2. The idea in a multi-tree is to
group together the nodes intosupernodes, each containing
a mutually-exclusive set ofk nodes. These supernodes are
organized as a regular tree. A parent-child relationship
between two supernodes is translated into a parent-child
relationship between every member of the parent supernode
and every member of the child supernode.

The system supports a set of such multi-trees, as shown
in Figure 1. The exact number of multi-trees depends on
the bandwidth of the aggregation server, as we analyze in
§VIII-D. The node membership of each multi-tree is non-
overlapping with respect to the membership of the other
multi-trees.

A. Data Injection

Every node that serves as a tail node for the purposes
of anonymous routing (§IV) is a member of a supernode
in the tree. Even though new data to be aggregated (i.e., a
histogram) is introduced into the multi-tree at a tail node,
the supernode that the tail node is a member of can be at
any level of the multi-tree, not necessarily at the leaf level.

The source node sends the tail node the new data to be
aggregated, along withk tokens, one for the tail node itself
and one each for thek − 1 other nodes in the tail node’s
supernode. The tail node then forwards the histogram along
with one token to each of the otherk − 1 nodes in its
supernode. If the membership of the super node changes
(say because of node churn), the tree node informs the
source through the onion route, so that the source can send
fresh tokens, rather than just new hash values, for each new
node in the supernode.

The above procedure mitigates against the spurious re-
fund attack noted in§V-C, as we discuss in detail in§VII-C.
Also, an alternative to routing its message via a single tail
node would be for the source to send separate messages,
along with their respective tokens, directly to each node
in the tail node’s supernode. Thisk-redundant algorithm
increases messaging cost by a factor ofk but reduces the
risk of pollution, as we discuss in detail in§VII-B.

B. Data Aggregation

The objective of havingk nodes within each supernode
is to be able to compute the correct aggregate histogram
with high probability, even in the presence of malicious
nodes. Figure 2 shows a sample multi-tree withk = 3. In
this example, each host in supernode 4 (on the bottom left)
uploads its histogram to each host in supernode 2. Each
node in supernode 2 therefore receivesk = 3 histograms
from supernode 4. If all nodes in supernode 4 were honest,
thek = 3 histograms received by each node in supernode 2
would be identical. However, in the presence of malicious

5

nodes, these histograms would, in general, diverge, as we
discuss next.

At the end of a time period that we call anaggregation
interval, each node in supernode 2 picks the histogram
that is repeated at least⌊k

2 ⌋ + 1 times (2 times, in this
example). Histograms that do not meet this minimum count
are discarded. Therefore, for a supernode to accept a bogus
histogram, more than half the nodes in its child supernode
would have to be malicious and colluding. Every parent
supernode determines such “majority” histograms for each
of its child supernodes and then combines these to compute
an aggregate histogram representing data received from all
of its child supernodes. For example, supernode 2 in Fig-
ure 2 combines the majority histograms from supernodes
4 and 5 to compute an aggregate histogram. Each node
in supernode 2 then uploads this aggregate histogram to
all k members in its parent supernode (supernode 1, here),
and the process repeats. Having the parent do the voting is
necessary. Putting the onus of voting on the parent avoids
the complexity and obviates the need for distributed voting.

If each supernode in the multi-tree has a majority of
non-malicious nodes, then the multi-tree is termed as being
“correct”, since the correct overall aggregate histogram is
produced, despite the presence of the malicious nodes.
Given the probability of aggregate correctnessPc, which
is essentially the probability that the aggregate the multi-
trees produce are correct, Anonygator’s customization tool
determines the best multi-tree configuration that will satisfy
this requirement (§VIII-D).

VII. A TTACKS AND DEFENSES

In this section we discuss several attacks on Anonygator,
their impact, and potential defenses against them. We con-
sider the possibility of attacks by source nodes, relay nodes
(i.e., onion routers), tail nodes, and nodes in the aggregation
tree. These attacks could be aimed at compromising either
security (in terms of anonymity or unlinkability) or data
integrity (in terms of pollution control). Our focus here is
on attacks that are specific to the various mechanisms in
Anonygator. For attacks on the underlying TOR system, we
refer the reader to [14].

A. Attacks by Malicious Source Nodes

a) Direct Data Injection Attack [9]:This occurs when
a source node directly injects erroneous data in the legit-
imate messages it generates. As explained in§II-A, the
server cannot, in general, tell that the data is erroneous.
However, the token mechanism in Anonygator (§V-B) limits
the amount of data that a node can contribute for aggre-
gation. Hence thepollution boundfor this attack, i.e., the
fraction of data injected that could be spurious, is the same
as the fraction,p, of the nodes that are malicious.

Interpreting this pollution bound for histograms, we can
say that the histogram will be at mostp percentile off from
the ground truth. For example, ifp = 0.01 = 1%, then the
median value in the aggregate histogram would give us a

value that lies somewhere in the range of the49th to the
51st percentiles in the true, pollution-free histogram.

b) Fake Token Attack:A malicious source node could
send a flood of messages, each tagged with a fake token,
to one or more tail nodes. The tokens and the associated
messages are eventually rejected, so data pollution does
not occur. However, the intention of the attacker is to
tie down computational and network resources at the tail
nodes in checking these fake tokens, i.e., attempt resource
exhaustion. Existing techniques such as client puzzles could
be used by tail nodes as defense when the rate of message
receipt is very high.

B. Attacks by Malicious Tail Nodes

c) Message Replacement Attack:A malicious tail
node can take the data that a source node sends them
and replace it with spurious data. Since a source picks a
malicious tail node with probabilityp, the fraction of data
items potentially affected by message replacement attacks
is p. Since this is in addition to the pollution ofp possible
with the direct data injection attack discussed above, the
total pollution bound is2p.

However, the source could send copies of its message
independently to each node in the tail node’s supernode
(the k-redundant algorithm from§VI-A), thereby denying
the tail node the ability to subvert aggregation by doing
message replacement. This would mean that the overall
pollution bound would remainp (rather than2p), but this
would come at the cost of increased messaging cost.

Finally, note that the message replacement attack sub-
sumes other attacks where a malicious tail node drops the
received messages, forwards the tokens in these messages
to a colluder, who later uses the tokens to cause pollution.

d) Spurious Churn Attack:As noted in§VI-A, when-
ever there is churn in the tail node’s supernode, the source
has to obtain and send fresh tokens, one for each “new”
node in the supernode. A malicious tail node can try to
exhaust the source node’s quota of tokens by pretending
that there is churn when there is none. To defend against
such an attack, a source node can determine that a particular
tail node is reporting much higher churn than is the norm
and hence decide to switch to using a different tail node.

C. Attack Involving Collusion of Source and Tail Nodes

e) Spurious Refund Attack:The attack involves a
source node contributing data for aggregation but, in col-
lusion with a tail node, avoiding expenditure of tokens (or,
equivalently, obtaining a refund of the tokens spent, as
noted in§V-C). However, as noted in§VI-A, Anonygator
requires a majority of (honest) nodes in the chosen tail
node’s supernode to receive and forward a source’s data up
the tree, for it to be included in the aggregation process.
Hence the source will have to expend at least⌊k

2 ⌋ + 1
tokens, even if not the full complement ofk tokens, which
means less than a 2x savings in terms of token expenditure.
Also, note that by expending just⌊k

2 ⌋+1 tokens, the source

6

would run the risk of having its data be discarded in the
aggregation process if any of the⌊k

2⌋+1 nodes that it sent
the token to turns out to be dishonest.

D. Attack by Malicious Relay Nodes

f) Message Dropping Attack:A relay node, i.e., an
onion router, could drop a message that it is supposed
to forward on a path leading to a tail node. However, as
noted in §IV, the bidirectionality of onion routes allows
the source node to detect such drops by looking for an
acknowledgment from the tail node. Even if such an
acknowledgment mechanism were not in place, the worst
that the malicious relay node could so is to drop messages
randomly, without knowledge of either the source or the
contents. Such dropping would, therefore, be no worse than
random network packet drops.

E. Attack by Malicious Tree Nodes

A malicious tree node could attempt a data injection
attack or a message replacement attack with a view to
subverting the aggregation result. However, such an attack
would not be successful unless a majority of nodes in
supernode were malicious and colluding. As we explain
in §VIII-D, Anonygator’s customization tool ensures that
the likelihood of such an occurrence is below the bounds
specified by the application designer.

VIII. C ONFIGURABILITY IN ANONYGATOR

This section describes how an application designer can
configure Anonygator to best suit the application’s needs
of anonymity, unlinkability and correctness. Anonygator’s
customization tool (CT) can configure anonymous routing,
token usage and multi-trees to meet the application’s re-
quirements while not exceeding the amount of computing
and network resources that participating hosts in the system
are willing to contribute. We describe how the customiza-
tion tool works in this section.

A. Customization Tool Overview

Figure 3 shows part of the functionality of the customiza-
tion tool of Anonygator. The first-class properties that an
application needs to specify to Anonygator areanonymity
(A), unlinkability (PU) and theprobability of correctness
(PC). Sections VIII-B and VIII-C define the metrics we
use for anonymity and unlinkability respectively, and the
metric for probability of correctness, as mentioned in§VI,
is the probability that the distributed aggregation generates
the correct aggregate histogram.

Apart from these, the application has other properties that
the designer inputs to the tool. Thehistogram generation
rate (Rhg), specified in histograms per second, provides
the average rate at which sources generate messages or
histograms. Thehistogram aggregation rate(Rha), also
specified in histograms per second, is the rate at which hosts
upload aggregate histograms to their parent supernodes in
the multi-tree. For simplicity, we assume that all histograms

Step 1

Anonymity
(A)

Unlinkability
(Pu)

Aggregate
Correctness

(Pc)

Fraction of
malicious
nodes (p)

Network size
(N)

Server
bandwidth

constraint (Bs)

Host
bandwidth

constraint (Bi)

Histogram
generation
rate(Rhg)

Histogram
aggregation
rate (Rha)

Onion path
length (L)

Step 2

Total per-node
bandwidth

usage

Multi-tree size
(n)

No. of multi-
trees (t)

Size of
supernode (k)

Step 3

Applicaton first class
properties

Other applicaton
properties

S
ys

te
m

 p
ro

pe
rti

es

Fig. 3. The procedure that the customization tool (CT) uses to determine
total per-node bandwidth overhead.

are of the same size, though in reality, there would be
variations specific to the application.

The unlinkability interval (Tl) is the time interval after
which a source node can reuse a previously used onion
path or use the next value of an already-used hash-chain.
The Epoch length(Te) is the duration of time for which
tokens are valid and epoch length dictates the periodicity
with which the bank assigns fresh tokens to each source.

The designer also inputs several host characterization
parameters that define the system’s properties. As shown
on the left of Figure 3, these parameters include the
fraction of malicious nodes (p), the size of the Anonygator
network or the number of nodes participating in the network
(N), the maximum incoming server bandwidth dedicated
to aggregation (Bs) specified in histograms per second,
and the maximum incoming host bandwidth (Bh) also
specified in histograms per second. Given the application’s
requirements and system specification, the CT informs the
designer of the anonymous route length and multi-tree
structure through Steps 1 and 2 in Figure 3.

The churn rate (Rc) is a measure of the number of
hosts that leave the system per second (as estimated by
the system designer). The key setup rate (Rks) is the rate at
which a source node can perform asymmetric cryptographic
operations to perform onion route setup discussed in§IV.
Step 3 of the CT calculates the number of tokens required
per epoch and hash chain length per token using churn rate,
key setup rate, unlinkability interval, histogram generation
rate and epoch length. Table I has a summary of the
symbols we use in the following subsections.

B. Step 1: Anonymity to Onion Path Length

In this section, we describe how an application designer
can use CT to derive the right onion path lengthL to meet
the application-specific source anonymity (A) requirements.

7

Symbol Definition Type
A Anonymity (Entropy Ratio) input
PU Unlinkability (Probability) input
Pc Aggregation correctness probability

from multi-tree
input

N Total number of hosts input
p Fraction of malicious nodes input
Bs Maximum incoming server bandwidth

(Histograms/Sec)
input

Bh Maximum incoming host bandwidth
(Histograms/Sec)

input

f Fanout of the multi-tree input
Rc Churn rate in system (Nodes/Second) input
Rhg Histogram generation rate

(Histograms/Sec)
input

Rha Histogram aggregation rate
(Histograms/Sec)

input

Tl Unlinkability interval (Seconds) input
Te The Epoch length (Seconds) input
Rks Max. rate of key setup for a node (Num-

bers/Sec)
input

L Length of the onion path output
k No. of nodes in a supernode output
n No. of supernodes per multi-tree output
t No. of multi-trees output
Nt No. of tokens output
LH Hash chain size output

TABLE I. VARIABLES USED BY THE CUSTOMIZATION TOOL.

An accepted measure of the anonymity in a system is the
ratio of the entropy of the system to the maximum entropy
possible in a system [13, 36], or

A =
H(S)

HMax

=
−

∑

h phlog2(ph)

log2(N)
(1)

whereH(S) is the entropy of the system, andph is the
probability that nodeh is the source of a given message.
A system achieves maximum entropy when all nodes are
equally likely to be the source, i.e.ph = 1

N
and hence

HMax = −log2(
1
N

). An anonymity value greater than 0.5
is considered to be good since this implies that an adversary
lacks half the information required to trace the source of a
message [25, 34].

Malicious nodes can compromise the anonymity in the
path only by colluding with other nodes in a consecutive
chain along the path [25, 44]. Hence, given a fixed number
of malicious nodes in a path, they can do maximum
damage when they form one contiguous chain in the path.
Similar to previous analyses [25, 44], we only consider
single colluding chains in the onion path since this is
representative of the worst-case scenario.

Let there be a colluding chain of malicious nodes of
length i on the path. Then, the probability that the node
preceding this colluding chain in the onion path is the
source is 1

(L−i+1) . The rest of the non-malicious nodes
in the network are equally likely to be the source with

probability
(1− 1

(L−i+1)
)

N(1−p) .
We can calculateAi, the anonymity when there is a

colluding chain of length=i using the same form as Equa-

tion 1. Let the probability of having a chain of colluding,
malicious nodes of lengthi in an onion path beP chain

i .
P chain

i = (L − i + 1)pi(1 − p)(L−i) since there can be
L − i + 1 colluding chains of lengthi in one onion path.
The total probability of having all possible malicious chain
lengths is

∑L

i=0(L − i + 1)pi(1 − p)L−i. Finally, as in
previous work [44], we calculate the total anonymity of
the system as

H(S) =

∑L

i=0 P chain
i Ai

P chain
(2)

and apply Equation 1 to calculateA.

C. Step 1: Unlinkability to Onion Path Length

In this section, we describe how the CT translates the
required unlinkability to onion path length. Our definition
of unlinkability in Anonygator is as follows. Unlinkability
is lost if any tail nodes in the system can tell that two
given messages came from the same source. We restrict
our definition to tail nodes as opposed to all nodes in an
onion route since intermediate nodes in an onion route only
see encrypted messages, and linking encrypted messages,
without breaking source anonymity, reveals very little to
the attacker.

By this definition, reusing keys, as described in§IV,
or using hash chains , as described in§V, gives away
unlinkability completely. However, our goal here is to
determine the value of unlinkabilitybefore keys or hash
chains get reused.

We define unlinkability (PU) as theminimumprobability
with which two colluding tail nodescannot tell that two
messages sent to them came from the same source. Note
that the tail nodes can tell if the messages came from the
same sourceonly if they know the source of the message. To
know the source of the message, all nodes in the onion route
that the source sets up need to be malicious and colluding.
Therefore, for tail nodes to tell that two messages came
from the same source, all nodes in two onion routes set up
by the same source need to be malicious and colluding, the
probability of which isp2L. Therefore, given the required
minimum probability valuePU of unlinkability, we can
calculate theminimumrequired value ofL as follows.

PU ≤ 1 − p2L ⇒ L ≥
log(1 − PU)

2log(p)
(3)

Table II shows values for anonymity and unlinkability
calculated as above and as in§VIII-B for N=1 million,
p = 0.01, and for different values ofL. If an application
designer specifies unlinkability and anonymity to be both
> 0.99, then the CT choosesL = 4 since this is the
smallestvalue of L that satisfies both the anonymity and
unlinkability requirements of the application.

8

L 3 4 5 6
Anonymity 0.9892 0.9992 0.9993 0.99993
Unlinkability 0.9999 0.9999 0.9999 0.9999

TABLE II. ANONYMITY AND UNLINKABILITY VALUES WHEN

N=1 MILLION , p = 0.01, AND DIFFERENT VALUES OFL.

D. Step 2: Prob. of Correctness to Multi-tree Structure

In this section, we summarize how the CT calculates
multi-tree structure. The CT calculates a feasible region for
the the number of supernodes in a multi-tree (n) based on
three constraints. First, the number of supernodes has to be
small enough to satisfy the probability of correctness: the
more the number of supernodes, the higher the probability
of a “bad” supernode with more than⌊k

2⌋ + 1 malicious
nodes. Second, the number of supernodes is limited by
the number of hosts participating in the system. Third,
the number of supernodes needs to be large enough such
that nodes in a supernode use less than their maximum
specified incoming bandwidth (Bh). These three bounds
are expressed in Eq. 4, Eq. 5, and Eq. 6 respectively.

n ≤
logPc

t.logPsn

, Psn =

k
∑

i=⌊ k

2 ⌋+1

(

k

i

)

(1 − p)ipk−i (4)

n ≤
N

kt
(5)

n ≥
NRhg

t(Bh − RhgL + fkRha)
(6)

The CT determines a relation betweenk andt given the
incoming bandwidth capacityBs set apart by the server
for aggregation. The CT calculates the maximum number
of multi-trees that can directly upload data to the server as

t =

⌊

Bs

k.Rha

⌋

(7)

This is because each multi-tree’s root supernode (withk

nodes within) uploadsk.Rha aggregate histograms to the
server per second. Therefore, the server can dedicate at
most Bs

k.Rha

bandwidth to each multi-tree.
Figure 4 shows the feasible region forn for different

values ofk plotted using Equations 4, 5 and 6. The input
parameters set are:p = 0.01, N = 1 million, Pc = 0.90,
Bs = 100,000 histograms/sec,Rha is 10 histograms/sec,
Rhg is 100 histograms/sec, andBh = 5000 histograms/sec.
Note thatf is fixed at 3. Based on these constraints, the
CT chooses the minimum value ofk that makesn fall in
the feasible region. In this example, this value is around
16, translating to a value of 45 forn, and 625 fort.

It is possible, though, that for some input values, there
are no feasible values ofn, k, and t. In such cases,
the CT alerts the application designer that their system
requirements are too high to be met, and that they need
to revise their application or system properties.

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000

 0 5 10 15 20 25 30 35 40V
al

ue
 o

f n
 fr

om
 D

iff
er

en
t C

on
st

ra
in

ts

Supernode Size (k)

Upperbound on n
Lowerbound on n

Fig. 4. Visual representation of the multi-tree constraints.

E. Step 3: Calculating total per-node bandwidth used

This section describes how the CT uses the outputs of
Steps 1 and 2 to calculate total incoming bandwidth usage
per node. The anonymous routing overhead in Anonygator
is L + k − 1 per message, since a source has to create
one onion route of lengthL to the tail node, and then, the
tail node needs to send this message to the otherk − 1
members in its supernode. Therefore the total bandwidth
used over all nodes in the system for anonymous routing
is (L + k− 1)NRhg. The anonymous routing overhead for
the k-redundant algorithm mentioned in Section VI-A iskL

per message since a source needs to createk onion paths of
lengthL each to upload the data to a multi-tree. Therefore,
in this case, the total bandwidth used by the system due to
anonymous routing iskLNRhg.

The CT calculates the overhead due to the multi-tree ag-
gregation in the following way. Since there aret multi-trees,
n supernodes per multi-tree andk nodes per supernode,
each node in a supernode uploadsk messages to the nodes
in its parent supernode per aggregation interval, which is

1
Rha

. Hence the overall bandwidth used in the system due
to the multi-tree isnk2tRha.

From the bandwidth used due to anonymous routing
in Anonygator and the bandwidth used due to multi-tree
aggregation, the CT calculates the total load per second as
N(L+k−1)Rhg+nk2tRha. Therefore average bandwidth
used per node is(L + k − 1)Rhg + nk2tRha

N
. For the k-

redundant algorithm, this value iskLRhg + nk2tRha

N
.

IX. I MPLEMENTATION

A. Implementation Status

We have implemented Anonygator on two platforms: our
first implementation, built for a Linux testbed, consists of
roughly 1400 lines of Python code and uses the pycrypto
library for the base cryptographic functions. Our second
implementation, built on the .Net framework, consists of
2400 lines of C# code and uses the BouncyCastle [5]
cryptographic library. We use RSA (1024 bits keys) as the
asymmetric cipher and Rijndael as the symmetric cipher.

The Anonygator implementations provide a library that
supports all three components of Anonygator: anonymous
routing, data pollution prevention, and multi-tree based

9

initAnonygatorClient()(C) Buys tokens, installs keys.
sendData()(C) Sends app. data to tree.

initAnonygatorServer()(S) Inits agg. server
pushdownConfiguration()(S) Sends multi-tree config.

to clients.

TABLE III. API S EXPOSED BY THEANONYGATOR L IBRARY. ENTRIES

MARKED (C) ARE CLIENT-SIDE CALLS, (S) ARE SERVICE-SIDE CALLS.

aggregation. Currently, in our prototypes, all node discov-
ery and multi-tree construction operation is centralized:a
directory service informs nodes of hosts that they could
use as tail nodes. The directory service also determines
the membership of the multi-tree by assigning hosts to the
different supernodes in the multi-tree. However, both node
discovery and multi-tree construction could be decentral-
ized using techniques such as DHTs [35] and distributed
tree construction algorithms [8, 43].

B. Anonygator API

Table III lists the APIs that Anonygator provides: the
first two API calls are for the client side, and the last two
for the server side. Note that the Anonygator API enables
an application’s client only tosendmessages anonymously,
and the aggregation server toreceiveand aggregatethese
messages. Separately, the application designer uses the
customization tool to tune Anonygator’s parameters (§VIII).

X. EVALUATION

To evaluate Anonygator, we have implemented three
applications on two separate testbeds. The first applica-
tion, inspired by systems that measure resource usage
on distributed hosts [1], aggregates CPU usage on vari-
ous hosts over time. The second application, inspired by
FTN [21] and PeerPressure [42], involves aggregating ma-
chine configuration parameter settings across a population
of hosts. The third is a voting application motivated by
Credence [41], a distributed object reputation system. We
implemented and evaluated the CPU Aggregation on Plan-
etLab, while the other two applications are implemented
and evaluated on a Windows Vista cluster testbed.

A. Aggregation of CPU Utilization on PlanetLab

Using our Linux implementation of Anonygator, we have
built an application to aggregate percent CPU utilization
on a distributed set of Planetlab hosts. The purpose is to
understand how the distribution of percent CPU utilization
on PlanetLab varies over time. The histograms that the
application generates and aggregates consist of buckets at
10% increments, i.e. the first bar represents the fraction of
hosts with 0-10% CPU usage, the second bar represents the
fraction with 10-20%, etc.

Algorithm 1 shows the pseudo-code for the client side of
this application. After initialization, the client periodically
uploads its CPU utilization using thesendData call.
Our purpose in presenting the algorithm is to show that
the code required for implementing this application atop
the Anonygator API is fairly simple since the anonymity

Algorithm 1 Aggregation of CPU Utilization on Anony-
gator Client
ContributeData()

1: initAnonygatorClient()/* Initialize Anonygator */
2:
3: while 1 do
4: readCPUUsage()/* Read CPU Usage */
5: sendData(data)/* Send out data via Anonygator */
6: sleep(uploadInterval)
7: end while

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 200 400 600 800 1000 1200T
oe

kn
 R

es
po

ns
e

R
at

e
(p

er
 s

ec
.)

Token Request Rate (per sec.)

8-Node
4-Node
2-Node
1-Node

Fig. 5. Bank’s scalability in terms of token generation rate.

preservation, and token accounting is done entirely by the
Anonygator library.

Since the application itself provides similar functional-
ity as other monitoring systems such as CoMon [1], we
refrain from delving into the actual measurements that the
application gathers. Instead, we concentrate on evaluating
the scalability and bandwidth usage of the components of
the Anonygator system itself.

1) Bank Scalability: Our first experiment evaluated the
scalability of the Anonygator bank, specifically, the rate at
which the bank generates tokens. We found this to be the
most resource-intensive function for the bank since each
token generation involves one asymmetric cryptographic
operation and generating the head of the hash chain by
performingLH hashes (token verification is more than 20
times faster than token generation). In our experiment, we
setLH , the length of the hash chain, to 1000.

The Anonygator bank was running on a cluster of
machines at the University of California, Santa Barbara.
Each machine has a 2.3 GHz Intel Xeon processor and
2GB memory. All machines ran 32-bit RedHat CentOS
and were interconnected through a Gigabit Ethernet switch.
We varied the number of machines that constituted the
Anonygator bank between 1 and 8. The clients ran on 100
PlanetLab nodes, which periodically contacted and received
tokens from the bank. We varied the rate at which the clients
requested tokens from the bank.

Figure 5 shows that the rate at which the bank generates
tokens varies linearly with the number of machines in the
cluster. With 1 machine, the peak rate is 125 tokens/sec,
with 2, it is 248 tokens/sec, with 4 it is 486 tokens/sec and
with 8, it is 919 tokens/sec. These results follow from the
fact that creating a hash-chain of size 1000 takes 3.75 ms
and signing the token takes 4.25 ms, for a total of 8ms to

10

L k n t

100 nodes 3 4 25 1
400 nodes 3 6 66 1

TABLE IV. O UTPUTS FROM THECT FOR PLANETLAB DEPLOYMENT.

generate one token. This implies that with 1,000,000 hosts
in the system, the 8-machine bank can support a histogram
generation rate of 0.919 histograms per second, or 55
histograms per minute. For many aggregation systems [2,
4], this is a fairly high rate of data generation. The capacity
of the bank can be further improved by increasing the hash
chain length or the cluster size.

2) Host Bandwidth Usage: Next, we evaluated whether
the maximum incoming host bandwidth on each PlanetLab
machine was indeed capped by the value input to the
customization tool. We created two deployments of the
application on PlanetLab, one with 100 hosts and the other
with 400 hosts, and ran the application on each of these
two host sets for 30 minutes. The value ofBh was set to
94 for the 100 node deployment and 126 for the 400 node
deployment. We set the required anonymityA to 0.99, the
unlinkability PU to 0.99, and probability of correctnessPc

to 0.7. The number of hosts,N , was set to 100 or 400
depending on the experiment, and the fraction of malicious
hosts,p, was 0.05. We set the histogram generation rate
to 10 per minute, and the histogram aggregation rate to 2
per minute. The size of each histogram is approximately
40 bytes, since each histogram has 10 bars and the size of
each bar is represented by a 4 byte integer.

In the onion routing phase, the message size due to the
onion encapsulation is roughly 400 bytes. While this may
seem high, we believe that the overhead is manageable
since the histogram generation rate from source to tail node
is set to only 10 per minute. At extremely high rates of
histogram generation, however, this overhead could sig-
nificantly affect performance. However in our experience,
aggregation-based systems [2, 4, 12] do not have extremely
high data generation ratesper-source(though the bandwidth
usage at the server, with a large number of sources could
be significant). The maximum incoming server bandwidth,
Bs, was set to 8 histograms per minute for the 100 node
experiment and to 12 histograms per minute for the 400
node case. Table IV shows the value of the various output
parameters the CT calculated with these inputs.

Some of these parameters (such as low values of server
bandwidth, low correctness probability, and low histogram
generation and aggregation rates) are not representative of
what one may expect in a real deployment. However, since
the experiment’s objective was to evaluate the bandwidth
usage on a host, we needed to set parameters that created
multi-level trees with just hundreds of hosts at our dis-
posal. With our choice of parameters, for the 100-node
deployment, the multi-tree had 4 levels and for the 400-
node deployment, it had 5 levels.

Figure 6 shows a time-series of themaximuminstanta-
neous bandwidth (calculated over 1 minute buckets) on a

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25 30

M
ax

im
um

 P
er

 N
od

e
B

an
dw

id
th

 (

in
 H

is
to

gr
am

s/
S

ec
)

of Minutes

400 Nodes Analytical
400 Nodes Expt. Max.
100 Nodes Analytical

100 Nodes Expt. Max.

Fig. 6. Maximum incoming bandwidth usage over all hosts in the interior
supernodes in the Anonygator multi-tree.

node, calculated over all nodes in the system. Hence each
data point comes from the node whose bandwidth usage
is maximum in that minute. The figure shows that our
implementation of the Anonygator system does conform
to the bandwidth constraint specified in both experiments
thereby confirming the effectiveness of the customization
tool. The three spikes correspond to short-term variability
in bandwidth usage on certain nodes: the nodes with max-
imum bandwidth usage were significantly under-utilized in
the minute just prior to the spike.

We performed a similar study to evaluate usage of server
bandwidthBs which yielded similar results, however we
will not describe the experiment for lack of space.

B. Distributed Diagnostics Application

Our prototype distributed diagnostic application, which is
inspired by FTN [21] and PeerPressure [42] is built on our
.Net implementation of Anonygator. It involves aggregating
machine configuration parameter settings across a popula-
tion of hosts. The aggregated information is then stored
in a “gene” database, which enables answering queries
such as what themost commonsetting of a particular
parameter is. Accuracy of aggregated information is critical
as the diagnosis procedure could be led astray otherwise. At
the same time, anonymity is also important, since certain
parameter settings might point to vulnerability to attacks.

In order to build the gene database, our prototype reads
the appropriate Windows registry keys on the participating
hosts, and uploads them using Anonygator. We also ran
25 instances of our client on a local cluster of machines,
each of which uploaded one histogram every 50 seconds.
The rate of aggregation was lower than that in the previous
application since changes to configuration clearly happen
less often than changes in CPU usage.

C. Voting Application

In this application, the server is interested in collecting
votes from users on certain topics of interest. The server
sends these questions to the users via multicast or a message
board. Then, the users submit their vote using Anonygator.
These votes are then aggregated and reported to the server.

This application is motivated by Credence [41], a dis-
tributed object reputation system, where clients vote on the
quality of the objects. Similar object voting functionality

11

can be achieved, while preserving clients’ privacy, using our
voting application. It took less than 100 lines of C# code to
implement both the Voting and the Diagnostic applications
on our .Net implementation of Anonygator.

XI. R ELATED WORK

Several mobile data collection systems such as Car-
Tel [22], MetroSense [6], Mobiscopes [3], Nericell [27]
and SenseWeb [24] involve sensors uploading data period-
ically to a central repository. Protecting the privacy of the
contributors would be important but has not received much
attention in most of these systems.

A notable exception is AnonySense [12], which provides
privacy while assigning tasks to mobile sensor nodes and
retrieving reports from them. However, AnonySense does
not perform data aggregation. SmartSiren [11] collects
reports at a server and uses them to detect viruses using
certain thresholds. It attempts to provide anonymity to
clients, and also describes the problem of pollution control
during anonymous report submissions. SmartSiren however
assumes that submitting reports via the IP network provides
sufficient anonymity. Also, it uses random ticket exchange
between clients to avoid the server from tracking smart-
phones based on tickets.

Several recent systems have used tokens to achieve ac-
countability [18, 31, 40]. The tokens used in these systems
are always involved in the critical paths. Thus, the clients
need to contact the bank (and verify the token) for every
application-level operation (exchange a block [31], accept
a mail [18, 40], etc.). However, Anonygator clients need to
contact the bank once to verify a token and all subsequent
messages are authenticated offline using hash chains, mak-
ing the bank in Anonygator much more scalable.

Several systems explore the problem of performing se-
cure data aggregation in sensor networks [9, 20, 30, 32]. But
the mechanisms used in sensor network do not provide
anonymity to the contributing sensor nodes. The base
station either receives the data from the nodes directly, or
shares a unique key with the nodes and hence can easily
link the data to nodes.

Wagner [39] looked at the error bound in the aggre-
gated data under the assumption that a fixed fraction of
nodes are malicious and only contribute erroneous data.
They proposed resilient aggregation techniques to compute
selected functions using statistical estimation theory such
that the damage from erroneous data is limited. This work
is complementary to Anonygator.

XII. C ONCLUSION

In this paper, we have presented Anonygator, a system for
anonymous data aggregation. Anonygator uses anonymous
routing, token and hash-chain based pollution control, and
a multi-tree based distributed aggregation scheme, to build
a scalable, anonymous aggregation system. Anonygator’s
customization tool allows the designer to meet the desired
anonymity and unlinkability goals, while honoring the

specified pollution bounds and bandwidth limits. We have
built three applications on Anonygator and have tested them
on PlanetLab and a local cluster of machines.

REFERENCES

[1] CoMon webpage. http://comon.cs.princeton.edu.
[2] Microsoft Online Crash Analysis.

http://oca.microsoft.com/en/dcp20.asp.
[3] T. Abdelzaher et al. Mobiscopes for human spaces.IEEE pervasive

computing, 2007.
[4] B. Aggarwal, R. Bhagwan, T. Das, S. Eswaran, V. Padmanabhan, and

G. Voelker. NetPrints: Diagnosing Home Network Misconfigurations
using Shared Knowledge. InProc. of NSDI, 2009.

[5] Bouncycastle. The legion of the bouncy castle.
http://www.bouncycastle.org.

[6] A. Campbell et al. Metrosense project people-centric sensing at
scale. InWorkshop on World-Sensor-Web, 2006.

[7] M. Castro et al. Security for structured peer-to-peer overlay net-
works. In OSDI, December 2002.

[8] M. Castro et al. Splitstream: high-bandwidth multicastin cooperative
environments. InSOSP, 2003.

[9] H. Chan, A. Perrig, and D. Song. Secure hierarchical in-network
aggregation in sensor networks. InProc. of CCS, 2006.

[10] D. Chaum. Blind signatures for untraceable payments. In Proceed-
ings of Crypto, volume 82, pages 23–25, 1982.

[11] J. Cheng, S. Wong, H. Yang, and S. Lu. Smartsiren: Virus detection
and alert for smartphones. InMobiSys, 2007.

[12] C. Cornelius et al. AnonySense: Privacy-aware people-centric
sensing. InMobiSys, 2008.

[13] C. Diaz, S. Seys, J. Claessens, and B. Preneel. Towards measuring
anonymity. InProc. of PET, April 2002.

[14] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-
generation onion router. InProc. of the USENIX Security Symposium,
Aug 2004.

[15] J. R. Douceur. The Sybil attack. InIPTPS, 2002.
[16] C. Dwork, A. Goldberg, and M. Naor. On memory-bound functions

for fighting spam. InProceedings of Crypto, 2003.
[17] C. Dwork and M. Naor. Pricing via processing or combatting junk

mail. LNCS, 1993.
[18] R. Gummadi et al. Not-a-bot (nab): Improving service availability

in the face of botnet attacks. InProc. of NSDI, 2009.
[19] B. Hoh et al. Virtual trip lines for distributed privacy-preserving

traffic monitoring. InMobiSys, 2008.
[20] L. Hu and D. Evans. Secure aggregation for wireless networks. In

Workshop on Security and Assurance in Ad hoc Networks, 2003.
[21] Q. Huang, H. Wang, and N. Borisov. Privacy-Preserving Friends

Troubleshooting Network. InISOC NDSS, 2005.
[22] B. Hull et al. Cartel: a distributed mobile sensor computing system.

In SenSys, 2006.
[23] P. C. Johnson et al. Nymble: Anonymous ip-address blocking. In

Proc. of PET, 2007.
[24] A. Kansal, S. Nath, J. Liu, and F. Zhao. Senseweb: An infrastructure

for shared sensing.IEEE Multimedia, 2007.
[25] S. Katti, J. Cohen, and D. Katabi. Information slicing:Anonymity

using unreliable overlays. InNetworked Systems Design and Imple-
mentation, 2007.

[26] L. Lamport. Password authentication with insecure communication.
Communications of the ACM, 1981.

[27] P. Mohan, V. Padmanabhan, and R. Ramjee. Nericell: Richmoni-
toring of road and traffic conditions using mobile smartphones. In
SenSys, 2008.

[28] A. Nambiar and M. Wright. Salsa: A structured approach to large-
scale anonymity. InProc. of CCS, Nov 2006.

[29] A. Perrig. The biba one-time signature and broadcast authentication
protocol. InProc. of CCS, 2001.

[30] A. Perrig et al. Spins: Security protocols for sensor networks.
Wireless Networks, 2002.

[31] R. S. Peterson and E. G. Sirer. Antfarm: Efficient content distribution
with managed swarms. InProc. of NSDI, 2009.

[32] B. Przydatek, D. Song, and A. Perrig. SIA: Secure information
aggregation in sensor networks, 2003.

12

[33] M. G. Reed, P. F. Syverson, and D. M. Goldschlag. Anonymous
connections and onion routing.IEEE JSAC, 16(4), May 1998.

[34] M. Reiter and A. Rubin. Crowds: Anonymity for web transactions.
ACM Trans. on Information and System Security, 1(1), June 1998.

[35] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. In ACM
Middleware, November 2001.

[36] A. Serjantov and G. Danezis. Towards an information theoretic
metric for anonymity. InProc. of PET, April 2002.

[37] C. R. Simpson, Jr. and G. F. Riley. NETI@home: A distributed ap-
proach to collecting end-to-end network performance measurements.
In PAM, April 2004.

[38] R. van Renesse, K. Birman, and W. Vogels. Astrolabe: A robust and
scalable technology for distributed system monitoring, management
and data mining.ACM Transactions on Computer Systems, 2003.

[39] D. Wagner. Resilient aggregation in sensor networks. In ACM
workshop on security of ad hoc and sensor networks, 2004.

[40] M. Walfish et al. Distributed quota enforcement for spamcontrol.
In Proc. of NSDI, 2006.

[41] K. Walsh and E. G. Sirer. Experience With A Distributed Object
Reputation System for Peer-to-Peer Filesharing. InNetworked
Systems Design and Implementation, 2006.

[42] H. Wang, J. Platt, Y. Chen, R. Zhang, and Y. Wang. Automatic
Misconfiguration Troubleshooting with PeerPressure. InProc. of
OSDI, 2004.

[43] P. Yalagandula and M. Dahlin. A scalable distributed information
management system. InSIGCOMM, August 2004.

[44] L. Zhuang et al. Cashmere: Resilient anonymous routing. In
Networked Systems Design and Implementation, 2005.

13

