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Abstract.

Three-valued modelsn which properties of a system are either true, false or
unknown, have recently been advocated as a better repaearfor reactive pro-
gram abstractions generated by automatic techniques symedicate abstraction.
Indeed, for the same cost, model checking three-valuedaattisins, also called
may/must abstractiongan be used to both prove and disprove any temporal-logic
property, whereas traditional conservative abstracticens only prove universal
properties. Also, verification results can be more precigh generalized model
checking which checks whether there exists a concretization of atrattion sat-
isfying a temporal-logic formula. Generalized model chiegkgeneralizes both
model checking (when the model is complete) and satisfiglfivhen everything
in the model is unknown), probably the two most studied potd related to tem-
poral logic and verification.

This paper presents an introduction to the main ideas behisdramework,
namely models for three-valued abstractions, complesepesorders to measure
the level of completeness of such models, three-valued desthfpgics and gen-
eralized model checking. It also discusses algorithms anaptexity bounds for
three-valued model checking and generalized model-chgdkir various tempo-
ral logics. Finally, it discusses applications to prograenification via automatic
abstraction.

1. Introduction

How to broaden the scope of model checking to software isatigr one of the most
challenging problems related to computer-aided verificatiEssentially two approaches
have been proposed and are still actively being investigdtiee first approach consists
of adapting model checking into a form of systematic testitad simulates the effect of
model checking while being applicable to operating-sygtemsesses executing arbitrary
code [17,23]; although counter-examples reported with #pproach are sound, it is
inherently incomplete for large systems. The second agproansists of automatically
extracting a model out of a software application by staljcahalyzing its code, and then
of analyzing this model using traditional model-checkimhgogithms (e.g., [4,8,49,41,
29)); although automatic abstraction may be able to proveectness, counter-examples
are generally unsound since abstraction usually intragluneealistic behaviors that may
yield to spurious errors being reported when analyzing tbdeh



In this paper, we present an overview of a series of arti®g$20,21,22,18,14,19,
25] discussing how automatic abstraction can be performeactify arbitrary formu-
las of the propositiongli-calculus [35] in such a way that both correctness proofs and
counter-examples are guaranteed to be sound.

The key to make this possible is to represent abstract sgstising richer models
that distinguish properties that atreie, falseandunknownof the concrete system. Ex-
amples of such richer modeling formalisms are partial Keigkructures [5] and Modal
Transition Systems [36,20]. Reasoning about such systemqsres 3-valued temporal
logics [9], i.e., temporal logics whose formulas may evidua true, falseor 1 (“un-
known”) on a given model. Then, by using an automatic abstmraprocess that gener-
ates by construction an abstract model which is less comfian the concrete system
with respect to a completeness preorder logically charnaet by 3-valued temporal
logic, every temporal property that evaluatedriee (resp.false on the abstract model
automatically holds (resp. does not hold) of the concrettesy, hence guaranteeing
soundness of both proofs and counter-examples. In cas@anpy@valuates ta. on the
model, a more complete (i.e., less abstract) model is theassary to provide a defi-
nite answer concerning this property of the concrete systdns approach is applica-
ble to check arbitrary formulas of the propositiopatalculus (thus including negation
and arbitrarily nested path quantifiers), not just univigesaperties as with a traditional
“conservative” abstraction that merely simulates the cetecsystem.

2. Three-Valued Modeling Formalisms

Examples of 3-valued modeling formalisms for represengiagially defined systems
are partial Kripke structures(PKS) [5], Modal Transition System@TS) [36,20] or
Kripke Modal Transition Systen{KMTS) [30].

must may

Definition 1 AKMTS M is a tuple(S,P,—, —,L), where S is a nonempty finite set of

states, P is a finite set of atomic propositio%‘%’g Sx S andm—“fg Sx S are transition
relations such thamtg 1% and L: Sx P — {true, L,false} is aninterpretatiorthat

associates a truth value iftrue, 1 ,false} with each atomic proposition in P for each
must may

state in S. An MTS is a KMTS where=RD. A PKS is a KMTS where==—7.

The third valuel (read “unknown”) andnaytransitions that are nohusttransitions are
used to model explicitly a loss of information due to abgimacconcerning, respectively,

state or transition properties of the concrete system baimdeled. A standar@¢pomplete

Kripke structure is a special case of KMTS wh&8="% andL: SxP— {true,false},

i.e., no proposition takes value in any state.

It can be shown [22] that PKSs, MTSs, KMTSs and variants of i9dWhere tran-
sitions are labeled and/or two interpretation functia#8Y and L™t are used [30], are
all equally expressive (i.e., one can translate any fosmainto any other). In this pa-
per, we will use KMTSs since they conveniently generalizeleie withmaytransitions
only, which are used with traditional conservative absioms. Obviously, our results
also hold for other equivalent formalisms (exactly as tiadal model-checking algo-
rithms and complexity bounds apply equally to systems nemtiat Kripke structures or
Labeled Transition Systems, for instance).



3. Three-Valued Temporal Logics

When evaluating a temporal-logic formula on a 3-valued rhdtlere are three possible
outcomes: the formula can evaluatetioe, falseor L (unknown). Formally, we define
3-valued (temporal) logics as follows.

In interpreting propositional operators on KMTSs, we usedfle’s strong 3-valued
propositional logic [34], which generalizes the standaxdRied semantics. Conjunction
A in this logic is defined as the function that retutnse if both of its arguments are
true, falseif either argument igalse and_L otherwise. We define negationusing the
function ‘comp’ that mapgsrueto false falseto true, and_L to L. DisjunctionV is defined
as usual using De Morgan’s lawgy g = —(—pA —q). Note that these functions give the
usual meaning of the propositional operators when appliedluedrue andfalse

Propositional modal logic (PML) is propositional logic ertled with the modal
operatorAX (which is read “for all immediate successors”). Formula®bfL have the
following abstract syntaxg ::= p| —@ | @ A @ | AX@, wherep ranges oveP. The
following 3-valued semantics generalizes the traditiédrahlued semantics for PML.

Definition 2 The value of a formula of 3-valued PML in a state s of a KMTS M

(SPS ™ 1) written[(M,s) = ¢], is defined inductively as follows:

[(M,s) = p| =L(s p)
[(M,s) = ~¢] = com[(M,s) = ¢)])
(M,s) E @A @] =[(M,s) E@a]A[(M,s) = @]

may

true ifvs :s— 5 = [(M,S) = @] =true

[(M,s) = AXg] = { falseif3s : s ™' A[(M,S) = ¢ = false
1 otherwise

This 3-valued logic can be used to define a preorder on KMT&sr#flects their
degree of completeness. Letbe theinformation orderingon truth values, in which
1 <true, L <false x < x (for all x € {true, L,false}), andx £ y otherwise. Note that
the operators comp, min and max are monotonic with respebetinformation order-
ing <:if x<x andy <y, we have com{x) < comgx’), min(x,y) < min(x,y'), and
max(x,y) < maxx,y'). This property is important to prove the results that follow
Definition 3 Let My = (SA,P,%’[A, E>/A,LA) and Mg = (Sc,F’,m—us>tc,wc,Lc) be
KMTSs. Theompleteness preordes is the greatest relationZ C Sy x & such that
(Sa,Sc) € P implies the following:

® VpeP:La(s,p) < Le(s p),
o if sa ™3 5, there is somelse S such that s ™3¢ &, and (s}, 5.) € 42,
o if s "¢ &, there is somese S such that § —2 s, and (s}, SL) € 2.

This definition allows to abstradflc by Ma by letting truth values of propositions be-
come_L and by lettingmusttransitions becomenaytransitions, but almay-transitions
of Mc must be preserved iMa. We then say thaWla is more abstracgtor less com-



plete thanMc. The inverse of the completeness preorder is also cedlizsement pre-
orderin [36,30,20]. Note that relatio# reduces to a simulation relation when applied
to MTSs with maytransitions only. Also note that relatio® reduces to bisimulation
when applied to MTSs witlmusttransitions only and where all atomic propositions in
P are eithetrue or false

It can be shown that 3-valued PML logically characterizes cbmpleteness pre-
order [5,30,20].
Theorem 4 [5] Let Ma = (Sa, P, ™58, ™A, La) and Mt = (S, P, ™2, ™c, Le) be
KMTSs such that;se Sa and ¢ € &, and let®d be the set of all formulas of 3-valued
PML. Then,

Sa 2 s iff (Vo e @ :[(Ma, %) E @] < [(Mc, &) = ¢)).

In other words, KMTSs that are “more complete” with respeckthave more def-
inite properties with respect tg, i.e., have more properties that are eittrae or false
Moreover, any formulap of 3-valued PML that evaluates taue or falseon a KMTS
has the same truth value when evaluated on any more complateuse. This result also
holds for PML extended with fixpoint operators, i.e., thepmsitionalu-calculus [5].

The following theorem states that 3-valued propositionadled logic logically char-
acterizes the equivalence relation induced by the compéstepreorder.

Theorem 5 [5] Let My = (Sy,P,™5}, ™ 11) and M = (S, P, ™5, ™, 1,) be
KMTSs such thatse S and $ € S, and letd denote the set of all formulas of 3-valued
propositional modal logic. Then

(Vpe®@:[(M,s1) F @] = [(M2,%) = ¢)]) iff (51 <, and 3 < 51).

Note that if two states; ands, arebisimilar, denoted; ~ s, this implies boths; <
$ ands, < s3. This means that 3-valued propositional modal logic camtigiinguish
between bisimilar states.

However, the converse is not trug: < s, ands, < s does not implys; ~ . This
is illustrated by the example below. The existence of suckxample proves that, in
contrast with 2-valued propositional modal logic, 3-valymopositional modal logic is
nota logical characterization of bisimulation.

Example 6 [5] Here is an example of two non-bisimilar states that carbeodistin-
guished by any formula of 3-valued propositional modaldogi
sO

s
(true,true) (true,true)

NNV

sl@ Q s3 S 1@ O s'3
(true,00) U (0,0) (Otrue) U (0,0)

(true,true) (true,true)




These two partial Kripke structures have two atomic prapmss p and g, whose
truth value is defined in each state as indicated in the figyieemir of the form(p,q).
We have the following relations:

$ =S, ands, < s,
S3 = sy ands; < sg,
s1Xs,ands; <5, < andsz <),
® 5 = 5 ands) < .

We have thagy < 5 ands, < s, butsg ¢ g, sinces; is not bisimilar to any state in the
second partial Kripke structurill.

4. Three-Valued Model Checking

Given a states of a 3-valued modeM and a formulap, how to compute the value
[(M,s) = g]?

This is the3-valued model checkingroblem. In [6], it is shown that computing
[(Ma,S) = ¢] can be reduced to two traditional (2-valued) model-chegkiroblems on
complete systems (such as Kripke structures or Labeledsitiam Systems).

Theorem 7 [6] The model-checking problem for a 3-valued temporal ¢ocgn be re-
duced to two model-checking problems for the corresponzinglued logic.

The reduction can be performed in 3 steps as follows.
Step 1.CompleteM into two “extreme” complete Kripke structures, called tie
timistic M, andpessimisticMp completions, defined as follows:

e ExtendP to P’ such that, for everp € P there exists @ € P’ such that (s, p) =
compL(s,p)) forall sin S.
o Mo = (S Lo, ™) with
def [true if L(s,p) =L
Lo(s,P) = {L(s, p) otherwise
o Mp= (S Lp,—) with
Lo( )d_ef false if L(s,p) =L
P ~ | L(s, p) otherwise
Step 2.Transform the formula to its positive formT (¢) by pushing negation in-
wards using De Morgan’s laws, and replacing remaining rniegat-p at the proposi-
tional level by(p).
Step 3.EvaluateT (¢) on M, and M, using traditional 2-valued model checking,
and combine the results as follows:

true if (Mp,s) =T(9)
[(M,s) |= o] = { falseif (Mo,s) b= T ()

1 otherwise

This can be done using existing model-checking tools! Thmida istrue at s if it is
true under the pessimistic interpretation fadseat s if it is falseunder the optimistic
interpretation, and ig. otherwise.



It can be proved [6] that the above procedure computes theeatovalue for
[(M,s) &= ¢] according to the 3-valued semantics defined in the previectios.

An immediate corollary from this result is th&8tvalued model checking has the
same (time and space) complexity as traditional 2-valuedehoheckingIndeed, the
transformations ol into M, andMy, and ofg into T (¢) can be done in linear time and
logarithmic space in the size & and g, respectively.

Example 8 [5] Consider the three following partial Kripke structuregth a single
atomic propositiorp, whose truth value is defined in each state as indicated ifigties.

=false p=false

p=true D
/_ p=true / \p =true /_ p =false

UUUUUU

The formulaA(true% p) of 3-valued CTL is read “for all paths, dogseventually
hold?”. It has a different truth value in each of the top staté these partial Kripke
structures[s; = A(true?Z p)] =true, [s; = A(true? p)] =L, and[sz = A(true?Z p)] =
false ®

5. Generalized Model Checking

However, as argued in [6], the semantics/@fl,s) = ¢] returns_L more often than it
should. Consider a KMT# consisting of a single stagsuch that the value of proposi-
tion p atsis L and the value of| atsis true. The formulagp vV —pandg A (pV —p) are
1 ats, although in all complete Kripke structures more compla@nt M, s) both for-
mulas evaluate ttrue. This problem is not confined to formulas containing subfalas
that are tautological or unsatisfiable. Consider a KMMSvith two states, ands; such
thatp = q=truein s andp = q = falsein s, and with amay-transition fromsy to s;.
The formulaAX pA -AX q(which is neither a tautology nor unsatisfiable)lisat s, yet
in all complete structures more complete th{dH, 5p) the formula isfalse

This observation is used in [6] to define an alternative 3idlsemantics for modal
logics called thehoroughsemantics since it does more than the other semantics to dis-
cover whether enough information is present in a KMTS to giwdefinite answer. Let
thecompletionss’(M, s) of a states of a KMTS M be the set of all statess of complete
Kripke structuresV’ such thas < s'.

Definition 9 Let @ be a formula of any two-valued logic for which a satisfactielation
k= is defined on complete Kripke structures. The truth valug iof a state s of a KMTS
M under thethoroughinterpretation, written (M, s) = ¢}, is defined as follows:

true if (M’';S) = @for all (M’,s) in €(M,s)
[(M,s) E ¢]: = < false if(M',s) [~ @ forall (M,s)in €(M,s)
1 otherwise



Itis easy to see that, by definition, we always hg¥é,s) = @] < [(M,s) = ¢]:. In gen-
eral, interpreting a formula according to the thoroughdhvalued semantics is equiva-
lent to solving two instances of the generalized model-kimgproblem [6].

Definition 10 (Generalized Model-Checking Problem)Given a state s of a KMTS M
and a formulag of a (two-valued) temporal logic L, does there exist a statefsa
complete Kripke structure Msuch that s< s and(M’,s) = @ ?

This problem is calledyeneralized model-checkirgince it generalizes both model

checking and satisfiability checking. At one extreme, whdre: ({s},P, must ey

{(s0,%)},L) with L(so,p) =L for all p € P, all complete Kripke structures are more
complete thav and the problem reduces to the satisfiability problem. Atatier ex-
treme, wheré is complete, only a single structure needs to be checkecdharuttblem
reduces to model checking.

Therefore, the worst-case complexity for the generalizedehchecking problem
will never be better than the worst-case complexities ferttodel-checking and satisfi-
ability problems for the corresponding logic. The follogitheorem formally states that
the generalized model-checking problem is at least as fsatttbasatisfiability problem.

Theorem 11 [6] Let L denote the propositionali-calculus or any of its fragments
(propositional logic, PML, LTL, CTL, CTi, etc.). Then the satisfiability problem for L
is reducible (in linear-time and logarithmic space) to thengralized model-checking
problem for L.

Is generalized model checking harder than satisfiabilitg2pends.
For branching-timetemporal logics, it can be shown [6] that generalized model
checking has the same complexity as satisfiability.

Theorem 12 [6] Let L denote propositional logic, PML, CTL, or any brannb-time
logic including CTL (such as CTLor the propositionalu-calculus). The generalized
model-checking problem for the logic L has the same coniplas the satisfiability
problem for L.

In contrast, folinear-timetemporal logic (LTL), generalized model checking can
be harder than satisfiability [25]. We have the following.

Theorem 13 [25] Given a state g of partial Kripke structure M= (S,L,#) and an
LTL formulag, one can construct an alternating parity word automatop 4 , over a

1-letter alphabet with at most (@8] - 22°°*'"") states an@(19) priorities such that

(3(M',5p) : 50 < sp and (M',59) = @) iff L (A 55).9) # O

Theorem 14 [25] The generalized model-checking problem for lineamndi temporal
logic is 2EXPTIME-complete.

For LTL, generalized model checking is thharderthan satisfiability and model
checking, since both of these problems are PSPACE-comipletd L. Algorithms for
LTL generalized model checking use alternating/tree aatarf25]. Other problems of



Logic MC SAT GMC
Propositional Logic Linear NP-complete NP-complete
PML Linear PSPACE-complete| PSPACE-complete
CTL Linear EXPTIME-complete| EXPTIME-complete
u-calculus NPNco-NP EXPTIME-complete| EXPTIME-complete
LTL PSPACE-complete PSPACE-complete| 2EXPTIME-complete

Figure 1. Known results on the complexity in the size of the formula (@frvalued and 3-valued) model
checking (MC), satisfiability (SAT) and generalized modstcking (GMC).

that flavor include theealizability [1] and synthesid42,43] problems for linear-time
temporal logic specifications.

Figure 1 summarizes the previous complexity results. Theselts show that the
complexity in the size of the formula of computifi/, s) = ¢]: (GMC) is always higher
than that of computing M, s) = ¢] (MC).

Regarding the complexity in the size of the mo|, it is shown in [6] that gener-
alized model checking for CTL can be solved in time quadrati®/|. For LTL, gener-
alized model checking can be solved in time polynomidMn [25]. More precisely, the
complexity in|M| is

e linear for safety (O p) and weak (i.e., recognizable by Deterministic Weak Word
automata) properties;

e quadraticfor responsel{(p — < ), persistence® O p) and generalized reactiv-
ity[1] properties [32].

Note that for CTL and LTL, generalized model checking is PEHdard in|M| while
model checking is NLOGSPACE-complete|M| [18].

6. How to Generate 3-Valued Abstractions

In [20], itis shown how to adapt the abstraction mapping®bfd construct abstractions
that are less complete than a given concrete program wiffecé$o the completeness
preorder.

Definition 15 Let Mc = (&, P, ﬂ%,@fc,LC) be a (concrete) KMTS. Given a set S

of abstract states and a tofabstraction relation on states C S x S, we define the
must may

(abstract) KMTS M = (Sa,P,—a, —a, La) as follows:

o a™, difvee Sicpa= (3¢ € 1 dpa Ac ™ ¢);

° amA aifdcd e cpaAc’pa’/\cwc c;
true ifVc:cpa=-Lc(c,p) = true
false ifvc: cpa=-Lc(c, p) =false
1 otherwise

[ ] LA(aa p) =

The previous definition can be used to build abstract KMTSs.

IThatis, fce & :Jae Sa:cpa) and(Vae Sy :dce S i cpa).



Theorem 16 Given a KMTS M, any KMTS M obtained by applying Definition 15 is
such that M, < Mc.

Given a KMTSMc, any abstractioa less complete thallc with respect to the com-
pleteness preordef can be constructed using Definition 15 by choosing the irvefp
as% [20]. When applied to MTSs witmaytransitions only, the above definition coin-
cides with traditional “conservative” abstraction thatisimulationof the concrete sys-
tem. Building a 3-valued abstraction can be done usingiagisthstraction techniques
at thesame computational coas building a conservative abstraction [20].

7. Application to Software Model Checking

The usual procedure for performing program verificationpiedicate abstraction and
iterative abstraction refinement is the following (e.ge E&12]).

1. Abstract: compute an abstractibla that simulates the concrete progriMg.
2. Check: given a universal propeity decide whethea = @.

e if Ma |= @: stop (the property is proveic E ).
e if Ma [~ @: go to Step 3.

3. Refine: refineMa (possibly using a counter-example found in Step 2). Then go
to Step 1.

Using predicate abstraction [26,13,50], the abstractmmputed in Step 1 is de-
fined with respect to a set of predicates= {1, ..., Yn}, which are typically quantifier-
free formulas of first-order logic (for instancg==y+1) v (x < y—5)). An abstract
state is defined as a vector pfbits induced byn-ary conjunctions, with each predi-
cateys; contributing eitheny; or -y, which identifies all concrete states that satisfy the
same set of predicates ¥#. Thus, a concrete stateis abstracted by an abstract state
[c] = (by,...,bn) such thatvl <i < n:b; = i(c). A transition is defined between ab-
stract stategcy| and [cp] if there exists a transition from some concrete statgihto
some concrete state jo]. The resulting abstract transition systéfn is guaranteed by
construction to simulate the concrete transition syst&m

SinceMp simulatesMic, one can only prove the correctness of universal properties
(i.e., properties over all paths) dc by analyzingMa in Step 2. In particular, the vi-
olation of a universal property (or equivalently, the datiion of an existential prop-
erty) cannot be established by analyzing such abstradtiageneral. Step 3 typically in-
volves the addition of new predicates to refine the curresirabtion. Note that the three
steps above can also be interleaved and performed in adricand-driven fashion as
described in [28].

Thanks to the framework described in the previous sectisagan now present the
following new procedure for automatic abstraction [21].



1. Abstract: compute an abstractibia using Def. 15 such thdfia < Mc.
2. Check: giveranypropertyg,

(@) (3-valued model checking) computéa = ¢|.

e if [Ma = ¢] =true or false stop (the property is proved (resp. disproved)
onMg).
e if [Ma = ¢ =L, continue.

(b) (generalized model checking) comp{ié = ¢:.

e if [Ma = @] = true or false stop (the property is proved (resp. disproved)
onMg).
e if [MaE ¢ =1, goto Step 3.

3. Refine: refineMa (possibly using a counter-example found in Step 2). Then go
to Step 1.

This new procedure strictly generalizes the traditiona anseveral ways. First, any
temporal logic formula can be checked (not just universapprties). Second, all cor-
rectness proofs and counter-examples obtained by anglyxip abstractiofMa such
thatMa < Mc are guaranteed to be sound (i.e., holdMy) for any property (by The-
orem 4). Third, verification results can be more precise thin the traditional proce-
dure: the new procedure will not only retutmue whenever the traditional one returns
true (trivially, since the former includes the latter), but itcalso returrtrue more of-
ten thanks to a more thorough check using generalized mayasking, and it can also
returnfalse The new procedure can thus terminate sooner and more berthe tra-
ditional procedure — the new procedure will never loop tlyloits 3 steps more often
than the traditional one.

Remarkably, each of the 3 steps of the new procedure can fiped at roughly
the same cost as the corresponding step of the traditionaédure: as shown in [20],
building a 3-valued abstraction using Definition 15 (Stepf h@w procedure) can be
done at the same computational cost as building a consa\aitistraction (Step 1 of
traditional procedure); computiriyla = ¢] in Step 2.a can be done at the same cost at
traditional (2-valued) model checking [6]; following thesults of Section 5, computing
[Ma E ¢@]: in Step 2.b can be more expensive than Step 2.a, but is diihpmial (typ-
ically linear or quadratic) in the size ®fls; Step 3 of the new procedure is similar to
Step 3 of the traditional one (in the case of LTL propertiesrigtance, refinement can
be guided by error traces found in Step 2 as in the traditipratedure). Finally note
that the new procedure could also be adapted so that theatliffsteps are performed in
a demand-driven basis following the work of [28].

8. Examples

We now give examples of programs, models and propertieskaeh from [21], where
computing[(M, s) = @J; returns a more precise answer tHéd, s) = ¢|.

Consider the three programs shown in Figure 2, where x anchgtdevariables,
and f denotes some unknown function. The notation “x,y = ilp@ans variables x and y
are simultaneously assigned to values 1 and 0, respecti#ehsider the two predicates



program C1(} program C2() program C3()}
x,y =1,0; x,y =1,0; Xx=1;
X,y = f(x),f(y); X,y = 2*f(x),f(y); x = f(x);
X,y = 1,0; X,y =1,0; }
} }
sl s2 s3
(p=T.q=F) (p=T.q=F) (p=T)
(P=p a7 ) s2' () (p=F,q11) UA(p=|13
U (p=T,q=F) STU (p=T,q=F)
M1 M2 M3

Figure 2. Examples of programs and models

p:“is x odd?” andq: “is y odd?”. Figure 2 shows an example of KMTS model for each
of the three programs. These models can be computed autathatising Definition 15,
predicate abstraction techniques and predicptasd g, so that by construction they
satisfy Theorem 16. Each model is a KMTS wittusttransitions only and with atomic
propositiongp andq whose truth value is defined in each state as indicated inghefi

Consider the LTL formulag = < q=- O(pV q) (where< is read “eventually” and
O is read “always” [38]). While[(M1,s1) = @] =1, [(M1,51) = @]t = true. In other
words, using the thorough interpretation yields a more defanswer in this case. Note
that the gain in precision obtained in this case is somevitméies to the gain in precision
that can be obtained using an optimization caftezlising[3] aimed at recovering some
of the imprecision introduced when usingrtesian abstractioifsee [3,20]).

Consider now the formulg, = ¢ qA O(pV —q) evaluated orfM5, ). In this case,
we have[(M2,%) E @] =1, while [M2,s) E @] = false Again, using the thor-
ough interpretation yields a more definite answer, althaaving a generalized model-
checking problem is necessary to return a negative ansmaget, one needs to prove
in this case that there exists a computatior{M$,s;) (namelys;s,s;* — there is only
one computation in this simple example) that does not hayecampletion satisfying
@, which itself requires using alternating automata and bas be more expensive as
discussed in Section 5. Another example of formulg@is- OqA O(pV —q) (whereO is
read “next” [38]). Again we have th@tM»,s;) = @] =L, while [(M2, s;) = @] = false
Note that, althouglg, is an LTL safety formula and hence is within the scope of asialy
of existing tools ([4], [8], etc.), none of these tools canye thatg, does not hold: this
result can only be obtained using generalized model chgckin

Last, conside(Ms, s3) and formulag; = O p. In this case, we have bottMs, s3) =
@) = [(M3,s3) E @]t =L, and the thorough interpretation cannot produce a more defi-
nite answer than the standard 3-valued interpretation.



9. Precision of GMC Vs. MC

How often is generalized model checking (GMC) more predisastmodel checking
(MC)? This question is addressed in [19]. Specifically, [4Ridies when it is possible
to reduce GMQ{, ) to MC(M, ¢'). Such a transformed formuld is called asemantic
minimizationof ¢. [19] shows that propositional logic, PML and the propasitl u-
calculus areclosed under semantic minimizatiare., that a reduction from GM®&, @)
to MC(M, ¢) is always possible fop and ¢’ in propositional logic, PML or theu-
calculus. But in contrast, the temporal logics LTL, CTL antlLC arenotclosed under
semantic minimization.

[19] also identifieself-minimizingormulas, i.e., formulag for which GMCM, @)
and MCM, ¢) are equivalent. By definition, GMC and MC have thus the sareeigion
for any self-minimizing formula. Self-minimizing formwacan be defined both seman-
tically using automata-theoretic techniques (for inséarhis is EXPTIME-hard irj¢|
for the u-calculus) and syntactically by providing syntactidafficientcriteria which are
linear in|g@|. For instance, [19] shows thahy formula that does not contain any atomic
proposition in mixed polarity (in its negation normal foris)self-minimizing

Fortunately, in practice, many frequent formulas are sétfimizing, and MC is as
precise as GMC for those.

10. Other Related Work

The framework presented in the previous sections has akso é&dended topen sys-
tems[18] (i.e., systems which interacts with their environmeand togamesin gen-
eral [14]. For instance, [14] studiedstractions of gameshere moves of each player
can be abstracted while preserving winning strategieisotii players. An abstraction
of a game is now a game where each player has both may and muss nyielding
may/must strategies. In this context, the completenessgee becomes aalternating
refinementelation, logically characterized by 3-valued alterngfirrcalculus [2].

Another interesting topic isemantic completeneggven an infinite-state syste@
and propertyp, if C satisfiesp, does there exist a finite-state abstrac#oof C such that
A satisfiesp?

For arbitrary formulagp of LTL, the existence of such finite abstractiohgan be
guaranteed provided that abstractighare extended to include the modelingfafr-
nessconstraints [33], which are used to model termination irpkd-or arbitrary for-
mulasg of the propositionali-calculus (hence including existential properties), the e
istence of such finite abstractions can again be guarantgedolw provided that ab-
stractionsA may includenondeterministienust transitions [37], also calldd/per-must
transitions [40,11,14]. When using hyper-must transgjabstraction refinement with
predicate abstraction becomasnotoniowith respect to the completeness preorder, i.e.,
adding a predicatp now generates an abstraction which is always more complate t
the previous one (see [20,47,14]).



11. Concluding Remarks

This paper presents an introduction to 3-valued “may/malstraction-based software
model checking for sound property verification and falstfma The results presented
here previously appeared in a series of papers [5,6,2@2ABA4,19,25]. These results
shed light on the techniques used in abstraction-basedia@ftmodel checking tools
like SLAM [4], BLAST [28], YASM [27], TERMINATOR [7] and YOGI[24]. In partic-
ular, YASM [27] uses 3-valued models as described in thispapghile YOGI [24] uses
(compositional) may/must abstractions that share tiansiinstead of states.

The reader interested in the topic of this paper should dbtisureferences listed
above, as well as the related work discussed in those refeseWe mention below only
a few other main pointers to related work.

The study of abstraction for model checking of both univieasal existential pro-
gram properties was pioneered in [9,10]. This work definesreegal abstraction frame-
work where abstractions aneixed transition systembatuitively, a mixed transition sys-
tem is a modal transition system without the constrAAtc ™. Mixed transition sys-
tems are more expressive and, in full generality, allow féralued world where some
mixed transition systems cannot be refined by any completal(d) system [31]. Nev-
ertheless, the goal and some of the results of this prior v@oekvery similar to our
own work with 3-valued models and logics. The use of “conative” abstractions for
proving properties of the fulli-calculus is also discussed in [45].

Extended transition systems [39] are Labeled Transitioste3ys extended with a
divergence predicatend can be viewed as a particular class of 3-valued mod&e][5
In [B], it is shown that Hennessy-Milner Logic with a 3-vatumterpretation provides
an alternative characterization of the divergence preandaddition to the intuitionistic
interpretation of Plotkin [48]. Further work on divergemmeorders and logics to char-
acterize them can be found in [48,51]. In all this work, lofpemulas are interpreted
normally in the 2-valued sense. The close correspondertaeebr 3-valued logic and
Plotkin’s intuitionistic modal logic inspired the redumti procedure from 3-valued model
checking to 2-valued model checking of [6] (see Section 4).

Prior to the work reported here, most work on 3-valued modgicl focused on
its proof theory (e.g., [46,15]). Our definition of partiafigke structure is closest to
[16], where two interpretations of modal logic are presénéemany-valued version and
another version based on obtaining 2-valued interpretafimm each of a set of experts.
[16] shows that such a multi-expert interpretation coroesfs in a precise way to a
multi-valued interpretation, similarly to how we show tlzaB-valued interpretation can
be obtained by separate optimistic and pessimistic indésions. However, [16] does
not define a completeness preorder over models or chawtteri results.

In [44], a 3-valued logic is used for program shape analyidig. state of a program
store is represented as a 3-valued structure of first-oodge.l The possible values of
the program store as the program executes are conseryativaputed by a traditional
“may-only” abstract interpretation of the concrete prognaith such a structure as the
abstract domain. The main technical result is an embeddimyrém showing that, for a
certain class of abstraction functions on the domain of sticittures, the interpretation
of a first-order formula on the abstract structure is lesstefthan its interpretation on
the structure itself. Despite a common use of 3-valued |amic goals and results are
fairly different from [44] since our focus is on 3-valued #&lastions ofreactive(transi-



tion) systems and the sound verification (and falsificatafngmporalproperties of such
systems.
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