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Abstract

We present SPADE, a system for quickly and automat-
ically analyzing runtime states of a large collection of
mobile apps. Such tasks are becoming increasingly im-
portant for app stores: e.g., for checking apps’ runtime
security and privacy properties, for capturing and index-
ing data inside apps for better app search, etc. SPADE
uses two key techniques. First, it uses binary instrumen-
tation to automatically insert custom code into app bi-
nary to capture its runtime state. Second, it executes an
instrumented app in a phone emulator and automatically
navigates through various app pages by emulating user
interactions. SPADE employs a number of novel opti-
mizations to increase coverage and speed.

We have implemented three novel applications on
SPADE. Our experiments with 5,300 apps from Win-
dows Phone app store show that these applications are
extremely useful. We also report coverage of SPADE on
these apps and survey various root causes that make au-
tomated execution difficult on mobile apps. Finally, we
show that our optimizations make SPADE significantly
fast, allowing an app store to process up to 3,000 apps
per day on a single phone emulator.

1 Introduction

Mobile apps are becoming increasingly important: there
are more than a million mobile apps available today in
major app stores, with around 15,000 apps being released
per week [6]. In this paper, we make a case for digging
these apps. We define app digging as the process of cap-
turing runtime states or analyzing runtime behaviors of a
large collection of apps, by automatically executing them
and navigating through various parts of the apps.

An app digging system can enable many novel appli-
cations that greatly benefit app stores (or third parties
providing services on large app collections). For exam-
ple, it can enable an App Crawler application that cap-
tures various information apps present to users during
runtime. As we show later, indexing such data in an
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app store’s search engine can significantly increase its
query hit rate, compared to the current practice of in-
dexing app metadata alone (e.g., app name, category, de-
scription, etc.). Another example is an App Compliance
Checker that checks if an app satisfies app store’s privacy
and security policies during runtime. Today, app stores
use mostly-manual or semi-automatic processes for this
purpose. As we show later, such techniques are not thor-
ough and can easily miss many compliance violations.

Large scale app digging is challenging for several
reasons. First, the app digging system needs to auto-
matically execute apps and navigate to various parts of
the apps by simulating necessary user interactions (e.g.,
clicking a button, swiping a page, etc.). The system
needs to understand various Ul controls to interact with
them. For scalability, this needs to be done without any
human in the loop. Second, app stores have app binaries
only. The app digging system needs to capture/analyze
apps’ runtime states without access to source code or any
help from app developers. Moreover, the system should
be flexible so that the app store can use it for various ap-
plications. Third, for scalability, the system should be
as fast as possible. The app store may want to use the
system periodically (e.g., for the App Crawler to capture
contents that change with time) or on demand (e.g., for
the Compliance Checker to see if apps pose a recently
discovered privacy threat)—fast digging can save valu-
able time and resource. This is nontrivial for various rea-
sons. For example, for fast navigation, the system needs
to interact with an app as soon as all processing due to
the last interaction is complete; robust detection of such
completion is challenging due to the asynchronous na-
ture of apps.

Our contributions. We make three contributions in this
paper. First, we describe SPADE (Scalable and Practi-
cal App Digging Engine), a system that we have built to
quickly dig a large collection of apps (§3). SPADE can
take an app binary, automatically launch it, efficiently



navigate it by simulating user interactions and capture
the runtime state of the app. To achieve this, SPADE
instruments the app binaries and employs a tool that au-
tomatically interacts with the instrumented apps running
in a phone emulator. SPADE does not make any modi-
fications to the phone OS or the emulator, and hence is
readily deployable.

We make SPADE scalable with novel optimizations
(§4). In particular, when programs are written in a
highly asynchronous fashion, we show how to reliably
find when all processing initiated by one UI interaction
is finished so that SPADE can capture the correct run-
time state and immediately initiate the next interaction.
We also show how to detect interactable UI controls so
that the system does not waste time interacting with non-
responsive parts of the UL. SPADE also uses several op-
timizations for cases when the same app needs to be
digged repeatedly at different times or with different lo-
cation inputs (§5).

Note that our goal and approach are different from var-
ious recent efforts on automated execution of Android
apps [1, 2, 11, 16]. They aim to help individual develop-
ers to automatically test their apps. In contrast, we aim
to help app stores to perform a wide variety of tasks on
a large collection of app binaries. Thus, unlike existing
work, we aim for scalability—good digging speed and
good coverage for a large variety of third party apps, and
practicality—supporting various types of digging appli-
cations beyond app testing.

Second, to demonstrate the utility of SPADE, we have
built three novel applications (§6): (1) an App Crawler
that captures dynamic content that apps present to users
and indexes it to improve the app store’s search engine,
(2) an Ad Fraud Detector that automatically finds apps
that adopt various unacceptable ways of using ad con-
trols, and (3) a Contextual Ad-keyword Miner that ex-
tracts prominent ad keywords inside apps, to be targeted
with contextual ads. We have run these applications on
5,300 randomly chosen Windows Phone apps. Our ex-
perience is very encouraging: the App Crawler captured
app data that can increase query hit rate of app store’s
search engine by 25%j; the Ad Fraud Detector captured
80 apps that adopt four different fraudulent usage of ad
controls to claim more money from the ad network (these
apps have been in the app market for more than 1.5
years but such frauds remained undetected); and the Ad-
keyword Miner extracted a large number of ad keywords
(median 20 per app) that could be successfully matched
with bidding keywords in Microsoft’s ad network.

Third, we evaluate SPADE’s coverage and speed by
using 5,300 apps from the Windows Phone app store
(§7). Recently proposed automated execution techniques
for smartphone apps have been evaluated with a hand-
ful of toy apps [1, 2, 11, 16]. No study exists on how

AROUND ME

categories

Banks & Credit Unions

Bars

Bus Stations
Cinem@b
Coffee'® Tea

Gas & Service Stations

Grocery/SuperMarket

Trying to Lose Weight?

3 mile
) Parkplace, Suite 105 Kirkland, WA 98033

scalingdownward.com

Figure 1: Two app pages from a mobile app. Clicking on
the List Item ’Cinema’ on the first page leads to the
second page.

well automated execution techniques work on many third
party apps from app stores. We fill this void. To the
best of our knowledge, this is the first large study of this
kind. Our results show that fully automated execution
can achieve good coverage (> 50%) for almost half the
apps. We survey various reasons behind poor coverage of
remaining apps—some of the reasons are fundamentally
hard to address without putting human in the loop. Our
results also show that our optimizations make SPADE
3.5x faster than the baseline implementation, enabling
it to dig 3,000 apps per day on a single phone emulator
running on a desktop-class computer.

2 Background

SPADE’s design is guided by characteristics of mobile
apps, their UI structures, contents, and execution model.

Mobile Apps. Today, popular mobile platforms main-
tain centralized app stores through which apps are dis-
tributed to mobile users. There are over a million apps in
major app stores written by third-party developers. De-
velopers build apps and submit only the app binaries to
the store which are then made available for download.
For digging apps, app stores have to deal with only app
binaries, without any access to their source code or any
help from developers.

UI Structure. Mobile apps typically display contents
organized as a set of App Pages that users can interact
with and navigate between. Each app page usually takes
the entire screen real estate. An app page can have a
set of Ul controls such as textboxes, buttons, lists, im-
ages, etc. Certain UI controls (for e.g. buttons) are inter-
actable as opposed to controls that just display content.
A user can navigate between various app pages by in-
teracting with these controls or by using certain gestures
such as swiping across the screen. Some phones also
provide a physical back button that the user can press to



go to the previously visited page.

Figure 1 shows an example with two app pages from
a mobile app that lets users search for nearby busi-
nesses. The first page shows a List of business cat-
egories, where individual List Items are interactable
(i.e., clickable with a touch). When a user clicks on a
List Item (e.g. Cinema category), he navigates to the
second app page that shows a List of nearby businesses
for that category. The user can further click these List
Items to see the details of the business.

App pages are typically designed as templates which
are instantiated at runtime with dynamic contents. A typ-
ical app can have up to tens of page templates and up to
hundreds of page instances. In the example above, the
second page is designed as a template which is instanti-
ated with different content for each business category.

An app page with a set of UI controls can be repre-
sented as a Ul tree where each node represents an Ul
element. A Ul element can be a container element that
can recursively contain more Ul elements. Smartphone
runtime provides a set of standard UI controls with well
defined behavior. However, app developers can define
new UI controls (often derived from the base controls).
An app digging system needs to automatically navigate
between app pages by understanding its Ul controls.

App Data. We use the term App Data to denote con-
tents that an app presents to the user during runtime.
Most smartphone apps heavily interact with the cloud
and show dynamic app data to users. Some apps also get
app data from local resource files embedded within the
app. App data downloaded from the cloud can change
based on time, user’s location, user input, or other sen-
sor data. Therefore some applications such as the App
Crawler, which needs to dig as much recent data as pos-
sible, need to dig apps repeatedly, possibly with multiple
locations and a variety of user inputs and sensor data.

Execution model. Mobile apps are event-driven pro-
grams where Ul controls register event handler functions
to be invoked on various events. For example, when a
user clicks on a button, the registered click handlers are
invoked. App developers typically include complex logic
in the event handlers to render a page. The asynchronous
nature of apps [18] increases the complexity of execution
even further. For instance, an app can execute a number
of parallel threads and asynchronous calls to individu-
ally render different controls in a same page [18]. So,
the digging system needs to carefully keep track of the
app execution to efficiently navigate it.

3 SPADE Design

3.1 Goals and Design Choices
We have the following set of design goals for SPADE:

G1 Given an app binary, automatically launch the app
and navigate through its app pages, without access
to the app source code or any human in the loop.

G2 Perform certain tasks while navigating through app
pages. The task is application specific. For instance,
the task of the App Crawler is to log all data shown
to user, for later indexing.

G3 Do the above very fast. This is crucial for saving
time and resources. Typical app digging applica-
tions run on a large number of apps. Moreover,
some applications need to be run repeatedly, on a
routine basis. Making the applications run as fast as
possible saves valuable resources.

Before we delve into the details of the SPADE archi-
tecture, we briefly discuss some of design choices.

Device vs. emulator. We execute apps in a phone em-
ulator instead of real devices. All major mobile SDKs
come with emulators to enable developers quickly test
their apps without deploying on a device. Compared to
running apps on real devices, running on the emulator is
faster and it allows us to scale to many concurrent exe-
cutions. It also simplifies interaction with the apps and
enables various optimizations as we show in the follow-
ing sections.

Tight-coupling vs. loose-coupling with the emulator.
There are two approaches to build SPADE using the em-
ulator. One approach is tight-coupling with the system
software - i.e., to modify the phone OS and emulator
to make SPADE part of it. The alternative approach is
loose-coupling, i.e., to keep the system software and the
emulator unmodified and build SPADE as an external en-
tity. We opt for the latter approach. SPADE achieves
loose-coupling by instrumenting only the app binary (as
opposed to system software) and using an external pro-
gram that can automatically navigate the instrumented
app inside the emulator.

Our rationales for loose-coupling are as follows: First,
compared to the tight coupling approach, we do not need
to modify the system software. Smartphone system soft-
ware is complex and diverse, making tight coupling chal-
lenging and difficult to debug. Moreover, some sys-
tem softwares are not available for modification (e.g.,
OSes other than Android). Internals of system software
are subject to frequent changes, even though the inter-
faces do not change. Thus, a tightly coupled solution
may require expensive maintenance. Second, a loosely-
coupled solution offers better modularity and portability,
enabling our infrastructure and the emulator to evolve in-
dependently and be distributed easily. Finally, a loosely-
coupled solution can run apps more reliably on the same
system software developers tested their apps (instead of
a custom version that integrates SPADE into it).
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Figure 2: SPADE architecture.

3.2 SPADE Architecture

Figure 2 shows the overall architecture of SPADE.
SPADE consists of two main components. (1) the In-
strumenter which instruments the app binary and (2) the
Runner which automatically navigates the instrumented
app in the emulator.

Instrumenter. In SPADE, we only need the app binary.
We do not need access to the source code of the app or
any help from the developer. This lets us work with any
app that is already in the app store.

However, SPADE needs visibility into app’s runtime
state/behavior and communication between the loosely-
coupled Runner and the phone emulator. This is be-
cause: (1) the Runner needs to inspect the current app
page to decide the next interaction, and (2) app dig-
ging applications need to capture/analyze app’s runtime
state/behaviors.

The Instrumenter instruments an app binary to achieve
the above. Given an app binary, it uses binary instrumen-
tation to add various pieces of code that we discuss in
Section 4. We consider Windows Phone apps and our bi-
nary instrumentation framework is based on Microsoft’s
Common Compiler Infrastructure [4] and similar to the
one in [18]. The current implementation is designed for
apps written using the Silverlight framework [17], com-
piled to MSIL [13] byte code. Silverlight is used by
a vast majority of the apps in the Windows Phone app
store. The instrumentation requires no support from the
Silverlight framework or the OS.

Runner. The Runner is an external program that auto-
matically launches and drives the instrumented app in the
emulator. The Runner automatically launches the phone
emulator, installs a given instrumented app, and launches
the installed app. It then automatically controls mouse
events on the host machine to drive the app in the emula-
tor as if a user on the machine is driving it.

The Runner can initiate different mouse events that
map to all gestures that a user could do on a real de-
vice such as click, flick, swipe, drag, pinch, zoom etc. It
can also click on physical buttons (e.g. the back button of
the emulator) and can provide keyboard inputs to textbox

controls inside the emulator.

The Runner coordinates with the instrumented app to
automatically drive it. The instrumented app constantly
communicates the execution state and the UI structure of
the current app page to the Runner so that the Runner
can make informed decisions on how to drive the app.
It identifies interactable controls on a page and interacts
only with those controls (as opposed to randomly inter-
acting with the app). It maps coordinates of Ul elements
on an app page to coordinates on the host screen to initi-
ate mouse events on appropriate Ul controls.

The Runner also has the ability to feed different sen-
sor and I/O inputs during app execution. For example,
the Runner can run a location-aware app with different
location inputs, to crawl its contents at various locations.
We will explain this in Section 4.3.

The Runner maintains a history of previously visited
app pages. By analyzing the history, it can prioritize
navigation to important pages, in order to achieve bet-
ter coverage in a limited time. We will explain some of
our heuristics in Section 5.

Finally, the Runner also incorporates application-
specific logic. For most applications, it helps store the
data transmitted by the instrumented app for offline anal-
ysis. For some applications, it analyzes the data online
and uses it as a feedback to drive the navigation.

4 Binary Instrumentation

The Instrumenter injects code! into a given app binary to
do the following things. (1) Find if the app has finished
processing an UI interaction by automatically tracking
asynchronous calls and thread execution (§4.1). This
helps the Runner navigate the app faster without hav-
ing arbitrary timeouts between Ul interactions. (2) In-
spect the app’s current Ul structure, find interactable con-
trols and inform the Runner as the app is being navigated
(684.2). (3) Interpose between the app and the framework
libraries so that Runner can control certain inputs to the
app (§4.3). For example, the Instrumenter rewrites calls
to the location API so that the Runner can feed in dif-
ferent locations to the app. (4) Do application-specific
tasks (§6). For instance, the App Crawler needs to cap-
ture page contents as the app is being navigated and store
them for offline indexing.

In addition, we sanitize the app to remove tasks such
as maps, email, sms etc. that might take the Runner out-
side the app to external programs. This helps us keep the
navigation within the app boundary.

4.1 Done with processing?

One key piece of information the Runner needs to know
while automatically interacting with an app is whether

IThe Instrumenter injects code at the MSIL level.



the processing for an outstanding UI interaction is com-
plete. For example, in Figure 1, after clicking on the
‘Cinema’ category, the Runner needs to know when all
the processing—navigation to the new page, download
of data, rendering on the new page, etc.—is completed.

The information is crucial for two key reasons. First,
after each interaction from the Runner, the instrumented
app inspects the resulted page and communicates Ul con-
trols in the new page to the Runner so that the Runner can
choose the next UI control to interact with. The app has
to communicate this information only after the page has
reached a stable state, i.e., after all the outstanding oper-
ations initiated by the interaction has completed. Other-
wise, the Ul controls communicated to the Runner could
be in transient states. If this happens, by the time the
Runner does the next interaction, the page could have
changed and the interaction would not be as expected.
This can affect the correctness of the digging operation.
Second, some digging applications need to capture run-
time state of apps; and doing this makes sense only after
the page has been loaded and reached a stable state.

One straightforward solution to address the above con-
cern is to make the Runner wait for some time between
successive interactions. The wait time needs to be long
enough to ensure that the processing of an interaction is
completed and it is safe to initiate the next interaction.
As we show in Section 7, processing time of an inter-
action can be highly variable—from a few milliseconds
to a few tens of seconds! Hence, the timeout value has
to large enough (5.5 seconds at the 95% percentile) to
ensure correctness for most of the interactions.

Since one of our primary goals is speed, we cannot
afford such large timeouts. We cannot sacrifice correct-
ness either, by using a small wait time. Hence, we need
to know exactly when the processing for a Ul interaction
is complete so that the Runner can immediately perform
the next interaction.

» Limitation of Page Loaded event. Platforms
such as Windows Phone and Android do provide a Page
Loaded event. But those events only indicate that the
navigation to a page is complete—it does not account for
the fact that the app can initiate asynchronous processing
to further update controls in a page. In fact, processing
in mobile apps are highly asynchronous [18].

We illustrate this with an example in Figure 3 that
shows the app execution for the example in Figure 1. The
thick horizontal lines represent that a thread is execut-
ing and the dotted lines link asynchronous calls to their
corresponding callbacks [18]. In this example, when the
Runner clicks on a list item, (1) it calls a click handler
method inside the app (2) which in turn makes an asyn-
chronous call to navigate to the next page (for e.g. nearby
businesses page). (3) Once the navigation is complete,
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Figure 3: A sample execution trace of an app when nav-
igating a page. After the page is navigated, it makes an
asynchronous call to the web, processes the response and
updates the UI asynchronously.

the system calls a navigation complete handler (this is
essentially the page loaded event that most mobile plat-
forms provide). (4) In the navigation handler, the devel-
oper makes an asynchronous call to the web to down-
load the list of businesses. (5) Once the data is down-
loaded, the system invokes a callback on a background
thread. This thread processes the data and (6) initiates a
dispatcher call to (7) update the UI (the list control) on
the UI thread.

As evident from this example, a page can be updated
asynchronously and hence we cannot rely on the Page
Loaded event provided by the platform. Moreover, cer-
tain Ul interactions can modify only controls on the cur-
rent page through an asynchronous call without navigat-
ing to another page—Page Loaded event will not be
fired in such cases.

»Our solution: Processing Complete event. The
execution graph in Figure 3 represents a transaction [18]
initiated by the Ul interaction. Our aim here is to know
when the entire processing of the transaction is com-
plete so that we are sure that the UI won’t be updated
anymore. We achieve this by automatically monitoring
the app execution and providing a reliable Processing
Complete event for every interaction. The app inspects
the UI structure and informs the Runner only when this
event is fired.

Our technique to generate a Processing Complete
event stems from the following observations on the trans-
action graph. The transaction graph is a connected graph
with two types of edges: (1) the thread execution edges
that connect the start and the end of a thread execution in
the app (the thick horizontal edges) and (2) asynchronous
edges that connect the asynchronous calls to their respec-
tive callbacks (the dotted lines). When the execution
of a transaction is active, at least one of these edges is
active (i.e., either an asynchronous call is waiting for a
callback or a thread is executing). When the transaction
completes, all the edges have run to completion.



So, our idea here is to monitor these edges and keep
track of the outstanding edges at any point in time during
execution. We raise the Processing Complete event
when there are no more outstanding edges for the corre-
sponding transaction. To monitor these edges, we borrow
the instrumentation techniques from [18]. But the key
difference here is that, we need to keep track of the out-
standing edges online during execution instead of writing
logs for offline analysis.

Tracking thread execution. We use the same heuristics
as in [18] to identify Upcalls and instrument its start and
return points. Upcalls are calls made by the platform into
the app (event handlers and asynchronous callbacks are
Upcalls). Tracking the execution of Upcalls essentially
tracks the execution of threads inside the app. When
the instrumentation point at the start of the Upcall is hit,
we add an outstanding edge. The edge is cleared when
the execution hits the return instrumentation point. We
match the Upcall start and end using dynamically gener-
ated method ids.

Tracking asynchronous calls. We identify asyn-
chronous calls and instrument them. We also detour the
callbacks [18] so that we can match the callback to its
respective async call. When the app makes a async call,
we add an outstanding edge. The edge is cleared when
its callback is fired.

We ignore timer calls that provide periodic async call-
backs from the list of outstanding async edges. Timers
are typically used to do periodic tasks. We do add
the callback execution of the timer as an outstanding
edge because it might be used to update an UI period-
ically. During such scenarios, we would be generating
Processing Complete event for every periodic update
and informing the Runner about the updated UI. Hence,
the Runner can always make the right decision.

We also appropriately take care of thread synchroniza-
tion calls that could block a thread indefinitely until a
semaphore is fired. To handle these cases, we segment
the thread execution edges at these blocking calls. We
don’t get into the details due to lack of space.

As we show in Section 7, our technique to generate
a Processing Complete event is reliable and helps in
speeding up the Runner.

4.2 Inspecting the UI Structure

The Instrumenter injects code such that, every time a
Processing Complete event is fired, it inspects the
current page. It obtains handle to the current page and
traverses the Ul tree to inspect each of the Ul elements on
the page. For each Ul element, it obtains the element’s
properties such as size, position, name and the content
displayed by it. It then sends the serialized information
to the Runner so that it can initiate its next interaction on

an appropriate Ul control.

Before sending Ul tree information to the Runner, the
instrumented app adds two extra pieces of information to
each UI element in the tree. (1) a unique identifier, (2)
a flag indicating whether the UI element is interactable
and what interactions can be made on it.

Unique identifiers for Ul elements. Each UI element
needs an identifier that is unique within and across runs.
Uniqueness within the same run helps the Runner avoid
possible navigation loops. Uniqueness across multiple
runs helps the Runner build a history of Ul and its inter-
actions, which we use to optimize Runner’s navigation
decisions for improved coverage (details in Section 5).
Thus the identifier should be independent of the UI el-
ement’s dynamic properties such as its object id, screen
location, etc. We generate an identifier as a hash of the
following static properties: the type of the Ul element,
its level in the UI tree, the identifier of the parent node
and properties such as name and content.

Identifying interactable controls. A UI element can
either be interactable or non-interactable. Typically, la-
bel controls that display content to the user are not inter-
actable (clicking on them will not take you anywhere).
Hence the Runner should not waste time interacting with
them. Controls such as buttons are interactable. The
Runner has to identify and interact with them.

When we traverse the Ul tree, we identify if each Ul
element is interactable or not. And if it is interactable,
we identify the types of interactions that can be made on
the element. This is one of the key features of our system
that helps the Runner achieve high coverage quickly.

Our technique is based on the following observation.
In event-driven programs, the developer needs to add
event handlers to get callbacks when a interaction hap-
pens and processing is done on those callbacks. Hence,
if no event handler is added to a control by the devel-
oper, no app processing happens. We assume that such
controls are non-interactable. For example, even if you
add a button to the UI but do not add a click handler to
it, interacting with the button is not useful as it does not
trigger any processing. Similarly, we assume that con-
trols that have at least one manipulation event handler
added to it as an interactable control. Further, by looking
at the types of event handlers, we are able identify the
types of interactions that can be done with the control.

Since we have handle to each UI control during in-
spection, ideally, we should be able to query the UI con-
trol’s property to identify the event handlers associated
with it. But, the Windows Phone framework restricts
read access to these properties at the app level (note that
our instrumented code runs at the app level). To circum-
vent this problem, we instrumented all the API calls in
the code that adds and removes event handlers to con-



trols. When those calls are executed, we record the con-
trol and the type of the event handler’. When inspecting
the UI controls, we lookup the event handlers associated
with them and communicate it to the Runner.

4.3 Controlling the Inputs

We control two kinds of inputs to the app: (1) Location
(2) Data from the network. We achieve this by rewriting
calls in the app code to those framework APIs.

GPS. There are many location-based apps that change
content or behavior based on user’s location. So, we need
to execute them with different location inputs to capture
their content/behavior at different locations. To achieve
that, we replace app’s calls to system’s location API with
calls to the Runner, which provides the location data.
This way, the Runner can run an app for any arbitrary
location.

To decide whether the Runner needs to execute an app
for multiple locations, we first statically analyze the app
binary to check if it calls the location API. If it does, we
use the following heuristic to determine the granularity
of locations (e.g., zip code, city, state, or country) the
app is sensitive to. We run the app multiple times with
locations of multiple near-by zip codes in the same city
and check if the content of the app changes for various
zip codes. If not, we try the same for multiple near by
cities in the same state and so on. We label the app with
the largest granularity of location for which its contents
change and use the granularity in subsequent runs.

Network data. We co-locate a HTTP network proxy
with the Runner and make the Instrumenter rewrite all
HTTP web calls in the app to go through the proxy. We
use the proxy to speed up the navigation by providing
cached data to the app instead of fetching it from the net-
work. We explain this in more detail in Section 5.2.

S Optimizations for Repeated Digging

Some applications need to dig apps repeatedly, on a rou-
tine basis or on demand. For example, App Crawler
needs to be run frequently, for different locations, to dig
the most recent app data. Ad Fraud Detector needs to be
run repeatedly as new fraud signatures are discovered.
In this section, we describe a few optimizations that can
further expedite such repeated app digging applications.

5.1 History-based Prioritization

SPADE offers a quick digging mode where SPADE is
given a time limit for digging a collection of apps, and
the goal is to maximize the app digging utility within
the time limit. Quick digging is useful when there is not
much time or resource to perform a deep digging, where

2In Windows Phone framework, event handlers can also be added
through XAML files. We identify them by statically analyzing the app.

the goal is to explore all app pages by interacting with all
interactable UI controls, without any restriction on time.
For instance, an application can perform deep digging
once a week and quick digging once every day.

Since quick digging may explore only part of an app,
the key goal is to prioritize digging “important” apps
and “important” parts of the apps to maximize some
application-specific utility. For applications whose key
goal is to extract as much app data as possible, a util-
ity metric can be the number of new (with respect to
the previous crawls) words/phrases extracted per second.
From historical crawled data, SPADE maintains relative
utility scores of (1) various apps (apps that refresh data
frequently have more utility), (2) various locations for
a given location-aware app (locations for which the app
contains more data have more utility), and (3) various UI
controls of a given app and a given location (UI controls
that lead to more content-rich pages have higher utility).

Given these utility scores, SPADE can prioritize its se-
lection for apps, locations, and UI controls with a simple
greedy algorithm. Intuitively, the algorithm allocates the
total time for all apps among various apps and various
locations, in proportional to their utility values. After
SPADE has decided how much time to spend for digging
an app, it explores various pages by interacting with UI
controls in decreasing order of their utility values. Af-
ter the app has been digged for its allotted time, SPADE
moves to the next app.

5.2 Aggressive Network Prefetching

Mobile phone OSes and apps use various conservative
network optimizations such as batching, lazy download,
etc. to save energy. Since we run SPADE in a desk-
top machine, we override these energy settings for im-
proved performance. In particular, in repeated digging,
SPADE aggressively prefetches network data before an
app even needs it. SPADE runs a local network proxy
and reroutes all HTTP web calls from of an app through
the proxy. The proxy predicts and prefetches HTTP re-
sources so that most HTTP requests are served from the
local proxy, saving a round-trip to the cloud.

Predicting urls to prefetch. Predicting urls to prefetch
is a challenging problem in general. Fortunately, in
SPADE, the Runner explores various app pages and
downloads various urls in the pages systematically and
their sequence remains the same across repeated digging
sessions. Hence, SPADE can exploit history of past dig-
ging sessions of the same app to predict what urls the app
will fetch in near future and prefetch them in the proxy.
One challenge comes from the fact that, in many apps,
urls change across sessions and hence urls learned from
past sessions may not be valid for the current session. In
many such cases, urls typically follow simple patterns.
This is because most apps use RESTful web services and



HTTP GET requests, where the url encodes all necessary
parameters to uniquely identify the resource. Only some
parameters (e.g., session id, user id, location, etc.) of the
urls change across sessions.

SPADE exploits this regularity as follows. First, by
observing the sequence of urls for the same UI control,
SPADE learns url templates, that keep the base urls,
static parameters with values, and dynamic parameters
without values. Second, during a digging session, it in-
fers values of dynamic parameters in url templates by
comparing templates with concrete urls. Once the value
of a dynamic parameter is inferred, it can be used in all
url templates in the current session to generate concrete
urls to prefetch. We omit the details for lack of space.

6 Applications

We here describe three applications that we have built
on SPADE for the Windows Phone app store. We have
evaluated utility of these applications on 5,300 randomly
chosen apps from the app store; for lack of space, we
report only the highlights of the results.

6.1 App Crawler

App stores’ search engines index various app metadata
such as app name, category, and developer-provided de-
scription; unlike web search engines such as Bing and
Google that index webpage content, they do not index
the app content (i.e., data apps show to user during run
time, possibly by downloading from the Internet). Thus,
a search query can return an empty result if the query
does not match any app metadata, even though the query
might match app data of some app. For example, a
search for “mushroom risotto” returns no results in Win-
dows Phone app store, even though several apps (e.g.,
BigOven) show its recipes to users. The situation is
grossly similar in Android and iOS app store as well. The
goal of the App Crawler is to crawl app data for indexing
them in the app store search engine.

We build this application on SPADE as follows. First,
we give crawling code to the Instrumenter to inject it
within the app binary. The crawling code, after the
Processing Complete event is fired, traverses through
the UI tree of the current app page and logs all textual
data in all UI elements. The data is then sent back to
the Runner. Second, we write logging code in the Run-
ner that logs all data sent by the crawling code in a local
database. After SPADE has processed all apps, we in-
dex the crawled app data, along with app metadata, with
Apache Lucene?, an open source text indexing tool.

Results. As mentioned, app stores’ default search en-
gines index app metadata alone. To illustrate the utility
of crawled app data, we compare App Crawler’s index

3http://lucene.apache.org

Table 1: Various types of ad frauds and example Win-
dows Phone apps detected by using SPADE

[ Fraud Description [ Apps ]
Create multiple (n > 1) ad control objects | BatterySaver
within a page. (+32 apps)

(To claim nx more ad impressions)

Make ad control too small, compared to its | UnitConverter
standard size (+9 apps)
Place ad controls outside screen. PhotoEffect
(To accommodate more ad controls per page | (+47 apps)

or to create an “ad-free” illusion)

Hide ads behind other controls. LogicGames
Overlap ads with clickable controls. (+17 apps)
(To hide ads or to get inadvertently clicks.

Developers make more money for clicks than

impressions.)

over app data + metadata with an index over app meta-
data alone. We then take a 4 month long trace of queries
in Microsoft (app) Store and replay it on both indexes.
We found that index over app data + metadata satisfies
around 25% more queries than the index over metadata
alone.

6.2 Ad Fraud Detector

Ad-supported mobile apps include ad controls that fetch
ads from backend ad networks and show them to users
when they visit particular app pages. The first page in
Figure 1 shows an ad control at the bottom of the page.

Many ad networks, including the ad network of Mi-
crosoft Ad Control used by more than 75% of Windows
Phone apps, pay app developers based on impression
count. To maximize the effect of ads, ad networks want
apps to follow certain policies. For example, Microsoft
Ad Control expects (1) an app to show at most one ad
at a time per page, (2) the ad to be shown in its default
size, and most importantly, (3) the ad to be clearly vis-
ible to users. However, some developers deviate from
these guidelines for making more money. Few examples
of such fraudulent behavior are shown in Table 1. Cur-
rently, Windows Phone app store uses various mostly-
manual, ad hoc techniques to detect such fraudulent be-
haviors. We use SPADE to automate the process.

The Instrumenter for this application injects code that,
after the Processing Complete event is fired, inspects
all ad controls in the current page. In particular, it counts
the ad controls (to capture multiple ads), checks their x,y
coordinates and sizes (to capture too small and out-of-
screen ads), and compares their positions and sizes with
those of other UI controls in the page (to capture over-
lapping and hidden ads). Once a possible fraud is de-
tected, the code also takes a screenshot of the screen (as
a proof) and sends it, along with the fraud information,
to the Runner for archiving in a local database.

Results. Not all apps in our app set are ad supported.



We picked 353 top Microsoft Ad Control-supported apps
and ran them through the Ad Fraud Detector. We discov-
ered a total 80 apps with fraudulent behaviors. Table 1
shows several example apps that we found to have the
fraudulent behaviors. Some of the apps have multiple
types of frauds. These apps had been in the Windows
Phone app store for over 1.5 years, but were not detected
for these frauds. We have reported our findings to Mi-
crosoft Online Forensics team for further actions.

6.3 Ad Keyword Extractor

Contextual advertising, where ads in a page are chosen
based on the content of the page, is common and ef-
fective in the Web (e.g., Google AdSense). It works as
follows: the ad network crawls webpages offline and la-
bel them with important ad keywords extracted from the
pages. When a user visits a webpage, the ad network
shows an ad whose bidding keywords match the ad key-
words in the page.

The process does not trivially translate to mobile
apps since ad networks cannot crawl app data (with-
out a SPADE-like tool). We address this by digging
apps with SPADE. Instrumentation injects code similar
to that for app crawling, but in addition to capturing all
words/phrases in the page, the code also logs their dis-
play attributes such as their frequencies, positions, font
sizes, capitalizations, etc. The display attributes are im-
portant for keyword extraction algorithms. The crawled
words/phrases along with their attributes are then sent to
the Runner, who logs it in a local database. As data for
each page arrives at the Runner, it is fed into KEX [20], a
well known keyword extraction tool, which returns a list
of ad keywords with their significance scores. Finally,
each app page is tagged with prominent ad keywords in
that page, to be used for selecting contextually relevant
ads during run time.

Results. We evaluated the quality of ad keywords ex-
tracted from the above application with a 1-week long
trace of bidding keywords from Microsoft ad network.
Our results show that (1) page data of half the apps con-
tain more than 20 ad keywords that could be targeted
with contextual ads in Microsoft ad network, and (2) For
> 85% apps, page data contains more ad keywords than
app metadata (e.g., description on app store). Thus, app
data can be a potential goldmine of keywords for effec-
tively matching contextual ads.

7 Evaluation

In this section we evaluate SPADE’s coverage and per-
formance with 5,300 randomly chosen Silverlight apps
from the Windows Phone app store.

7.1 Coverage Methodology

Most app digging applications deal with app pages,
hence we evaluate how good SPADE is at visiting various
pages of an app. We quantify this with digging coverage
metrics.

As mentioned in Section 2, a typical app has up to few
tens of page templates, each of which can be instantiated
multiple times with different data, resulting in up to few
hundreds of different page instances. Some app digging
applications (e.g., the Ad Fraud Detector) care about cer-
tain properties (e.g., ad control) of page templates only.
Some other applications (e.g., App Crawler) care about
extracting as much data as possible from various page
instances. We therefore use two digging coverage met-
rics: page template coverage and page instance cover-
age, defined as the fraction of page templates and page
instances, respectively, explored by SPADE.

7.1.1 Template Coverage Results

To compute template coverage of SPADE for a given
app, we count the number of page templates explored
by SPADE and divide that by the actual number of page
templates, determine by static analysis of the app.

Difficulty in achieving good coverage. Based on our
experiments on all 5,300 apps, we find that achieving a
good coverage is difficult with SPADE’s fully automated
app execution.
» R1: Some apps depend on text inputs from users on its
start page. The inputs include username/password (e.g.,
Facebook app) or search keywords (e.g., Wikipedia app).
At least 1% apps in our app set are of this flavor.
» R2: Some apps create custom controls that the Run-
ner has no knowledge about. For example, a category of
eBook apps implemented a custom ScrollMotion con-
trol, which SPADE failed to interact with.
» R3: Some apps require the user to interact in a certain
way. For example, the popular Wordament app instructs
the user to swipe finger over the letters 'P” 'L’ A’ °Y’
on the start screen to go the next page. An automated
Runner cannot understand such instructions.
» R4: We configured SPADE to wait for 10 seconds for
an app to load in the emulator; a small fraction of apps
(e.g., AlQuran, 120MB in size) could not finish loading
in this time.
» RS: At least 5% of the apps crashed while running in
the emulator due to their own flaws.
» R6: A small fraction of apps crashed due to our in-
strumentation, often in the first one or two pages. E.g.,
Instrumenter removes ad control during instrumentation,
but some apps wants to manipulate ad control during run
time and hence fail.

We believe that some of the above factors (especially,
R1, R2, and R3) are fundamentally hard to address with-
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Figure 4: CDF of template coverage, for all 5,300 apps.

out involving human in the loop. If our goal were to
automatically execute a handful of apps (like previous
studies [1, 2]), we could have addressed them, e.g., hard
coding username/password (to address R1) and includ-
ing custom logic for interaction (to address R2 and R3).
However, this is not a scalable solution when we intend
to deal with thousands of apps. So we keep this study
limited to understanding how much fully automated exe-
cution can achieve.

Coverage numbers. Figure 4 shows the CDF of tem-
plate coverage of all 5,300 apps. SPADE achieves 100%
coverage for roughly 15% of the apps and more than 50%
coverage for roughly half (48%) the apps. For the other
half, the coverage is poor due to the aforementioned rea-
sons (R1 to R6). The average, median, and standard de-
viation of coverage is 0.46, 0.40, and 0.3 respectively.
For 3.8% of all apps, at least one of the above reasons
(R1 to R6) happened before SPADE could explore the
first page, and hence SPADE got a zero coverage. We
ignore these apps for rest of the study.

Possible solutions to improve coverage. It is possible
to improve the above coverage results. Addressing R4,
RS, and R6 is easier: R4 could be addressed by increas-
ing the wait time, RS by rerunning the crashed apps and
hoping that their crashes were transient, and R6 by fur-
ther tuning our Instrumenter for those apps. Addressing
R1, R2, R3, however, would need to include humans in
the loop. To enable this, we plan to incorporate an inter-
action record feature in SPADE. This feature requires an
app to be run manually once in SPADE (possibly through
crowdsourcing). SPADE records all user inputs and in-
teractions and augments that with its automated execu-
tion to explore app pages that it cannot explore without
human help. Exploring this is part of our future work.

7.1.2 Instance Coverage Results

Page instances are created during runtime. So, to com-
pute page instance coverage, we manually execute the
apps to count their actual page instances. Since the pro-
cess does not scale, we limit our study to a smaller set
of 30 apps. In particular, we divide all 5,300 apps into
ten buckets: 1st bucket has all apps with template cov-
erage between 0-10% (based on previous experiment),
2nd bucket has all apps with coverage 10-20%, and so
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Figure 5: Instance coverages for apps with various tem-
plate coverages.
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Figure 6: CDF of page digging time, with and without
optimizations.

on. We then pick three random apps from each bucket
and compute their average instance coverages and aver-
age template coverages.

Figure 5 shows average instance coverages for vari-
ous template coverages. We see that instance coverages
roughly follow template coverages. If this holds for all
other apps, the CDF of instance coverage would roughly
resemble the CDF of template coverage in Figure 4. This
is expected because if SPADE can visit at least one in-
stance of a page template, it most likely can visit all in-
stances of the template. The only way instance cover-
age can differ from template coverage is when there are
variable number of instances for various page templates.
For example, consider an app with two page templates
P1 and P2, only one of which is visited by SPADE. If P1
has 1 instance and P2 has 99 instances, instance coverage
will be 1% or 99% depending on which pages SPADE
visits, even though template coverage is 50%. With many
apps, the average variability would become small.

7.2 Performance Results

We now report how fast SPADE can dig various apps and
the effects of various optimizations we implement. We
use three desktop machines, each with Intel Core2 CPU
(2-4 cores), 4 GB memory and 512 GB hard drive.

We report the metric digging time of a page, which is
the time interval between the Runner digging two pages.
More specifically, digging time includes the times re-
quired for (T1) a page to be completely loaded (i.e., the
Processing Complete event is fired) by the app after
the Runner has interacted with the UI control leading to
the page, (T2) traversing the UI tree of the page, (T3)
sending the tree back to Runner, and (T4) the Runner to



analyze the Ul tree, save it to disk, and take a screenshot,
before initiating the next interaction. (T1) is typically the
dominating component of the digging time. For certain
apps, (T2) and (T4) are non-negligible, but we believe
that, those processing times can be significantly reduced
by optimizing the operations we do in the critical path.

Figure 6 shows the CDF of digging time for all pages
in all 5,300 apps. The average, median, and standard
deviation are 2.06, 1.45, and 2.46 sec respectively. The
digging time is small for most of the pages, except for
a small fraction of apps that need to performing time-
consuming operations in (T1), such as network calls or
storage. The average number of page instances of an app
in our app set is 13.32; combining that with the average
page digging time implies that SPADE can dig around
3000 apps on a single phone emulator running on a desk-
top computer in a day.

Core Optimizations. The above speed of SPADE
comes due to several performance optimizations. To il-
lustrate their effects, we compare SPADE with two unop-
timized versions: (1) SPADE without the Processing
Complete Event (PCE)—this version uses a static time-
out to wait for the processing to complete. We use a
timeout value of 4 seconds, which represents the 92th
percentile of page load time (Figure 6). (2) SPADE with-
out PCE and without UI control pruning (UCP)—instead
of ignoring non-interactable Ul controls, the Runner in-
teracts with all available UI controls on the current page
and waits for the timeout for processing to be finished
before interacting with the next UI control.

Note that in the absence of a PCE, the Runner has no
way to tell whether the page has been fully loaded or
not. The Runner just assumes that the page is loaded af-
ter the timeout. However, since we use a timeout value
equivalent to the 92th percentile of page load time, 8% of
the pages won’t be fully loaded after the timeout period.
On such failed interactions, the Runner simply moves on
to interact with the next UI control. With no PCE, our
reported dig time for a page includes all timeouts the
Runner experiences due to failed interactions immedi-
ately before digging the page. (Without accumulating the
timeouts, the page digging time for No PCE case would
be slightly more than 4 seconds for all apps). Another
side effect of using a fixed timeout is that it reduces the
digging coverage—the Runner cannot dig (i) some of the
8% pages that fail to load within the timeout period plus
(i1) additional pages reachable from those pages only.

Figure 6 shows the CDF of page digging times for the
three versions of SPADE. As shown, the optimizations
significantly improve the digging speed of SPADE. More
specifically, the average (median) page digging time is
2.06 sec (1.45 sec), while it is 5.58 sec (4.62 sec) for ‘No
PCE’ and 7.13 sec (5.12 sec) for ‘No PCE + No UCP’.
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Figure 7: Crawling with prioritization, for three apps.

In other words, the two optimizations make SPADE 3.5x
faster on average.

Finally, we briefly report the effects of optimizations
we use for repeated execution of apps. Since the opti-
mizations apply to only a certain types of apps, we show
the results for a handful of representative apps.

History-based Prioritization. ~We illustrate the ben-
efits of prioritization by using three apps of different
characteristics. We consider the App Crawler applica-
tion and use number of words crawled per second as the
utility metric. Figure 7 shows the accumulated number
of crawled words from these apps as a function of time.
For example, had we stopped digging after 100 seconds,
App Crawler would crawl 1517 words from DailyDeals
with path prioritization and 628 words without it.

We selected three apps to illustrate various prioriti-
zation. In DailyDeals, contents change periodically
and execution paths are prioritized based on past his-
tory. Major benefit comes from visiting pages with most
content. In AroundMe, contents are location-dependent
and paths are prioritized based on digging results of
other locations. Major benefits come from directly go-
ing to the pages with more dynamic contents, rather than
spending time on static pages (settings, terms, etc). In
WeatherForecast, all contents are presented with the
same type of UI controls (List Items). Major benefit
comes after SPADE learns this and prioritizes List Items
in subsequent digging.

Network Prefetching. We illustrate the usefulness
of prefetching by using three networked apps that have
slightly different properties: (1) RageComics, with large
downloads, (2) WeatherForecast, with long RTT to
the server, and (3) AroundMe with small RTT to the back-
end server. For these apps, our URL prediction achieves
a hit ratio larger than 90%.

For content rich apps such as RageComics, the benefit
of prefetching is significant—we saw the page digging
time to reduce by up to 2.5x. Prefetching is also ben-
eficial for apps with long RTT to back end server; for
WeatherForecast, prefetching reduces average page
digging time by 36%. We did not see significant ben-
efit of prefetching for AroundMe that has small RTT to



back-end server.

8 Related work

Today, mobile platforms like Android provide UI au-
tomation tools to test mobile apps. For example, Android
SDK comes with a Monkey [10] and a MonkeyRun-
ner [9] that can automatically generate Ul events to inter-
act with an app. But these tools depend on the developer
to provide automation scripts. They also do not provide
any visibility into the app runtime and hence are not effi-
cient and cannot be easily used for digging applications.

Recent research efforts have built upon these tools
to provide full app automation. But their main focus
has been on two specific applications (1) helping de-
velopers automatically test their apps [1, 2, 7, 11, 16]
and (2) automatically identifying privacy and security is-
sues [5, 8, 19, 14]. Most systems that help developers
automatically test their apps evaluate their system only
on a handful of apps and many of their Ul automation
techniques are tuned to those apps. Systems that look for
privacy and security violations execute on a large collec-
tion of apps but they only use basic UI automation tech-
niques. Their main focus is on novel techniques to find
violations and not efficient automation. None of these
systems care about performance. In contrast, SPADE is
designed for performance and scale to automatically dig
a large collection of apps for a variety of applications.

Automated app execution has long been used outside
mobile apps. Symbolic execution [3], which automat-
ically runs various parts of an application with sym-
bolic inputs, has been successfully applied to automat-
ically generate test cases. (Similar techniques have re-
cently been applied to mobile apps as well [2, 16].) The
techniques have been shown to scale to large input do-
mains, however, they do not produce concrete values
of application’s runtime states (such as texts shown to
user after downloading from the Internet), which fail to
achieve some key goals of digging, e.g. crawling con-
tents. ATUSA [15] and AjaxTracker [12] automatically
executes Ajax web apps for specific applications, but
these techniques do not deal with mobile-specific chal-
lenges (e.g., extracting Ul structure from app’s runtime),
do not aim scalability, and do not aim to support a wide-
variety of applications.

9 Conclusion

Our long-term goal is to automatically dig hundreds of
thousands of apps in an app store quickly and to get high
digging coverage. While there is still a long way to go to
reach this goal, our results show that our system SPADE
makes a very important first step towards this goal. On
5,300 Windows Phone apps, SPADE achieves > 50%
digging coverage on roughly half the apps and can dig
roughly 3,000 apps in a day with a single phone emula-
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tor. Digging coverage can be significantly improved by
including humans in the loop: we are currently working
on extending our fully automated technique with naviga-
tion hints from humans (e.g., through crowdsourcing).
We believe that the potential of an app digging system
like SPADE is huge. We demonstrated this with three
novel applications and we are working on several others.
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