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Abstract—We consider the downlink of a cellular network
supporting data traffic in which each user is equipped with the
same type of 802.11-like WLAN or WPAN interface, used to
relay packets to further users. We are interested in the design
guidelines for such networks and how much capacity improve-
ments can the additional relay layer bring. A first objective is to
provide a scheduling/relay strategy that maximizes the network
capacity. Using theoretical analysis, numerical evaluation and
simulations, we find that, when the number of active users is
large, the capacity-achieving strategy divides the cell into two
areas: one closer to the base-station where the relay layer is
always saturated and some nodes receive traffic through both
direct and relay links, and the further one where the relay is
never saturated and the direct traffic is almost nonexistent. We
also show that it is approximately optimal to use fixed relay link
lengths, and we derive this length. We show that the obtained
capacity is independent of the cell size (unlike in traditional
cellular networks). Based on our findings we propose simple,
decentralized routing and scheduling protocols. We show that in
a fully saturated network our optimized protocol substantially
improves performance over the protocols that use naive relay-
only or direct-only policies.

I. I NTRODUCTION

A. Cellular Networks with Relays

Wireless cellular networks operate on expensive licensed
frequencies and their bandwidth is a scarce resource limited
by regulations. Recently there has been a lot of interest in
increasing the capacity of cellular networks using an additional
wireless physical layer that operates on an unlicensed fre-
quency band. New generations of mobile devices are already
equipped with WLAN (wireless local-area network) or WPAN
(wireless personal-area network) interfaces and the question
that arises is whether one can use the available relay structure
to improve the service of cellular networks.

In this paper we consider such a scenario and assume that
mobile nodes and the base-station (BS) are equipped with
an additional relay adapter. The BS can communicate with a
mobile node using adirect link (transmission over the cellular,
high-power, expensive frequency) or relaying over one or
several mobile nodes usingrelay links (over the unlicensed,
low-power frequency). A direct and a relay link use different
frequencies, hence they can be used simultaneously by a node.

A typical relay technology we have in mind is 802.11
WLAN. The physical layer of 802.11 allows a source and a
destination to adapt their communication rate. A source selects
an appropriate rate to transmit a packet depending on the link
quality and the level of interference at the receiver. If thelink
quality degrades during the packet transmission, the packet is
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lost and has to be retransmitted. In order to guarantee some
link quality, 802.11 MAC introduces the RTS/CTS mechanism
that prevents nodes in the neighborhood to interfere with an
ongoing transmission. The size of this exclusion area depends
on the transmission power of RTS and CTS signaling packets.
Many of the existing WLAN and WPAN technologies (e.g.
802.11, 802.15.4) are based on the design principles described
above. In this work we shall consider technologies using these
principles. Furthermore, we assume all nodes possess the same
type of relay interface.

In this paper, we consider downlink data traffic only (uplink
traffic requires a different analysis; see e.g. [1]). The downlink
traffic has to be carried from the BS to the users, either using
direct transmissions from the BS or relays capabilities. The
key component of the system is then the resource allocation
strategy, which consists of a scheduling scheme sharing the
BS resources, and a routing / scheduling scheme to exploit
relay capabilities. Our goal is to design optimal scheduling
and relay strategies.

B. Related work

Augmenting a cellular network with relays is not a novel
concept. Some of the first papers that proposed this kind
of architecture are [2], [3], [4]. In [2], the authors suppose
that mobile nodes cannot relay and introduce dedicated relays
which use unlicensed frequencies in order to improve the
capacity. In [3], the authors assume mobile nodes themselves
dispose of WLAN interfaces, and provide a routing protocol
that finds and maintains relay routes. In [4], [5], small net-
works with 1-hop relays are considered.

Scheduling algorithms for relay networks are discussed in
[6], [7]. In [6], the authors discuss several simple scheduling
schemes. More advanced scheduling techniques are considered
in [7]. There, as opposed to the other related work, it is
supposed that the BS and the relays use the same frequency
band. Consequently, the BS transmits only to the nearest
nodes, and the others receive relay traffic only. Relaying for
uplink traffic is considered in [1] which discusses a similar
routing problem.

What is common for all the proposed relay protocols is that
none of them is based on the objective to maximize a certain
network-wide performance criterion. Instead, they are based
on a simple local heuristic that considers relaying only for
those nodes whose direct communication with the BS is of
very low quality. That way one node will never receive traffic
from both relay and direct links. Typically, closer nodes will
receive trafficonly directly, and distant nodesonly over relay
links.
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A large number of papers analyze the optimal resource
allocation schemes for multi-hop wireless networks (e.g. [8],
[9], [10], [11]). The underlying optimization problem has
exponential complexity and the results cannot be directly used
for implementation purposes. A cellular network with relays
can be regarded as a special case of a multi-hop wireless
network. We use its specific structure to simplify some of the
proposed models and algorithms for multi-hop networks.

C. Contributions

In this paper, we wish to propose resource allocation strate-
gies that combine high efficiency and manageable complexity.
Specifically we characterize resource allocation strategies that
maximize the networkcapacity defined as a weighted total
throughput of a cell – refer to Section II.B for a precise
definition. We formulate this problem as an optimization
problem.

The optimization problem is difficult to solve in general. We
first focus on a one-dimensional problem. We find an upper
bound on the optimal solution of the one-dimensional problem
(Section III-B), with several simplifying assumptions (fixed
link lengths, no fading, large number of users). We show that
this upper bound corresponds to the optimal strategy when the
traffic is equally spread across the cell.

We next turn to a two-dimensional case, and we consider
the same simplifying assumptions as previously (fixed link
lengths, no fading, large number of users). With an additional
approximation on the scheduling constraints (Section III-D)
we are able to find an upper bound on the optimal solution of
the problem in a 2D scenario.

From the above optimization problem and the structure of
the solutions we obtain two important protocol design insights

• We show that the upper bound on the capacity remains
constant, independent of the cell size, which is in contrast
with cellular networks with no relay where the capacity
decreases exponentially.

• The optimal scheduling (MaxRelay, illustrated in Fig-
ure 1) divides a cell into two regions. The first region,
around the BS, is such that the relay channel is fully
saturated. Nodes in this region may receive trafficboth
from relays and directly from the BS, which contrasts
with previously proposed relay protocols [7], [5], [3], [4].
In the other region, the relay channel is never saturated,
and there is no direct traffic to users.

Inspired by the key characteristics of the optimal resource
sharing strategy obtained in the simplified scenario, we de-
sign simple decentralized scheduling and routing schemes
that perform very well in more realistic network conditions
(channels with fading, finite number of nodes). We first verify
numerically that it is indeed almost optimal in the one-
dimensional problem to use links of fixed length, and we
conjecture that this fixed link length corresponds to the one
that maximizes transport capacity (Section III-C), both inthe
1D and the 2D cases. We use these finding to build a routing
algorithm.

Although our scheduling and routing schemes are in no way
optimal, we show that in a uniformly loaded, saturated network

they offer a significant improvement in terms of capacity as
compared to the conventional direct transmissions and to a
naive, relay-only case when the direct traffic is scheduled
only to the nodes nearest to the BS (this mimics [7] for two
frequencies). This improvement is even larger when a low-rate
WPAN is used instead of WLAN as a relay network.

D. Organization of the Paper

In the following section, we precisely define the modeling
assumptions and the performance objectives. In Section III,
we characterize the resource allocation schemes maximizing
the capacity of networks with relays under several simplify-
ing assumptions (ideal scheduling, no fading, large number
of nodes). We first analyze 1D networks with fixed relay
link lengths in Section III-B, we extend the analysis to the
case of variable relay link lengths in Section III-C, and
in Section III-D we present a heuristic to generalize our
findings to 2D networks. We propose a decentralized routing
and scheduling protocol in Section IV and we evaluate its
performance in Section V.

II. M ODELS AND OBJECTIVES

We consider the downlink of a single cell whose transmis-
sion resources (power and bandwidth) are shared by a fixed
population of data flows. Each flow is characterized by the
position of the corresponding user. Denote byC the set of
locations in the cell, and byN ⊂ C the set of locations of
users with active flows. Without loss of generality, we assume
no two users are at the exactly same location. We will consider
both 1D linear or 2D cells.

Variable Explanation
τ(x) fraction of time BS servers locationx
τr(s, d) fraction of time the node at locations relays to

the node at locationd
Cd(x) PHY rate at which BS serves locationx
t(x) = 1/Cd(x) the time needed to send a unit of data to location

x
Cr(Dr) PHY rate of a relay link of lengthDr

φd(x) = Cd(x)τ(x) average rate at which BS serves locationx
φr(s, d) = Cr(d −
s)τr(s, d)

average rate at which the node at locations
relays to the node at locationd

ρ cell throughput
p(x) fraction of cell throughput received at location

x
ρ(x) = ρp(x) total traffic destined to the user at locationx.

TABLE I
L IST OF VARIABLES USED IN THE MODELS

A. Radio Resources

We next describe the two types of radio resources that can
be used to serve the various data flows (recall that they use
different frequencies and can be used simultaneously).

1) Direct Transmissions from the BS:We assume that the
BS transmits at full power and serves only one user at a time.
The service rate of a user at locationx if scheduled by the BS
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is denoted byCd(x). This rate is a function of the SINR at the
receiver and can be well-approximated by Shannon formula:

Cd(x) = W1 log2(1 +
PBS|x|−αBS

N1
), (1)

where |x| is the distance from locationx to the BS,PBS is
the BS’s transmission power,αBS is the attenuation exponent
and N1 is the white noise power. This assumption is quite
realistic (up to a multiplicative factor) for example in thecase
of CDMA 1Ev-Do or UMTS/HSDPA systems. We assume
there is a direct uplink channel, used for signaling (scheduling,
acknowledgments, etc.). In order to simplify the exposition, we
will denote with t(x) = 1/Cd(x) the time needed to send a
unit of data to locationx.

2) Relay Capabilities: The relay channel considered is
based on the design principles of 802.11 MAC/PHY (neverthe-
less, our model is valid for most of other WLAN and WPAN
physical layers that are designed on the same principles). It
supports variable transmission rates. If a signal, coded for a
given rate, is received at an SINR below the corresponding
threshold, the packet is lost.

In order to control the interference at the receivers, we
use the idea of the RTS/CTS signaling. A node willing to
transmit a packet first sends an RTS message, the receiver
answers by sending a CTS message. This procedure ensures
that no other node will start transmitting in an area around the
transmitter and the receiver. For simplicity, we assume that
this area consists of all positions at a distance less thanD
from the transmitter or the receiver. We denote byI(l) the set
of links that are disabled by the RTS/CTS procedure1 initiated
by the transmitter and the receiver of linkl.

We assume that relay nodes transmit at full power (denoted
byPRELAY). PRELAY is assumed to be identical for all nodes.
The choice of full power has been extensively justified in the
literature on rate-adaptive, multi-hop networks, see e.g.[12],
[13], [14].

For a given link we need to choose coding rateCr as a
function of link lengthl. Packet retransmissions are expensive,
and it is important to choose a sufficiently low rate to avoid
packet errors. We will choose

Cr(l) = W2 log2

(

1 +
PRELAYl−α

N2 + kPRELAYD−α

)

, (2)

wherek is a margin factor guaranteeing low packet error rate.
This factor is an approximation that quantifies the maximum
interference generated by other active relay nodes such that
the packet error rate on the link considered remains negligible.
We assume it is predefined by a given WLAN’s rate adaptation
protocol (e.g.k = 3).

B. Performance objectives

The users perceive performance through the long-term rate
at which their flow is served. In the following, we denote by
ρ(x) the long-term rate of a flow whose corresponding user is

1SetI(l) includes linkl itself and all the links that share a common node
with link l.

located atx ∈ N . We define the cell capacity or throughput
by ρ =

∑

x∈N ρ(x).
The goal of the network operator is typically to maximize

the revenue of its network [15]. With the revenue in mind, the
operator assigns different priority to users at different locations
to strike the right balance between the total traffic transmitted
and the perceived network quality for users at different loca-
tions (fairness). We assume each user is guaranteed a fraction
of throughputp(x) that is a function of its distance to the
base station. Functionp(x) is defined by the operator. This is
along the lines of HDR design [16], which assigns different
weights to users with different data rates (and the data rateis
proportional to the distance from the base station).

We target an allocation of resources maximizing the total
throughput, such that each user at distance atx is guaranteed
a fractionp(x) of total throughput. In other words, we want
to solve:

max ρ, s.t. ∀x, ρ(x) = ρp(x).

The solutionρ? of the above optimization problem is referred
to as thecapacityof the system. Playing with the throughput
fractionsp(x) allows to tune the trade-off between fairness
and efficiency. For example, uniformp(x) (p(x) = 1 for all
x) corresponds to max-min fairness, whereas havingp(x) =
1/(0.1 + x) leads to more efficient but less fair strategy.

We will also make the following assumption onp(x)
throughout the paper:

Assumption 1:Functionp(x) is non-increasing in|x|.
This assumption means that we provision less traffic for
distant nodes, as serving them costs more, which is perfectly
reasonable in a uniformly loaded cellular system (c.f. [16]).

III. O PTIMAL RESOURCESALLOCATIONS

Identifying an optimal resource allocation proves extremely
difficult in general and we start by introducing a set of
simplifying assumptions:

Assumption 2:We assume a fluid queuing model. Also, we
assume that the cell is uniformly and heavily loaded: there is a
receiver/relay in each small square of size∆x. Each receiver
has an unlimited download demand and it is being served with
a rateρ(x)∆x. We further assume that∆x is sufficiently small
that we can approximate our model with the continuous model.

In practice, we can assume that∆x is sufficiently small
when the data ratesCr(y) and Cd(y) are do not vary sig-
nificantly for y ∈ (x, x + ∆x), for all valuesx of interest.
A non-uniform traffic can be modelled through the function
p(x).

The optimal allocation obtained from the simplified model,
using Assumption 2, gives us an upper bound on the capacity.
As illustrated later in Section IV, it also provides important
insights on how to design optimal resource sharing strategies
in real systems (accounting for fading, stochastic queuing
dynamics and cells with a finite number of relays).

A. Scheduling and Relay Policies

We now provide a model to describe how radio resources
can be shared by active users.
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1) Scheduling BS resources:The BS shares its power in
time between active users. We denote byτ(x) the proportion
of time the BS serves a user at positionx ∈ N . For example,
in the Proportional Fair Scheduler of the CDMA 1Ev-DO
standard,τ(x) is inversely proportional to the feasible rate at
positionx, Cd(x). A feasible scheduling policy is such that:

∑

x∈N
τ(x) ≤ 1. (3)

2) Relay policies:In the following we denote byL ⊆ N 2 a
set of possible relay links (those whose rate is larger than some
minimum). To describe a relay policy, we first define the notion
of transmission profile. A profilej is a set of simultaneously
active relay links:j = {(s1, d1), . . . , (sp, dp)}. Profile j is
feasible if and only if the distance between any pair of nodes
(either(sm, dn), (sm, sn) or (dm, dn) for all m 6= n) is greater
thanD (recall thatD is the size of RTS/CTS region, defined
in Section II). Denote byJ the set of all possible profiles.
A relay policy consists of activating the links from profile
j ∈ J for transmission a proportion of timeτr(j). The relay
constraint then reads:

∑

j∈J
τr(j) ≤ 1. (4)

A simple example of profile in a 1D cell is a set of equidistant
links j = {(iD+ iDr, iD+ 2iDr)i∈IN} whereDr is the link
length andD is the minimal distance between interfering links.

Unfortunately the number of possible profiles explodes
when the number of active users grows, and it then becomes
difficult to identify optimal relay policies. Instead, in our
theoretical analysis we will use the notion of cliques, see e.g.
[9], [17].

Definition 1: A clique is amaximalset of links such that
two links from this set are not allowed to transmit simultane-
ously. Here maximal means that a link can not be added to a
clique without breaking the previous property.

Denote a clique byQ and the set of all cliques byQ. Let
τr(s, d), ((s, d) ∈ L) be the proportion of time nodes sends
relay traffic for noded, τr(s, d) =

∑

j∈J :(s,d)∈j τr(j). As
demonstrated in [9], any feasible relay policy (e.g. policythat
satisfies (4)) has to satisfy the following set of constraints:

∑

(s,d)∈Q

τr(s, d) ≤ 1, ∀Q ∈ Q. (5)

We will first derive an optimal relay policy satisfying
constraints (5). We will then prove that this optimal policy
corresponds to an actual policy, i.e., that it also satisfies
constraints (4).

Let us defineφd(x) = Cd(x)τ(x) to be the rate of traffic
directly sent from the BS to the user at positionx, and
φr(s, d) = Cr(|d−s|)τr(s, d) to be the rate of traffic sent from
the user at positions to the user at positiond. Finally denote
by φ(x) the rate at which a user at positionx is served. Then
a feasible scheduling/relay policy has to satisfy the following
flow conservation constraint:

∑

s:(s,x)∈L
φr(s, x) + φd(x) = φ(x) +

∑

d:(x,d)∈L
φr(x, d). (6)

To summarize characterizing the resource sharing strategy
maximizing the weighted system throughput is equivalent to
solving the following linear program:

max ρ (7)

s.t.
∑

x∈N
τ(x) ≤ 1, (8)

∑

j∈J
τr(j) ≤ 1, (9)

ρp(x) < φd(x) +
∑

s

φr(s, x)−
∑

d

φr(x, d), ∀x, (10)

φd(x) = Cd(x)τ(x), (11)

φr(s, d) = Cr(|d− s|)
∑

j∈J :(s,d)∈j

τr(j), (12)

over τ(x) ≥ 0, τr(j) ≥ 0, ∀x, j. (13)

When one considers the relay constraints based on the notion
of cliques, the above program is modified replacing constraint
(9) by (5), and writingφr(s, d) = Cr(|d− s|)τr(s, d) in (12).

As stated in Assumption 2, in this section we consider
heavily loaded cells and we can replace

∑

by
∫

in the problem
(7).

3) Existing scheduling and relay policies:We will compare
our proposed strategies to two other existing strategies. The
first reference strategy is thedirect policy for which no
relaying is allowed [18] (τr(s, d) = 0 for all s, d). The
second one is the relay-only policy (which we shall call shortly
relay policy), mimicking policy from [7]. It assumes that only
the nodes that do not have any relay in their neighborhood
are directly served by the BS (τ(d) = 0 if there exists
s, (s, d) ∈ L).

In the rest of the section, we derive the optimal resource
sharing strategy in various scenarios. We first consider thecase
of the linear, one-dimensional cell where users are locatedin
[0, R], and where the BS is located at0, with fixed and variable
link sizes (Sections III-B and III-C respectively). Later,we will
extend the analysis to two-dimensional cells (Section III-D).
Notations are summarized in Table I.

B. 1D Cell with Fixed Relay-link Sizes

Consider first the case where the distances between sources
and destinations of relay links are fixed and all equal toDr.
The rate of these links isCr = Cr(Dr) (recall that there are
users everywhere). In Section III-C, we will show that relay
strategies with fixed, but well chosen, relay link size are almost
optimal. We also assume that users at distancex < Dr from
the BS may receive relay traffic from the BS2 (thus, close to
the BS, the relay link sizes can be smaller thanDr).

The constraint limiting the BS transmissions is given by:
∫ R

0

τ(x) dx ≤ 1. (14)

Here the cliques are easy to identify: for all0 < x < R −
D − Dr, the set of linksQ(x) = {(s, s + Dr) | s ∈ [x, x +

2It is reasonable to assume that the BS can also use a (cheap) relay interface
for transmission (the results can easily be generalized to the case when this
is not true.
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D + Dr]} is a clique, and there are no other cliques in the
system3. Intuitively, Q(x) is a clique because adding a link to
the left or to the right would not interfere with all the links
from Q(x). Hence the constraints relative to the cliques are
given by:

∫ x+D+Dr

x

τr(u) du ≤ 1, ∀x ∈ [0, R−D −Dr]. (15)

where4 τr(u) = τr([u − Dr]
+, u). The flow conservation

constraints are:

ρp(x) < Cd(x)τ(x) + Cr(τr(x)− τr(x+Dr)1{x+Dr≤R}).
(16)

To simplify the notation, we defineτ(x) = 0 = τr(x) for
all x < 0 andx > R.

We now define a scheduling/relay scheme that will be
shown to solve (7). The idea of this scheme is that the
weighted cell throughput is strongly limited by users at the
cell boundaries, and hence these users should be served by
relays only. Formally this scheme is defined as follows.

The MaxRelay scheme:Assume that the cell capacityρ?

is known and defineXr by:

Xr = inf(x : ∀y > x,

∫ y+D+Dr

y

τ ′r(u) du < 1), (17)

where τ ′r(x) = ρ?

Cr

∑

i≥0 p(x + iDr)1{x+iDr≤R}. Variable
τ ′r(x) may be interpreted as the proportion of time the user
at locationx should receive relay traffic (from relay the user
located atx −Dr) destined for itself and all its downstream
relay users at locationsx + iDr, i ≥ 0 (as if there were no
direct traffic). The MaxRelay scheme is defined by:

τ?r (x) =

{

τ ′r(x), if x > Xr,
τ ′r(x +D +Dr), if x ≤ Xr.

(18)

τ?(x) =







0, if x > Xr,
t(x)(ρ? + Cr(τ

?
r (x+D +Dr)− τ?r (x))),

if x ≤ Xr.
(19)

Intuitively, (18) means that the relay traffic is carried forward
for x ≤ Xr and (19) corresponds to (16) for a saturated node.
See Figure 1 for illustration.

To complete the definition, the scheme should be such that
it uses all the resources of the BS:

∫ R

0

τ?(x)dx = 1. (20)

To prove the optimality of this scheme, we make the
following assumption:

Assumption 3:Function w(x) = t(|x|) − t(|x| − Dr) is
increasing in|x|.
It can be verified by simple calculations ofw(x) that the
assumption onw(x) is exact when the distance to the BS is not
too small (say less than 100m under usual radio propagation
models); the MaxRelay scheme proves to be almost optimal
even in absence of this assumption.

3A proof of this statement in a more general form is given in Lemma 1.
4where[u−Dr]+ = max(u−Dr, 0)

Theorem 1:Under Assumptions 1, 2 and 3, and assuming
fixed size relay link of sizeDr, the MaxRelay scheme gives
an upper bound on the solution of (7). Moreover, the bound
is tight if p(x) = 1 for all x.
Proof. Denote byρ? the cell throughputρ compatible with
constraints (14)-(16). It is straightforward to prove thatthe
schedulesτ? and τ?r achieving this maximum are such that
the constraints (14) and (16) are saturated. Then we have:
1 = ρ?

∫ R

0
p(x)t(x) dx+Cr

∫ R

0
t(x)(τ?r (x+Dr)−τ?r (x)) dx.

Define t(x) = 0 if x < 0. Now assumingρ? is known,τ?r is
the solution of the following linear program:

LP1 : max
∫ R

0 τr(x)(t(x) − t(x−Dr)) dx

s.t.
∫ x+D+Dr

x
τr(u) du ≤ 1,

Cr(τr(x)− τr(x+Dr)) ≤ ρ?p(x),
τr(x) ≥ 0, ∀x, τr(x) = 0, forx > R.

(21)
Assume first that we know the optimal relay schemeτ?r (x)

for all x > Xr. Then consider the following linear program:

LP2 : max
∫Xr

0 τr(x)(t(x) − t(x−Dr)) dx

s.t.
∫ x+D+Dr

x
τr(u) du ≤ 1,

τr(x) = τ?r (x), for x > Xr.

(22)

If the solution of LP2 satisfies the constraints of LP1, then it
will also be the solution of LP1. Denote byλ(x) the Lagrange
multiplier associated with the first constraint, forx ∈ [0, Xr].
We now identify the term in front ofτr(x) in the Langrangian
of LP2, t(x) − t(x − Dr) −

∫ x

max(x−D−Dr,0)
λ(u) du (we

write t(x) = 0, x ≤ 0). This term must be null whenτr is
the solution of LP2. Since the functiont(x) − t(x − Dr) is
increasing inx we deduce thatλ(x) > 0.

From KKT optimality conditions we conclude that for all
x < Xr,

∫ x+D+Dr

x
τr(u) du = 1, which further implies that:

τr(x) = τr(x+D+Dr) for all x < Xr. The obtained solution
satisfies constraints of LP1 (due to the assumption thatp(x) ≥
p(x + D + Dr)), so it must be the solution of LP1. Hence
we have proved that LP1 is equivalent to the following linear
program.

LP3 : max
∫ R

0 τr(x)(t(x) − t(x−Dr)) dx
s.t. τr(x) = τr(x+D +Dr), ∀x < Xr,

Cr(τr(x)− τr(x+Dr)) ≤ ρ?p(x),
τr(x) ≥ 0, ∀x, τr(x) = 0, forx > R.

(23)
Now one can easily verify that the solution of LP3 satisfies
τ?r (x) = τ ′r(x) for all x ≥ Xr.

Finally we need to show that the MaxRelay scheme can
actually be realized forp(x) = 1, since constraints relative
to the cliques provide an upper bound on the feasible rate
region. However, it is easy to see that a simple symmetric
schedule, where nodesD+Dr far apart are scheduled at the
same time (see the example in Section III-A1) can implement
the MaxRelay scheme, which concludes the proof. 2

We illustrate the MaxRelay scheme in Figure 1. Immedi-
ately, we have:

Corollary 1: In the MaxRelay policy there exist two re-
gions. The first one is forx < Xr, and in this region the relay
PHY is fully saturated (all cliques are saturated forx < Xr,
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Fig. 1. Examples of optimal scheduling/relay schemes for fixed link lengths (Dr = 30m, D = 100m). We consider 1D cell of 1km and different throughput
fractionsp(x) = 1 (left) andp(x) = 1/(0.1 + x) (right). The achieved goodput density isρ? = 12.2kbps/m. Solid vertical line denotesXr. Average relay
traffic is averaged over each clique[x, x+ D +Dr ], and it is saturated forx < Xr. Periodic peaks of direct traffic correspond to the periodicincrease in
relay traffic and it occurs at everyD +Dr = 130m, as predicted by MaxRelay scheme (19).

that is
∫ x+D+Dr

x
τr(u) du = 1), and some nodes in the region

receive both direct and relay traffic. The second region is
beyondXr. For x > Xr the relay PHY is never saturated (no
clique is saturated forx > Xr, that is

∫ x+D+Dr

x
τr(u) du < 1)

and there is no need for direct traffic as it is expensive. Thisis
true regardless of the spatial throughput fractionp(x), although
p(x) does influence the values ofXr andτ ′r(x).
Note finally that the cell capacityρ? is jointly defined with
the MaxRelay scheme. It can be easily computed solving (17)-
(20).

C. 1D Cell with Variable Relay Link Lengths and Rates

Next we relax the restriction on fixed link lengths. We allow
each node to relay over multiple nodes, and we assume that
the rate of each relay link depends on its length, as explained
in Section II-A2. Our goal is to derive the optimal scheduling
strategy and, in particular, the optimal relay routing strategy.

We will proceed as in Section III-B. First, we will identify a
region[0, Xr] in which all cliques are saturated and show that
in the remaining area(Xr, R] no cliques are saturated. Then
we will show that a relay routing using links of a certain fixed
length is close to optimal. We will also specify this optimal
length.

We cannot theoretically prove the results in this section
due to the high complexity of the problem. Instead, we
demonstrate them using numerical simulations. We calculate
the optimal solution by solving the discrete version of linear
program (7)-(13) for 200 equidistant nodes and for different
values of network radiusR, the exclusion area radiusD and
throughput fractionp(x). We then compare this optimal result
with our proposed heuristic (see Figure 2), and verify the
results presented in this subsection.

Before presenting the results, we first need to describe the
cliques in the variable link length setting. Let us denote with
DMAX

r the maximum allowed relay link length.

Lemma 1:The only cliques that exist in this networks are
Q(x) = {(s, d) ∈ [0, R]2 | s ≤ x + D, d ≥ x, 0 ≤ d − s ≤
DMAX

r }, for all x ∈ [0, R−D].
Proof: We first have to show thatQ(x) is a clique, that

is, that every two links inQ(x) block each other and that no
other such link can be added. It is easy to see that for any
two links (s1, d1), (s2, d2) ∈ Q(x) we have thatmin(s1 −
d2, s2 − d1) ≤ D. Furthermore, we need to verify that if a
link (s1, d1) does not belong toQ(x) then it is not blocked
by all links from Q(x). If s1 ≤ d1 < x then link (s1, d1)
is not blocked by(x +D, d), d > x +D, nor the other way
around. If x + D < s1 ≤ d1 then link (s, x), s ≤ x is not
blocked by(s1, d1), nor the other way around.

Finally, we have to show that there exists no other setQ′ 6=
Q(x) for all x, which is a clique. Letx = min{d | (s, d) ∈
Q′}. Then,x +D ≥ max{s | (s, d) ∈ Q′} because otherwise
the two links would not interfere. But the set of points(s, d)
that satisfy constraintsd ≥ x, s ≤ x +D, s ≤ d ≤ s+Dr is
exactlyQ(x) henceQ′ ⊆ Q(z). 2

With the above setting, based on numerical and simulations
results, we conjecture the following.

Conjecture 1:Under Assumptions 1, 2 and 3, there ex-
ists a distance to the base-stationXr > 0 such that
∫

(s,d)∈Q(x)
τr(s, d) dd ds = 1 for all x < Xr. Furthermore,

no node afterXr +D receives direct traffic.
The first part of the conjecture has been verified by simu-

lations. One example is depicted in Figure 2 (a). The second
part of the conjecture follows immediately. Consider nodes
x, y > Xr + D, y < x. Both nodes do not belong to any
saturated clique. Hence, ifφd(x) > 0 we can redirect some of
the direct traffic toy instead, and forward it fromy to x using
relay, since it is not saturated. That way we gain some of the
BS transmission time, which contradicts with optimality.

Conjecture 2:Consider the model under Assumptions 1, 2
and 3. LetDr = argmaxl l · Cr(l), where l · Cr(l) is the
transport capacity of a link of lengthl, as defined in [19]
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(Dr always exists because of the wayCr(l) is chosen). It is
approximately optimal for alld < Xr to use as a relay node
s = min(d − Dr, 0). The optimal relay link length for all
d > Dr is thusDr, and is independent of the location of
noded.

Again, this conjecture is based on a heuristic verified by
simulations. Although we were not able to formally prove it,
we provide below some intuitive explanations to justify it.

Using a similar transformation as inLP1, we can rewrite
the optimization problem (7)-(13) as

LP4 :

max

∫ R

0

∫ d

d−DMAX
r

τr(s, d)w(d, s) ds dd (24)

s.t.

∫

(s,d)∈Q(x)

τr(s, d) dd ds ≤ 1, (25)

(∀x ≤ R)

∫ x

x−Dr

Cr(x− s)τr(s, x) ds−

−
∫ x+Dr

x

Cr(d− x)τr(x, d) dd ≤ ρ?p(x),(26)

w(d, s) = Cr(d− s)(t(d)− t(s)), (27)

τr(s, d) ≥ 0. (28)

Due to the complex constraints, it is not easy to guess what
the solution of this problem is. However, we can see that for
the weight associated to link(s, d) in objective function (24)
is w(d, s) = Cr(d − s)(t(d) − t(s)), and we shall “prefer”
links with higher weight.

Let s(d) = argmaxs w(d, s), be the relay node with the
highest weight with respect to noded. Whend � (d− s(d)),
we havew(d, s) ≈ Cr(d − s)t′(d)(d − s), and we have
d−s(d) ≈ Dr. However, even whend is of the same order as
d−s(d), we verify numerically thatw(d, s(d)) ≈ w(d, d−Dr).
One can interpret the weightw(d, s) as a ratio of time
t(d)− t(s) gained on transmitting one bit using the direct link
to s instead of transmitting it tod, over the time1/Cr(d− s)
needed to relay one bit froms to d. Furthermore, our approx-
imation says that one needs to maximize(d − s)Cr(d − s)
which is the rate times the distance. As already mentioned, this
is exactly the transport capacity as defined in [19], although
in [19] it occurs in a different framework (here, it is a result
of a performance ratio between the two physical layers).

Finally, we verify our heuristic numerically. We solve
problemLP4 using linear programming and we compare the
optimal routing with our routing heuristic. The results are
illustrated in Figure 2. In Figure 2 (b), we see that ford < Xr

the optimal routing corresponds well to our heuristic. For
Xr < d < Xr +D the optimal link lengths become shorter.
This is because the cliqueQ(Xr) is the last saturated clique,
as explained in Proposition 1. Hence for everys ∈ Q(Xr),
it is sufficient to relay data to some node which does not
belong to any saturated clique, that is any noded > Xr +D.
Therefore, link lengths for these nodes tend to be smaller than
Dr. Finally, for d > Xr +D, relay PHY is not saturated any
more hence many routing strategies are possible (including
fixed link lengthsDr).

Dr

D

D +Dr

≈ D

x

ϕ(x)
BS

Fig. 3. An illustration of the schedule: the white circle denotes nodesx <
(D + Dr)

√
3 where we activate one link at a time and the shaded circle

denotes nodes(D + Dr)
√
3 ≤ x < D + Dr from which we activate two

more links, in addition to a link being activated in the innerwhite circle (as
defined in (29)).

We next show that despite of these discrepancies, fixed-
length routing with the optimalDr has a comparable perfor-
mance to the optimal routing. This is illustrated in Figure 2(c),
where we compare the achieved traffic densityρ of the optimal
routing (found by solvingLP4) and the routing with fixed link
lengthsDr for different cell radiiR. We see that the error is
less than10%. Furthermore, we verified numerically that the
same results hold for different traffic density functionsp(x).
We verify them for typical parameters for WLAN and WPAN
physical layers (numerical details are given in Section V).
Finally, the constraints in linear programLP4 are formed
using cliques which represent an upper bound on the actual
performance. On the contrary, the performance of fixed-length
routing is exact, as explained in Section III-B.

D. 2D Networks

Finally, we consider the case where the cell is a disk of
radiusR. Again, we first restrict the analysis to the case of
fixed relay link sizes, and we discuss variable link length case
at the end of the section. As in 1D case, we assume a very
large number of users and each user can count on finding a
relay in any direction at any distance within the cell’s area.

Even with the assumption of fixed link length, deriving
the cell capacity is extremely difficult (for example, it proves
difficult even to identify cliques). We simplify the problem
by the following approximation: we assume only links whose
link destinations are on circles of radiix+k(D+Dr), k ∈ N

may be active at the same time. We next count the maximum
numbernc(x) of links that can be simultaneously activated on
the circle of radiusx. The idea behind the approximation is
to map each circle to a node in the 1D case, and to calculate
the capacity using the results from Section III-B.

When x is large enoughnc(x) can be well-approximated
by b2π/ϕ(x)c where the angleϕ(x) is characterized by
D2 = x2 + (x−Dr)

2 − 2x(x −Dr) cosϕ(x). We can show
that this approximation is tight whenx > (D + Dr)/

√
3

(for x = (D + Dr)/
√
3, using the approximation we can

have 3 simultaneous relay links with receivers at distance
x from the BS). Now whenx < (D + Dr)/

√
3, one can

easily prove that if there is one active relay link with receiver
at distancex from the BS, one may add two relay links
with receivers at distancey(x) from the BS, wherey(x) =
√

(D +Dr)2 + x2 −
√
3x(D +Dr). All this is illustrated in

Figure 3.
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Fig. 2. (a) The optimal traffic distribution (direct vs. relay) for variable link lengths. Relay traffic represents the total relay traffic arriving at noded. The
rest is as in Figure 1. (b) The optimal relay link lengths as a function of destination node position. The dashed line represent the optimal routing according to
our heuristic. The vertical lines denoteXr andXr +D. (c) Relative error ofρ? achieved with fixed routing as compared to the optimal routing for different
traffic densityp(x).

It is then reasonable to consider the following approxima-
tion for nc(x):

nc(x) =







1, if x < (D +Dr)/
√
3,

b2π/ϕ(x)c+ 2, if D+Dr√
3

≤ x < (D +Dr),

b2π/ϕ(x)c, if x ≥ (D +Dr).
(29)

It is important to include the two additional activations of
nodes in order to densify the schedule around the base-station
as this is the most congested area in the relay traffic. Note
that in order to make things tractable we make the additional
approximation that the two additional activations of nodeson
circle y(x) are associated withτr(y(x)) and not withτr(x).

Now assume thatτ is defined so thatτ(x)dx may be
interpreted as the proportion of time the BS is serving all
users on the ring between distancesx andx + dx. Similarly,
define τr so thatτr(x)dx represents the proportion of time
users located on the ring between distancesx andx+dx from
the BS simultaneously receive relay traffic. Note that during
this time the BS servesnx(x) users.

Finally define the throughput fractionp so thatp(x)dx is the
proportion of traffic received by nodes at distances betweenx
and x + dx (note that it does not imply that the throughput
fraction is circular symmetric).

Given the above assumptions, we can find the cell capacity
by solving the following maximization problem (instead of
(7)-(13))

max ρ (30)

s.t.

∫ R

0

τ(x) dx ≤ 1, (31)

∫ min(R,(x+D+Dr))

x

τr(u) du ≤ 1, (∀x ∈ [0, R]) (32)

ρp(x) < τ(x)Cd(x) + Cr(τr(x)nc(x)

− τr(x+Dr)nc(x+Dr)1{x+Dr≤R}), (∀x ∈ [0, R])
(33)

over (τ(x), x ∈ [0, R]), (τr(x), x ∈ [0, R]). (34)

The 2D MaxRelay scheme:As in 1D cells, we define by
τ ′r(x) as the proportion of timenc(x) users at distancex
should receive relay traffic so as to handle all the traffic to

users located at distancex + iDr from the BS,i ≥ 0, using
relays only,τ ′r(x) = ρ?

Crnc(x)

∑

i≥0 p(x + iDr)1{x+iDr≤R}.
Further defineXr as in (17). The 2D MaxRelay scheme is
now defined by (18) and:

τ?(x) =







0, if x > Xr,
t(x)(Cr(nc(x+D +Dr)τ

?
r (x +D +Dr)

+ρ?p(x) − nc(x)τ
?
r (x))), if x ≤ Xr.

(35)
Under the approximate scheduling constraints (32) -(33) and

the assumption that all links are of the constant length, we can
now show that the 2D MaxRelay scheme is capacity optimal.
This is formalized in the following theorem:

Theorem 2:Under Assumptions 1, 2 and 3, and assuming
fixed-size relay links of sizeDr, the 2D MaxRelay scheme,
defined by (18) and (35), gives an upper bound to the solution
to the optimization problem (30)-(34).

The proof of the theorem is analogous to that of Theorem
1. Consequently, we see that the Corollary 1 holds in 2D case
as well.

Finally, we discuss the variable link length case. Since our
problem has circular a symmetric structure, we can assume
that all nodes on a circle will use links of identical length.
Again, we can construct a similar mapping as in the previous
case to map the 2D case to the 1D case. Repeating the
same type of analysis as in Section III-C, we can verify that
the choice of the fixed link length maximizing the transport
capacity is approximately optimal in this case as well.

This result also provides an intuitive justification why we
can assumeD independent ofx. Since a region between
[0, Xr] has a fully saturated relay traffic, it is likely to expect
that the sameD and Dr will be optimal throughout this
saturated region. Formal verification of this assumption isleft
for future work.

IV. ROUTING AND SCHEDULING PROTOCOLS

In this section we propose a routing and scheduling al-
gorithms that are derived as heuristics from the results of
previous sections and related works (e.g. [11], [7]). These
algorithms exploit the benefits that were analyzed in the
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(a)

Nc = BS,Nn = N \ Nc,Lc = ∅,
for Nn 6= ∅

s(d) = argmaxs∈Nc
Cr(|d− s|)|d− s|,

d = argmaxd∈Nd
Cr(|d− s(d)|)|d − s(d)|,

if|d− s(d)| < DMAX
r

Lc = Lc ∪ {(s(d), d)},
end

Nc = Nc ∪ {d},Nn = Nn \ {d}
end

(b)
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Fig. 4. (a) Relay routing algorithm.Nc are the connected nodes,Nn remain to be connected andLc are established links. (b) The optimal scheduling and
routing scheme for an example of a random topology. We consider 2D cell of radius of 0.5km. We assumep(x) = 1 everywhere. The lines represent the
relay traffic (the bolder the line is, the higher is the traffic). The circles represent the direct traffic, and the radii correspond to the intensities. The traffic to
the disconnected subtrees has to be supplied directly. Also, some of the direct traffic is needed to the areas where the relay interface is congested.

previous sections, and they are simple and can be implemented
in a distributed manner.

As discussed in Section III-A, an optimal scheduler maxi-
mizes the weighted system throughput subject to constraints
(3)-(5)-(6). A way to solve this problem is to implement back-
pressure algorithms [11]. However, these algorithms have a
high complexity since the number of possible links (relay
source-destination pairs) is high.

In order to reduce the complexity, we divide the problem
into a routing and a scheduling subproblem. The routing
subproblem chooses which relay links shall be used, and the
scheduling subproblem solves the above optimization problem
constrained on previously selected routes.

A. Routing Subproblem

The routing algorithm is based on the results of Sec-
tion III-C and it is described in Figure 4 (a). Denote byNc

the set of nodes already connected, byNn = N \ Nc the set
of nodes to be connected and byLc the set of chosen links.
The next noded we connect is chosen so as to maximize the
function Cr(|d − s|)|d − s| to any of the already connected
nodess ∈ Nc, whereCr(|d − s|) is the average rate of link
(d, s) over a longer period of time. The candidate source is
labeleds(d). If |d − s(d)| > DMAX

r , whereDMAX
r is the

maximum allowed relay link size, it means that noded does
not receive relay traffic. Nevertheless, it is put inNc as other
nodes may connect to it. The routing tree is finally defined by
Lc upon the completion of the above algorithm. The algorithm
is illustrated in Figure 4 (b). It can easily be implemented in a
distributed manner. Link weights are based on the average
link quality (as it is usually the case), rather than on the
instantaneous link rates to avoid frequent route oscillations.

The variability of the link quality is handled by the scheduling
algorithm.

B. Scheduling Subproblem

Once the routing algorithm provides us with the set of
optimal linksLc, we use a decentralized scheduling algorithm
based on the back-pressure principle (as in [11], [7]), restricted
on the set of linksLc. We assume that the timet = 0, 1, . . . is
slotted. LetQi(j, t) be the number of packets queued at node
i for nodej in slot t. Nodei = 0 represents the BS.

The scheduling algorithm shares the resources of the BS
and of the relay nodes. In each slott the BS sends a packet
to the destination that maximizes

argmax
j∈N

Q0(j, t)Cd(j, t).

To share the relay resources, we use a simple, greedy
scheduler that belongs to a class ofmaximal scheduling
algorithms [20]. The transmission profile used at a given slot
is built iteratively. We start with the following two sets oflinks
(L(0),La(0)) = (Lc, ∅). At stepk, we first identifies a linkl
such that:

l = argmax
(i,j)∈L(k)

Qi(j, t)Cr((i, j), t),

and then we letLa(k + 1) = La(k) ∪ {l} andL(k + 1) =
L(k) \ I(l), whereI(l) is the set of links that interfere withl
(including l). We repeat the process untilL(k) is empty set,
say for example at stepk = kf . The transmission profile to
be used is finallyLa(kf ).
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C. Discussion

Our algorithm is similar in spirit to the scheduling algorithm
in [7]. It is simpler, suboptimal and can easily be implemented
in a distributed manner (e.g. each node sets a back-off timer
proportional to theQi(j, t)Cr((i, j), t); see for example [21]).
One could envisage more sophisticated scheduling algorithms;
we let the design and analysis of such algorithms for the future
work. Also, note that both the relay and the BS scheduling
algorithms are opportunistic in sense that they exploit the
information about the quality of channels.

The major benefit of separating the routing from the
scheduling subproblem is that the set of candidate links in the
scheduling subproblem is significantly reduced. The number
of links is given by the routing protocol isO(N) (instead
of O(N2) without routing constraints), and the scheduling
protocol converges much faster.

Note that the algorithm proposed in this section is by no
means the optimal algorithm for any distribution of users and
traffic. In particular, the route construction is obliviousto the
traffic demand, as it is assumed that the cell is saturated (hence
users demanding traffic are everywhere). The algorithm is an
illustration how we can use the findings from Section III to
simplify the protocol design and reduce the complexity. As we
show in the following section, even such a simple algorithm
improves the performance of a saturated cell, as oppose to the
conventional direct-only and relay-only approaches. Design of
a more robust algorithm is left for future work.

V. NUMERICAL RESULTS

In this section we evaluate the capacity of a single cell
network with relays, using the optimal policy derived in the
previous sections, and we compare its performance with the
direct and relay policies (defined in Section III-A3).

We consider two cases of relay networks. One is WLAN
relay and we take typical 802.11 parameters (transmission
power 100mW, maximum rate54Mbps). The other one is
WPAN relay and we take next generation 804.15.4a parame-
ters (transmission power1mW, maximum rate27Mbps). We
assume the BS transmits at20W and its maximal rate is
10Mbps.

We first look at the optimal resource allocation, as given in
Section III-D. This leads to an upper bound of the capacity that
would be achieved in a system with no fading, a large number
of nodes and that operates a perfect scheduling protocol. Note
that it coincides with the one from [18] when only direct traffic
is used. In Figure 5 (a) we see that the capacity with the direct
policy decreases exponentially (as explained in [18]), whereas
it stays constant with the optimal and relay policies. Due to
high complexity of stochastic simulations presented belowwe
cannot verify the scaling result using our distributed protocols.
Nevertheless, this suggests that relaying can bring significant
performance improvements to a cellular network, provided an
efficient relay protocol.

Next, we analyze the performance of the distributed routing
and scheduling algorithm presented in Section IV. To that
end we implement a discrete event simulator that executes the
algorithm. We draw a random network of a given radius and

of a node density of 250 nodes per km2. We supply a random
traffic to each node in proportion top(x). In order to keep the
network stable we stop injecting any traffic whenever any of
the queues reaches over a threshold. We run the algorithm
until the average normalized goodputρ(x)/p(x) to all the
nodes approaches the same valueρ. We assume that fading
on both direct and relay links is Rayleigh. We implement the
direct policy using back-pressure [11] and we implement the
relay-only policy using our routing and scheduling algorithm
and disabling all direct links (this mimics [7] where only one
frequency is available).

The densities of the direct and the relay traffic for a uniform
and non-uniformp(x) are shown in Figure 6 (a) and (b).
DistanceXr is denoted with a solid vertical line. We see that
the ratio of the two traffic is very close to the prediction given
in Figure 1. For the distances smaller thanXr the direct traffic
is primarily used to reinforce the relay traffic. Vertical dotted
lines denote the locations where the maximum of the direct
traffic correlates with a drop in relay traffic, similarly as in
Figure 1. For the distances larger thanXr the direct traffic
significantly drops. Note that the majority of the direct traffic
consists of the traffic needed to support the disconnected nodes
and subtrees (those that have no direct relay connection to the
base station as illustrated in Figure 4 (b)). The remaining direct
traffic is used to support the relay traffic, and it is significantly
smaller than the goodput, as predicted in Section III.

Figure 6 (c) depicts the average density of queued packets.
We see that due to the back-pressure nature of scheduling the
queue sizes strictly decrease with the distance from the base-
station. Furthermore, queuing information is conveniently used
by BS scheduler to discover where the direct traffic should
reinforce the relay traffic to keep the queue density curve
decreasing.

Figure 5 (b) depicts the cell’s capacity as a function of
cell size and the routing and scheduling policy and Figure 5
(c) gives a relative performance of our policy over the relay-
only one in WLAN and WPAN cases. We see that, although a
practical routing and scheduling policies are far from optimal
(due to suboptimal scheduling and some nodes not being
connected through relays), they still significantly improve the
capacity offered by the direct policy and by the relay-only
policy (that uses only a single frequency). In particular, for the
case of WLAN and WPAN relay networks the performance
can be almost doubled by using our distributed routing and
scheduling policy as oppose to both the direct and the relay-
only policies. Although our policy is not directly comparable
with [6], [7] (they use a single frequency for both relays
and direct links), we demonstrate that the policy we propose
performs significantly better than a naive implementation of
the existing single-channel policies on WLAN/WPAN relays.

We also note that there is a discrepancy between the results
obtained by the model (Figure 5(a)) and by the simulations
(Figure 5(b)). This is due to the node density used in the sim-
ulations. Although simulating 250 nodes per square kilometer
is at the limit of what we can simulate, it is still far from a
saturated network (e.g. a city center of an average town has
much higher density).

Small node density limits the amount of spatial reuse in the
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Fig. 6. (a) Average density of total traffic to nodes at a givendistance from the base-station, for WLAN,R = 0.6km andp1(x) = 1. (b) The same for
WLAN, R = 0.6km andp2(x) = const × 1/(0.1 + x). (c) Average density of queued packets at nodes at a given distance from the base-station, for
p1(x) = 1. We divide the x axis into bins of 20m (disjoint rings) and average over all nodes that fall into the bins. In (a) and (b) theDisconnectedtraffic is
the total traffic using a direct link to the nodes that cannot use relays since they are disconnected. Vertical solid line represent the approximateXr. Vertical
dotted line represent the peaks of the direct traffic that approximately correspond to the lows of the relay traffic.

system. The model from Section III predicts fully saturated
network, hence the optimal spatial reuse. If a possibility for
spatial reuse decreases, the total capacity drops sharply,as
observed in Figure 5(b).

VI. CONCLUSIONS ANDFUTURE WORK

In this paper we have derived an approximately optimal
relay (routing and scheduling) policy that maximizes the cell
capacity using fixed transmission power. We have shown that it
is approximately optimal for relays to use links that maximize
the transport capacity. We have also shown that in many cases,
a node should receive traffic both from the base station and
from a relay, unlike in relay policies proposed by other authors.
We have presented a simple algorithm for calculating an upper
bound cell capacity (assuming high node density, no fading
and the optimal scheduling). Using this bound, we have shown
that the cell capacity with relays stays constant with the cell
size, as opposed to the capacity of a cell without relays that
rapidly decreases with the cell size. We have derived a simple
distributed routing and scheduling algorithms based on the
findings above. Using extensive simulations we have shown
that our optimal strategy largely outperforms other strategies
that use direct links only to the nearest node, as proposed in
the literature. In future we plan to consider the impact of a

bound on a maximum number of relay hops (e.g. due to delay
constraints) and possible inefficiencies of a real scheduleon
the cell capacity. We also intend to evaluate our algorithm on
lightly loaded cells.
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