
Statically Validating Must Summaries for
Incremental Compositional Dynamic Test Generation

Patrice Godefroid1, Shuvendu K. Lahiri1, and Cindy Rubio-González2

1 Microsoft Research, Redmond, WA, USA
2 University of Wisconsin, Madison, WI, USA

Abstract. Compositional dynamic test generation can achieve significant scal-
ability by memoizing symbolic execution sub-paths as test summaries. In this
paper, we formulate the problem of statically validating symbolic test summaries
against code changes. Summaries that can be proved still valid using a static anal-
ysis of a new program version do not need to be retested or recomputed dynam-
ically. In the presence of small code changes, incrementality can considerably
speed up regression testing since static checking is much cheaper than dynamic
checking and testing. We provide several checks ranging from simple syntactic
ones to ones that use a theorem prover. We present preliminary experimental re-
sults comparing these approaches on three large Windows applications.

1 Introduction

Whitebox fuzzing [17] is a promising new form of security testing based on dynamic
test generation [6, 16]. Dynamic test generation consists of running a program while
simultaneously executing the program symbolically in order to gather constraints on
inputs from conditional statements encountered along the execution. Those constraints
are then systematically negated and solved with a constraint solver, generating new
test inputs to exercise different execution paths of the program. Over the last couple of
years, whitebox fuzzing has extended the scope of dynamic test generation from unit
testing to whole-program security testing, thanks to new techniques for handling very
long execution traces (with billions of instructions). In the process, whitebox fuzzers
have found many new security vulnerabilities (buffer overflows) in Windows [17] and
Linux [23] applications, including codecs, image viewers and media players. Notably,
our whitebox fuzzer SAGE found roughly one third of all the bugs discovered by file
fuzzing during the development of Microsoft’s Windows 7 [14]. Since 2008, SAGE has
been continually running on average 100+ machines automatically “fuzzing” hundreds
of applications in a dedicated security testing lab. This represents the largest computa-
tional usage ever for any Satisfiability Modulo Theories (SMT) solver [28], according
to the authors of the Z3 SMT solver [10].

Despite these successes, several challenges remain, such as increasing code cov-
erage and bug finding, while reducing computational costs. A key promising idea is
compositionality: the search process can be made compositional by memoizing sym-
bolic execution sub-paths as test summaries which are re-usable during the search, re-
sulting in a search algorithm that can be exponentially faster than a non-compositional

one [13]. By construction, symbolic test summaries are “must” summaries guarantee-
ing the existence of some program executions and hence useful for proving existential
reachability properties (such as the existence of an input leading to the execution of
a specific program branch or bug). They dualize traditional “may” summaries used in
static program analysis for proving universal properties (such as the absence of specific
types of bugs for all program paths). We are currently building a general infrastructure
to generate, store and re-use symbolic test summaries for large parts of the Windows
operating system.

In this context, an important problem is the maintenance of test summaries as the
code under test slowly evolves. Recomputing test summaries from scratch for every
program version sounds wasteful, as new versions are frequent and much of the code
has typically not changed. Instead, whenever possible, it could be much cheaper to
statically check whether previously-computed symbolic test summaries are still valid
for the new version of the code. The formalization and study of this problem is the
motivation for this paper.

We introduce the must-summary checking problem:

Given a set S of symbolic test summaries for a program Prog and a new version
Prog′ of Prog, which summaries in S are still valid must summaries for Prog′?

We also consider the more general problem of checking whether an arbitrary set S of
summaries are valid must summaries for an arbitrary program Prog.

We present three algorithms with different precision to statically check which old
test summaries are still valid for a new program version. First, we present an algo-
rithm (in Section 3) based on a simple impact analysis of code changes on the static
control-flow and call graphs of the program; this algorithm can identify local code paths
that have not changed and for which old summaries are therefore still valid. Second,
we present (in Section 4) a more precise predicate-sensitive refined algorithm using
verification-condition generation and automated theorem proving. Third, we present an
algorithm (in Section 5) for checking the validity of a symbolic test summary against
a program regardless of program changes, by checking whether the pre/postconditions
captured in the old summary still hold on the new program. We discuss the strengths and
weaknesses of each solution, and present preliminary experimental results with sample
test summaries generated for three large Windows applications. These experiments con-
firm that hundreds of summaries can be validated statically in minutes, while validating
those dynamically can require hours or days.

2 Background and Problem Definition

2.1 Background: Compositional Symbolic Execution

We assume we are given a sequential program Prog with input parameters I. Dynamic
test generation [16] consists of running the program Prog both concretely and sym-
bolically, in order to collect symbolic constraints on inputs obtained from predicates in
branch statements along the execution. For each execution path w, i.e., a sequence of
statements executed by the program, a path constraint φw is constructed that character-
izes the input values for which the program executes along w. Each variable appearing

#define N 100

void P(int s[N]) { // N inputs

int i, cnt = 0;

for (i = 0; i < N; i++)

cnt = cnt + is_positive(s[i]);

if (cnt == 3) error(); // (*)

return;

}

int is positive(int x) {

if (x > 0) return 1;

return 0;

}

int g(int x, int y) {

if ((x > 0)&&(hash(y)>10))

return 1;

return 0;

}

Fig. 1. Example.

in φw is thus a program input. Each constraint is expressed in some theory T decided by
a constraint solver (for instance, including linear arithmetic, bit-vector operations, etc.).
A constraint solver is an automated theorem prover which also returns a satisfying as-
signment for all variables appearing in constraints it can prove satisfiable. All program
paths can be enumerated by a search algorithm that explores all possible branches at
conditional statements. The paths w for which φw is satisfiable are feasible and are
the only ones that can be executed by the actual program provided the solutions to φw

characterize exactly the inputs that drive the program through w. Assuming that the
constraint solver used to check the satisfiability of all formulas φw is sound and com-
plete, this use of symbolic execution for programs with finitely many paths amounts to
program verification.

Systematically testing and symbolically executing all feasible program paths does
not scale to large programs. Indeed, the number of feasible paths can be exponential in
the program size, or even infinite in the presence of loops with unbounded number of
iterations. This path explosion [13] can be alleviated by performing symbolic execution
compositionally [2, 13].

Let us assume the program Prog consists of a set of functions. In the rest of this sec-
tion, we use the generic term of function to denote any part of the program Prog whose
observed behaviors are summarized; any program fragments can be treated as “func-
tions” as will be discussed later. To simplify the presentation, we assume the functions
in Prog do not perform recursive calls, and that all the executions of Prog terminate.
These assumptions do not prevent Prog from having infinitely many executions paths
if it contains a loop whose number of iterations depends on some unbounded input.

In compositional symbolic execution, a function summary φ f for a function f is
defined as a logic formula over constraints expressed in theory T . φ f can be derived
by successive iterations and defined as a disjunction of formulas φw f of the form φw f =

prew f ∧ postw f , where w f denotes an intraprocedural path inside f , prew f is a conjunc-
tion of constraints on the inputs of f , and postw f is a conjunction of constraints on the
outputs of f . An input to a function f is any value that can be read by f , while an out-
put of f is any value written by f . φw f can be computed automatically from the path
constraint for the intraprocedural path w f [2, 13].

For instance, given the function is positive in Figure 1, a summary φ f for this
function can be

φ f = (x > 0 ∧ ret = 1) ∨ (x ≤ 0 ∧ ret = 0)

where ret denotes the value returned by the function.

Symbolic variables are associated with function inputs (like x in the example) and
function outputs (like ret in the example), in addition to whole-program inputs. In order
to generate a new test to cover a new branch b in some function, all the previously
known summaries can be used to generate a formula φP representing symbolically all
the paths known so far during the search. By construction [13], symbolic variables
corresponding to function inputs and outputs are all bound in φP, and the remaining
free variables correspond exclusively to whole-program inputs (since only those can be
controlled for test generation).

For instance, for the program P in Figure 1, a formula φP to generate a test covering
the then branch (*) given the above summary φ f for function is positive can be

(ret0 + ret1 + . . . + retN−1 = 3) ∧
∧

0≤i<N

((s[i] > 0 ∧ reti = 1) ∨ (s[i] ≤ 0 ∧ reti = 0))

Even though program P has 2N+1 feasible whole-program paths, compositional test gen-
eration can cover “symbolically” all those paths in at most 4 test inputs: 2 tests to cover
both branches in function is positive plus 2 tests to cover both branches of the con-
ditional statement (*). Compositionality avoids an exponential number of tests and calls
to the constraint solver, at the cost of using more complex formulas with more disjunc-
tions.

2.2 Problem Definition: Must Summary Checking

In practice, symbolic execution of large programs is bound to be imprecise due to com-
plex program statements (pointer manipulations, floating-point operations, etc.) and
calls to operating-system and library functions that are hard to reason about symbol-
ically with good enough precision at a reasonable cost. Whenever precise symbolic
execution is not possible during dynamic test generation, concrete values can be used
to simplify constraints and carry on with a simplified, partial symbolic execution [16].
The resulting path constraints are then under-approximate, and summaries become must
summaries.

For example, consider the function g in Figure 1 and assume the function hash(y)
is a complex or unknown function for which no constraint is generated. Assume we
observe at runtime that when g is invoked with y = 45, the value of hash(45) is 987.
The summary for this execution of function g can then be

(x > 0 ∧ y = 45 ∧ ret = 1)

Here, symbolic variable y is constrained to be equal to the concrete value 45 observed
along the run because the expression hash(y) cannot be symbolically represented. This
summary is a must summary since all value pairs (x, y) that satisfy its precondition
define executions of g that satisfy the postcondition ret = 1. However, this set is a subset
of all value pairs that satisfy this postcondition assuming there exists some other value
of y different from 45 such that hash(y) > 10. For test generation purposes, we safely
under-approximate this perfect but unknown input set with the smaller precondition
x > 0 ∧ y = 45. A must summary can thus be viewed as an abstract witness of some

execution. Must summaries are useful for bug finding and test generation, and dualize
may summaries for proving correctness, i.e., the absence of bugs.

We denote a must summary by a quadruple 〈lp, P, lq, Q〉where lp and lq are arbitrary
program locations, P is a summary precondition holding in lp, and Q is a summary
postcondition holding in lq. lp and lq can be anywhere in the program: for instance, they
can be the entry and exit points of a function (as in the previous examples) or block,
or two program points where consecutive symbolic constraints are injected in the path
constraint during symbolic execution, possibly in different functions. In what follows,
we call a summary intraprocedural if its locations (lp, lq) are in a same function f and
the function f did not return between lp to lq when the summary was generated (i.e., no
instruction from a function calling f higher in the call stack was executed from lp to lq
when the summary was generated). We will only consider intraprocedural summaries
in the remainder of this paper, unless otherwise specified.

Formally, must summaries are defined as follows.

Definition 1. A must summary 〈lp, P, lq, Q〉 for a program Prog implies that, for every
program state satisfying P at lp in Prog, there exists an execution that visits lq and
satisfies Q at lq.

A must summary is called valid for a program Prog if it satisfies Definition 1. We define
the must-summary checking problem as follows.

Definition 2. (Must-summary checking) Given a valid must summary 〈lp, P, lq, Q〉 for
a program Prog and a new version Prog′ of Prog, is 〈lp, P, lq, Q〉 still valid for Prog′?

We also consider later in Section 5 the more general problem of checking whether
an arbitrary must summary is valid for an arbitrary program Prog. These problems
are different from the must summary inference/generation problem discussed in prior
work [2, 13, 18].

We present three different algorithms for statically checking which old must sum-
maries are still valid for a new program version. These algorithms can be used in isola-
tion or in a pipeline, one after another, in successive “phases” of analysis.

3 Phase 1: Static Change Impact Analysis

The first “Phase 1” algorithm is based on a simple impact analysis of code changes in
the static control-flow and call graphs of the program.

A sufficient condition to prove that an old must summary 〈lp, P, lq, Q〉 generated as
described in Section 2.1 is still valid in a new program version is that all the instruc-
tions that were executed in the original program path taken between lp and lq when the
summary was generated remain unchanged in the new program. Recording all unique
instructions executed between each pair (lp, lq) would be expensive for large programs
as many instructions (possibly in other functions) can be executed.

Instead, we can over-approximate this set by statically finding all program instruc-
tions that may be executed on all paths from lp to lq: this solution requires no additional
storage of runtime-executed instructions but is less precise. If no instruction in this
larger set has changed between the old and new programs, any summary for (lp, lq) can

then be safely reused for the new program version; otherwise, we have to conservatively
declare the summary as potentially invalid since a modified instruction might be on the
original path taken from lp to lq when the summary was generated.

To determine whether a specific instruction in the old program is unchanged in
the new program, we rely on an existing syntactic “diff”-like tool which can (conser-
vatively) identify instructions that have been modified, deleted or added between two
program versions.

Formally, an instruction i of a program Prog is defined as modified in another pro-
gram version Prog′ if i is changed or deleted in Prog′ or if its ordered set of immediate
successor instructions changed between Prog and Prog′. For instance, swapping the
then and else branches of a conditional jump instruction “modifies” the instruction.
However, the definition is local as it does not involve non-immediate successors.

Program instructions that are not modified can be mapped across program versions.
Conversely, if an instruction cannot be mapped across program versions, it is considered
as “deleted” and therefore modified. Similarly, a program function is defined as modified
if it contains either a modified instruction, or a call to a modified function, or a call to
an unknown function (e.g., a function outside the program or through a function pointer
which we conservatively assume may have been modified). Note that this definition is
transitive, unlike the definition of modified instruction.

Given those definitions, we can soundly infer valid summaries using the following
rule.

An intraprocedural summary from lp to lq inside a same function f is valid if,
in the control-flow graph for f , no instruction between lp and lq is modified or
is a call to a modified function.

The correctness of this rule is immediate for intraprocedural summaries (as defined in
Section 2.2) since, if the condition stated in the rule holds, we know that all instructions
between lp and lq are unchanged across program versions.

Implementing this rule requires building the control-flow graph of every function
containing an old intraprocedural summary and the call graph for the entire program in
order to transitively determine which functions are modified. Note that the precision of
the rule above could be improved by considering interprocedural control-flow graphs
(merging together multiple intraprocedural control-flow graphs), at the cost of building
larger graphs.

4 Phase 2: Predicate-Sensitive Change Impact Analysis

Consider the summary 〈lp, x > 0 ∧ y < 10, lq, w = 0〉 for the code fragment shown on
the left of Figure 2. Assume the instructions marked with “MODIFIED” have been
modified in the new version. Since some instructions on some paths from lp to lq have
been modified, the Phase 1 analysis will invalidate the summary. However, notice that
the set of executions that start from a state satisfying x > 0 ∧ y < 10 at lp and reach lq
has not changed.

In this section, we present a second change impact analysis “Phase 2” that exploits
the predicates P and Q in a summary 〈lp, P, lq, Q〉 to perform a more refined analy-
sis. The basic idea is simple: instead of considering all the paths between lp and lq,

...

lp: if (x > 0) {

if (y == 10)

w++; // MODIFIED

else

w = 0;

} else {

w = 1; // MODIFIED

}

lq: ...

...

lp: if (x < 0) {

if (y < 0)

r = 1;

else {

r = 0; //MODIFIED to r = 4;

}

}

lq: ...

Fig. 2. Motivating examples for Phase 2 (left) and Phase 3 (right).

we only consider those that also satisfy P in lp and Q in lq. We now describe how
to perform such a predicate-sensitive change impact analysis using static verification-
condition generation and theorem proving. We start with a program transformation for
checking that all executions satisfying P in lp that reach lq and satisfy Q in lq are not
modified from lp to lq.

Given an intraprocedural summary 〈lp, P, lq, Q〉 for a function f , we modify the
body of f in the old code as follows. Let Entry denote the location at the beginning
of f , i.e., just before the first instruction executed in f . We use an auxiliary Boolean
variable modified, and insert the following code at the labels Entry, lp, lq and at all
labels ` corresponding to a modified instruction or a call to a modified function (just
before the instruction at that location).

Entry : goto lp;
lp : assume P; modified := false;
lq : assert (Q =⇒ ¬modified);
` : modified := true;

The assume statement assume P at lp is a blocking instruction [4], which acts as a
no-op if control reaches the statement in a state satisfying the predicate P, and blocks
the execution otherwise. The assertion at lq checks that if an execution reaches lq where
it satisfies Q via lp where it satisfied P, it does not execute any modified instruction
between lp and lq.

Theorem 1. Given an intraprocedural must summary 〈lp, P, lq, Q〉 valid for a function
f in an old program Prog, if the assertion at lq holds in the instrumented old program
for all possible inputs for f , then 〈lp, P, lq, Q〉 is a valid must summary for the new
program Prog′.

Proof. The assertion at lq ensures that all executions in the old program Prog that
(1) reach lq and satisfy Q in lq and (2) satisfy P at lp do not execute any instruction
that is marked as modified between lp and lq. This set of executions is possibly over-
approximated by considering all possible inputs for f , i.e., ignoring specific calling
contexts for f and lp in Prog. Since all the instructions executed from lp to lq during
those executions are preserved in the new program Prog′, all those executions W from

lp to lq are still possible in the new program. Moreover, since 〈lp, P, lq, Q〉 is a must
summary for the old program Prog, we know that for every state s satisfying P in
lp, there exists an execution w from s that reaches lq and satisfies Q in lq in Prog.
This execution w is included in the set W preserved from Prog to Prog′. Therefore, by
Definition 1, 〈lp, P, lq, Q〉 is a valid must summary for Prog′. ut

The reader might wonder the reason for performing the above instrumentation on
the old program Prog instead of on the new program Prog′. Consider the case of a state
that satisfies P at lp from which there is an execution that reaches lq in Prog, but from
which no execution reaches lq in Prog′. In this case, the must summary 〈lp, P, lq, Q〉 is
invalid for Prog′. Yet applying the above program transformation to Prog′ would not
necessarily trigger an assertion violation at lq since lq may no longer be reachable in
Prog′.

To validate must summaries statically, one can use any static assertion checking
tool to check that the assertion in the instrumented program does not fail for all pos-
sible function inputs. In this work, we use Boogie [3], a verification condition (VC)
based program verifier to check the absence of assertion failures. VC-based program
verifiers create a logic formula from a program with assertions with the following guar-
antee: if the logic formula is valid, then the assertion does not fail in any execution.
The validity of the logic formula is checked using a theorem prover, typically a SMT
solver. For loop-free and call-free programs, the logic formula is generated by comput-
ing variants of weakest liberal preconditions (wlp) [11]. Procedure calls can be handled
by assigning non-deterministic values to the return variable and all the globals that can
be potentially modified during the execution of the callee. Similarly, loops can be han-
dled by assigning non-deterministic values to all the variables that can be modified
during the execution of the loop. Although procedure postconditions and loop invari-
ants can be used to recover the loss of precision due to the use of non-determinism for
over-approximating side effects of function calls and loop iterations, we use the default
postcondition and loop invariant true for our analysis to keep the analysis automated
and simple.

5 Phase 3: Must Summary Validity Checking

Consider the code fragment shown on the right of Figure 2 where the instruction marked
“MODIFIED” is modified in the new code. Consider the summary 〈lp, x < 0, lq, r ≥ 0〉.
Since the modified instruction is along a path between lp and lq, even when restricted
under the condition P at lp, neither Phase 1 nor Phase 2 will validate the summary.
However, note that the change does not affect the validity of the must summary: all
executions satisfying x < 0 at lp still reach lq and satisfy r ≥ 0 in the new code, which
means the must summary is still valid. In this section, we describe a third algorithm
dubbed “Phase 3” for statically checking the validity of a must summary 〈lp, P, lq, Q〉
against some code, independently of code changes.

In the rest of this section, we assume that the programs under consideration are (i)
terminating, i.e., every execution eventually terminates, and (ii) complete, i.e., every
state has a successor state.

Given an intraprocedural summary 〈lp, P, lq, Q〉 for a function f , we perform the
following instrumentation on the new code. We denote by Entry the location of the
first instruction in f , while Exit denotes any exit instruction in f . We use an auxiliary
Boolean variable reach lq, and insert the following code at the labels Entry, lp, lq and
Exit.

Entry : reach lq := false; goto lp;
lp : assume P;
lq : assert (Q); reach lq := true;

Exit : assert (reach lq);

The variable reach lq is set when lq is visited in an execution, and initialized to false
at the Entry node. The assume P blocks the executions that do not satisfy P at lp. The
assertion at lq checks that if an execution reaches lq via lp, it satisfies Q. Finally, the
assertion at Exit checks that all executions from lp have to go through lq.

Theorem 2. Given an intraprocedural must summary 〈lp, P, lq, Q〉 for a function f ,
if the assertions hold in the instrumented program for all possible inputs of f , then
〈lp, P, lq, Q〉 is a valid must summary for the program.

Proof. The assertion at lq ensures that every execution that reaches lq from a state
satisfying P at lp, satisfies Q. This set of executions is possibly over-approximated by
considering all possible inputs for f , i.e., ignoring specific calling contexts for f and
lp. Since we consider programs that are terminating and complete, the assertion at Exit
is checked for every execution (except those blocked by assume P in lp which do not
satisfy P), and ensures that every execution that satisfies P at lp visits lq. The goto lp
ensures that lp is reached from Entry, otherwise the two assertions could vacuously hold
if lp was not reachable or through restricted calling contexts smaller than P. ut

The assertions in the instrumented function can be checked using any off-the-shelf
assertion checker as described in Section 4. Our implementation uses VC generation
and a theorem prover to validate the summaries. Since loops and procedure calls are
treated conservatively by assigning non-deterministic values to modified variables, the
static validation is also approximate and may sometimes fail to validate valid must
summaries.

Note that Phase 3 is not an instance of the Phase 2 algorithm when every statement
is marked as “modified”: Phase 3 checks the new program while Phase 2 checks the old
program (see also the remark after Theorem 1).

Moreover, the precision of Phase 3 is incomparable to the precision of Phase 2
(which refines Phase 1). Both Phase 1 and Phase 2 validate a must summary for the
new program assuming it was a must summary for the old program, whereas Phase 3
provides an absolute guarantee on the new program. At the start of this section, we
presented an example of a valid must summary that can be validated by Phase 3 but not
by Phase 2. Conversely, Phase 3 may fail to validate a summary due to the presence
of complex code between lp and lq and imprecision in static assertion checking, while
Phase 1 or Phase 2 may be able to prove that the summary is still valid by detecting that
the complex code has not been modified.

6 Dealing with Partial Summaries

In practice, tracking all inputs and outputs of large program fragments can be prob-
lematic in the presence of large or complex heap-allocated data structures or when
dealing with library or operating-system calls with possibly unknown side effects. In
those cases, the constraints P and Q can be approximate, i.e., only partially defined: P
constraints only some inputs, while Q can capture only some outputs (side effects). The
must summary is then called partial, and may be wrong in some other unknown call-
ing context. Constraints containing partial must summaries may generate test cases that
will not cover the expected program paths and branches. Such divergences [16] can be
detected at runtime by comparing the expected program path with the actual program
path being taken. In practice, divergences are often observed in dynamic test genera-
tion, and partial summaries can still be useful to limit path explosion, even at the cost
of some divergences.

Consider the partial summary 〈lp, x > 0, lq, ret = 1〉 for the function

int k(int x) {

lp: if ((x > 0) && (vGlobal > 10)) return 1;

return 0;

lq: }

where the input value stored in the global variable vGlobal is not captured in the
summary, perhaps because it does not depend on a whole-program input. If the value of
vGlobal is constant, the constraint (vGlobal > 10) is always true and can safely be
skipped. Otherwise, the partial summary is imprecise: it may be wrong in some calling
contexts.

The validity of partial must summaries could be defined in a weaker manner to
reflect the fact that they capture only partial preconditions, for instance as follows:

Definition 3. A partial must summary 〈lp, P, lq, Q〉 is valid for a program Prog if there
exists a predicate R on program variables, such that (i) R does not imply false, (ii) the
support1 of R is disjoint from the support of P, and (iii) 〈lp, P ∧ R, lq, Q〉 is a must
summary for Prog.

Since R is not false, the conditions (ii) and (iii) cannot be vacuously satisfied. Moreover,
since the supports of P and R are disjoint, R does not strengthen P yet requires that
the partial must summary tracks a subset of the inputs (namely those appearing in P)
precisely.

In practice, it can be hard and expensive to determine whether a must summary is
partial or not. Fortunately, any partial must summary can be soundly validated using the
stronger Definition 1, which is equivalent to setting R to true in Definition 3. Phases 1,
2 and 3 are thus all sound for validating partial must summaries. Validating partial
summaries with Definition 3 or full summaries for non-deterministic programs with
Definition 1 could be done more precisely with an assertion checker that can reason
about alternating existential and universal quantifiers, which is non-standard. It would
be interesting to develop such an assertion checker in future work.

1 The support of an expression refers to the variables in the expression.

7 Recomputing Invalidated Summaries

All the summaries declared valid by Phase 1, 2 or 3 are mapped to the new code and
can be reused. In contrast, all invalid summaries need to be recomputed, for instance
using a breadth-first strategy in the graph formed by superposing path constraints.

Consider the graph G whose nodes are all the program locations lp and lq mentioned
in the old set of test summaries, and where there is an edge from lp to lq for each
summary. Note that, by construction [13], every node lq of a summary matches the
node lp of the next summary in the whole-program path constraint, unless lq is the last
conditional statement in the path constraint or lp is the first one, which we denote by r
for “root”. By construction, G is a directed acyclic graph.

Consider the invalid summary 〈lp, P, lq, Q〉 that is the closest to the root r of G.
Let P denote the set of paths from r to lp. By construction with a breadth-first strategy,
all summaries along all the paths in P are still valid for the new program version. To
recompute the summary 〈lp, P, lq, Q〉 for the new program, we call the constraint solver
with the formula

P ∧
∨
φi∈P

φi

in order to generate a test to exercise condition P at the program location lp (see Sec-
tion 2.1). Then, we run this test against the new program version and generate a new
summary from lp to wherever it leads to (possibly a new lq and Q). This process can be
repeated to recompute all invalidated summaries in a breadth-first manner in G.

8 Experimental Results

We now present preliminary results for validating intraprocedural must summaries gen-
erated by our tool SAGE [17] for several benchmarks, with a focus on understanding
the relative effectiveness of the different approaches.

8.1 Implementation

We have developed a prototype implementation for analyzing x86 binaries, using two
existing tools: the Vulcan [12] library to statically analyze Windows binaries, and the
Boogie [3] program verifier. We briefly describe the implementation of the different
phases in this section.

Our tool takes as input the old program (DLLs), the set of summaries generated
by SAGE for the old program, and the new version of the program. We use Vulcan to
find differences between the two versions of the program, and propagate them inter-
procedurally. In this work, we focus on the validation of must summaries that are in-
traprocedural (SAGE classifies summaries as intraprocedural or not at generation time).
Intraprocedural summaries that cannot be validated by Phase 1 are further examined by
the more precise Phases 2 and 3. For each of those, we conservatively translate the x86
assembly code of the function containing the summary to a function in the Boogie input
language, and use the Boogie verifier (which uses the Z3 SMT solver) to validate the

Functions with Changes Summaries
Benchmark Functions M % M IM % IM U % U IU % IU (Intraprocedural)
ANI 6978 703 10% 3130 45% 2340 34% 5174 74% 286
GIF 13897 712 5% 4370 31% 3814 27% 8827 64% 288
JPEG 20357 623 3% 6150 30% 7463 37% 12184 60% 517

Fig. 3. Benchmark characteristics.

summaries using the Phase 2 or Phase 3 checks. Finally, our tool maps the lp and lq
locations of every validated summary from the old program to the new program.

Unfortunately, Boogie currently does not generate a VC if the function under anal-
ysis has an irreducible control-flow graph [1], although the theory handles it [3]. A
function has an irreducible control-flow graph if there is an unstructured loop with mul-
tiple entry points into the loop. Such an unstructured loop can arise from two sources:
(i) x86 binaries often contain unstructured goto statements, and (ii) we add a goto lp
statement in Phases 2 and 3 that might jump inside a loop. Such irreducible graphs
appear in roughly 20% of the summaries considered in this section. To circumvent
this implementation issue, we report experimental results in those cases where such
loops are unrolled a constant number of times (four times). Although we have manually
checked that many of these examples will be provable if we had support for irreducible
graphs, we can treat those results to indicate the potential of Phase 2 or Phase 3: if their
effectiveness is poor after unrolling, it can only be worse without unrolling.

8.2 Benchmarks

Table 3 describes the benchmarks used for our experiments. We consider three image
parsers embedded in Windows: ANI, GIF and JPEG. For each of these, we ran SAGE
to generate a sample of summaries. The number of DLLs with summaries for the three
benchmarks were 3 for ANI, 4 for GIF, and 8 for JPEG. Then, we arbitrarily picked a
newer version of each of these DLLs; these were between one and three years newer
than the original DLLs. The column “Functions” in Table 3 denotes the total number
of functions present in the original DLLs. The columns marked “M”, ”IM”, ”U” and
”IU” denote the number of functions that are “Modified”, “Indirectly Modified” (i.e.,
calling a modified function), “Unknown” (i.e., calling a function in an unknown DLL
or through a function pointer) and “Indirectly Unknown”, respectively. The table also
contains the percentage of such functions over the total number of functions. Finally, the
“Summaries” column denotes the number of summaries classified as intraprocedural.
For all three benchmarks, most summaries generated by SAGE are intraprocedural.

Although these benchmarks have a relatively small fraction of modified functions
(between 3% – 10%), the fraction of functions that can transitively call into these func-
tions can be fairly large (between 30% – 45%). The impact of unknown functions is
even more significant, with most functions being marked U or IU. Note that any call to
a M, IM, U or IU function would be marked as modified in Phase 1 of our validation
algorithm (Section 3). Although we picked two versions of each benchmark separated
by more than a year, we expect the most likely usage of our tool to be for program
versions separated only by a few weeks.

Benchmark # Summ Phase 1 Phase 2 Phase 3 All
% time # % time # % time # % time

ANI 286 167 58% 8m (3m) 244 85% 37m 86 30% 42m 256 90% 87m
GIF 288 198 69% 12m (4m) 264 92% 23m 90 31% 35m 274 95% 70m

JPEG 517 317 61% 18m (6m) 487 94% 31m 173 33% 37m 501 97% 86m

Fig. 4. Different phases on all the intraprocedural summaries.

8.3 Results

The three tables (Fig. 4, Fig. 5 and Fig. 6) report the relative effectiveness of the differ-
ent phases on the previous benchmarks. Each table contains the number of intraproce-
dural summaries for each benchmark (“# Summ”), the validation done by each of the
phases, and the overall validation. For each phase (and overall), we report the number of
summaries validated (“#”), the percentage of the total number of summaries validated
(“%”) and the time (in minutes) taken for the validation. The time reported for Phase 1
includes the time taken for generating the modified instructions interprocedurally, and
mapping the old summaries to the new code; the fraction of time spent solely on vali-
dating the summaries is shown in parenthesis. The failure to prove a summary valid in
Phase 2 or Phase 3 could be the result of a counterexample, timeout (100 seconds per
summary), or some internal analysis errors in Boogie.

Figure 4 reports the effect of passing all the intraprocedural summaries indepen-
dently to all the three phases. First, note that the total number of summaries validated is
quite significant, between 90% and 97%. Phase 1 can validate between 58%–69% of the
summaries, Phase 2 between 85%–94% and Phase 3 between 30%–33%. Since Phase 1
is simpler, it can validate the summaries the fastest among the three approaches. The
results also indicate that Phase 2 has the potential to validate significantly more sum-
maries than Phase 1 or Phase 3. After a preliminary analysis of the counterexamples
for Phase 3, its imprecision seems often due to the partiality of must summaries (see
Section 6): many must summaries do not capture enough constraints on states to enable
their validation using Phase 3.

To understand the overlap between the summaries validated by each phase, we re-
port the results of the three phases in a “pipeline” fashion, where the summaries vali-
dated by an earlier phase are not considered in the later stages. In all the configurations,
Phase 1 was allowed to go first because it generates information required for running
Phase 2 and Phase 3, and because it is the most scalable as it does not involve a program
verifier. The invalid summaries from Phase 1 are passed either to Phase 2 first (Figure 5)
or to Phase 3 first (Figure 6).

The results indicate that the configuration of running Phase 1, followed by Phase 2
and then Phase 3 is the fastest. The overall runtime in Figure 5 is roughly half than the
overall runtime in Figure 4. Note that the number of additional summaries validated by
Phase 3 beyond Phases 1 and 2 is only 1%–4%.

On average from Figure 5, it takes about (43 min divided by 256 summaries) 10
secs to statically validate one summary for ANI, 6 secs for GIF and 5 secs for JPEG.
In contrast, the average time needed by SAGE to dynamically re-compute a summary

Benchmark # Summ Phase 1 Phase 2 Phase 3 All
% time # % time # % time # % time

ANI 286 167 58% 8m 77 27% 29m 12 4% 6m 256 90% 43m
GIF 288 198 69% 12m 73 25% 15m 3 1% 1m 274 95% 28m

JPEG 517 317 61% 18m 179 35% 18m 5 1% 5m 501 97% 41m

Fig. 5. Pipeline with Phase 1, Phase 2 and Phase 3.

Benchmark # Summ Phase 1 Phase 3 Phase 2 All
% time # % time # % time # % time

ANI 286 167 58% 8m 30 10% 12m 59 21% 27m 256 90% 47m
GIF 288 198 69% 12m 25 9% 7m 51 18% 12m 274 95% 31m

JPEG 517 317 61% 18m 52 10% 14m 132 26% 14m 501 97% 46m

Fig. 6. Pipeline with Phase 1, Phase 3, Phase 2.

from scratch is about 10 secs for ANI, 70 secs for GIF and 100 secs for JPEG. Statically
validating summaries is thus up to 20 times faster for these benchmarks.

9 Related Work

Compositional may static program analysis has been amply discussed in the litera-
ture [26]. A compositional analysis always involves some form of summarization. In-
cremental program analysis is also an old idea [8, 25] that nicely complements com-
positionality. Any incremental analysis involves the use of some kind of “derivation
graph” capturing inference interdependencies between summaries during their compu-
tation, such as which lower-level summary was used to infer which higher-level sum-
mary. While compositional interprocedural analysis has now become mainstream in
industrial-strength static analysis tools (e.g., [21]) which otherwise would not scale to
large programs, incremental algorithms are much less widely used in practice. Indeed,
those algorithms are more complicated and often not really needed as well-engineered
compositional static analysis tools can process millions of lines of code in only hours
on standard modern computers.

The purpose of our general line of research is to replicate the success of compo-
sitional static program analysis to the testing space. In our context, the summaries we
memoize (cache) are symbolic test must summaries [2, 13] which are general input-
dependent pre/postconditions of a-priori arbitrary code fragments, and which are repre-
sented as logic formulas that are used by an SMT solver to carry out the interprocedural
part of the analysis. Because test summaries need to be precise (compared to those
produced by standard static analysis) and are generated during an expensive dynamic
symbolic execution of large whole programs, incrementality is more appealing for cost-
reduction in our context.

The algorithms presented in Sections 3 and 4 have the general flavor of incremental
algorithms [25], while the graph formed by superposing path constraints and used to

recompute invalidated summaries in Section 7 corresponds to the “derivation graph”
used in traditional incremental compositional static-analysis algorithms. However, the
details of our algorithms are new due to the specific nature of the type of summaries we
consider.

The closest related work in the testing space are probably techniques for regres-
sion test selection (e.g., see [19]) which typically analyze test coverage data and code
changes to determine which tests in a given test suite need to be re-executed to cover
newly modified code. The techniques we use in Phase 1 of our algorithm are similar,
except we do not record coverage data for each pair lp and lq as discussed at the begin-
ning of Section 3. There is a rich literature on techniques for static and dynamic change
impact analysis (see [27] for a summary). Our Phase 1 can be seen as a simple instance
of these techniques, aimed at validating a given must summary. Although more sophis-
ticated static-analysis techniques (based on dataflow analysis) have been proposed for
change impact analysis, we are not aware of any attempt to use verification-condition
generation and automated theorem proving techniques like those used in Phase 2 and
Phase 3 for precise checking of the impact of a change. The work on differential sym-
bolic execution (DSE) [24] is the closest to our Phase 3 algorithm. Unlike DSE, we do
not summarize paths in the new program to compare those with summaries of the old
program; instead, we want to avoid recomputing new summaries by reusing old ones as
much as possible.

Must abstractions are program abstractions geared towards finding errors, which
dualize may abstractions geared towards proving correctness [15]. Reasoning about
must abstractions using logic constraint solvers has been proposed before [7,15,18,20,
22], and are related to Phase 3 in our work.

10 Conclusions

In this work, we formulated the problem of statically validating must summaries to
make compositional dynamic test generation more incremental. We described three ap-
proaches for validating must summaries, that differ in their strengths and weaknesses.
We outlined the subtleties involved in using an off-the-shelf verification-condition-
based checker for validating must summaries, and the impact of partial predicates on
precision. We presented a preliminary evaluation of these approaches on a set of repre-
sentative intraprocedural summaries generated from real-world applications, and demon-
strated the effectiveness of static must summary checking. We plan to evaluate our tool
on a larger set of summaries and benchmarks, investigate how to validate interprocedu-
ral summaries, and improve the precision of the path-sensitive analysis.

References

1. A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques and Tools. Addison-
Wesley, 1986.

2. S. Anand, P. Godefroid, and N. Tillmann. Demand-Driven Compositional Symbolic Execu-
tion. In Proceedings of TACAS’2008 (14th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems), volume 4963 of Lecture Notes in Computer
Science, pages 367–381, Budapest, April 2008. Springer-Verlag.

3. M. Barnett, B. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie: A modu-
lar reusable verifier for object-oriented programs. In Formal Methods for Components and
Objects (FMCO ’05), LNCS 4111, pages 364–387, 2005.

4. M. Barnett and K. R. M. Leino. Weakest-precondition of unstructured programs. In Program
Analysis For Software Tools and Engineering (PASTE ’05), pages 82–87, 2005.

5. W. Bush, J. Pincus, and D. Sielaff. A static analyzer for finding dynamic programming errors.
Software Practice and Experience, 30(7):775–802, 2000.

6. C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler. EXE: Automatically
Generating Inputs of Death. In ACM CCS, 2006.

7. S. Chandra, S. J. Fink, and M. Sridharan. Snugglebug: A Powerful Approach to Weakest
Preconditions. In Proceedings of PLDI’2009 (ACM SIGPLAN 2009 Conference on Pro-
gramming Language Design and Implementation), Dublin, June 2009.

8. C. L. Conway, K. S. Namjoshi, D. Dams, and S. A. Edwards. Incremental algorithms for
inter-procedural analysis of safety properties. In CAV, pages 449–461, 2005.

9. M. Das, S. Lerner, and M. Seigle. ESP: Path-Sensitive Program Verification in Polynomial
Time. In Proceedings of PLDI’02 (2002 ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation), pages 57–69, 2002.

10. L. de Moura and N. Bjorner. Z3: An Efficient SMT Solver. In TACAS ’08: Tools and
Algorithms for the Construction and Analysis of Systems, 2008.

11. E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs.
Communications of the ACM, 18:453–457, 1975.

12. A. Edwards, A. Srivastava, and H. Vo. Vulcan: Binary transformation in a distributed envi-
ronment. Technical report, MSR-TR-2001-50, Microsoft Research, 2001.

13. P. Godefroid. Compositional Dynamic Test Generation. In Proceedings of POPL’2007 (34th
ACM Symposium on Principles of Programming Languages), pages 47–54, Nice, January
2007.

14. P. Godefroid. Software Model Checking Improving Security of a Billion Computers. In Pro-
ceedings of SPIN’2009 (16th International SPIN Workshop on Model Checking of Software),
page 1, Grenoble, June 2009.

15. P. Godefroid, M. Huth, and R. Jagadeesan. Abstraction-based Model Checking using Modal
Transition Systems. In Proceedings of CONCUR’2001 (12th International Conference on
Concurrency Theory), volume 2154 of Lecture Notes in Computer Science, pages 426–440,
Aalborg, August 2001. Springer-Verlag.

16. P. Godefroid, N. Klarlund, and K. Sen. DART: Directed Automated Random Testing. In
Proceedings of PLDI’2005 (ACM SIGPLAN 2005 Conference on Programming Language
Design and Implementation), pages 213–223, Chicago, June 2005.

17. P. Godefroid, M. Levin, and D. Molnar. Automated Whitebox Fuzz Testing. In Proceed-
ings of NDSS’2008 (Network and Distributed Systems Security), pages 151–166, San Diego,
February 2008.

18. P. Godefroid, A. Nori, S. Rajamani, and S. Tetali. Compositional May-Must Program Anal-
ysis: Unleashing The Power of Alternation. In Proceedings of POPL’2010 (37th ACM Sym-
posium on Principles of Programming Languages), Madrid, January 2010.

19. T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and G. Rothermel. An Empirical Study
of Regression Test Selection Techniques. ACM Transactions on Software Engineering and
Methodology (TOSEM), 10(2):184–208, Apr. 2001.

20. A. Gurfinkel, O. Wei, and M. Chechik. Yasm: A Software Model Checker for Verification and
refutation. In Proceedings of CAV’2006 (18th Conference on Computer Aided Verification),
volume 4144 of Lecture Notes in Computer Science, pages 170–174, Seattle, Aug. 2006.
Springer-Verlag.

21. S. Hallem, B. Chelf, Y. Xie, and D. Engler. A System and Language for Building System-
Specific Static Analyses. In Proceedings of PLDI’02 (2002 ACM SIGPLAN Conference on
Programming Language Design and Implementation), pages 69–82, 2002.

22. J. Hoenicke, K. R. M. Leino, A. Podelski, M. Schaf, and T. Wies. It’s doomed; we can prove
it. In Proceedings of 2009 World Congress on Formal Methods, 2009.

23. D. Molnar, X. C. Li, and D. Wagner. Dynamic test generation to find integer bugs in x86
binary linux programs. In Proc. of the 18th Usenix Security Symposium, Aug 2009.

24. S. Person, M. B. Dwyer, S. G. Elbaum, and C. S. Pasareanu. Differential symbolic execution.
In SIGSOFT FSE, pages 226–237, 2008.

25. G. Ramalingam and T. Reps. A Categorized Bibliography on Incremental Algorithms. In
Proceedings of POPL’93 (20th ACM Symposium on Principles of Programming Languages),
pages 502–510, Charleston, 1993. ACM Press.

26. T. Reps, S. Horwitz, and M. Sagiv. Precise Interprocedural Dataflow Analysis via Graph
Reachability. In Proceedings of POPL’95 (22nd ACM Symposium on Principles of Pro-
gramming Languages), pages 49–61, New York, NY, 1995. ACM Press.

27. R. A. Santelices, M. J. Harrold, and A. Orso. Precisely detecting runtime change interactions
for evolving software. In International Conference on Software Testing, Verification and
Validation (ICST), pages 429–438. IEEE Computer Society, 2010.

28. Satisfiability Modulo Theories Library (SMT-LIB). Available at
http://goedel.cs.uiowa.edu/smtlib/.

