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Abstract Model checking and testing have a lot in common. Over the last two
decades, significant progress has been made on how to broaden the scope of model
checking from finite-state abstractions to actual software implementations. One way
to do this consists of adapting model checking into a form of systematic testing that
is applicable to industrial-size software. This chapter presents an overview of this
strand of software model checking.

1 Introduction

Model checking and testing have a lot in common. In practice, the main value of
both is to find bugs in programs. And, if no bugs are to be found, both techniques
increase the confidence that the program is correct.

In theory, model checking is a form of formal verification based on exhaustive
state-space exploration. As famously stated by Dijkstra decades ago, “testing can
only find bugs, not prove their absence”. In contrast, verification (including exhaus-
tive testing) can prove the absence of bugs. This is the key feature that distinguishes
verification, including model checking, from testing.

In practice, however, the verification guarantees provided by model checking
are often limited: model checking checks only a program, or a manually-written
model of a program, for some specific properties, under some specific environment
assumptions, and the checking itself is usually approximate for nontrivial programs
and properties when an exact answer is too expensive to compute. Therefore, model
checking should be viewed in practice more as a form of “super testing” rather
than as a form of formal verification in the strict mathematical sense. Compared
to testing, model checking provides better coverage, but is more computationally
expensive. Compared to more general forms of program verification like interactive
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Fig. 1 Two main approaches to software model checking.

theorem proving, model checking provides more limited verification guarantees,
but is cheaper due to its higher level of automation. Model checking thus offers an
attractive practical trade-off between testing and formal verification.

The key practical strength of model checking is that it is able to find bugs that
would be extremely hard to find (and reproduce) with traditional testing. This key
strength has been consistently demonstrated, over and over again, during the last
three decades when applying model checking tools to check the correctness of hard-
ware and software designs, and more recently software implementations. It also
explains the gradual adoption of model checking in various industrial environments
over the last 20 years (hardware industry, safety-critical systems, software industry).

What prevents an even wider adoption of model checking is its relative higher
cost compared to basic testing. This is why model checking has been adopted so
far mostly in niche yet critical application domains where the cost of bugs is high
enough to justify the cost of using model checking (hardware designs, communi-
cation switches, embedded systems, operating-system device drivers, security bugs,
etc.).

Over the last two decades, significant progress has been made on how to lower the
cost of adoption of model checking even further when applied to software through
the advent of software model checking. Unlike traditional model checking, a soft-
ware model checker does not require a user to manually write an abstract model of
the software program to be checked in some modeling language, but instead works
directly on a program implementation written in a full-fledged programming lan-
guage.

As illustrated in Figure 1, there are essentially two main approaches to soft-
ware model checking, i.e., two ways to broaden the scope of model checking from
modeling languages to programming languages. One approach uses abstraction: it
consists of automatically extracting an abstract model out of a software application
by statically analyzing its code, and then of analyzing this model using traditional
model-checking algorithms (e.g., [4, 29, 87, 68]). Another approach uses adapta-
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tion: it consists of adapting model checking into a form of systematic testing that is
applicable to industrial-size software (e.g., [44, 113, 84, 52]).

The aim of this chapter is to present an overview of this second approach to
software model checking. We describe the main ideas and techniques used to sys-
tematically test and explore the state spaces of concurrent and data-driven software.
We also discuss other related work, such as combining systematic testing with static
program analysis, run-time verification, and other testing techniques. However, this
chapter is only meant to provide an introduction to this research area, not an exhaus-
tive survey.

2 Systematic Testing of Concurrent Software

In this section, we present techniques inspired by model checking for systemati-
cally testing concurrent software. We discuss nondeterminism due to concurrency
before nondeterminism due to data inputs (in the next section) for historic reasons.
Indeed, model checking was first conceived for reasoning about concurrent reactive
systems [22, 97], and software model checking via systematic testing was also first
proposed for concurrent programs [44].

2.1 Classical Model Checking

Traditional model checking checks properties of a system modeled in some mod-
eling language, typically some kind of notation for communicating finite-state ma-
chines. Given such a system’s model, the formal semantics of the modeling language
defines the state space of the model typically as some kind of product of the com-
municating finite-state machines modeling the system’s components. A state space
is usually defined as a directed graph whose nodes are states of the entire system and
edges represent state changes. Branching in the graph represents either branching in
individual state machine components or nondeterminism due to concurrency, i.e.,
different orderings of actions performed by different components. The state space
of a system’s model thus represents the joint dynamic behavior of all components
interacting with each other in all possible ways. By systematically exploring its state
space, model checking can reveal unexpected possible interactions between compo-
nents of the system’s model, and hence reveal potential flaws in the actual system.

Many properties of a system’s model can be checked by exploring its state
space: one can detect deadlocks, dead code, violations of user-specified asser-
tions, etc. Moreover, the range of properties that state-space exploration tech-
niques can verify has been substantially broadened during the last three decades
thanks to the development of model-checking methods for various temporal logics
(e.g., [24, 76, 97, 110]). Historically, the term “model checking” was introduced to
mean “check whether a system is a model of a temporal logic formula”, in the clas-
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sic logical sense. This definition does not imply that a “model”, i.e., an abstraction,
of a system is checked. In this chapter, we will use the term “model checking” in a
broad sense, to denote any systematic state-space exploration technique that can be
used for verification purposes when it is exhaustive.

2.2 Software Model Checking Using a Dynamic Semantics

Like a traditional model checker explores the state space of a system modeled as the
product of concurrent finite-state components, one can systematically explore the
“product” of concurrently executing operating-system processes by using a run-
time scheduler for driving the entire software application through the states and
transitions of its state space [44].

The product, or state space, of concurrently executing processes can be defined
dynamically as follows. Consider a concurrent system composed of a finite set of
processes and a finite set of communication objects. Each process executes a se-
quence of operations described in a sequential program written in any full-fledged
programming language (such as C, C++, etc.). Such sequential programs are deter-
ministic: every execution of the program on the same input data performs the same
sequence of operations. We assume that processes communicate with each other by
performing atomic operations on communication objects. Examples of communi-
cation objects are shared variables, semaphores, and FIFO buffers. Operations on
communication objects are called visible operations, while other operations are by
default called invisible. The execution of an operation is said to be blocking if it can-
not be completed; for instance, waiting for the reception of a message blocks until
a message is received. We assume that only executions of visible operations may be
blocking.

At any time, the concurrent system is said to be in a state. The system is said
to be in a global state when the next operation to be executed by every process in
the system is a visible operation. Every process in the system is always expected
to eventually attempt executing a visible operation.1 This assumption implies that
initially, after the creation of all the processes of the system, the system can reach a
first and unique global state s0, called the initial global state of the system.

A process transition, or transition for short, is defined as one visible operation
followed by a finite sequence of invisible operations performed by a single process
and ending just before a visible operation. Let T denote the set of all transitions of
the system.

A transition is said to be disabled in a global state s when the execution of its
visible operation is blocking in s. Otherwise, the transition is said to be enabled in
s. A transition t enabled in a global state s can be executed from s. Since the number
of invisible operations in a transition is finite, the execution of an enabled transition

1 If a process does not attempt to execute a visible operation within a given amount of time, an
error is reported at run-time.
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always terminates. When the execution of t from s is completed, the system reaches
a global state s′, called the successor of s by t and denoted by s t→ s′.2

We can now define the state space of a concurrent system satisfying our assump-
tions as the transition system AG = (S,∆ ,s0) representing its set of reachable global
states and the (process) transitions that are possible between these:

• S is the set of global states of the system,
• ∆ ⊆ S×S is the transition relation defined as follows:

(s,s′) ∈ ∆ iff ∃t ∈ T : s t→ s′,

• s0 is the initial global state of the system.

We emphasize that an element of ∆ , or state-space transition, corresponds to the
execution of a single process transition t ∈ T of the system. Remember that we
use here the term “transition” to refer to a process transition, not to a state-space
transition. Note how (process) transitions are defined as maximal sequences of in-
terprocess “local” operations from a visible operation to the next. Interleavings of
those local operations are not considered as part of the state space.

It can be proved [44] that, for any concurrent system satisfying the above as-
sumptions, exploring only all its global states is sufficient to detect all its deadlocks
and assertion violations, i.e., exploring all its non-global states is not necessary.
This result justifies the choice of the specific dynamic semantics described in this
section. Deadlocks are states where the execution of the next operation of every
process in the system is blocking. Deadlocks are a notorious problem in concur-
rent systems, and can be difficult to detect through conventional testing. Assertions
can be specified by the user in the code of any process with the special visible
operation “assert”. It takes as its argument a boolean expression that can test and
compare the value of variables and data structures local to the process. Many unde-
sirable system properties, such as unexpected message receptions, buffer overflows
and application-specific error conditions, can easily be expressed as assertion viola-
tions.

Note that we consider here closed concurrent systems, where the environment
of one process is formed by the other processes in the system. This implies that, in
the case of a single “open” reactive system, the environment in which this system
operates has to be represented somehow, possibly using other processes. In practice,
a complete representation of such an environment may not be available, or may be
very complex. It is then convenient to use a simplified representation of the environ-
ment, or test driver or mock-up, to simulate its behavior. For this purpose, it is useful
to introduce a special operation to express a valuable feature of modeling languages,
not found in programming languages: nondeterminism. This operation, let us call it
nondet3, takes as argument a positive integer n, and returns an integer in [0,n].
The operation is visible and nondeterministic: the execution of a transition starting

2 Operations on objects (and hence transitions) are deterministic: the execution of a transition t in
a state s leads to a unique successor state.
3 This operation is called VS toss in [44].
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/* phil.c : dining philosophers (version without loops) */

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

#define N 2

philosopher(i,semid)
int i, semid;

{
printf("philosopher %d thinks\n",i);
semwait(semid,i,1); /* take left fork */
semwait(semid,(i+1)%N,1); /* take right fork */
printf("philosopher %d eats\n",i);
semsignal(semid,i,1); /* release left fork */
semsignal(semid,(i+1)%N,1); /* release right fork */
exit(0);

}

main()
{
int semid, i, pid;

semid = semget(IPC_PRIVATE,N,0600);

for(i=0;i<N;i++)
semsetval(semid,i,1);

for(i=0;i<(N-1);i++) {
if((pid=fork()) == 0)

philosopher(i,semid);
};

philosopher(i,semid);
}

Fig. 2 Example of concurrent C program simulating dining philosophers.

Fig. 3 Global state space for the two-dining-philosophers system.

with nondet(n) may yield up to n+1 different successor states, corresponding to
different values returned by nondet. This operation can be used to represent input
data nondeterminism or the effect of input data on the control flow of a test driver.
How to deal with input data nondeterminism will be discussed further in Section 3.
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Run-time scheduler

System Processes

Fig. 4 Overall architecture of a dynamic software model checker for concurrent systems.

Example 1. [44] Consider the concurrent C program shown in Figure 2. This pro-
gram represents a concurrent system composed of two processes that communi-
cate using semaphores. The program describes the behavior of these processes as
well as the initialization of the system. This example is inspired by the well-known
dining-philosophers problem, with two philosophers. The two processes communi-
cate by executing the (visible) operations semwait and semsignal on two semaphores
that are identified by the integers 0 and 1 respectively. The operations semwait
and semsignal take 3 arguments: the first argument is an identifier for an array of
semaphores, the second is the index of a particular semaphore in that array, and the
third argument is a value by which the counter associated with the semaphore iden-
tified by the first two arguments must be decremented (in the case of semwait) or
incremented (in the case of semsignal). The value of both semaphores is initialized
to 1 with the operation semsetval. By implementing these operations using actual
operating-system semaphores (for instance, the exact UNIX system calls to do this
are similar), the program above can be compiled and executed. The state space AG of
this system is shown in Figure 3, where the two processes are denoted by P1 and P2,
and state-space transitions are labeled with the visible operation of the correspond-
ing process transition. The operation exit is a visible operation whose execution
is always blocking. Since all the processes are deterministic, nondeterminism (i.e.,
branching) in AG is caused only by concurrency. This state space contains two dead-
locks (i.e., states with no outgoing transitions). The deadlock on the right represents
normal termination (where both process are blocked on exit), while the deadlock on
the left is due to a coordination problem.

2.3 Systematic Testing with a Run-Time Scheduler

The state space of a concurrent system as defined in the previous section can be
systematically explored with a run-time scheduler. This scheduler controls and ob-
serves the execution of all the visible operations of the concurrent processes of the
system (see Figure 4). Every process of the concurrent system to be analyzed is
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mapped to an operating-system process. Their execution is controled by the sched-
uler, which is another process external to the system. The scheduler observes the
visible operations executed by processes inside the system, and can suspend their
execution. By resuming the execution of (the next visible operation of) one selected
system process in a global state, the scheduler can explore one transition in the state
space AG of the concurrent system.

Combined with a systematic state-space search algorithm, the run-time scheduler
can drive an entire application through all (or many) possible concurrent executions
by systematically scheduling all possible interleavings of their communication oper-
ations. In order to explore an alternative execution, i.e., to “backtrack” in its search,
the run-time scheduler can, for instance, restart the execution of the entire software
application in its initial state, and then drive its execution along a different path in
its state space.

Whenever an error (such as a deadlock or an assertion violation) is detected dur-
ing the search, a whole-system execution defined by the sequence of transitions that
lead to the error state from the initial state can be exhibited to the user. Dynamic
model checkers typically also include an interactive graphical simulator/debugger
for replaying executions and following their steps at the instruction or procedure/-
function level. Values of variables of each process can be examined interactively.
The user can also explore interactively any path in the state space of the system with
the same set of debugging tools (e.g., see [45]).

It is thus assumed that there are exactly two sources of nondeterminism in the
concurrent systems considered here: concurrency and calls to the special visible op-
eration nondet used to model nondeterminism as described in the previous section
and whose return values are controled by the run-time scheduler. When this assump-
tion is satisfied, the run-time scheduler has complete control over nondeterminism.
It can thus reproduce any execution leading to an error found during a state-space
search and can also guarantee, from a given initial state, complete coverage of the
state space up to some depth.

Remember that the ability to provide state-space coverage guarantees, even lim-
ited ones, is precisely what distinguishes verification, including model checking,
from traditional testing, as explained earlier in the introduction. This is why the
term “software model checking” was applied to this approach of systematic testing
with a run-time scheduler, since eventually it does provide full state space coverage.

Of course, in practice, state spaces can be huge, even infinite. But even then, the
state space can always be explored exhaustively up to some depth, which can be in-
creased progressively during state-space exploration using an “iterative deepening”
search strategy. Efficient search algorithms, based on partial-order reduction, have
been proposed for exhaustively exploring the state spaces of message-passing con-
current systems up to a “reasonable” depth, say, all executions with up to 50 message
exchanges. In practice, such depths are often sufficient to thoroughly exercise im-
plementations of communication protocols and other distributed algorithms. Indeed,
exchanging a message is an expensive operation, and most protocols are therefore
designed so that few messages are sufficient to exercise most of their functionality.
By being able to systematically explore all possible interactions of the implemen-
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tation of all communicating protocol entities up to tens of message exchanges, this
approach to software model checking has repeatedly been proven to be effective in
revealing subtle concurrency-related bugs [45].

2.4 Stateless Vs. Stateful Search

This approach to software model checking for concurrent programs thus adapts
model checking into a form of systematic testing that simulates the effect of model
checking while being applicable to concurrent processes executing arbitrary code
written in full-fledged programming languages (like C, C++, Java, etc.). The only
main requirement is that the run-time scheduler must be able to trap operating sys-
tem calls related to communication (such as sending or receiving messages) and
be able to suspend and resume their executions, hence effectively controlling the
scheduling of all processes whenever they attempt to communicate with each other.

This approach to software model checking was pioneered in the VeriSoft tool [44].
Because states of implementations of large concurrent software systems can require
megabytes or more each to be represented, VeriSoft does not store states in mem-
ory and simply traverse state-space paths in a stateless manner, exactly as in tradi-
tional testing. It is shown in [44] that in order to make a systematic stateless search
tractable, partial-order reduction is necessary to avoid re-exploring over and over
again parts of the state space reachable by different interleavings of a same concur-
rent partial-order execution.

However, for small to medium-size applications, computing state representations
and storing visited states in memory can be tractable, possibly using approxima-
tions and especially if the entire state of the operating-system can be determined
as is the case when the operating system is a virtual machine. This extension was
first proposed in the Java PathFinder tool [113]. This approach limits the size and
types of (here Java) programs that can be analyzed, but allows the use of standard
model-checking techniques for dealing with state explosion, such as bitstate hash-
ing, stateful partial-order reduction, symmetry reduction, and the use of abstraction
techniques.

Another trade-off is to store only partial state representations, such as storing a
hash of a part of each visited state, possibly specified by the user, as explored in
the CMC tool [84]. Full state-space coverage with respect to a dynamic semantics
defined at the level of operating-system processes can then no longer be guaranteed,
even up to some depth, but previously visited partial states can now be detected, and
multiple explorations of their successor states can be avoided, which helps focus the
remainder of search on other parts of the state space more likely to contain bugs.
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2.5 Systematic Testing for Multi-Threaded Programs

Software model checking via systematic testing is effective for message-passing
programs because systematically exploring their state spaces up to tens of message
exchanges typically exercises a lot of their functionality. In contrast, this approach
is more problematic for shared-memory programs, such as multi-threaded programs
where concurrent threads communicate by reading and writing shared variables.
Instead of a few well-identifiable message queues, shared-memory communication
may involve thousands of communicating objects (e.g., memory addresses shared by
different threads) that are hard to identify. Moreover, while systematically exploring
all possible executions up to, say, 50 message exchanges can typically cover a large
part of the functionality of a protocol implementation, systematically exploring all
possible executions up to 50 read/write operations in a multi-threaded program typ-
ically covers only a tiny fraction of the program functionality. How to effectively
perform software model checking via systematic testing for shared-memory sys-
tems is a harder problem and has been the topic of recent research.

Dynamic partial-order reduction (DPOR) [41] dynamically tracks interactions
between concurrently-executing threads in order to identify when communication
takes place through which shared variables (memory locations). Then, DPOR com-
putes backtracking points where alternative paths in the state space need to be
explored because they might lead to other executions that are not “equivalent” to
the current one (i.e., are not linearizations of the same partial-order execution). In
contrast, traditional partial-order reduction [108, 91, 43] for shared-memory pro-
grams would require a static alias analysis to determine which threads may access
which shared variables, which is hard to compute accurately and cheaply for pro-
grams with pointers. DPOR has been extended and implemented in several recent
tools [115, 85, 65, 103].

Even with DPOR, state explosion is often still problematic. Another recent ap-
proach is to use iterative context bounding, a novel search ordering heuristics which
explores executions with at most k context switches, where k is a parameter that is
iteratively increased [95]. The intuition behind this search heuristics is that many
concurrency-related bugs in multi-threaded programs seem due to just a few unex-
pected context switches. This search strategy was first implemented in the Chess
tool [85].

Even when prioritizing the search with aggressive context bounding, state ex-
plosion can still be brutal in large shared-memory multi-threaded programs. Other
search heuristics for concurrency have been proposed, which we could call col-
lectively concurrency fuzzing techniques [36, 102, 82]. The idea is to use a ran-
dom run-time scheduler that occasionally preempts concurrent executions selec-
tively in order to increase the likelihood of triggering a concurrency-related bug
in the program being tested. For instance, the execution of a memory allocation,
such as ptr=malloc(...), in one thread could be delayed as much as possible
to see if other threads may attempt to dereference that address ptr before it is allo-
cated. Unlike DPOR or context bounding, these heuristic techniques do not provide



Combining Model Checking and Testing 11

any state-space coverage guarantees, but can still be effective in practice in finding
concurrency-related bugs.

Other recent work investigates the use of concurrency-related search heuristics
with probabilistic guarantees (e.g., see [82]). This line of work attempts to develop
randomized algorithms for concurrent system verification which can provide prob-
abilistic coverage guarantees, under specific assumptions about the concurrent pro-
gram being tested and for specific classes of bugs.

2.6 Tools and Applications

We list here several tools and applications of software model checking via system-
atic testing for concurrent systems.

As mentioned before, the idea of dynamic software model checking via system-
atic testing was first proposed and implemented in the VeriSoft tool [44], developed
at Bell Labs and publicly available since 1999. It has been used to find several
complex errors in industrial communication software, ranging from small critical
components of phone-switching software [48] to large call-processing applications
running on wireless base-stations [18].

Java PathFinder [113] is another early and influential tool which analyzes Java
concurrent programs using a modified Java virtual machine. It also implements a
blend of several static and dynamic program analysis techniques. It has been used
to find subtle errors in several complex Java components developed at NASA [11,
92]. It is currently available as an extensible open-source tool. It has been recently
extended to also include test-generation techniques based on symbolic execution [2],
which will be discussed in the next section.

CMC [84] analyzes concurrent C programs. It has been used to find errors in
implementations of network protocols [83] and file systems [119].

jCUTE [103] is a tool for analyzing concurrent Java programs. It uses a variant of
DPOR for data race detection. It also implements test-generation techniques based
on symbolic execution discussed in the next section.

Chess [85] analyzes multi-threaded Windows programs. It has been used to find
many errors in a broad range of applications inside Microsoft [86]. It is also publicly
available.

MaceMC [72] analyzes distributed systems implemented in Mace, a domain-
specific language built on top of C++. This tool also specializes in finding liveness-
related bugs.

MoDist [118] analyzes concurrent and distributed programs; it found many bugs
in several distributed system implementations. Cuzz [82] analyzes multi-threaded
Windows programs using concurrency fuzzing techniques (see previous section).
ISP [115] analyzes concurrent MPI programs using stateful variants of DPOR and
other techniques.
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3 Systematic Testing of Sequential Software

In this section, we present techniques inspired by model checking for systematically
testing sequential software. We assume that nondeterminism in such programs is
exclusively due to data inputs.

Enumerating all possible data inputs values with a nondet operation as de-
scribed in Section 2.2 is tractable only when sets of possible input values are small,
like selecting one choice in a menu with (few) options. For dealing with large sets
of possible input data values, the main technical tool used is symbolic execution,
which computes equivalence classes of concrete input values that lead to the ex-
ecution of the same program path. We start with a brief overview of “classical”
symbolic execution in the next section, and then describe recent extensions for sys-
tematic software testing.

3.1 Classical Symbolic Execution

Symbolic execution is a program analysis technique that was introduced in the 70s
(e.g., see [73, 10, 25, 98, 69]). Symbolic execution means executing a program
with symbolic rather than concrete values. Assignment statements are represented as
functions of their (symbolic) arguments, while conditional statements are expressed
as constraints on symbolic values. Symbolic execution can be used for many pur-
poses, such as bug detection, program verification, debugging, maintenance, and
fault localization [26].

One of the earliest proposals for using static analysis as a kind of systematic
symbolic program testing method was proposed by King almost 35 years ago [73].
The idea is to symbolically explore the tree of all computations the program ex-
hibits when all possible value assignments to input parameters are considered. For
each control path ρ , that is, a sequence of control locations of the program, a path
constraint φρ is constructed that characterizes the input assignments for which the
program executes along ρ . All the paths can be enumerated by a search algorithm
that explores all possible branches at conditional statements. The paths ρ for which
φρ is satisfiable are feasible and are the only ones that can be executed by the actual
program. The solutions to φρ characterize the inputs that drive the program through
ρ . This characterization is exact provided symbolic execution has perfect precision.
Assuming that the theorem prover used to check the satisfiability of all formulas φρ

is sound and complete, this use of static analysis amounts to a kind of symbolic test-
ing. How to perform symbolic execution and generate path constraints is illustrated
with an example later in Section 3.4.

A prototype of this system allowed the programmer to be presented with feasi-
ble paths and to experiment, possibly interactively [62], with assertions in order to
force new and perhaps unexpected paths. King noticed that assumptions, now called
preconditions, also formulated in the logic could be joined to the analysis forming,
at least in principle, an automated theorem prover for Floyd/Hoare’s verification
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method [42, 66], including inductive invariants for programs that contain loops.
Since then, this line of work has been developed further in various ways, leading to
various approaches of program verification, such as verification-condition genera-
tion (e.g., [33, 5]), symbolic model checking [12] and bounded model checking [21].

Symbolic execution is also a key ingredient for precise test input generation
and systematic testing of data-driven programs. While program verification aims
at proving the absence of program errors, test generation aims at generating con-
crete test inputs that can drive the program to execute specific program statements
or paths. Work on automatic code-driven test generation using symbolic execution
can roughly be partitioned into two groups: static versus dynamic test generation.

3.2 Static Test Generation

Static test generation (e.g., [73]) consists of analyzing a program P statically, by
using symbolic execution techniques to attempt to compute inputs to drive P along
specific execution paths or branches, without ever executing the program.

Unfortunately, this approach is ineffective whenever the program contains state-
ments involving constraints outside the scope of reasoning of the theorem prover,
i.e., statements “that cannot be reasoned about symbolically”. This limitation is il-
lustrated by the following example [46]:

int obscure(int x, int y) {
if (x == hash(y)) abort(); // error
return 0; // ok

}

Assume the constraint solver cannot “symbolically reason” about the function hash
(perhaps because it is too complex or simply because its code is not available).
This means that the constraint solver cannot generate two values for inputs x and
y that are guaranteed to satisfy (or violate) the constraint x == hash(y). In this
case, static test generation cannot generate test inputs to drive the execution of the
program obscure through either branch of the conditional statement: static test
generation is helpless for a program like this. Note that, for test generation, it is not
sufficient to know that the constraint x == hash(y) is satisfiable for some values
of x and y, it is also necessary to generate specific values for x and y that satisfy or
violate this constraint.

The practical implication of this fundamental limitation is significant: static test
generation is doomed to perform poorly whenever precise symbolic execution is not
possible. Unfortunately, this is frequent in practice due to complex program state-
ments (pointer manipulations, floating-point operations, etc.) and calls to operating-
system and library functions that are hard or impossible to reason about symboli-
cally with good enough precision.
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3.3 Dynamic Test Generation

A second approach to test generation is dynamic test generation (e.g., [74, 90, 63,
52, 15]): it consists of executing the program P, typically starting with some random
inputs, while performing symbolic execution dynamically, collecting symbolic con-
straints on inputs gathered from predicates in branch statements along the execution,
and then using a constraint solver to infer variants of the previous inputs in order to
steer the next execution of the program towards an alternative program branch. The
conventional stance on the role of symbolic execution is thus turned upside-down:
symbolic execution is now an adjunct to concrete execution.

A key observation [52] is that, with dynamic test generation, imprecision in sym-
bolic execution can be alleviated using concrete values and randomization: when-
ever symbolic execution does not know how to generate a constraint for a program
statement depending on some inputs, one can always simplify this constraint using
the concrete values of those inputs.

Consider again the program obscure given above. Even though it is impossible
to generate two values for inputs x and y such that the constraint x == hash(y)
is satisfied (or violated), it is easy to generate, for a fixed value of y, a value of x
that is equal to hash(y) since the latter can be observed and known at run-time.
By picking randomly and then fixing the value of y, we can first run the program,
observe the concrete value c of hash(y) for that fixed value of y in that run;
then, in the next run, we can set the value of the other input x either to c or to
another value, while leaving the value of y unchanged, in order to force the exe-
cution of the then or else branches, respectively, of the conditional statement in
the function obscure. (The algorithm presented in the next section does all this
automatically [52].)

In other words, static test generation is unable to generate test inputs to control
the execution of the program obscure, while dynamic test generation can easily
drive the executions of that same program through all its feasible program paths,
finding the abort() with no false alarms. In realistic programs, imprecision in
symbolic execution typically creeps in in many places, and dynamic test generation
allows test generation to recover from that imprecision. Dynamic test generation can
be viewed as extending static test generation with additional run-time information,
and is therefore more general, precise, and powerful.

How much more precise is dynamic test generation compared to static test gen-
eration? In [47], it is shown exactly when the “concretization trick” used in the
above obscure example helps, and when it does not help. It is also shown that the
main property of dynamic test generation that makes it more powerful than static
test generation is only its ability to observe concrete values and to record those in
path constraints. In contrast, the process of simplifying complex symbolic expres-
sions using concrete run-time values can be accurately simulated statically using
uninterpreted functions. However, those concrete values are necessary to effectively
compute new input vectors, a fundamental requirement in test generation [47].

In principle, static test generation can be extended to concretize symbolic val-
ues whenever static symbolic execution becomes imprecise [71]. In practice, this
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is problematic and expensive because this approach not only requires to detect all
sources of imprecision, but also requires one call to the constraint solver for each
concretization to ensure that every synthesized concrete value satisfies prior sym-
bolic constraints along the current program path. In contrast, dynamic test genera-
tion avoids these two limitations by leveraging a specific concrete execution as an
automatic fall back for symbolic execution [52].

In summary, dynamic test generation is the most precise form of code-driven test
generation that is known today. It is more precise than static test generation and other
forms of test generation such as random, taint-based and coverage-heuristic-based
test generation. It is also the most sophisticated, requiring the use of automated the-
orem proving for solving path constraints. This machinery is more complex and
heavy-weight, but may exercise more paths, find more bugs and generate fewer re-
dundant tests covering the same path. Whether this better precision is worth the
trouble depends on the application domain.

3.4 Systematic Dynamic Test Generation

Dynamic test generation was discussed in the 90s (e.g., [74, 90, 63]) in a property-
guided setting, where the goal is to execute a given specific target program branch
or statement. More recently, new variants of dynamic test generation [52, 15] blend
it with model checking techniques with the goal of systematically executing all
feasible program paths of a program while detecting various types of errors using
run-time checking tools (like Purify, Valgrind or AppVerifier, for instance). In other
words, each new input vector attempts to force the execution of the program through
some new path, but the whole search is not guided by one specific target program
branch or statement. By repeating this process, such a systematic search attempts to
force the program to sweep through all its feasible execution paths, in a style similar
to systematic testing and dynamic software model checking [44] as presented in
Section 2. Along each execution, a run-time checker is used to detect various types
of errors (buffer overflows, uninitialized variables, memory leaks, etc.).

Systematic dynamic test generation as described above was introduced first
in [52], as a part of an algorithm for “Directed Automated Random Testing”, or
DART for short. Independently, [15] proposed “Execution Generated Tests” as a test
generation technique very similar to DART. Also independently, [116] described
a prototype tool which shares some of the same features. Subsequently, this ap-
proach was adopted and implemented in many other tools (see Section 3.6), and is
also sometimes casually referred to as “concolic testing” [104], or simply “dynamic
symbolic execution” [107].

Systematic dynamic test generation consists of running the program P under test
both concretely, executing the actual program, and symbolically, calculating con-
straints on values stored in program variables v and expressed in terms of input
parameters. Side-by-side concrete and symbolic executions are performed using a
concrete store M and a symbolic store S, which are mappings from memory ad-
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dresses (where program variables are stored) to concrete and symbolic values re-
spectively [52]. A symbolic value is any expression e in some theory4 T where all
free variables are exclusively input parameters. For any program variable v, M(v)
denotes the concrete value of v in M, while S(v) denotes the symbolic value of v in
S. For notational convenience, we assume that S(v) is always defined and is simply
M(v) by default if no symbolic expression in terms of inputs is associated with v
in S. When S(v) is different from M(v), we say that that program variable v has a
symbolic value, meaning that the value of program variable v is a function of some
input(s) which is represented by the symbolic expression S(v) associated with v in
the symbolic store.

A program manipulates the memory (concrete and symbolic stores) through
statements, or commands, that are abstractions of the machine instructions actu-
ally executed. A command can be an assignment of the form v := e where v is
a program variable and e is an expression, a conditional statement of the form
if b then C′ else C′′ where b denotes a boolean expression, and C′ and C′′

denote the unique5 next command to be evaluated when b holds or does not hold,
respectively, or stop corresponding to a program error or normal termination.

Given an input vector assigning a concrete value to every input parameter Ii, the
program executes a unique finite6 sequence of commands. For a finite sequence ρ of
commands (i.e., a control path ρ), a path constraint φρ is a quantifier-free first-order
logic formula over theory T that is meant to characterize the input assignments for
which the program executes along ρ . The path constraint is sound and complete
when this characterization is exact.

A path constraint is generated during dynamic symbolic execution by collecting
input constraints at conditional statements. Initially, the path constraint φρ is defined
to true, and the initial symbolic store S0 maps every program variable v whose initial
value is a program input: for all those, we have S0(v) = xi where xi is the symbolic
variable corresponding to the input parameter Ii. During dynamic symbolic execu-
tion, whenever an assignment statement v := e is executed, the symbolic store is up-
dated so that S(v) = σ(e) where σ(e) denotes either an expression in T represent-
ing e as a function of its symbolic arguments, or is simply the current concrete value
M(v) of v if e does not have symbolic arguments or if e cannot be represented by an
expression in T . Whenever a conditional statement if b then C′ else C′′ is
executed and the then (respectively else) branch is taken, the current path con-
straint φρ is updated to become φρ ∧ c (respectively φρ ∧¬c) where c = σ(b). Note
that, by construction, all symbolic variables ever appearing in φρ are variables xi
corresponding to whole-program inputs Ii.

Given a path constraint φρ =
∧

1≤i≤n ci, new alternate path constraints φ ′ρ can be
defined by negating one of the constraints ci and putting it in a conjunction with all
the previous constraints: φ ′ρ =¬ci∧

∧
1≤ j<i c j. If path constraint generation is sound

and complete, any satisfying assignment to φ ′ρ defines a new test input vector which

4 A theory is a set of logic formulas.
5 We assume in this section that program executions are sequential and deterministic.
6 We assume program executions terminate. In practice, a timeout can prevent non-terminating
program executions and issue a run-time error.
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int f(int x) { return 2 * x; }
int h(int x, int y) {
if (x != y)

if (f(x) == x + 10)
abort(); // error

return 0;
}

x!=y

false true

2.x == x+10

false true

ABORT

Fig. 5 A sample program (left) and the tree formed by all its path constraints (right).

will drive the execution of the program along the same control flow path up to the
conditional statement corresponding to ci where the new execution will then take the
other branch. By systematically repeating this process, such a directed search can
enumerate all possible path constraints and eventually execute all feasible program
paths.

The search is exhaustive provided that the generation of the path constraint (in-
cluding the underlying symbolic execution) and the constraint solver for the given
theory T are both sound and complete, that is, for all program paths ρ , the con-
straint solver returns a satisfying assignment for the path constraint φρ if and only if
the path is feasible (i.e., there exists some input assignment leading to its execution).
If those conditions hold, in addition to finding errors such as the reachability of bad
program statements (like abort() or assert(false)), a directed search can
also prove their absence, and therefore obtain a form of program verification.

In practice, path constraint generation and constraint solving are usually not
sound and complete. Moreover, in the presence of a single loop whose number of
iterations depends on some unbounded input, the number of feasible program paths
becomes infinite. In practice, search termination can always be forced by bounding
input values, loop iterations or recursion, but at the cost of potentially missing bugs.

Example 2. [52] Consider the function h shown in Figure 5. The function h is
defective because it may lead to an abort statement for some value of its input vector,
which consists of the input parameters x and y. Running the program with random
values for x and y is unlikely to discover the bug.

Assume we start with some random initial concrete input values, say x is initially
269167349 and y is 889801541. Initially, every program input is associated with a
symbolic variable, denoted respectively by x and y, and every program variable stor-
ing an input value has its symbolic value (in the symbolic store) associated with the
symbolic variable for the corresponding input: thus, the symbolic value for program
variable x is the symbolic value x, and so on. Initially, the path constraint is simply
true.

Running the function h with those two concrete input values executes the then
branch of the first if-statement, but fails to execute the then branch of the second
if-statement; thus, no error is encountered. This execution defines a path ρ through
the program. Intertwined with the normal execution, dynamic symbolic execution
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generate the path constraint φρ = (x 6= y)∧ (2 · x 6= x+ 10). Note the expression
2 · x, representing f(x): it is defined through an interprocedural, dynamic tracing
of symbolic expressions.

The path constraint φρ represents an equivalence class of input vectors, namely
all the input vectors that drive the program through the path that was just executed.
To force the program through a different equivalence class, the directed search
generates the new path constraint, say, φ ′ρ = (x 6= y)∧ (2 · x = x + 10) obtained
by negating the last constraint of the current path constraint (for instance, if the
search is performed in a depth-first order). A solution to this new path constraint
is (x = 10,y = 889801541). A second execution of the function h with those two
new input values then reveals the error by driving the program into the abort()
statement as expected.

The search space to be explored for this program is shown to the right of Figure 5.
Each path in this tree corresponds to a path constraint. When symbolic execution
has perfect precision as in this simple example, path constraints are both sound and
complete, and dynamic and static test generation are equally powerful: they can both
generate tests to drive the program along all its execution paths.

Example 3. Consider again the function obscure:

int obscure(int x, int y) {
if (x == hash(y)) abort(); // error
return 0; // ok

}
Assume we start running this program with some initial random concrete values,
say x is initially 33 and y is 42. During dynamic symbolic execution, when the
conditional statement is encountered, assume we do not know how to represent the
expression hash(y). However, we can observe dynamically that the concrete value
of hash(42) is, say, 567. Then, the simplified path constraint φρ = (x 6= 567) can
be generated by replacing the complex/unknown symbolic expression hash(y) by
its concrete value 567. This constraint is then negated and solved, leading to the new
input vector (x = 567,y = 42). Running the function obscure a second time with
this new input vector leads to the abort() statement. When symbolic execution
does not have perfect precision, dynamic test generation can be more precise than
static test generation as illustrated with this example since dynamic test generation is
still able to drive this program along all its feasible paths, while static test generation
cannot.

Example 4. (adapted from [52]) Consider the C-like program shown in Figure 6.
For this example, a static analysis will typically not be able to report with high cer-
tainty that the abort() is reachable. Sound static analysis tools will report “the
abort might be reachable”, and unsound ones will simply report “no bug found”, if
their alias analysis is not able to guarantee that a->c has been overwritten. In con-
trast, dynamic test generation easily finds a precise execution leading to the abort
by simply generating an input satisfying the constraint x = 0. Indeed, the com-
plex pointer arithmetic expression *((char *)a + sizeof(int)) = 1 is
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struct foo {int i; char c;}
bar (char x) {

struct foo *a;
a->c = x;
if (a->c == 0) {

*((char *)a + sizeof(int)) = 1;
if (a->c != 0)

abort();
}

}

Fig. 6 Another program example with C-like syntax.

not input-dependent, and its symbolic execution is therefore reduced to a purely
concrete execution where the left-hand side of the assignment is mapped to a single
concrete address – no symbolic pointer arithmetic is required, nor any pointer alias
analysis. This kind of code is often found in implementations of network protocols,
when a buffer of type char * representing an incoming message is cast into a
struct representing the different fields of the message type.

3.5 Strengths and Limitations

At a high level, systematic dynamic test generation suffers from two main limita-
tions:

1. the frequent imprecision of symbolic execution along individual paths, and
2. the large number of paths that usually need be explored, or path explosion [46].

In practice, however, approximate solutions to the two problems above are suffi-
cient. To be useful, symbolic execution does not need to be perfect, it must simply
be “good enough” to drive the program under test through program branches, state-
ments and paths that would be difficult to exercise with simpler techniques like
random testing. Even if a directed search cannot typically explore all the feasible
paths of large programs in a reasonable amount of time, it usually does achieve
better coverage than pure random testing and, hence, can find new program bugs.

Another key advantage of dynamic symbolic execution is that it can be imple-
mented incrementally: only some program statements can be instrumented and in-
terpreted symbolically, while others can simply be executed concretely natively, in-
cluding all calls to external libraries and operating-system functions. A tool devel-
oper can improve the precision of symbolic execution over time, by adding new in-
struction handlers in a modular manner. Similarly, simple techniques like bounding
the number of constraints injected at each program location are effective practical
solutions to limit path explosion.

When building tools like these, there are many other challenges, which have
been recently discussed in the research literature: how to recover from imprecision
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in symbolic execution [52, 47], how to scale symbolic execution to billions of in-
structions [55], how to check efficiently many properties together [16, 55], how to
synthesize automatically symbolic instruction handlers [60], how to precisely rea-
son about pointers [104, 16, 37], how to deal with inputs of varying sizes [117], how
to deal with floating-point instructions [51], how to deal with path explosion using
compositional test summaries and other caching techniques [46, 1, 8, 79, 59], which
heuristics to prioritize the search in the program’s search space [16, 56, 13], how
to deal specifically with input-dependent loops [101, 58], how to leverage gram-
mars (when available) for complex input formats [78, 50], how to re-use previous
analysis results across code changes [93, 54, 94], how to leverage reachability facts
inferred by static program analysis [59], etc. Due to space constraints, we do not
discuss those challenges here, but refer instead the reader to the recent references
above where those problems are discussed in detail and more pointers to other re-
lated work are provided.

3.6 Tools and Applications

Despite the limitations and challenges mentioned in the previous section, systematic
dynamic test generation works well in practice: it is often able to detect bugs missed
by other less precise test generation techniques. Moreover, by being grounded in
concrete executions, this approach does not report false alarms, unlike traditional
static program analysis. These strengths explain the popularity of the approach and
its adoption in many recent tools.

Over the last several years, several tools implementing dynamic test generation
have been developed for various programming languages, properties and application
domains. Examples of such tools are DART [52], EGT [15], PathCrawler [116],
CUTE [104], EXE [16], SAGE [56], CatchConv [81], PEX [107], KLEE [14],
CREST [13], BitBlaze [105], Splat [79], Apollo [3], YOGI [59], Kudzu [100], and
S2E [20], among others.

The above tools differ by how they perform dynamic symbolic execution (for
languages such as C, Java, x86, .NET, etc.), by the type of constraints they generate
(for theories such as linear arithmetic, bit-vectors, arrays, uninterpreted functions,
etc.), and by the type of constraint solvers they use (such as lp solve, CVClite,
STP, Disolver, Yikes, Z3, etc.). Indeed, like in traditional static program analysis
and abstract interpretation, these important parameters are determined in practice
depending on which type of program is to be tested, on how the program interfaces
with its environment, and on which properties are to be checked. Moreover, various
cost/precision tradeoffs are also possible, as usual in program analysis.

The tools listed above also differ by the specific application domain they target,
for instance protocol security [52], Unix utility programs [16, 14], database appli-
cations [38], web applications [3, 100], and device drivers [59, 75]. The size of the
software applications being tested also varies widely, from unit testing of small pro-
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grams [52, 16, 107, 20] to system testing of very large programs with millions of
lines of code [55].

At the time of this writing, the largest scale usage and deployment of systematic
dynamic test generation is for whitebox fuzzing of file parsers [56], i.e., whole-
application testing for security vulnerabilities (buffer overflows, etc.). Whitebox
fuzzing scales to large file parsers embedded in applications with millions of lines
of code, such as Excel, and execution traces with billions of machine instructions.
Whitebox fuzzing was first implemented in the tool SAGE [56], which uses the
Z3 [32] Satisfiability-Modulo-Theories (SMT) solver as its constraint solver. Since
2008, SAGE has been running for over 500 machine years in Microsoft’s secu-
rity testing labs. This currently represents the largest computational usage for any
SMT solver, with billions of constraints processed to date [9]. In the process, SAGE
found new security vulnerabilities in hundreds of applications, including image pro-
cessors, media players, file decoders, and document parsers. Notably, SAGE found
roughly one third of all the bugs discovered by file fuzzing during the development
of Microsoft’s Windows 7, saving millions of dollars by avoiding expensive security
patches for a billion PCs [57].

4 Other Related Work

The techniques we presented for software model checking by systematic testing for
concurrency (Section 2) and for data inputs (Section 3) can be combined and used
together. Indeed, nondeterminism due to concurrency (whom to schedule) is orthog-
onal to nondeterminism due to input data (what values to provide). For checking
most properties, concurrent programs can be sequentialized using an interleaving
semantics (e.g., [44, 96]). Therefore, symbolic execution can be extended to multi-
threaded programs [2, 103], since threads share the same memory address space,
and take advantage of partial-order reduction (e.g., [43, 41]). The case of multi-
process programs is more complicated since a good solution requires tracking sym-
bolic variables across process boundaries and through operating systems objects
such as message queues.

As mentioned in the introduction, essentially two approaches to software model
checking have been proposed and are still actively investigated. The first approach
is the one presented in the previous sections. The second approach consists of auto-
matically extracting a model out of a software application by statically analyzing its
code and abstracting away details, applying traditional model checking to analyze
this abstract model, and then mapping abstract counter-examples (if any) back to
the code. The investigation of this abstraction-based second approach can be traced
back to early attempts to analyze concurrent programs written in concurrent pro-
gramming languages such as Ada (e.g., [106, 77, 80, 28]). Other relevant work in-
cludes static analyses geared towards analyzing communication patterns in concur-
rent programs (e.g., [27, 30, 112]). Starting in the late 90s, several efforts have aimed
at providing model-checking tools based on source-code abstraction for mainstream
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popular programming languages such as C and Java. For instance, Feaver [68] can
translate C programs into Promela, the input language of the SPIN model checker,
using user-specified abstraction rules. Similarly, Bandera [29] can translate Java pro-
grams to the (finite-state) input languages of existing model checkers like SMV and
SPIN, using user-guided abstraction, slicing and abstract interpretation techniques.
The abstraction process can also be made fully automatic and adjustable depending
on the specific property to be checked. For instance, SLAM [4] can translate se-
quential C programs to “boolean programs”, which are essentially inter-procedural
control-flow graphs extended with boolean variables, using an automatic iterative
abstraction-refinement process based on the use of predicate abstraction and a spe-
cialized model-checking procedure. For the specific classes of programs that these
tools can handle, the use of abstraction techniques can produce a “conservative”
model of a program that preserves basic information about the execution and com-
munication patterns taking place in the system executing the program. Analyzing
such a model using standard model-checking techniques can then prove the absence
of certain types of errors in the system, without ever executing the program itself.

This second approach of static software model checking via abstraction is com-
plementary to dynamic software model checking via systematic testing. Both ap-
proaches inherit the well-known advantages and limitations of, respectively, static
and dynamic program analysis (e.g., [39]). Static analysis is faster than testing, pro-
vides better code coverage, but is usually less precise, is language dependent, and
may produce spurious counter-examples (i.e, suffers from “false alarms/positives”).
In contrast, dynamic analysis is precise, more language-independent, detects real
bugs, but is slower, provides usually less coverage, and can miss bugs (i.e., suffers
from “false negatives”). Overall, static and dynamic program analysis have comple-
mentary strengths and weaknesses, and are worth combining.

There are many ways to combine static and dynamic program analysis, and, sim-
ilarly, to combine static and dynamic software model checking. Several algorithms
and tools combine static and dynamic program analyses for property checking and
test generation, e.g., [88, 114, 31, 7]. Most of these loose combinations perform a
static analysis before a dynamic analysis, while some [7] allow for some feedback to
flow between both. A tighter integration between static and dynamic software model
checking is proposed in a series of algorithms named Synergy [61], Dash [6] and
Smash [59], and implemented in the Yogi tool [89]. The latest of these algorithms
performs a compositional interprocedural may/must program analysis, where two
complementary sets of techniques are used and intertwined together: a may analysis
for finding proofs based on predicate abstraction and automatic abstraction refine-
ment as in SLAM [4], and a must analysis for finding bugs based on dynamic test
generation as in DART [52]. These two analyses are performed together, in coor-
dination, and communicate their respective intermediate results to each other in the
form of reusable may and must procedure summaries. This fined-grained coupling
between may and must summaries allows using either type of summaries in a flexi-
ble and demand-driven manner for both proving and disproving program properties
in a sound manner, and was shown experimentally to outperform previous algo-
rithms of this kind for property-guided verification [59].
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In contrast, the approach taken in systematic dynamic test generation (see Sec-
tion 3.4) is not property-guided: the goal is instead to exercise as many program
paths as possible while checking many properties simultaneously along each of
those paths [55]. In a non-property guided setting, the effectiveness of static analysis
for safely cutting parts of the search space is typically more limited. In this context,
other complementary work includes tools like Purify, Valgrind and AppVerifier, that
automatically instrument code or executable files for monitoring program execu-
tions and detecting at run-time standard programming and memory-management
errors such as array out-of-bounds and memory leaks. Also, several tools for so-
called run-time verification that monitor at run-time the behavior of a reactive pro-
gram and compare this behavior against an application-specific high-level specifi-
cation (typically a finite-state automaton or a temporal-logic formula) have recently
been developed (e.g., [35, 64]). These tools can also be used in conjunction with
dynamic software model checkers.

Software model checking via systematic testing differs from model-based test-
ing. Given an abstract representation of the program, called model, model-based
testing consists in generating tests to check the conformance of the program with
respect to the model (e.g., [120, 34, 99, 19, 70, 109, 111]). In contrast, systematic
testing does not use or require a model of the program under test. Instead, its goal
is to generate tests that exercise as many program statements as possible, includ-
ing assertions inserted in the code. Another fundamental difference is that models
are usually written in abstract modeling languages which are, by definition, more
amenable to precise analysis, symbolic execution and test generation. In contrast,
code-driven test generation has to deal with arbitrary software code and systems for
which program analysis is bound to be imprecise, as we discussed in Sections 3.2
and 3.3. Sometimes, the model itself is specified as a product of finite-state machines
(e.g., [40]). In that case, systematic state-space exploration techniques inspired by
traditional finite-state model checking are used to automatically generate a set of test
sequences that cover the concurrent model according to various coverage criteria.

Test generation is only one way of proving existential reachability properties of
programs, where specific concrete input values are generated to exercise specific
program paths. More generally, such properties can be proved using so-called must
abstractions of programs [49], without necessarily generating concrete tests. A must
abstraction is defined as a program abstraction that preserves existential reachabil-
ity properties of the program. Sound path constraints are particular cases of must
abstractions [59]. Must abstractions can also be built backwards from error states
using static program analysis [17, 67]. This approach can detect program locations
and states provably leading to error states (no false alarms), but may fail to prove
reachability of those error states back from whole-program initial states, and hence
may miss bugs or report unreachable error states.

As mentioned earlier in Section 3.1, test generation using symbolic execution,
path constraints and constraint solving is related to other approaches to program
verification which reason about programs using logic. Examples of such approaches
are verification-condition generation [33, 5], symbolic model checking [12] and
SAT/SMT-based bounded model checking [21, 23]. All these approaches have a lot
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in common, yet differ by important details. In a nutshell, these approaches translate
an entire program into a single logic formula using static program analysis. This
logic encoding usually tracks both control and data dependencies on all program
variables. Program verification is then usually reduced to a validity check using
an automated theorem prover. When applicable, those approaches can efficiently
prove complex properties of programs. In contrast, test generation using symbolic
execution builds a logic representation of a program incrementally, one path at a
time. Path-by-path program exploration obviously suffers from the path explosion
problem discussed earlier, but it scales to large complex programs which are cur-
rently beyond the scope of applicability of other automatic program verification
approaches like SAT/SMT-based bounded model checking. Verification-condition
generation has been shown to scale to some large programs but it is not automatic:
it typically requires a large quantity of non-trivial user-annotations, like loop invari-
ants and function pre/post conditions, to work in practice and is more similar to
interactive theorem proving. We refer the reader to [53] for a more detailed compar-
ison of all these approaches.

5 Conclusion

We discussed how model checking can be combined with testing to define a dy-
namic form of software model checking based on systematic testing, which scales
to industrial-size concurrent and data-driven software. This line of work was devel-
oped over the last two decades and is still an active area of research. This approach
has been implemented in tens of tools by now. The application of those tools have,
collectively, found thousands of new bugs, many of those critical from a reliability
or security point of view, in many different application domains.

Yet much is still to be accomplished. Software model checking has been suc-
cessfully applied to several niche applications, such as communication software,
device drivers and file parsers, but has remained elusive for general-purpose soft-
ware. Most tools mentioned in the previous sections are research prototypes, aimed
at exploring new ideas, but they are not used on a regular basis by ordinary software
developers and testers. Finding other “killer apps” for these techniques, beyond de-
vice drivers [4] and file parsers [56], is critical in order to sustain progress in this
research area.
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