
May/Must Abstraction-Based
Software Model Checking

For Sound Verification and Falsification

Patrice GODEFROID

Microsoft Research

Abstract.
Three-valued models, in which properties of a system are either true, false or

unknown, have recently been advocated as a better representation for reactive pro-
gram abstractions generated by automatic techniques such as predicate abstraction.
Indeed, for the same cost, model checking three-valued abstractions, also called
may/must abstractions, can be used to both prove and disprove any temporal-logic
property, whereas traditional conservative abstractionscan only prove universal
properties. Also, verification results can be more precise with generalized model
checking, which checks whether there exists a concretization of an abstraction sat-
isfying a temporal-logic formula. Generalized model checking generalizes both
model checking (when the model is complete) and satisfiability (when everything
in the model is unknown), probably the two most studied problems related to tem-
poral logic and verification.

This paper presents an introduction to the main ideas behindthis framework,
namely models for three-valued abstractions, completeness preorders to measure
the level of completeness of such models, three-valued temporal logics and gen-
eralized model checking. It also discusses algorithms and complexity bounds for
three-valued model checking and generalized model-checking for various tempo-
ral logics. Finally, it discusses applications to program verification via automatic
abstraction.

1. Introduction

How to broaden the scope of model checking to software is currently one of the most
challenging problems related to computer-aided verification. Essentially two approaches
have been proposed and are still actively being investigated. The first approach consists
of adapting model checking into a form of systematic testingthat simulates the effect of
model checking while being applicable to operating-systemprocesses executing arbitrary
code [17,23]; although counter-examples reported with this approach are sound, it is
inherently incomplete for large systems. The second approach consists of automatically
extracting a model out of a software application by statically analyzing its code, and then
of analyzing this model using traditional model-checking algorithms (e.g., [4,8,49,41,
29]); although automatic abstraction may be able to prove correctness, counter-examples
are generally unsound since abstraction usually introduces unrealistic behaviors that may
yield to spurious errors being reported when analyzing the model.

In this paper, we present an overview of a series of articles [5,6,20,21,22,18,14,19,
25] discussing how automatic abstraction can be performed to verify arbitrary formu-
las of the propositionalµ-calculus [35] in such a way that both correctness proofs and
counter-examples are guaranteed to be sound.

The key to make this possible is to represent abstract systems using richer models
that distinguish properties that aretrue, falseandunknownof the concrete system. Ex-
amples of such richer modeling formalisms are partial Kripke structures [5] and Modal
Transition Systems [36,20]. Reasoning about such systems requires 3-valued temporal
logics [5], i.e., temporal logics whose formulas may evaluate to true, falseor ⊥ (“un-
known”) on a given model. Then, by using an automatic abstraction process that gener-
ates by construction an abstract model which is less complete than the concrete system
with respect to a completeness preorder logically characterized by 3-valued temporal
logic, every temporal property that evaluates totrue (resp.false) on the abstract model
automatically holds (resp. does not hold) of the concrete system, hence guaranteeing
soundness of both proofs and counter-examples. In case a property evaluates to⊥ on the
model, a more complete (i.e., less abstract) model is then necessary to provide a defi-
nite answer concerning this property of the concrete system. This approach is applica-
ble to check arbitrary formulas of the propositionalµ-calculus (thus including negation
and arbitrarily nested path quantifiers), not just universal properties as with a traditional
“conservative” abstraction that merely simulates the concrete system.

2. Three-Valued Modeling Formalisms

Examples of 3-valued modeling formalisms for representingpartially defined systems
are partial Kripke structures(PKS) [5], Modal Transition Systems(MTS) [36,20] or
Kripke Modal Transition Systems(KMTS) [30].

Definition 1 A KMTS M is a tuple(S,P,
must
−→,

may
−→,L), where S is a nonempty finite set of

states, P is a finite set of atomic propositions,
may
−→⊆ S×S and

must
−→⊆ S×S are transition

relations such that
must
−→⊆

may
−→, and L: S×P → {true,⊥, false} is an interpretationthat

associates a truth value in{true,⊥, false} with each atomic proposition in P for each

state in S. An MTS is a KMTS where P= /0. A PKS is a KMTS where
must
−→=

may
−→.

The third value⊥ (read “unknown”) andmay-transitions that are notmust-transitions are
used to model explicitly a loss of information due to abstraction concerning, respectively,
state or transition properties of the concrete system beingmodeled. A standard,complete

Kripke structure is a special case of KMTS where
must
−→=

may
−→ andL : S×P→{true, false},

i.e., no proposition takes value⊥ in any state.
It can be shown [22] that PKSs, MTSs, KMTSs and variants of KMTSs where tran-

sitions are labeled and/or two interpretation functionsLmay andLmust are used [30], are
all equally expressive (i.e., one can translate any formalism into any other). In this pa-
per, we will use KMTSs since they conveniently generalize models withmay-transitions
only, which are used with traditional conservative abstractions. Obviously, our results
also hold for other equivalent formalisms (exactly as traditional model-checking algo-
rithms and complexity bounds apply equally to systems modeled as Kripke structures or
Labeled Transition Systems, for instance).

3. Three-Valued Temporal Logics

When evaluating a temporal-logic formula on a 3-valued model, there are three possible
outcomes: the formula can evaluate totrue, falseor ⊥ (unknown). Formally, we define
3-valued (temporal) logics as follows.

In interpreting propositional operators on KMTSs, we use Kleene’s strong 3-valued
propositional logic [34], which generalizes the standard 2-valued semantics. Conjunction
∧ in this logic is defined as the function that returnstrue if both of its arguments are
true, false if either argument isfalse, and⊥ otherwise. We define negation¬ using the
function ‘comp’ that mapstrueto false, falseto true, and⊥ to⊥. Disjunction∨ is defined
as usual using De Morgan’s laws:p∨q=¬(¬p∧¬q). Note that these functions give the
usual meaning of the propositional operators when applied to valuestrue andfalse.

Propositional modal logic (PML) is propositional logic extended with the modal
operatorAX (which is read “for all immediate successors”). Formulas ofPML have the
following abstract syntax:φ ::= p | ¬φ | φ1 ∧ φ2 | AXφ , wherep ranges overP. The
following 3-valued semantics generalizes the traditional2-valued semantics for PML.

Definition 2 The value of a formulaφ of 3-valued PML in a state s of a KMTS M=

(S,P,
must
−→,

may
−→,L), written [(M,s) |= φ], is defined inductively as follows:

[(M,s) |= p] = L(s, p)

[(M,s) |= ¬φ] = comp([(M,s) |= φ])

[(M,s) |= φ1 ∧ φ2] = [(M,s) |= φ1]∧ [(M,s) |= φ2]

[(M,s) |= AXφ] =











true if ∀s′ : s
may
−→ s′ ⇒ [(M,s′) |= φ] = true

false if∃s′ : s
must
−→ s′∧ [(M,s′) |= φ] = false

⊥ otherwise

This 3-valued logic can be used to define a preorder on KMTSs that reflects their
degree of completeness. Let≤ be theinformation orderingon truth values, in which
⊥ ≤ true, ⊥ ≤ false, x ≤ x (for all x ∈ {true,⊥, false}), andx 6≤ y otherwise. Note that
the operators comp, min and max are monotonic with respect tothe information order-
ing ≤: if x ≤ x′ andy ≤ y′, we have comp(x) ≤ comp(x′), min(x,y) ≤ min(x′,y′), and
max(x,y) ≤ max(x′,y′). This property is important to prove the results that follow.

Definition 3 Let MA = (SA,P,
must
−→A,

may
−→A,LA) and MC = (SC,P,

must
−→C,

may
−→C,LC) be

KMTSs. Thecompleteness preorder� is the greatest relationB ⊆ SA×SC such that
(sa,sc) ∈ B implies the following:

• ∀p∈ P : LA(sa, p) ≤ LC(sc, p),

• if sa
must
−→A s′a, there is some s′c ∈ SC such that sc

must
−→C s′c and(s′a,s

′
c) ∈ B,

• if sc
may
−→C s′c, there is some s′a ∈ SA such that sa

may
−→A s′a and(s′a,s

′
c) ∈ B.

This definition allows to abstractMC by MA by letting truth values of propositions be-
come⊥ and by lettingmust-transitions becomemay-transitions, but allmay-transitions
of MC must be preserved inMA. We then say thatMA is more abstract, or less com-

plete, thanMC. The inverse of the completeness preorder is also calledrefinement pre-
order in [36,30,20]. Note that relationB reduces to a simulation relation when applied
to MTSs withmay-transitions only. Also note that relationB reduces to bisimulation
when applied to MTSs withmust-transitions only and where all atomic propositions in
P are eithertrueor false.

It can be shown that 3-valued PML logically characterizes the completeness pre-
order [5,30,20].

Theorem 4 [5] Let MA = (SA,P,
must
−→A,

may
−→A,LA) and MC = (SC,P,

must
−→C,

may
−→C,LC) be

KMTSs such that sa ∈ SA and sc ∈ SC, and letΦ be the set of all formulas of 3-valued
PML. Then,

sa � sc iff (∀φ ∈ Φ : [(MA,sa) |= φ] ≤ [(MC,sc) |= φ]).

In other words, KMTSs that are “more complete” with respect to � have more def-
inite properties with respect to≤, i.e., have more properties that are eithertrue or false.
Moreover, any formulaφ of 3-valued PML that evaluates totrue or falseon a KMTS
has the same truth value when evaluated on any more complete structure. This result also
holds for PML extended with fixpoint operators, i.e., the propositionalµ-calculus [5].

The following theorem states that 3-valued propositional modal logic logically char-
acterizes the equivalence relation induced by the completeness preorder�.

Theorem 5 [5] Let M1 = (S1,P,
must
−→1,

may
−→1,L1) and M2 = (S2,P,

must
−→2,

may
−→2,L2) be

KMTSs such that s1 ∈ S1 and s2 ∈ S2, and letΦ denote the set of all formulas of 3-valued
propositional modal logic. Then

(∀φ ∈ Φ : [(M1,s1) |= φ] = [(M2,s2) |= φ]) iff (s1 � s2 and s2 � s1).

Note that if two statess1 ands2 arebisimilar, denoteds1 ∼ s2, this implies boths1 �
s2 ands2 � s1. This means that 3-valued propositional modal logic cannotdistinguish
between bisimilar states.

However, the converse is not true:s1 � s2 ands2 � s1 does not implys1 ∼ s2. This
is illustrated by the example below. The existence of such anexample proves that, in
contrast with 2-valued propositional modal logic, 3-valued propositional modal logic is
nota logical characterization of bisimulation.

Example 6 [5] Here is an example of two non-bisimilar states that cannot be distin-
guished by any formula of 3-valued propositional modal logic.

s0

s1 s3s2

(true,)⊥ (,true)⊥(,)⊥⊥ (,)⊥⊥

s’1 s’3

s’0

s’2

(true,true) (true,true)

(true,true)(true,true)

These two partial Kripke structures have two atomic propositions p andq, whose
truth value is defined in each state as indicated in the figure by a pair of the form(p,q).
We have the following relations:

• s2 � s′2 ands′2 � s2,
• s3 � s′3 ands′3 � s3,
• s1 � s′2 ands′3 � s1, s′1 � s2 ands3 � s′1,
• s0 � s′0 ands′0 � s0.

We have thats0 � s′0 ands′0 � s0, buts0 6∼ s′0 sinces1 is not bisimilar to any state in the
second partial Kripke structure.

4. Three-Valued Model Checking

Given a states of a 3-valued modelM and a formulaφ , how to compute the value
[(M,s) |= φ]?

This is the3-valued model checkingproblem. In [6], it is shown that computing
[(MA,s) |= φ] can be reduced to two traditional (2-valued) model-checking problems on
complete systems (such as Kripke structures or Labeled Transition Systems).

Theorem 7 [6] The model-checking problem for a 3-valued temporal logic can be re-
duced to two model-checking problems for the corresponding2-valued logic.

The reduction can be performed in 3 steps as follows.
Step 1.CompleteM into two “extreme” complete Kripke structures, called theop-

timistic Mo andpessimisticMp completions, defined as follows:

• ExtendP to P′ such that, for everyp∈ P there exists a ¯p∈ P′ such thatL(s, p) =
comp(L(s, p̄)) for all s in S.

• Mo = (S,Lo,
must
−→) with

Lo(s, p)
def
=

{

true if L(s, p) =⊥
L(s, p) otherwise

• Mp = (S,Lp,
may
−→) with

Lp(s, p)
def
=

{

f alse if L(s, p) =⊥
L(s, p) otherwise

Step 2.Transform the formulaφ to its positive formT(φ) by pushing negation in-
wards using De Morgan’s laws, and replacing remaining negations¬p at the proposi-
tional level by(̄p).

Step 3.EvaluateT(φ) on Mo andMp using traditional 2-valued model checking,
and combine the results as follows:

[(M,s) |= φ] =







true if (Mp,s) |= T(φ)
f alseif (Mo,s) 6|= T(φ)
⊥ otherwise

This can be done using existing model-checking tools! The formula is true at s if it is
true under the pessimistic interpretation, isfalseat s if it is falseunder the optimistic
interpretation, and is⊥ otherwise.

It can be proved [6] that the above procedure computes the correct value for
[(M,s) |= φ] according to the 3-valued semantics defined in the previous section.

An immediate corollary from this result is that3-valued model checking has the
same (time and space) complexity as traditional 2-valued model checking. Indeed, the
transformations ofM into Mo andMp, and ofφ into T(φ) can be done in linear time and
logarithmic space in the size ofM andφ , respectively.

Example 8 [5] Consider the three following partial Kripke structureswith a single
atomic propositionp, whose truth value is defined in each state as indicated in thefigure.

⊥p=⊥p=⊥p=

s2s1 s3
p=true

p=true

p=false p=false

p=true p=false

The formulaA(trueU p) of 3-valued CTL is read “for all paths, doesp eventually
hold?”. It has a different truth value in each of the top states of these partial Kripke
structures:[s1 |= A(trueU p)] = true, [s2 |= A(trueU p)] =⊥, and[s3 |= A(trueU p)] =
false.

5. Generalized Model Checking

However, as argued in [6], the semantics of[(M,s) |= φ] returns⊥ more often than it
should. Consider a KMTSM consisting of a single statessuch that the value of proposi-
tion p ats is⊥ and the value ofq ats is true. The formulasp∨ ¬p andq∧ (p∨ ¬p) are
⊥ at s, although in all complete Kripke structures more complete than(M,s) both for-
mulas evaluate totrue. This problem is not confined to formulas containing subformulas
that are tautological or unsatisfiable. Consider a KMTSM′ with two statess0 ands1 such
that p = q = true in s0 andp = q = falsein s1, and with amay-transition froms0 to s1.
The formulaAX p∧¬AXq(which is neither a tautology nor unsatisfiable) is⊥ at s0, yet
in all complete structures more complete than(M′,s0) the formula isfalse.

This observation is used in [6] to define an alternative 3-valued semantics for modal
logics called thethoroughsemantics since it does more than the other semantics to dis-
cover whether enough information is present in a KMTS to givea definite answer. Let
thecompletionsC (M,s) of a states of a KMTSM be the set of all statess′ of complete
Kripke structuresM′ such thats� s′.

Definition 9 Letφ be a formula of any two-valued logic for which a satisfactionrelation
|= is defined on complete Kripke structures. The truth value ofφ in a state s of a KMTS
M under thethoroughinterpretation, written[(M,s) |= φ]t , is defined as follows:

[(M,s) |= φ]t =







true if (M′,s′) |= φ for all (M′,s′) in C (M,s)
false if(M′,s′) 6|= φ for all (M′,s′) in C (M,s)
⊥ otherwise

It is easy to see that, by definition, we always have[(M,s) |= φ] ≤ [(M,s) |= φ]t . In gen-
eral, interpreting a formula according to the thorough three-valued semantics is equiva-
lent to solving two instances of the generalized model-checking problem [6].

Definition 10 (Generalized Model-Checking Problem)Given a state s of a KMTS M
and a formulaφ of a (two-valued) temporal logic L, does there exist a state s′ of a
complete Kripke structure M′ such that s� s′ and(M′

,s′) |= φ ?

This problem is calledgeneralized model-checkingsince it generalizes both model
checking and satisfiability checking. At one extreme, whereM = ({s0},P,

must
−→=

may
−→=

{(s0,s0)},L) with L(s0, p) =⊥ for all p ∈ P, all complete Kripke structures are more
complete thanM and the problem reduces to the satisfiability problem. At theother ex-
treme, whereM is complete, only a single structure needs to be checked and the problem
reduces to model checking.

Therefore, the worst-case complexity for the generalized model-checking problem
will never be better than the worst-case complexities for the model-checking and satisfi-
ability problems for the corresponding logic. The following theorem formally states that
the generalized model-checking problem is at least as hard as the satisfiability problem.

Theorem 11 [6] Let L denote the propositionalµ-calculus or any of its fragments
(propositional logic, PML, LTL, CTL, CTL∗, etc.). Then the satisfiability problem for L
is reducible (in linear-time and logarithmic space) to the generalized model-checking
problem for L.

Is generalized model checking harder than satisfiability? It depends.
For branching-timetemporal logics, it can be shown [6] that generalized model

checking has the same complexity as satisfiability.

Theorem 12 [6] Let L denote propositional logic, PML, CTL, or any branching-time
logic including CTL (such as CTL∗ or the propositionalµ-calculus). The generalized
model-checking problem for the logic L has the same complexity as the satisfiability
problem for L.

In contrast, forlinear-time temporal logic (LTL), generalized model checking can
be harder than satisfiability [25]. We have the following.

Theorem 13 [25] Given a state s0 of partial Kripke structure M= (S,L,R) and an
LTL formulaφ , one can construct an alternating parity word automaton A(M,s0),φ over a

1-letter alphabet with at most O(|S| ·22|φ |log(|φ |)
) states and2O(|φ |) priorities such that

(∃(M′
,s′0) : s0 � s′0 and(M′

,s′0) |= φ) iff L (A(M,s0),φ) 6= /0.

Theorem 14 [25] The generalized model-checking problem for linear-time temporal
logic is 2EXPTIME-complete.

For LTL, generalized model checking is thusharder than satisfiability and model
checking, since both of these problems are PSPACE-completefor LTL. Algorithms for
LTL generalized model checking use alternating/tree automata [25]. Other problems of

Logic MC SAT GMC
Propositional Logic Linear NP-complete NP-complete

PML Linear PSPACE-complete PSPACE-complete
CTL Linear EXPTIME-complete EXPTIME-complete

µ-calculus NP∩co-NP EXPTIME-complete EXPTIME-complete
LTL PSPACE-complete PSPACE-complete 2EXPTIME-complete

Figure 1. Known results on the complexity in the size of the formula for(2-valued and 3-valued) model
checking (MC), satisfiability (SAT) and generalized model checking (GMC).

that flavor include therealizability [1] and synthesis[42,43] problems for linear-time
temporal logic specifications.

Figure 1 summarizes the previous complexity results. Theseresults show that the
complexity in the size of the formula of computing[(M,s) |= φ]t (GMC) is always higher
than that of computing[(M,s) |= φ] (MC).

Regarding the complexity in the size of the model|M|, it is shown in [6] that gener-
alized model checking for CTL can be solved in time quadraticin |M|. For LTL, gener-
alized model checking can be solved in time polynomial in|M| [25]. More precisely, the
complexity in|M| is

• linear for safety (2 p) and weak (i.e., recognizable by Deterministic Weak Word
automata) properties;

• quadraticfor response (2(p→3q), persistence (32 p) and generalized reactiv-
ity[1] properties [32].

Note that for CTL and LTL, generalized model checking is PTIME-hard in|M| while
model checking is NLOGSPACE-complete in|M| [18].

6. How to Generate 3-Valued Abstractions

In [20], it is shown how to adapt the abstraction mappings of [9] to construct abstractions
that are less complete than a given concrete program with respect to the completeness
preorder.

Definition 15 Let MC = (SC,P,
must
−→C,

may
−→C,LC) be a (concrete) KMTS. Given a set SA

of abstract states and a total1abstraction relation on statesρ ⊆ SC ×SA, we define the

(abstract) KMTS MA = (SA,P,
must
−→A,

may
−→A,LA) as follows:

• a
must
−→A a′ if ∀c∈ SC : cρa⇒ (∃c′ ∈ SC : c′ρa′∧c

must
−→C c′);

• a
may
−→A a′ if ∃c,c′ ∈ SC : cρa∧c′ρa′∧c

may
−→C c′;

• LA(a, p) =







true if ∀c : cρa⇒ LC(c, p) = true
false if∀c : cρa⇒ LC(c, p) = false
⊥ otherwise

The previous definition can be used to build abstract KMTSs.

1That is, (∀c∈ SC : ∃a∈ SA : cρa) and(∀a∈ SA : ∃c∈ SC : cρa).

Theorem 16 Given a KMTS MC, any KMTS MA obtained by applying Definition 15 is
such that MA � MC.

Given a KMTSMC, any abstractionMA less complete thanMC with respect to the com-
pleteness preorder� can be constructed using Definition 15 by choosing the inverse ofρ
asB [20]. When applied to MTSs withmay-transitions only, the above definition coin-
cides with traditional “conservative” abstraction that isa simulationof the concrete sys-
tem. Building a 3-valued abstraction can be done using existing abstraction techniques
at thesame computational costas building a conservative abstraction [20].

7. Application to Software Model Checking

The usual procedure for performing program verification viapredicate abstraction and
iterative abstraction refinement is the following (e.g., see [3,12]).

1. Abstract: compute an abstractionMA that simulates the concrete programMC.
2. Check: given a universal propertyφ , decide whetherMA |= φ .

• if MA |= φ : stop (the property is proved:MC |= φ).
• if MA 6|= φ : go to Step 3.

3. Refine: refineMA (possibly using a counter-example found in Step 2). Then go
to Step 1.

Using predicate abstraction [26,13,50], the abstraction computed in Step 1 is de-
fined with respect to a set of predicatesΨ = {ψ1, . . . ,ψn}, which are typically quantifier-
free formulas of first-order logic (for instance,(x == y+ 1)∨ (x < y−5)). An abstract
state is defined as a vector ofn bits induced byn-ary conjunctions, with each predi-
cateψi contributing eitherψi or ¬ψi , which identifies all concrete states that satisfy the
same set of predicates inΨ. Thus, a concrete statec is abstracted by an abstract state
[c] = (b1, . . . ,bn) such that∀1≤ i ≤ n : bi = ψi(c). A transition is defined between ab-
stract states[c1] and [c2] if there exists a transition from some concrete state in[c1] to
some concrete state in[c2]. The resulting abstract transition systemMA is guaranteed by
construction to simulate the concrete transition systemMC.

SinceMA simulatesMC, one can only prove the correctness of universal properties
(i.e., properties over all paths) ofMC by analyzingMA in Step 2. In particular, the vi-
olation of a universal property (or equivalently, the satisfaction of an existential prop-
erty) cannot be established by analyzing such abstractionsin general. Step 3 typically in-
volves the addition of new predicates to refine the current abstraction. Note that the three
steps above can also be interleaved and performed in a strictdemand-driven fashion as
described in [28].

Thanks to the framework described in the previous sections,we can now present the
following new procedure for automatic abstraction [21].

1. Abstract: compute an abstractionMA using Def. 15 such thatMA � MC.
2. Check: givenanypropertyφ ,

(a) (3-valued model checking) compute[MA |= φ].

• if [MA |= φ] = true or false: stop (the property is proved (resp. disproved)
onMC).

• if [MA |= φ] =⊥, continue.

(b) (generalized model checking) compute[MA |= φ]t .

• if [MA |= φ]t = true or false: stop (the property is proved (resp. disproved)
onMC).

• if [MA |= φ] =⊥, go to Step 3.

3. Refine: refineMA (possibly using a counter-example found in Step 2). Then go
to Step 1.

This new procedure strictly generalizes the traditional one in several ways. First, any
temporal logic formula can be checked (not just universal properties). Second, all cor-
rectness proofs and counter-examples obtained by analyzing any abstractionMA such
thatMA � MC are guaranteed to be sound (i.e., hold onMC) for any property (by The-
orem 4). Third, verification results can be more precise thanwith the traditional proce-
dure: the new procedure will not only returntrue whenever the traditional one returns
true (trivially, since the former includes the latter), but it can also returntrue more of-
ten thanks to a more thorough check using generalized model-checking, and it can also
returnfalse. The new procedure can thus terminate sooner and more often than the tra-
ditional procedure — the new procedure will never loop through its 3 steps more often
than the traditional one.

Remarkably, each of the 3 steps of the new procedure can be performed at roughly
the same cost as the corresponding step of the traditional procedure: as shown in [20],
building a 3-valued abstraction using Definition 15 (Step 1 of new procedure) can be
done at the same computational cost as building a conservative abstraction (Step 1 of
traditional procedure); computing[MA |= φ] in Step 2.a can be done at the same cost at
traditional (2-valued) model checking [6]; following the results of Section 5, computing
[MA |= φ]t in Step 2.b can be more expensive than Step 2.a, but is still polynomial (typ-
ically linear or quadratic) in the size ofMA; Step 3 of the new procedure is similar to
Step 3 of the traditional one (in the case of LTL properties for instance, refinement can
be guided by error traces found in Step 2 as in the traditionalprocedure). Finally note
that the new procedure could also be adapted so that the different steps are performed in
a demand-driven basis following the work of [28].

8. Examples

We now give examples of programs, models and properties, alltaken from [21], where
computing[(M,s) |= φ]t returns a more precise answer than[(M,s) |= φ].

Consider the three programs shown in Figure 2, where x and y denote variables,
and f denotes some unknown function. The notation “x,y = 1,0”means variables x and y
are simultaneously assigned to values 1 and 0, respectively. Consider the two predicates

program C1(){ program C2(){ program C3(){
x,y = 1,0; x,y = 1,0; x = 1;
x,y = f(x),f(y); x,y = 2*f(x),f(y); x = f(x);
x,y = 1,0; x,y = 1,0; }

} }

(p=T,q=F)

M2M1 M3

s2

⊥

(p=T)
s3

(p=T,q=F)

s2’

s2’’

(p=)(p= ,q=)⊥ ⊥

s1

(p=T,q=F)

(p=T,q=F)

(p=F,q=)⊥

Figure 2. Examples of programs and models

p : “is x odd?” andq : “is y odd?”. Figure 2 shows an example of KMTS model for each
of the three programs. These models can be computed automatically using Definition 15,
predicate abstraction techniques and predicatesp and q, so that by construction they
satisfy Theorem 16. Each model is a KMTS withmust-transitions only and with atomic
propositionsp andq whose truth value is defined in each state as indicated in the figure.

Consider the LTL formulaφ1 = 3q⇒ 2(p∨q) (where3 is read “eventually” and
2 is read “always” [38]). While[(M1,s1) |= φ1] =⊥, [(M1,s1) |= φ1]t = true. In other
words, using the thorough interpretation yields a more definite answer in this case. Note
that the gain in precision obtained in this case is somewhat similar to the gain in precision
that can be obtained using an optimization calledfocusing[3] aimed at recovering some
of the imprecision introduced when usingcartesian abstraction(see [3,20]).

Consider now the formulaφ2 = 3q∧2(p∨¬q) evaluated on(M2,s2). In this case,
we have[(M2,s2) |= φ2] =⊥, while [(M2,s2) |= φ2]t = false. Again, using the thor-
ough interpretation yields a more definite answer, althoughsolving a generalized model-
checking problem is necessary to return a negative answer. Indeed, one needs to prove
in this case that there exists a computation of(M2,s2) (namelys2s′2s′′ω2 – there is only
one computation in this simple example) that does not have any completion satisfying
φ2, which itself requires using alternating automata and can thus be more expensive as
discussed in Section 5. Another example of formula isφ ′

2 = ©q∧2(p∨¬q) (where© is
read “next” [38]). Again we have that[(M2,s2) |= φ ′

2] =⊥, while [(M2,s2) |= φ ′
2]t = false.

Note that, althoughφ ′
2 is an LTL safety formula and hence is within the scope of analysis

of existing tools ([4], [8], etc.), none of these tools can prove thatφ ′
2 does not hold: this

result can only be obtained using generalized model checking.
Last, consider(M3,s3) and formulaφ3 = 2 p. In this case, we have both[(M3,s3) |=

φ3] = [(M3,s3) |= φ3]t =⊥, and the thorough interpretation cannot produce a more defi-
nite answer than the standard 3-valued interpretation.

9. Precision of GMC Vs. MC

How often is generalized model checking (GMC) more precise than model checking
(MC)? This question is addressed in [19]. Specifically, [19]studies when it is possible
to reduce GMC(M,φ) to MC(M,φ ′). Such a transformed formulaφ ′ is called asemantic
minimizationof φ . [19] shows that propositional logic, PML and the propositional µ-
calculus areclosed under semantic minimization, i.e., that a reduction from GMC(M,φ)
to MC(M,φ ′) is always possible forφ and φ ′ in propositional logic, PML or theµ-
calculus. But in contrast, the temporal logics LTL, CTL and CTL∗ arenot closed under
semantic minimization.

[19] also identifiesself-minimizingformulas, i.e., formulasφ for which GMC(M,φ)
and MC(M,φ) are equivalent. By definition, GMC and MC have thus the same precision
for any self-minimizing formula. Self-minimizing formulas can be defined both seman-
tically using automata-theoretic techniques (for instance, this is EXPTIME-hard in|φ |
for the µ-calculus) and syntactically by providing syntacticsufficientcriteria which are
linear in|φ |. For instance, [19] shows thatany formula that does not contain any atomic
proposition in mixed polarity (in its negation normal form)is self-minimizing.

Fortunately, in practice, many frequent formulas are self-minimizing, and MC is as
precise as GMC for those.

10. Other Related Work

The framework presented in the previous sections has also been extended toopen sys-
tems[18] (i.e., systems which interacts with their environment), and togamesin gen-
eral [14]. For instance, [14] studiesabstractions of gameswhere moves of each player
can be abstracted while preserving winning strategies ofboth players. An abstraction
of a game is now a game where each player has both may and must moves, yielding
may/must strategies. In this context, the completeness preorder becomes analternating
refinementrelation, logically characterized by 3-valued alternating µ-calculus [2].

Another interesting topic issemantic completeness: given an infinite-state systemC
and propertyφ , if C satisfiesφ , does there exist a finite-state abstractionA of C such that
A satisfiesφ?

For arbitrary formulasφ of LTL, the existence of such finite abstractionsA can be
guaranteed provided that abstractionsA are extended to include the modeling offair-
nessconstraints [33], which are used to model termination in loops. For arbitrary for-
mulasφ of the propositionalµ-calculus (hence including existential properties), the ex-
istence of such finite abstractions can again be guaranteed but now provided that ab-
stractionsA may includenondeterministicmust transitions [37], also calledhyper-must
transitions [40,11,14]. When using hyper-must transitions, abstraction refinement with
predicate abstraction becomesmonotonicwith respect to the completeness preorder, i.e.,
adding a predicatep now generates an abstraction which is always more complete than
the previous one (see [20,47,14]).

11. Concluding Remarks

This paper presents an introduction to 3-valued “may/must”abstraction-based software
model checking for sound property verification and falsification. The results presented
here previously appeared in a series of papers [5,6,20,21,22,18,14,19,25]. These results
shed light on the techniques used in abstraction-based software model checking tools
like SLAM [4], BLAST [28], YASM [27], TERMINATOR [7] and YOGI[24]. In partic-
ular, YASM [27] uses 3-valued models as described in this paper, while YOGI [24] uses
(compositional) may/must abstractions that share transitions instead of states.

The reader interested in the topic of this paper should consult the references listed
above, as well as the related work discussed in those references. We mention below only
a few other main pointers to related work.

The study of abstraction for model checking of both universal and existential pro-
gram properties was pioneered in [9,10]. This work defines a general abstraction frame-
work where abstractions aremixed transition systems. Intuitively, a mixed transition sys-
tem is a modal transition system without the constraint

must
−→⊆

may
−→. Mixed transition sys-

tems are more expressive and, in full generality, allow for a4-valued world where some
mixed transition systems cannot be refined by any complete (2-valued) system [31]. Nev-
ertheless, the goal and some of the results of this prior workare very similar to our
own work with 3-valued models and logics. The use of “conservative” abstractions for
proving properties of the fullµ-calculus is also discussed in [45].

Extended transition systems [39] are Labeled Transition Systems extended with a
divergence predicate, and can be viewed as a particular class of 3-valued models [5,30].
In [5], it is shown that Hennessy-Milner Logic with a 3-valued interpretation provides
an alternative characterization of the divergence preorder in addition to the intuitionistic
interpretation of Plotkin [48]. Further work on divergencepreorders and logics to char-
acterize them can be found in [48,51]. In all this work, logicformulas are interpreted
normally in the 2-valued sense. The close correspondence between 3-valued logic and
Plotkin’s intuitionistic modal logic inspired the reduction procedure from 3-valued model
checking to 2-valued model checking of [6] (see Section 4).

Prior to the work reported here, most work on 3-valued modal logic focused on
its proof theory (e.g., [46,15]). Our definition of partial Kripke structure is closest to
[16], where two interpretations of modal logic are presented: a many-valued version and
another version based on obtaining 2-valued interpretations from each of a set of experts.
[16] shows that such a multi-expert interpretation corresponds in a precise way to a
multi-valued interpretation, similarly to how we show thata 3-valued interpretation can
be obtained by separate optimistic and pessimistic interpretations. However, [16] does
not define a completeness preorder over models or characterization results.

In [44], a 3-valued logic is used for program shape analysis.The state of a program
store is represented as a 3-valued structure of first-order logic. The possible values of
the program store as the program executes are conservatively computed by a traditional
“may-only” abstract interpretation of the concrete program with such a structure as the
abstract domain. The main technical result is an embedding theorem showing that, for a
certain class of abstraction functions on the domain of suchstructures, the interpretation
of a first-order formula on the abstract structure is less definite than its interpretation on
the structure itself. Despite a common use of 3-valued logic, our goals and results are
fairly different from [44] since our focus is on 3-valued abstractions ofreactive(transi-

tion) systems and the sound verification (and falsification)of temporalproperties of such
systems.

Acknowledgements.This paper covers one of the lectures (Lecture 4) which I gave
at the 2013 Marktoberdorf Summer School. I thank the organizers of the Summer School
for encouraging me to write this paper. I also thank my co-authors (in chronological
order) Glenn Bruns, Radha Jagadeesan, Michael Huth, Luca deAlfaro, and Nir Piterman
for their insights and without whom this work would not exist.

References

[1] M. Abadi, L. Lamport, and P. Wolper. Realizable and unrealizable concurrent program specifications.
In Proc. 16th Int. Colloquium on Automata, Languages and Programming, volume 372 ofLecture Notes
in Computer Science, pages 1–17. Springer-Verlag, July 1989.

[2] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating time temporal logic. Journal of the ACM,
49:672–713, 2002.

[3] T. Ball, A. Podelski, and S. K. Rajamani. Boolean and Cartesian Abstraction for Model Checking C
Programs. InProceedings of TACAS’2001 (Tools and Algorithms for the Construction and Analysis of
Systems), volume 2031 ofLecture Notes in Computer Science. Springer-Verlag, April 2001.

[4] T. Ball and S. Rajamani. The SLAM Toolkit. InProceedings of CAV’2001 (13th Conference on Com-
puter Aided Verification), volume 2102 ofLecture Notes in Computer Science, pages 260–264, Paris,
July 2001. Springer-Verlag.

[5] G. Bruns and P. Godefroid. Model Checking Partial State Spaces with 3-Valued Temporal Logics. In
Proceedings of CAV’99 (11th Conference on Computer Aided Verification), volume 1633 ofLecture
Notes in Computer Science, pages 274–287, Trento, July 1999. Springer-Verlag.

[6] G. Bruns and P. Godefroid. Generalized Model Checking: Reasoning about Partial State Spaces. In
Proceedings of CONCUR’2000 (11th International Conference on Concurrency Theory), volume 1877
of Lecture Notes in Computer Science, pages 168–182, University Park, August 2000. Springer-Verlag.

[7] B. Cook, A. Podelski, and A. Rybalchenko. Termination Proofs for Systems Code. InProceedings of
PLDI’2006 (ACM SIGPLAN 2006 Conference on Programming Language Design and Implementation),
pages 415–426, Ottawa, June 2006.

[8] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu, Robby, and H. Zheng. Bandera:
Extracting Finite-State Models from Java Source Code. InProceedings of the 22nd International Con-
ference on Software Engineering, 2000.

[9] D. Dams.Abstract interpretation and partition refinement for modelchecking. PhD thesis, Technische
Universiteit Eindhoven, The Netherlands, 1996.

[10] D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive systems.ACM Transactions
on Programming Languages and Systems, 19(2):253–291, 1997.

[11] D. Dams and K. Namjoshi. The existence of finite abstractions for branching time model checking. In
Proceedings of LICS’2004 (19th IEEE conference on Logic in Computer Science), Turku, July 2004.

[12] S. Das and D. L. Dill. Successive Approximation of Abstract Transition Relations. InProceedings of
LICS’2001 (16th IEEE Symposium on Logic in Computer Science), pages 51–58, Boston, June 2001.

[13] S. Das, D. L. Dill, and S. Park. Experience with Predicate Astraction. InProc. of the 11th Interna-
tional Conference on Computer-Aided Verification, Lecture Notes in Computer Science, pages 160–172,
Trento, July 1999. Springer Verlag.

[14] L. de Alfaro, P. Godefroid, and R. Jagadeesan. Three-Valued Abstractions of Games: Uncertainty, but
with Precision. InProceedings of LICS’2004 (19th IEEE Symposium on Logic in Computer Science),
pages 170–179, Turku, July 2004.

[15] M. Fitting. Many-Valued Modal Logics I.Fundamenta Informaticae, 15:235–254, 1992.
[16] M. Fitting. Many-Valued Modal Logics II.Fundamenta Informaticae, 17:55–73, 1992.
[17] P. Godefroid. Model Checking for Programming Languages using VeriSoft. InProceedings of POPL’97

(24th ACM Symposium on Principles of Programming Languages), pages 174–186, Paris, January 1997.
[18] P. Godefroid. Reasoning about Abstract Open Systems with Generalized Module Checking. InPro-

ceedings of EMSOFT’2003 (3rd Conference on Embedded Software), volume 2855 ofLecture Notes in
Computer Science, pages 223–240, Philadelphia, October 2003. Springer-Verlag.

[19] P. Godefroid and M. Huth. Model Checking Vs. Generalized Model Checking: Semantic Minimizations
for Temporal Logics. InProceedings of LICS’2005 (20th IEEE Symposium on Logic in Computer
Science), pages 158–167, Chicago, June 2005.

[20] P. Godefroid, M. Huth, and R. Jagadeesan. Abstraction-based Model Checking using Modal Transition
Systems. InProceedings of CONCUR’2001 (12th International Conference on Concurrency Theory),
volume 2154 ofLecture Notes in Computer Science, pages 426–440, Aalborg, August 2001. Springer-
Verlag.

[21] P. Godefroid and R. Jagadeesan. Automatic AbstractionUsing Generalized Model Checking. InPro-
ceedings of CAV’2002 (14th Conference on Computer Aided Verification), volume 2404 ofLecture Notes
in Computer Science, pages 137–150, Copenhagen, July 2002. Springer-Verlag.

[22] P. Godefroid and R. Jagadeesan. On the Expressiveness of 3-Valued Models. InProceedings of VM-
CAI’2003 (4th Conference on Verification, Model Checking and Abstract Interpretation), volume 2575
of Lecture Notes in Computer Science, pages 206–222, New York, January 2003. Springer-Verlag.

[23] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed Automated Random Testing. InProceedings of
PLDI’2005 (ACM SIGPLAN 2005 Conference on Programming Language Design and Implementation),
pages 213–223, Chicago, June 2005.

[24] P. Godefroid, A.V. Nori, S.K. Rajamani, and S.D. Tetali. Compositional May-Must Program Analy-
sis: Unleashing The Power of Alternation. InProceedings of POPL’2010 (37th ACM Symposium on
Principles of Programming Languages), pages 43–55, Madrid, January 2010.

[25] P. Godefroid and N. Piterman. LTL Generalized Model Checking Revisited.International Journal on
Software Tools for Technology Transfer (STTT), 13(6):571–584, 2011.

[26] S. Graf and H. Saidi. Construction of Abstract State Graphs with PVS. InProceedings of the 9th
International Conference on Computer Aided Verification, volume 1254 ofLecture Notes in Computer
Science, pages 72–83, Haifa, June 1997. Springer-Verlag.

[27] A. Gurfinkel, O. Wei, and M. Chechik. Yasm: A Software Model Checker for Verification and Refuta-
tion. In Proceedings of CAV’2006 (18th Conference on Computer AidedVerification), volume 4144 of
Lecture Notes in Computer Science, pages 170–174, Seattle, August 2006. Springer-Verlag.

[28] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy Abstraction. InProceedings of the 29th ACM
Symposium on Principles of Programming Languages, pages 58–70, Portland, January 2002.

[29] G. J. Holzmann and M. H. Smith. A Practical Method for Verifying Event-Driven Software. InPro-
ceedings of the 21st International Conference on Software Engineering, pages 597–607, 1999.

[30] M. Huth, R. Jagadeesan, and D. Schmidt. Modal Transition Systems: a Foundation for Three-Valued
Program Analysis. InProceedings of the European Symposium on Programming (ESOP’2001), volume
2028 ofLecture Notes in Computer Science. Springer-Verlag, April 2001.

[31] M. Huth, R. Jagadeesan, and D. Schmidt. A Domain Equation for Refinement of Partial Systems.
Submitted to Mathematical Structures in Computer Science,2002.

[32] Y. Kesten, N. Piterman, and A. Pnueli. Bridging the gap between fair simulation and trace containment.
In 15th Computer Aided Verification, volume 2725 ofLecture Notes in Computer Science, pages 381–
393. Springer-Verlag, 2003.

[33] Y. Kesten and A. Pnueli. Verification by Augmented Finitary Abstraction.Information and Computa-
tion, 163(1), 2000.

[34] S. C. Kleene.Introduction to Metamathematics. North Holland, 1987.
[35] D. Kozen. Results on the Propositional Mu-Calculus.Theoretical Computer Science, 27:333–354, 1983.
[36] K. G. Larsen and B. Thomsen. A Modal Process Logic. InProceedings of Third Annual Symposium on

Logic in Computer Science, pages 203–210. IEEE Computer Society Press, 1988.
[37] K. G. Larsen and Liu Xinxin. Equation solving using modal transition systems. InProceedings of the

5th IEEE conference on Logic in Computer Science, pages 108–117. IEEE, 1990.
[38] Z. Manna and A. Pnueli.The Temporal Logic of Reactive and Concurrent Systems: Specification.

Springer-Verlag, 1992.
[39] R. Milner. A Modal Characterization of Observable Machine Behavior. InProc. CAAP’81, volume 112

of Lecture Notes in Computer Science, pages 25–34. Springer-Verlag, 1981.
[40] K. S. Namjoshi. Abstraction for branching time properties. InProceedings of CAV’2003 (15th Interna-

tional Conference on Computer Aided Verification), volume 2725 ofLecture Notes in Computer Science,
pages 288–300. Springer, 2003.

[41] K. S. Namjoshi and R. K. Kurshan. Syntactic Program Transformations for Automatic Abstraction. In
Proceedings of the 12th Conference on Computer Aided Verification, volume 1855 ofLecture Notes in

Computer Science, pages 435–449, Chicago, July 2000. Springer-Verlag.
[42] A. Pnueli and R. Rosner. On the synthesis of a reactive module. InProc. of the Sixteenth Symposim on

Principles of Programming Languages, Austin, January 1989.
[43] A. Pnueli and R. Rosner. On the synthesis of an asynchronous reactive module. InProceedings of

ICALP’89, Stresa, July 1989.
[44] M. Sagiv, T. Reps, and R. Wilhelm. Parametric Shape Analysis Via 3-Valued Logic. InProceedings of

the 26th ACM Symposium on Principles of Programming Languages, January 1999.
[45] H. Saidi and N. Shankar. Abstract and model check while you prove. InProc. of the 11th Conference

on Computer-Aided Verification, number 1633 in Lecture Notes in Computer Science, pages 443–454.
Springer, 1999.

[46] K. Segerberg. Some Modal Logics Based on a Three-ValuedLogic. Theoria, 33:53–71, 1967.
[47] S. Shoham and O. Grumberg. Monotonic Abstraction-Refinement for CTL. InTools and Algorithms

for the Construction and Analysis of Systems: 10th International Conference, number 2988 in Lecture
Notes in Computer Science, pages 546–560. Springer Verlag,2004.

[48] C. Stirling. Modal Logics for Communicating Systems.Theoretical Computer Science, 49:331–347,
1987.

[49] W. Visser, K. Havelund, G. Brat, and S. Park. Model Checking Programs. InProceedings of ASE’2000
(15th International Conference on Automated Software Engineering), Grenoble, September 2000.

[50] W. Visser, S. J. Park, and J. Penix. Using Predicate Abstraction to Reduce Object-oriented Programs
for Model Checking. InProceedings of FMSP’00 (Formal methods in Software Practice), pages 3–12,
Portland, August 2000.

[51] D. Walker. Bisimulation and Divergence.Information and Computation, 85(2):202–241, 1990.

