
N

Probabilistic Relational Reasoning for Differential Privacy

GILLES BARTHE, BORIS KÖPF and FEDERICO OLMEDO, IMDEA Software Institute

SANTIAGO ZANELLA-BÉGUELIN, Microsoft Research

Differential privacy is a notion of confidentiality that allows useful computations on sensible data while
protecting the privacy of individuals. Proving differential privacy is a difficult and error-prone task that
calls for principled approaches and tool support. Approaches based on linear types and static analysis have
recently emerged; however, an increasing number of programs achieve privacy using techniques that fall out
of their scope. Examples include programs that aim for weaker, approximate differential privacy guarantees,
and programs that achieve differential privacy without using any standard mechanisms. Providing support
for reasoning about the privacy of such programs has been an open problem.

We report on CertiPriv, a machine-checked framework for reasoning about differential privacy built on
top of the Coq proof assistant. The central component of CertiPriv is a quantitative extension of probabilistic
relational Hoare logic that enables one to derive differential privacy guarantees for programs from first
principles. We demonstrate the applicability of CertiPriv on a number of examples whose formal analysis
is out of the reach of previous techniques. In particular, we provide the first machine-checked proofs of
correctness of the Laplacian, Gaussian and Exponential mechanisms and of the privacy of randomized and
streaming algorithms from the literature.

Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and Theory;
F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about Programs;
F.3.2 [Logics and Meanings of Programs]: Semantics of Programming Languages—Program analysis

General Terms: Languages, Security, Theory, Verification

Additional Key Words and Phrases: Coq proof assistant, differential privacy, relational Hoare logic

1. INTRODUCTION

When dealing with collections of private data one is faced with conflicting require-
ments: on the one hand, it is fundamental to protect the privacy of the individual
contributors; on the other hand, it is desirable to maximize the utility of the data
by mining and releasing partial or aggregate information, e.g. for medical statistics,
market research, or targeted advertising. Differential privacy [Dwork et al. 2006b] is
a quantitative notion of privacy that achieves an attractive trade-off between these two
conflicting requirements: it provides strong confidentiality guarantees, yet it is permis-
sive enough to allow for useful computations on private data. The key advantages of
differential privacy over alternative definitions of privacy are its good behavior under

This article extends and generalizes the results presented in [Barthe et al. 2012]. In particular, it contains a
novel connection of probabilistic lifting to network flow problems, an asymmetric version of apRHL, a proof
of correctness of the Gaussian mechanism, a formal analysis of a privacy-preserving k-Median algorithm,
and detailed descriptions of all proofs.
This work is supported by European Projects FP7-256980 NESSoS and FP7-229599 AMAROUT, Spanish
project TIN2009-14599 DESAFIOS 10, Madrid Regional project S2009TIC-1465 PROMETIDOS and French
project ANR SESUR-012 SCALP.
Author’s addresses: G. Barthe, B. Köpf and F. Olmedo, IMDEA Software Institute, Campus de Montegancedo
S/N, Madrid, Spain; S. Zanella-Béguelin, Microsoft Research, 21 Station Road, Cambridge CB1 2FB, UK.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 0164-0925/2012/09-ARTN $15.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Programming Languages and Systems, Vol. X, No. Y, Article N, Publication date: September 2012.

N:2 Barthe, Köpf, Olmedo, Zanella-Béguelin

composition and its weak assumptions about the prior knowledge of adversaries. For
a discussion of the guarantees provided by differential privacy and their limitations,
see [Kasiviswanathan and Smith 2008; Kifer and Machanavajjhala 2011].

As the theoretical foundations of differential privacy become better understood,
there is momentum to prove privacy guarantees of real systems. Several au-
thors have recently proposed methods for reasoning about differential privacy on
the basis of different languages and models of computation, e.g. SQL-like lan-
guages [McSherry 2009], higher-order functional languages [Reed and Pierce 2010],
imperative languages [Chaudhuri et al. 2011], the MapReduce model [Roy et al. 2010],
and I/O automata [Tschantz et al. 2011]. The unifying basis of these approaches are
two key results: The first is the observation that one can achieve privacy by perturb-
ing the output of a deterministic program by a suitable amount of symmetrically dis-
tributed noise, giving rise to the so-called Laplacian [Dwork et al. 2006b] and Expo-
nential mechanisms [McSherry and Talwar 2007]. The second result are theorems that
establish privacy bounds for the sequential and parallel composition of differentially
private programs, see e.g. [McSherry 2009]. In combination, both results form the ba-
sis for creating and analyzing programs by composing differentially private building
blocks.

While approaches relying on composing building blocks apply to an interesting range
of examples, they fall short of covering the expanding frontiers of differentially private
mechanisms and algorithms. Examples that cannot be handled by previous approaches
include mechanisms that aim for weaker guarantees, such as approximate differential
privacy [Dwork et al. 2006a], or randomized algorithms that achieve differential pri-
vacy without using any standard mechanism [Gupta et al. 2010]. Dealing with such
examples requires fine-grained reasoning about the complex mathematical and prob-
abilistic computations that programs perform on private input data. Such reasoning
is particularly intricate and error-prone, and calls for principled approaches and tool
support.

In this article we present a novel framework for formal reasoning about a large class
of quantitative confidentiality properties, including (approximate) differential privacy
and probabilistic non-interference. Our framework, coined CertiPriv, is built on top of
the Coq proof assistant [The Coq development team 2010] and goes beyond the state-
of-the-art in the following three aspects:

Expressivity: CertiPriv enables reasoning about a general and parametrized notion of
confidentiality that encompasses differential privacy, approximate differential pri-
vacy, and probabilistic noninterference.

Flexibility: CertiPriv enables reasoning about the outcome of probabilistic computa-
tions from first principles. That is, instead of being limited to a fixed set of pre-
defined building blocks one can define and use arbitrary building blocks, or reason
about arbitrary computations using sophisticated machinery, without any limita-
tion other than being elaborated from first principles. Proofs in CertiPriv can be
verified independently and automatically by the Coq type checker.

Extensibility: CertiPriv inherits the generality of the Coq proof assistant and allows
modeling and reasoning using arbitrary domains and datatypes. That is, instead of
being confined to a fixed set of datatypes, CertiPriv can be extended on demand (e.g.
with types and operators for graphs).

We illustrate the scope of CertiPriv by giving machine-checked proofs of four rep-
resentative examples, some of which fall out of the scope of previous language-based
approaches: (i) we prove the correctness of the Laplacian, Gaussian and Exponential
mechanisms within our framework (rather than assuming their correctness as a meta-
theorem), (ii) we prove the privacy of a randomized approximation algorithm for the

ACM Transactions on Programming Languages and Systems, Vol. X, No. Y, Article N, Publication date: September 2012.

Probabilistic Relational Reasoning for Differential Privacy N:3

Minimum Vertex Cover problem [Gupta et al. 2010], (iii) we prove the privacy of a ran-
domized approximation algorithm for the k-median problem [Gupta et al. 2010], and
(iv) we prove the privacy of randomized algorithms for continual release of aggregate
statistics of data streams [Chan et al. 2010]. Taken together, these examples demon-
strate the generality and versatility of our approach.

As the first step in our technical development, we recast and generalize the defini-
tion of differential privacy. Informally, a probabilistic computation satisfies differen-
tial privacy if, independent of each individual’s contribution to the dataset, the out-
put distribution is essentially the same. More formally, a probabilistic program c is
(ε, δ)-differentially private if and only if, given two initial memories m and m′ that are
adjacent (typically for a notion of adjacency that captures that m and m′ differ in the
contribution of one individual), the output distributions generated by c are related up
to a multiplicative factor exp(ε) and an additive term δ. That is, for every event E one
requires

Pr [c(m) : E] ≤ exp(ε) Pr [c(m′) : E] + δ

where Pr [c(m) : E] denotes the probability of event E in the distribution obtained by
running c on initial memory m. The case of δ = 0 corresponds to the vanilla definition
of differential privacy [Dwork et al. 2006b], whereas cases with δ > 0 correspond to
approximate differential privacy [Dwork et al. 2006a]. For our development, we gener-
alize (ε, δ)-differential privacy in two ways: First, we define (ε, δ)-differential privacy
with respect to arbitrary relations Ψ on initial memories. The original definition is re-
covered by specializing Ψ to capture adjacency of memories. Second, we introduce a
notion of distance (called α-distance) that generalizes statistical distance with a skew
parameter α, and we show that a computation c is (ε, δ)-differentially private if and
only if δ is an upper bound for the exp(ε)-distance between the output distributions
obtained by running c on two memories m and m′ satisfying Ψ. This generalization of
differential privacy has the following two natural readings:

— The first reading is as an information flow property: if Ψ is an equivalence relation
and ε = δ = 0, the definition states that the output distributions obtained by ex-
ecuting c in two related memories m and m′ coincide, entailing that an adversary
who can only observe the final distributions cannot distinguish between the two ex-
ecutions. Or, equivalently, by observing the output distributions, the adversary can
only learn the initial memory up to its Ψ-equivalence class.

— The second reading is as a continuity property: if Ψ models adjacency between ini-
tial memories, the definition states that c is a continuous mapping between metric
spaces, where α-distance is used as a metric on the set of output distributions.

We leverage on both readings to provide a fresh foundation for reasoning about dif-
ferentially private computations. For this, we build on the observation that differen-
tial privacy can be construed as a quantitative 2-property [Terauchi and Aiken 2005;
Clarkson and Schneider 2010]. Using this observation we define an approximate prob-
abilistic Relational Hoare Logic (apRHL), following Benton’s seminal use of relational
logics to reason about information flow [Benton 2004]. Judgments in apRHL have the
form

c1 ∼α,δ c2 : Ψ⇒ Φ

Their validity implies that δ is an upper bound for the α-distance of the probability
distributions generated by the probabilistic programs c1 and c2, modulo relational pre-
and post-conditions Ψ and Φ on program states. For the special case where Φ is the
equality on states, c1 = c2 = c, and α = exp(ε), the above judgment entails that the
output distributions obtained by executing c starting from two initial memories related

ACM Transactions on Programming Languages and Systems, Vol. X, No. Y, Article N, Publication date: September 2012.

N:4 Barthe, Köpf, Olmedo, Zanella-Béguelin

by Ψ are at α-distance at most δ, and hence that c is (ε, δ)-differentially private with
respect to Ψ. As further detailed in Section 5.2, this intuitive understanding of apRHL
judgments extends to the important case where Φ is an equivalence relation. With
the view that Φ captures the observational capabilities of an adversary, such judg-
ments simultaneously generalize differential privacy and notions of confidentiality as
encountered in information flow analysis.

At the core of CertiPriv is a machine-checked proof system for reasoning about the
validity of apRHL judgments, including rules for sequential and parallel composition
and bounded loops, as well as rules corresponding to the Laplacian, Gaussian and
Exponential mechanisms. The soundness of our proof system relies on the novel no-
tion of (α, δ)-lifting of relations on states to relations on distributions over states,
which crisply generalizes existing notions of lifting from probabilistic process alge-
bra [Jonsson et al. 2001; Segala and Turrini 2007; Desharnais et al. 2008] and enjoys
good closure properties. Moreover, we establish a connection between (α, δ)-liftings and
maximum network flows that yields a means for deciding liftings of finite relations.

As bonus material, we present a variant of apRHL that supports reasoning about an
asymmetric version of α-distance. Asymmetric apRHL strictly generalizes apRHL, as
any proof in apRHL can be replaced by two (symmetric) proofs in asymmetric apRHL.
However, reasoning in the asymmetric logic can lead to increased precision (i.e. bet-
ter bounds), as we demonstrate in Section 6.4 on an approximation algorithm for the
Minimum Vertex Cover problem [Gupta et al. 2010].

The basis of our formalization is CertiCrypt [Barthe et al. 2009], a machine-checked
framework to verify cryptographic proofs in the Coq proof assistant. The outstanding
difference between the two frameworks is that CertiPriv supports reasoning about a
wide range of quantitative relational properties expressible in apRHL, whereas Cer-
tiCrypt is confined to baseline information flow properties that can be expressed in the
fragment (α, δ) = (1, 0). We refer to Section 8 for a more detailed comparison.

Summary of contributions. Our contributions are twofold. On the theoretical side,
we lay the foundations for reasoning formally about an important and general class of
approximate relational properties of probabilistic programs. Specifically, we introduce
the notions of α-distance and (α, δ)-lifting, and an approximate probabilistic relational
Hoare logic. On the practical side, we demonstrate the applicability of our approach by
providing the first machine-checked proofs of differential privacy properties of funda-
mental mechanisms and complex approximation algorithms from the recent literature.

Organization of the article. The remainder of this article is structured as follows.
In Section 2 we illustrate the application of our approach to an example algorithm;
Section 3 introduces the representation of distributions and basic definitions used in
the remainder. Section 4 presents the semantic foundations of apRHL, while Section 5
presents the core proof rules of the logic. Section 6 reports on case studies. Section 7
establishes a connection between the validity of apRHL judgments and network flow
problems. We survey prior art and conclude in Sections 8 and 9. The Coq development
containing machine-checked proofs of the results and examples in this article can be
obtained from

http://certicrypt.gforge.inria.fr/certipriv/

Pencil-and-paper proofs of all key results can be found in the appendix.

2. ILLUSTRATIVE EXAMPLE

In this section we illustrate the applicability of our results by analyzing a differen-
tially private approximation algorithm for the Minimum (Unweighted) Vertex Cover
problem [Gupta et al. 2010].

ACM Transactions on Programming Languages and Systems, Vol. X, No. Y, Article N, Publication date: September 2012.

http://certicrypt.gforge.inria.fr/certipriv/

Probabilistic Relational Reasoning for Differential Privacy N:5

a b

c

d

e

f

g

h

ij k

l

π = [b, g, e, h, l, k, j, i, f, d, c, a]

Fig. 1. A minimum vertex cover (vertices in gray) and the cover given by a permutation π of the vertices in
the graph (vertices inside the shaded area). The orientation of the edges is determined by π.

A vertex cover of an undirected graph G = (V,E) is a set of vertices S ⊆ V such that
for any edge (v, w) ∈ E either v ∈ S or w ∈ S. The Minimum Vertex Cover problem
is the problem of finding a vertex cover S of minimal size. In the privacy-preserving
version of the problem the goal is to output a good approximation of a minimum cover
while concealing the presence or absence of edges in the graph. Contrary to other
optimization algorithms where the private data only determines the objective function
(i.e. the size of a minimum cover), in the case of the Minimum Vertex Cover problem
the edges in the graph determine the feasible solutions. This means that no privacy-
preserving algorithm can explicitly output a vertex cover of size less than n − 1 for a
graph with n vertices, for otherwise any pair of vertices absent from the output reveals
the absence of an edge connecting them. To overcome this limitation, the algorithm
that we analyze outputs an implicit representation of a cover as a permutation of the
vertices in the graph. This output permutation determines an orientation of the edges
in the graph by considering each edge as pointing towards the endpoint appearing last
in the permutation. A vertex cover can then be recovered by taking for each edge the
vertex it points to (Fig. 1). Alternatively, this implicit representation may be regarded
as a privacy-preserving recipe for constructing a vertex cover in a distributed manner:
the orientation of edges indicates how to reach a vertex in the cover from any given
vertex in the graph.

The algorithm shown in Figure 2 is based on a randomized, albeit not privacy-
preserving, approximation algorithm from [Pitt 1985] that achieves a constant ap-
proximation factor of 2 (i.e. the size of the computed cover is at most twice the size
of a minimum vertex cover). The idea behind this algorithm is to iteratively pick a
random uncovered edge and add one of its endpoints to the cover set, both the edge
and the endpoint being chosen with uniform probability. Equivalently, this iterative
process can be seen as selecting a vertex at random with probability proportional to its
uncovered degree. This base algorithm can be transformed into a privacy-preserving
algorithm by perturbing the distribution according to which vertices are sampled by
a carefully calibrated weight factor that grows as more vertices are appended to the
output permutation. This idea is implemented in the algorithm shown in Fig. 2, where
at each iteration the instruction v $← choose(V,E, ε, n, i) chooses a vertex v from V with
probability proportional to dE(v) + wi, where dE(v) denotes the degree of v in E and

wi =
4

ε

√

n

n− i

ACM Transactions on Programming Languages and Systems, Vol. X, No. Y, Article N, Publication date: September 2012.

N:6 Barthe, Köpf, Olmedo, Zanella-Béguelin

function VERTEXCOVER(V,E, ε)
1 n← |V |; π ← nil; i← 0;
2 while i < n do
3 v $← choose(V,E, ε, n, i);
4 π ← v :: π;
5 V ← V \ {v}; E ← E \ ({v} × V);
6 i← i+ 1
7 end

Fig. 2. A differentially private approximation algorithm for the Minimum Vertex Cover problem

Put otherwise, the expression choose(V,E, ε, n, i) denotes the discrete distribution over
V whose probability mass function at v is

dE(v) + wi
∑

x∈V

dE(x) + wi

Consider two graphs G1 = (V,E) and G2 = (V,E ∪ {(t, u)}) with the same set of
vertices but differing in exactly one edge. To prove that the above algorithm is ε-
differentially private we must show that the probability of obtaining a permutation
π of the vertices in the graph when the input is G1 differs at most by a multiplicative
factor exp(ε) from the probability of obtaining π when the input is G2, and vice versa.
We show this using the approximate relational Hoare logic that we present in Sec-
tion 5. We highlight here the key steps in the proof; a more detailed account appears
in Section 6.4.

To establish the ε-differential privacy of algorithm VERTEXCOVER it suffices to prove
the validity of the following judgment:

|= VERTEXCOVER(V,E, ε) ∼exp(ε),0VERTEXCOVER(V,E, ε) : Ψ⇒ Φ (1)

where

Ψ def
= V 〈1〉 = V 〈2〉 ∧ E〈2〉 = E〈1〉 ∪ {(t, u)} Φ def

= π〈1〉 = π〈2〉
Assertions appearing in apRHL judgments, like Ψ and Φ above, are binary relations on
program memories. We usually define assertions using predicate logic formulae over
tagged program expressions. When defining an assertion m1 Θ m2, we denote by e〈1〉
(resp. e〈2〉) the value that the expression e takes in memory m1 (resp. m2). For example,
the post-condition Φ above denotes the relation {(m1,m2) : m1(π) = m2(π)}.

To prove the judgment above, we show privacy bounds for each iteration of the loop
in the algorithm. Proving a bound for the i-th iteration boils down to proving a bound
for the ratio between the probability of choosing a particular vertex in the left-hand
side program and the right-hand side program, and its reciprocal. We distinguish three
different cases, and use the fact that for a graph (V,E),

∑

x∈V dE(x) = 2|E| and the
inequality 1 + x ≤ exp(x) to derive upper bounds in each case:

(a) the chosen vertex is not one of t, u and neither t nor u are in π.

Pr[v〈1〉 = x]

Pr[v〈2〉 = x]
=

(dE〈1〉(x) + wi)
∑

y∈V (dE〈2〉(y) + wi)

(dE〈2〉(x) + wi)
∑

y∈V (dE〈1〉(y) + wi)

=
(dE〈1〉(x) + wi)(2|E〈1〉|+ (n− i)wi+2)

(dE〈1〉(x) + wi)(2|E〈1〉|+ (n− i)wi)

≤ 1 +
2

(n− i)wi
≤ exp

(

2

(n− i)wi

)

ACM Transactions on Programming Languages and Systems, Vol. X, No. Y, Article N, Publication date: September 2012.

Probabilistic Relational Reasoning for Differential Privacy N:7

Pr[v〈2〉 = x]

Pr[v〈1〉 = x]
≤ 1

(b) the vertex v chosen in the iteration is one of t, u. We analyze the case where v = t,
the other case is similar.

Pr[v〈1〉 = t]

Pr[v〈2〉 = t]
≤ 1

Pr[v〈2〉 = t]

Pr[v〈1〉 = t]
=

(wi + dE〈1〉(t) + 1)(2|E〈1〉|+ (n− i)wi)

(wi + dE〈1〉(t))(2|E〈1〉|+ (n− i)wi + 2)

≤ 1 + w−1
i ≤ 1 + w−1

0 ≤ exp(ε/4)

(c) either t or u is already in π, in which case both executions are observationally
equivalent and do not add to the privacy bound.

Pr[v〈1〉 = x]

Pr[v〈2〉 = x]
=

Pr[v〈2〉 = x]

Pr[v〈1〉 = x]
= 1

Case (a) can occur at most (n − 2) times, while case (b) occurs exactly once. Thus,

multiplying the bounds over all n iterations and recalling inequality
∑n

i=1 1/
√
i ≤ 2

√
n,

one gets

Pr [VERTEXCOVER(G1, ε) : π = ~v]

Pr [VERTEXCOVER(G2, ε) : π = ~v]
≤ exp

(

n−3
∑

i=0

2

(n− i)wi

)

≤ exp(ε)

Pr [VERTEXCOVER(G2, ε) : π = ~v]

Pr [VERTEXCOVER(G1, ε) : π = ~v]
≤ exp (ε/4) ≤ exp(ε)

The above informal reasoning is captured by a proof rule for loops parametrized by
an invariant and a stable property of the product state of both executions (i.e. a rela-
tion that once established remains true); this rule is described in Section 5.3. We use
the following loop invariant (note that if pre-condition Ψ above holds, the invariant is
established by the initialization code appearing before the loop):

(t ∈ π〈1〉 ∨ u ∈ π〈1〉 =⇒ E〈1〉 = E〈2〉) ∧
(t /∈ π〈1〉 ∧ u /∈ π〈1〉 =⇒ E〈2〉 = E〈1〉 ∪ {(t, u)}) ∧
V 〈1〉 = V 〈2〉 ∧ π〈1〉 = π〈2〉

and the following stable property:

t ∈ π〈1〉 ∨ u ∈ π〈1〉
The application of this proof rule requires to prove three judgments as premises, cor-
responding to each one of the cases detailed above; we detail them in Section 6.4.

3. PRELIMINARIES

3.1. Probabilities and Reals

In the course of our Coq formalization, we have found it convenient to reason about
probabilities using the axiomatization of the unit interval [0, 1] provided by the ALEA
library of Audebaud and Paulin [Audebaud and Paulin-Mohring 2009]. Their formal-
ization supports as primitive operations addition, inversion, multiplication, and divi-
sion, and proves that the unit interval [0, 1] can be given the structure of a ω-cpo by
taking as order the usual ≤ relation and by defining an operator sup that computes the
least upper bound of monotonic [0, 1]-valued sequences.

ACM Transactions on Programming Languages and Systems, Vol. X, No. Y, Article N, Publication date: September 2012.

N:8 Barthe, Köpf, Olmedo, Zanella-Béguelin

In order to manage the interplay between the formalizations of the unit interval
and of the reals, we have axiomatized an embedding/retraction pair between them
and built an extensive library of results about the relationship between arithmetic
operations in the two domains, e.g.:

Addition. x+[0,1] y = minR(x+R y, 1);
Inversion. −[0,1]x = 1−R x;
Multiplication. x×[0,1] y = x×R y;
Division. If y 6= 0, then x/[0,1]y = minR(x/Ry, 1).

3.2. Distributions

We view a distribution µ over a set A as a function of type

(A→ [0, 1])→ [0, 1]

that maps a unit-valued random variable (a function in A → [0, 1]) to its expected
value [Ramsey and Pfeffer 2002; Audebaud and Paulin-Mohring 2009]. When applied
to an event E ⊆ A represented by its characteristic function 1E : A → [0, 1], µ 1E

corresponds to the probability of E. When applied to singleton events E = {a}, µ 1{a}
corresponds to the probability mass of µ at a, and we denote it using the shorthand
µ(a). When applied to arbitrary functions f : A → [0, 1], µ f gives the expectation of f
w.r.t. µ. For discrete distributions µ, the connection between density and expectation
is given by the following equation:

µ f =
∑

a∈A

µ(a) f(a)

In this formalism, the Bernoulli distribution over B with success probability p, for
instance, is represented as λf. p f(true) + (1 − p) f(false); the distribution over N that
assigns probability (1/2)i to number i is given by λf.

∑

i∈N
(1/2)i f(i).

Formally, a distribution over A is a function µ of type (A → [0, 1]) → [0, 1] together
with proofs of the following properties:

Monotonicity. f ≤ g =⇒ µ f ≤ µ g;
Compatibility with inverse. µ (1− f) ≤ 1− µ f , where 1 is the constant function 1;
Additive linearity. f ≤ 1− g =⇒ µ (f + g) = µ f + µ g;
Multiplicative linearity. µ (k × f) = k × µ f ;
Continuity. If F : N→ (A→ [0, 1]) is monotonic, then µ (sup F) ≤ sup (µ ◦ F)

In the statement of the above properties, arithmetic is performed in the interval [0, 1]
(underflows and overflows are mapped to 0 and 1, respectively). For the sake of read-
ability, we drop the [0, 1] sub-index of operators. Functions f and g are universally
quantified over the space of functions A → [0, 1] and constant k is universally quanti-
fied over the interval [0, 1].

Note that we do not require that µ 1 = 1, and thus, strictly speaking, our definition
corresponds to sub-probability distributions. This provides an elegant means of giving
semantics to runtime assertions and programs that do not terminate with probability
one. We let D(A) denote the set of sub-probability distributions over A and µ0 denote
the null distribution.

Distributions can be given the structure of a monad; this monadic view eliminates
the need for cluttered definitions and proofs involving summations, and allows to give
a continuation-passing style semantics to probabilistic programs. Formally, we define

ACM Transactions on Programming Languages and Systems, Vol. X, No. Y, Article N, Publication date: September 2012.

Probabilistic Relational Reasoning for Differential Privacy N:9

the unit and bind operators as follows:

unit : A→ D(A)
def
= λx. λf. f x

bind : D(A)→ (A→ D(B))→ D(B)
def
= λµ. λM. λf. µ (λ x. M x f)

The unit operator maps x ∈ A to the Dirac measure δx at point x; in the discrete case
unit x is the degenerate probability distribution that has all its mass concentrated at x.
The bind operator takes a distribution on A and a conditional distribution on B given
A, and returns the corresponding marginal distribution on B.

In the remainder we use the following operations and relations:

range P µ def
= ∀f. (∀a. P a =⇒ f a = 0) =⇒ µ f = 0

π1(µ)
def
= bind µ (λ(x, y). unit x)

π2(µ)
def
= bind µ (λ(x, y). unit y)

µ ≤ µ′ def
= ∀f. µ f ≤ µ′ f

The formula range P µ implies that elements of A with a non-null probability w.r.t. µ
satisfy predicate P (we prove this as Lemma A.2 in the Appendix). To see why, con-
sider the contrapositive claim which says that elements of A satisfying ¬P have null
probability; the formula range P µ readily gives µ 1¬P = 0. For a distribution µ over a
product type A ×B, π1(µ) (resp. π2(µ)) defines its projection on the first (resp. second)
component. Finally, ≤ defines a pointwise partial order on D(A).
4. FIRST PRINCIPLES

4.1. Skewed Distance between Distributions

In this section we define the notion of α-distance, a parametrized distance between
distributions. We show how this notion can be used to express ε-differential privacy,
(ε, δ)-differential privacy, and statistical distance.

We begin by augmenting the Euclidean distance between reals a and b (|a − b| =
max{a − b, b − a}) with a skew parameter α ≥ 1, which will later play the role of the
factor exp(ε) in the definition of differential privacy. Namely, we define the α-distance
∆α(a, b) between a and b as

∆α(a, b)
def
= max{a− αb, b− αa, 0}

Note that ∆α is non-negative by definition and that ∆1 coincides with the standard
distance between reals. We extend ∆α to a distance between distributions as follows.

Definition 4.1 (α-distance). For α ≥ 1, the α-distance ∆α(µ1, µ2) between two dis-
tributions µ1 and µ2 is defined as:

∆α(µ1, µ2)
def
= max

f :A→[0,1]
∆α(µ1 f, µ2 f)

The condition α ≥ 1 is natural when one thinks of differential privacy, and is required
to have e.g. ∆α(µ, µ) = 0.

The definition of α-distance considers all unit-valued functions. The next lemma
shows that for discrete distributions this definition is equivalent to an alternative def-
inition that considers only Boolean-valued functions, i.e. those corresponding to char-
acteristic functions of events.

LEMMA 4.2. For all distributions µ1 and µ2 over a discrete set A,

∆α(µ1, µ2) = max
E⊆A

∆α(µ1 1E , µ2 1E)

ACM Transactions on Programming Languages and Systems, Vol. X, No. Y, Article N, Publication date: September 2012.

N:10 Barthe, Köpf, Olmedo, Zanella-Béguelin

An immediate consequence of Lemma 4.2 is that ∆1 coincides with the standard
notion of statistical (i.e. total variation) distance:

∆1(µ1, µ2) = max
E⊆A

|µ1 1E − µ2 1E |

We state some basic properties of α-distance; these properties are the keystone for
reasoning about approximate liftings and for proving the soundness of our logic. All
properties are implicitly universally quantified.

LEMMA 4.3 (PROPERTIES OF α-DISTANCE).

(1) 0 ≤ ∆α(µ1, µ2) ≤ 1
(2) ∆α(µ, µ) = 0
(3) ∆α(µ1, µ2) = ∆α(µ2, µ1)
(4) ∆αα′(µ1, µ3) ≤ max(α′∆α(µ1, µ2) + ∆α′(µ2, µ3),∆α(µ1, µ2) + α ∆α′(µ2, µ3))
(5) α ≤ α′ =⇒ ∆α′(µ1, µ2) ≤ ∆α(µ1, µ2)
(6) ∆α(bind µ1 M, bind µ2 M) ≤ ∆α(µ1, µ2)

Most of the above properties are self-explanatory; we briefly highlight the most im-
portant ones. Property (4) generalizes the triangle inequality with appropriate skew
factors; (5) states that α-distance is anti-monotonic with respect to α; (6) states that
probabilistic computation does not increase the distance (which is a well-known fact
for statistical distance); Lemma A.5 in the appendix further generalizes this result.

4.2. Differential Privacy

Differential privacy is a condition on the distance between the output distributions
produced by a randomized algorithm. Namely, for a given metric on the input space,
differential privacy requires that, for any pair of inputs at distance at most 1, the
probability that an algorithm outputs a value in an arbitrary set differs at most by
a multiplicative factor of exp(ε). Approximate differential privacy relaxes this require-
ment by additionally allowing for an additive slack δ. The following definition captures
these requirements in terms of α-distance; Lemma 4.2 establishes the equivalence to
the original definition [Dwork et al. 2006a] for algorithms with discrete output.

Definition 4.4 (Approximate differential privacy). Let d be a metric on A. A ran-
domized algorithm M : A→ D(B) is (ε, δ)-differentially private (w.r.t. d) iff

∀a, a′ ∈ A. d(a, a′) ≤ 1 =⇒ ∆exp(ε)(M a,M a′) ≤ δ

For algorithms that terminate with probability 1 (i.e. when (M a)1B = 1 for all
a ∈ A), the above definition corresponds to standard approximate differential pri-
vacy [Dwork et al. 2006a], which assumes that an adversary can only observe the re-
sult of a query. In particular, (ε, 0)-differential privacy corresponds to ε-differential
privacy.

As the following example shows, Definition 4.4 does not imply termination-sensitive
differential privacy. Let A = {a, a′}, B = {b} and d(a, a′) ≤ 1 and consider the algorithm
M : A → D(B) such that M a returns b with probability 1, and M a′ returns b with
probability 1/2, but loops with probability 1/2. Algorithm M satisfies Definition 4.4 for
δ = 0 and ε ≥ ln(2). However, for any ε,

1

2
= 1− (M a′) 1B > exp(ε) (1 − (M a) 1B) = 0

which would violate privacy when an adversary can observe non-termination.
A termination-sensitive definition of differential privacy can be obtained by consid-

ering in Definition 4.4 the extension M⊥ of M to B⊥ = B ∪ {⊥}, letting (M⊥ a) 1{⊥} =

ACM Transactions on Programming Languages and Systems, Vol. X, No. Y, Article N, Publication date: September 2012.

Probabilistic Relational Reasoning for Differential Privacy N:11

1 − (M a) 1B. As the following lemma shows, we can account for differences in termi-
nation on adjacent inputs by shifting these differences to the additive slack.

LEMMA 4.5. Let M be an (ε, δ)-differentially private algorithm. Then, M⊥ is (ε, δ +
δ′)-differentially private, where

δ′ = max
{a,a′|d(a,a′)≤1}

|(M a) 1B − (M a′) 1B|

PROOF. Let α = exp(ε); a direct calculation shows that for E ⊆ B⊥ we have

∆α((M⊥ a) 1E , (M⊥ a′) 1E)
≤ ∆α((M⊥ a) 1E\{⊥}, (M⊥ a′) 1E\{⊥}) + ∆α((M⊥a) 1{⊥}, (M⊥ a′) 1{⊥})
= ∆α((M a) 1E\{⊥}, (M a′) 1E\{⊥}) + ∆α(1− (M a) 1B, 1− (M a′) 1B) ≤ δ + δ′

Timing channels are as problematic as termination channels. They could be taken
into account by defining a cost model for programs and treating the cost of executing
a program as an observable output. CertiCrypt provides a cost-instrumented seman-
tics (used for capturing probabilistic polynomial-time complexity) that can be readily
used to capture privacy leaks through timing channels. Although, as we showed, richer
models may be used to account for information leaked through side-channels, these are
best mitigated by means of independent countermeasures (see [Haeberlen et al. 2011]
for an excellent analysis of the space of possible solutions).

Finally, it is folklore that for discrete domains the definition of differential privacy is
equivalent to its pointwise variant where one quantifies over characteristic functions
of singleton sets rather than those of arbitrary sets; however, this equivalence breaks
when considering approximate differential privacy [Dwork et al. 2006a]. The following
lemma provides a way to establish bounds for α-distance (and hence for approximate
differential privacy) in terms of characteristic functions of singleton sets. Note that the
inequality is strict in general.

LEMMA 4.6. For all distributions µ1 and µ2 over a discrete set A,

∆α(µ1, µ2) ≤
∑

a∈A

∆α(µ1(a), µ2(a))

4.3. Approximate Lifting of Relations to Distributions

In Section 5 we present apRHL, a relational logic for reasoning about probabilistic pro-
grams that elaborates on Benton’s relational Hoare logic [Benton 2004]. Judgments in
Benton’s logic are of the form c1 ∼ c2 : Ψ⇒ Φ, where c1, c2 are deterministic programs,
and assertions Ψ,Φ are binary relations over program memories. The validity of such
a judgment requires that terminating executions of programs c1 and c2 in initial mem-
ories related by Ψ result in final memories related by Φ. In the logic we consider in
next section, judgments have the same shape: assertions are still binary relations over
program memories, but programs are probabilistic. Since in this setting a program ex-
ecution results in a distribution over memories rather than a single final memory, in
order to extend Benton’s logic to probabilistic programs, we need a means of lifting the
post-condition Φ to distributions.

In this section we introduce a notion of approximate lifting of binary relations over
sets to distributions over those sets, which is the cornerstone for defining validity of
apRHL judgments.

Given α ∈ R
≥1 and δ ∈ [0, 1], the (α, δ)-lifting of R ⊆ A × B is a relation between

D(A) and D(B). Two distributions µ1 ∈ D(A) and µ2 ∈ D(B) are related by the (α, δ)-
lifting of R, whenever there exists a distribution over A×B whose support is contained
in R and whose first and second projections are at most at α-distance δ of µ1 and µ2,
respectively.

ACM Transactions on Programming Languages and Systems, Vol. X, No. Y, Article N, Publication date: September 2012.

N:12 Barthe, Köpf, Olmedo, Zanella-Béguelin

Definition 4.7 (Lifting). Let α ∈ R
≥1 and δ ∈ [0, 1]. The (α, δ)-lifting of a relation

R ⊆ A × B is the relation ∼α,δ
R ⊆ D(A) × D(B) such that µ1 ∼α,δ

R µ2 iff there exists
µ ∈ D(A ×B) satisfying

(1) range R µ,
(2) π1 µ ≤ µ1 ∧ π2 µ ≤ µ2, and
(3) ∆α(π1 µ, µ1) ≤ δ ∧ ∆α(π2 µ, µ2) ≤ δ

We say that a distribution µ satisfying the above conditions is a witness for the lifting.

The notion of (α, δ)-lifting generalizes previous notions of lifting, such as that
of [Jonsson et al. 2001], which is obtained by taking α = 1 and δ = 0, and δ-
lifting [Segala and Turrini 2007; Desharnais et al. 2008], obtained by taking α = 1.

In the case of equivalence relations, the notion of (α, δ)-lifting admits a more in-
tuitive characterization. Specifically, if R is an equivalence relation over A, then µ1

and µ2 are related by the (α, δ)-lifting of R iff the pair of distributions that µ1 and µ2

induce on the quotient set A/R are at α-distance at most δ. Formally, we define the
distribution induced by µ ∈ D(A) on the quotient set A/R as (µ/R)([a]) def

= µ([a]).

LEMMA 4.8. Let R be an equivalence relation over a discrete set A and let µ1, µ2 ∈
D(A). Then,

µ1 ∼α,δ
R µ2 ⇐⇒ ∆α(µ1/R, µ2/R) ≤ δ

Jonsson et al. also show that for equivalence relations, their definition of lifting coin-
cides with the more intuitive notion that requires related distributions assign equal
probabilities to all equivalence classes [Jonsson et al. 2001]. This result can be recov-
ered from Lemma 4.8 by taking (α, δ) = (1, 0).

The next lemma shows that (α, δ)-lifting is monotonic w.r.t. the slack δ, the skew
factor α, and the relation R. An immediate consequence is that for α > 1, (α, δ)-lifting
is more permissive than the previously proposed notions of lifting.

LEMMA 4.9. For all 1 ≤ α ≤ α′ and δ ≤ δ′, and relations R ⊆ S,

µ1 ∼α,δ
R µ2 =⇒ µ1 ∼α′,δ′

S µ2

We next present a fundamental property of (α, δ)-lifting, which is central to the appli-
cability of apRHL to reason about α-distance (and hence differential privacy). Namely,
two distributions related by the (α, δ)-lifting of R yield probabilities that are within
α-distance of δ when applied to R-equivalent functions. Given R ⊆ A × B we say that
two functions f : A→ [0, 1] and g : B → [0, 1] are R-equivalent, and write f =R g, iff for
every a ∈ A and b ∈ B, R a b implies f a = g b. In what follows we use ≡ to denote the
identity relation over arbitrary sets.

THEOREM 4.10 (FUNDAMENTAL PROPERTY OF LIFTING). Let R⊆A×B, µ1∈D(A)
and µ2∈D(B). Then, for any two functions f1 : A→ [0, 1] and f2 : B → [0, 1],

µ1 ∼α,δ
R µ2 ∧ f1 =R f2 =⇒ ∆α(µ1 f1, µ2 f2) ≤ δ

In particular, when A = B and R is the identity relation,

µ1 ∼α,δ
≡ µ2 =⇒ ∆α(µ1, µ2) ≤ δ

Theorem 4.10 provides an interpretation of (α, δ)-lifting in terms of α-distance. Next
we present two results that enable us to actually construct witnesses for such liftings.

The first result is the converse of Theorem 4.10 for the special case of R being the
identity relation: we prove that two distributions are related by the (α, δ)-lifting of the

ACM Transactions on Programming Languages and Systems, Vol. X, No. Y, Article N, Publication date: September 2012.

Probabilistic Relational Reasoning for Differential Privacy N:13

identity relation if their α-distance is smaller than δ. This result is used to prove the
soundness of the logic rule for random assignments given in the next section.

THEOREM 4.11. Let µ1 and µ2 be distributions over a discrete set A. Then

∆α(µ1, µ2) ≤ δ =⇒ µ1 ∼α,δ
≡ µ2

The proof is immediate by considering as a witness for the lifting the distribution
with the following probability mass function:

µ(a, a′) =

{

min(µ1(a), µ2(a)) if a = a′

0 if a 6= a′

As a side remark, observe that the equivalence ∆α(µ1, µ2) ≤ δ ⇐⇒ µ1 ∼α,δ
≡ µ2 is im-

mediate from Lemma 4.8. However, we prefer to keep separate statements and proofs
for each direction (Theorems 4.10 and 4.11), because these correspond to theorems in
our Coq formalization, while we only give a pencil-and-paper proof of Lemma 4.8 in
the Appendix.

The second result shows that (α, δ)-liftings compose. This enables one to derive a
judgment relating two programs c1 and c2 by introducing an intermediate program c
and proving the validity of judgments relating c1 and c on one hand, and c and c2 on the
other hand. This result is used in the examples of Section 6.2, and more extensively in
cryptographic proofs, see e.g. [Barthe et al. 2009].

THEOREM 4.12. Let µ1, µ2 and µ3 be distributions over discrete sets A, B, and C,
respectively. Let R ⊆ A×B and S ⊆ B × C. For all α, α′ ∈ R

≥1 and δ, δ′ ∈ [0, 1],

µ1 ∼α,δ
R µ2 ∧ µ2 ∼α′,δ′

S µ3 =⇒ µ1 ∼αα′,δ′′

R◦S µ3

where δ′′ def
= max(δ + α δ′, δ′ + α′ δ) and ◦ denotes relation composition.

For the proof, let µR and µS be witnesses for the liftings on the left-hand side of the
implication. Then, the distribution µ with the following probability mass function is a
witness for the lifting on the right-hand side:

µ(a, c) =
∑

b∈B | 0<µ2(b)

µR(a, b) µS(b, c)

µ2(b)

We conclude this section with a result that shows the compatibility of the bind op-
erator with (α, δ)-liftings. This result allows deriving the soundness of the rule for
sequential composition presented in the next section. In the following, we say that a
relation R ⊆ A × B is full iff for every a ∈ A there exists b ∈ B such that a R b, and
symmetrically, for every b ∈ B there exists a ∈ A such that a R b.

LEMMA 4.13. Let A,A′,B and B′ be discrete sets and let R ⊆ A×B and R′ ⊆ A′×B′.
Then for any µ1 ∈ D(A), µ2 ∈ D(B), M1 : A→ D(A′) and M2 : B → D(B′) that satisfy

µ1 ∼α,δ
R µ2 and ∀a, b. a R b =⇒ (M1 a) ∼α′,δ′

R′ (M2 b)

we have

(bind µ1 M1) ∼αα′,δ+δ′

R′ (bind µ2 M2)

whenever R is full or (M1 a) 1A′ = (M2 b) 1B′ = 1 for every a ∈ A and b ∈ B.

ACM Transactions on Programming Languages and Systems, Vol. X, No. Y, Article N, Publication date: September 2012.

N:14 Barthe, Köpf, Olmedo, Zanella-Béguelin

5. APPROXIMATE RELATIONAL HOARE LOGIC

This section introduces the central component of CertiPriv, namely an approximate
probabilistic relational Hoare logic that is used to establish privacy guarantees of pro-
grams. We first present the programming language and its semantics. We then define
relational judgments and show that they generalize differential privacy. Finally, we
define a proof system for deriving valid judgments and an asymmetric variant of the
logic.

5.1. Programming Language

CertiPriv supports reasoning about programs that are written in the typed, procedural,
probabilistic imperative language pWHILE. Formally, the set of commands is defined
inductively by the following clauses:

I ::= V ← E assignment
| V $← DE random sampling
| if E then C else C conditional
| while E do C while loop
| V ← P(E , . . . , E) procedure call
| assert E runtime assertion

C ::= skip nop
| I; C sequence

Here, V is a set of variable identifiers, P is a set of procedure names1, E is a set of
expressions, and DE is a set of distribution expressions. The base language includes
expressions over Booleans, integers, lists, option and sum types, but can be extended
by the user. The significant novelty of CertiPriv (compared to CertiCrypt), besides the
addition of runtime assertions, is that distribution expressions may depend on the
program state. This allows to express programs that sample from dynamically evolving
probability distributions and will be required for some case studies in Section 6.

The semantics of programs is defined in two steps. First, we give an interpretation
JT K to all object types T—these are types that are declared in CertiPriv programs—and
we define the setM of memories as the set of mappings from variables to values. Then,
the semantics of an expression e of type T , a distribution expression µ of type T , and a
command c, respectively, are given by functions of the following types:

JeK :M→ JT K JµK :M→D(JT K) JcK :M→D(M)

Informally, the semantics of an expression e maps a memory to a value in JT K, the
semantics of a distribution expression µ maps a memory to a distribution over JT K,
and the semantics of a program c maps an initial memory to a distribution over final
memories. The semantics of programs complies with the expected equations; Figure 3
provides an excerpt. In the remainder, we only consider programs that sample values
from discrete distributions, and so their output distributions are also discrete. More-
over, we say that a program c is lossless iff JcK m = 1 for any initial memory m.

5.2. Validity and Privacy

apRHL is an approximate probabilistic relational Hoare logic that supports reasoning
about differentially private computations. Judgments in apRHL are of the form

c1 ∼α,δ c2 : Ψ⇒ Φ

1For the sake of readability, we omit procedure calls from most of the exposition; we keep them in the descrip-
tion of the language because we use them to describe the algorithm SMARTSUM in Fig. 9 and modularize its
analysis.

ACM Transactions on Programming Languages and Systems, Vol. X, No. Y, Article N, Publication date: September 2012.

Probabilistic Relational Reasoning for Differential Privacy N:15

JskipK m = unit m

Ji; cK m = bind (JiK m) JcK

Jx← eK m = unit (m {JeK m/x})
Jassert eK m = if JeK m = true then (unit m) else µ0

Jx $← µK m = bind (JµK m) (λv. unit (m {v/x}))

Jif e then c1 else c2K m=

{

Jc1K m if JeK m = true

Jc2K m if JeK m = false

Jwhile e do cK m = λf. sup (λn. J[while e do c]nK m f)

where [while e do c]0 = assert ¬e
[while e do c]n+1 = if e then c; [while e do c]n

Fig. 3. Semantics of pWHILE programs

where c1 and c2 are programs, assertions Ψ and Φ are relations over memories, α ∈ R
≥1

is called the skew, and δ ∈ [0, 1] is called the slack. In our formalization we use a
shallow embedding for logical assertions, allowing us to inherit the expressiveness of
the Coq language when writing pre- and post-conditions. In this article, we usually
specify an assertion m1 Θ m2 as a formula over expressions tagged with either 〈1〉
or 〈2〉, to indicate whether they should be evaluated in m1 or m2, respectively. For
instance, the assertion e1〈1〉 < e2〈2〉 denotes the relation {(m1,m2) | Je1K m1 < Je2K m2}.

An apRHL judgment is valid if, for every pair of initial memories related by the
pre-condition Ψ, the corresponding pair of output distributions is related by the (α, δ)-
lifting of the post-condition Φ.

Definition 5.1 (Validity in apRHL). A judgment c1 ∼α,δ c2 : Ψ⇒ Φ is valid, written
|= c1 ∼α,δ c2 : Ψ⇒ Φ, iff

∀m1 m2. m1 Ψ m2 =⇒ (Jc1K m1) ∼α,δ
Φ (Jc2K m2)

The following lemma is a direct consequence of the fundamental property of lifting
(Theorem 4.10) applied to Definition 5.1. It shows that statements about programs
derived using apRHL imply bounds on the α-distance of their output distributions.

LEMMA 5.2. If |= c1 ∼α,δ c2 : Ψ⇒ Φ, then for all memories m1,m2 and unit-valued
functions f1, f2 :M→ [0, 1],

m1 Ψ m2 ∧ f1 =Φ f2 =⇒ ∆α(Jc1K m1 f1, Jc2K m2 f2) ≤ δ

The statement of Lemma 5.2 can be specialized to a statement about the differential
privacy of programs.

COROLLARY 5.3. Let d be a metric on M and Ψ an assertion expressing that
d(m1,m2) ≤ 1. If |= c ∼exp(ε),δ c : Ψ⇒ ≡, then c satisfies (ε, δ)-differential privacy.

Corollary 5.3 is the central result for deriving differential privacy guarantees in
apRHL. Using Theorem 4.11, one can prove the converse to Corollary 5.3, yielding a
characterization of approximate differential privacy.

The logic apRHL can also be used to reason about more traditional information-flow
properties, such as probabilistic non-interference. To see this, let Ψ be an arbitrary
equivalence relation on initial states and let ≡ be the identity relation on final states.
A judgment |= c ∼1,0 c : Ψ ⇒ ≡ entails that two initial states induce the same distri-

ACM Transactions on Programming Languages and Systems, Vol. X, No. Y, Article N, Publication date: September 2012.

N:16 Barthe, Köpf, Olmedo, Zanella-Béguelin

bution of final states whenever they are related by Ψ. In particular, this implies that
an adversary who can observe (or even repeatedly sample) the output of c will only
be able to determine the initial state up to its Ψ-equivalence class. In this way, Ψ can
be used for expressing fine-grained notions of confidentiality, including probabilistic
noninterference [Sabelfeld and Sands 2000]. Our interpretation of apRHL judgments
generalizes to arbitrary equivalence relations as post-conditions. In this way, one can
capture adversaries that have only partial views on the system, as required for dis-
tributed differential privacy [Beimel et al. 2008].

We finally show how apRHL can also be used for deriving continuity properties
of probabilistic programs. We begin by recalling the notion of Lipschitz continuity.
Given two sets A and B equipped with metrics ∆A and ∆B , we say that a function
f : A→ B is Lipschitz continuous iff there exists a constant K ≥ 0 such that ∆B(f(a1),
f(a2)) ≤ K∆A(a1, a2) for all a1, a2 ∈ A. To study the Lipschitz continuity of programs
we define a uniform semantic function for programs, mapping distributions to distri-
butions: JcK? µ def

= bind µ JcK, and we use α-distance as a metric for both inputs and
outputs. The following is a consequence of Theorems 4.10 and 4.11, and Lemma 4.13.

LEMMA 5.4. If |= c1 ∼α,δ c2 : ≡ ⇒ ≡, then

∆α′(µ1, µ2) ≤ δ′ =⇒ ∆αα′(Jc1K
? µ1, Jc2K

? µ2) ≤ δ + δ′

Taking c1 = c2 = c and δ = 0, the conclusion of the above lemma is equivalent to saying
that JcK? is a metric map, i.e., that it is continuous with Lipschitz constant K = 1.

5.3. Logic

This section introduces a set of proof rules to support reasoning about the validity of
apRHL judgments. In order to maximize flexibility and to allow the application of proof
rules to be interleaved with other forms of reasoning, the soundness of each proof rule
is proved individually as a Coq lemma. Nevertheless, we retain the usual presentation
of the rules as a proof system.

We present the core apRHL rules in Figure 4; all rules generalize their counterparts
in pRHL [Barthe et al. 2009], which can be recovered by setting α = 1 and δ = 0. (Any
valid pRHL derivation admits an immediate translation into apRHL.) We begin by
describing the rules corresponding to language constructs.

The [skip], [assert] and [assn] rules are direct transpositions of the corresponding
pRHL rules. Rule [rand] states that for any two distribution expressions µ1 and µ2 of
type A, the random assignments x1

$← µ1 and x2
$← µ2 are (α, δ)-related w.r.t. pre-

condition Ψ and post-condition x1〈1〉 = x2〈2〉, provided the α-distance between the
distributions Jµ1K m1 and Jµ2K m2 is smaller than δ for any m1 and m2 related by Ψ.

Rule [seq] encodes the sequential composition theorem of approximate differential
privacy, further elaborated in § 5.5. Since its soundness follows from Lemma 4.13, it
requires that either relation Φ′ is full, or that both c′1 and c′2 are lossless. If c′1 and c′2
contain no runtime assertions, this requirement can be easily discharged. Indeed, a
key property of the proof system of Figures 4 and 5 is that for assertion-free programs
c1, c2 that sample only from proper probability distributions, if a judgment of the form
|= c1 ∼α,δ c2 : Ψ⇒ Φ is derivable, then c1 and c2 are lossless.

Rule [cond] states that branching statements are (α, δ)-related w.r.t. pre-condition
Ψ and post-condition Φ, provided that the pre-condition Ψ ensures that the guards of
both statements are equivalent, and that the true and false branches are (α, δ)-related
w.r.t. pre-conditions Ψ ∧ b〈1〉 and Ψ ∧ ¬b〈1〉, respectively.

Rule [case] allows one to reason by case analysis on the pre-condition of a judgment.
The weakening rule [weak] generalizes the rule of consequence of (relational) Hoare
logic by allowing to increase the skew and slack. The composition rule [comp] permits

ACM Transactions on Programming Languages and Systems, Vol. X, No. Y, Article N, Publication date: September 2012.

Probabilistic Relational Reasoning for Differential Privacy N:17

∀m1 m2. m1 Ψ m2 =⇒ (m1 {Je1K m1/x1}) Φ (m2 {Je2K m2/x2})
|= x1 ← e1 ∼1,0 x2 ← e2 : Ψ⇒ Φ

[assn]

∀m1 m2. m1 Ψ m2 =⇒ ∆α(Jµ1K m1, Jµ2K m2) ≤ δ

|= x1
$← µ1 ∼α,δ x2

$← µ2 : Ψ⇒ x1〈1〉 = x2〈2〉
[rand]

|= skip ∼1,0 skip : Ψ⇒ Ψ
[skip]

Ψ =⇒ b〈1〉 ≡ b′〈2〉
|= assert b ∼1,0 assert b

′ : Ψ⇒ Ψ ∧ b〈1〉 [assert]

|= c1 ∼α,δ c
′
1 : Ψ ∧ b〈1〉 ⇒ Φ |= c2 ∼α,δ c

′
2 : Ψ ∧ ¬b〈1〉 ⇒ Φ Ψ =⇒ b〈1〉 ≡ b′〈2〉

|= if b then c1 else c2 ∼α,δ if b
′ then c′1 else c′2 : Ψ⇒ Φ

[cond]

|= c1 ∼α,δ c2 : Θ ∧ b1〈1〉 ∧ k = e⇒ Θ ∧ k < e
Θ ∧ n ≤ e =⇒ ¬b〈1〉 Θ =⇒ b1〈1〉 = b2〈2〉

|= while b1 do c1 ∼αn,nδ while b2 do c2 : Θ ∧ 0 ≤ e⇒ Θ ∧ ¬b1〈1〉
[while]

Φ′ is full ∨ c′1, c
′
2 are lossless |= c1 ∼α,δ c2 : Ψ⇒ Φ′ |= c′1 ∼α′,δ′ c

′
2 : Φ′ ⇒ Φ

|= c1; c
′
1 ∼αα′,δ+δ′ c2; c

′
2 : Ψ⇒ Φ

[seq]

|= c1 ∼α,δ c2 : Ψ ∧Θ⇒ Φ |= c1 ∼α,δ c2 : Ψ ∧ ¬Θ⇒ Φ

|= c1 ∼α,δ c2 : Ψ⇒ Φ
[case]

|= c1 ∼α,δ c2 : Ψ⇒ Φ |= c2 ∼α′,δ′ c3 : Ψ′ ⇒ Φ′

|= c1 ∼αα′,max(δ+α δ′,δ′+α′ δ) c3 : Ψ ◦Ψ′ ⇒ Φ ◦ Φ′ [comp]

|= c1 ∼α′,δ′ c2 : Ψ′ ⇒ Φ′

Ψ⇒ Ψ′ Φ′ ⇒ Φ α′ ≤ α δ′ ≤ δ

|= c1 ∼α,δ c2 : Ψ⇒ Φ
[weak]

|= c2 ∼α,δ c1 : Ψ−1 ⇒ Φ−1

|= c1 ∼α,δ c2 : Ψ⇒ Φ
[transp]

|= c1 ∼α,δ c2 : Ψ⇒ Φ ∀m1 m2. m1 Θ m2 =⇒ range Θ (Jc1K m1 × Jc2K m2)

|= c1 ∼α,δ c2 : Ψ ∧Θ⇒ Φ ∧Θ
[frame]

Fig. 4. Core proof rules of the approximate relational Hoare logic

structuring proofs by introducing intermediate programs (as in the game-playing tech-
nique for cryptographic proofs [Barthe et al. 2009]). It yields a rule for the case when
Ψ and Φ are partial equivalence relations which, specialized to α = α′ = 1, reads:

|= c1 ∼1,δ c2 : Ψ⇒ Φ |= c2 ∼1,δ′ c3 : Ψ⇒ Φ

|= c1 ∼1,δ+δ′ c3 : Ψ⇒ Φ

Rule [frame] rule allows one to strengthen the pre- and post-condition with an assertion
Θ whose validity is preserved by executing the commands in the judgment. (In the
figure, the notation × is used to denote the product of two distributions.)

Finally, rule [while] can be used to relate two loops that execute in lockstep and ter-
minate after at most n iterations. The loop invariant Θ ensures that the loops progress
in lockstep; to guarantee that both loops terminate within n iterations, the rule re-

ACM Transactions on Programming Languages and Systems, Vol. X, No. Y, Article N, Publication date: September 2012.

N:18 Barthe, Köpf, Olmedo, Zanella-Béguelin

Θ =⇒ b1〈1〉 ≡ b2〈2〉 ∧ P 〈1〉 ≡ P 〈2〉 ∧ i〈1〉 = i〈2〉 Θ ∧ n ≤ i〈1〉 =⇒ ¬b1〈1〉
|= c1; assert ¬P ∼α1(j),0 c2; assert ¬P : Θ ∧ (b1 ∧ i = j ∧ ¬P)〈1〉 ⇒ Θ ∧ i〈1〉 = j+1
|= c1; assert P ∼α2,0 c2; assert P : Θ ∧ (b1 ∧ i = j ∧ ¬P)〈1〉 ⇒ Θ ∧ i〈1〉 = j+1
|= c1 ∼1,0 c2 : Θ ∧ (b1 ∧ i = j ∧ P)〈1〉 ⇒ Θ ∧ (i = j+1 ∧ P)〈1〉
|= while b1 do c1 ∼α2

∏n−1

i=0
α1(i),0

while b2 do c2 : Θ ∧ i〈1〉 = 0⇒ Θ ∧ ¬b1〈1〉
[gwhile]

Fig. 5. Generalized rule for loops

quires exhibiting a strictly increasing loop variant e. Rule [while] essentially states
that the loops are (n ln(α), nδ)-differentially private when each iteration is (ln(α), δ)-
differentially private. This rule is sufficient for programs like the k-Median algorithm
studied in Section 6.3, where the skew factor α and the slack δ are the same for every
iteration. Other programs, such as the Minimum Vertex Cover algorithm studied in
Section 2, require applying more sophisticated rules in which the skew and the slack
may vary across iterations. For instance, the rule [gwhile] shown in Figure 5 allows for
a finer-grained case analysis depending on a predicate P whose validity is preserved
across iterations. Assume that when P does not hold, the j-th iteration of each loop can
be related with skew α1(j) when P does not hold after their execution, and with skew
α2 when it does. Furthermore, assume that once P holds, the remaining iterations are

observationally equivalent. Then, the two loops are related with skew α2

∏n−1
i=0 α1(i).

Intuitively, as long as P does not hold, the j-th iteration is ln(α1(j))-differentially pri-
vate, while the single iteration where the validity of P may be established (this occurs
necessarily at the same time in both executions) incurs an ln(α2) privacy penalty; the
remaining iterations preserve P and do not add to the privacy bound.

The proofs of soundness of apRHL rules in Coq rely on properties of approximate
lifting. For instance, the soundness of rules [weak] and [comp] follows directly from
Lemma 4.9 and Theorem 4.12, respectively. To illustrate the kind of reasoning such
proofs involve, we sketch the proof of soundness of [rand]. To establish the validity of
judgment

x1
$← µ1 ∼α,δ x2

$← µ2 : Ψ⇒ Φ

where Φ def
= x1〈1〉 = x2〈2〉, we have to show that for every pair of Ψ-related memories

m1 and m2,

(bind (Jµ1K m1) (λv. unit (m1 {v/x1})) ∼α,δ
Φ (bind (Jµ1K m1) (λv. unit (m2 {v/x2}))

We prove this by applying Lemma 4.13 with (α′, δ′) = (1, 0), and R the identity relation.
The hypotheses of the lemma simplify to

(Jµ1K m1) ∼α,δ
≡ (Jµ2K m2) and unit (m1 {v/x1}) ∼1,0

Φ unit (m2 {v/x2})
The first follows from Theorem 4.11 and the premise of the rule, whereas the second
follows from Lemma A.7.

5.4. An Asymmetric Variant of apRHL

The judgments of apRHL can be used to relate the output distributions of programs.
More precisely, if |= c1 ∼α,δ c2 : Ψ⇒ Φ, Lemma 5.2 entails inequalities

Jc1K m1 f1 ≤ α (Jc2K m2 f2) + δ and Jc2K m2 f2 ≤ α (Jc1K m1 f1) + δ

for every pair of Ψ-related memories m1,m2 ∈ M and every pair of Φ-equivalent func-
tions f1, f2 :M→ [0, 1]. It is sometimes convenient to reason independently about each
of the above inequalities: in this way one can choose different values of the parameters
α and δ in the left and right formula, which can lead to stronger privacy guarantees.

ACM Transactions on Programming Languages and Systems, Vol. X, No. Y, Article N, Publication date: September 2012.

Probabilistic Relational Reasoning for Differential Privacy N:19

We next introduce apRHL?, an asymmetric variant of apRHL that allows to conclude
only one of the above inequalities, and thus allows an independent and finer-grained
choice of the skew α and the slack δ. apRHL? judgments have the same form

c1 ∼α,δ c2 : Ψ⇒ Φ

as the original version of the logic and their validity is defined in a similar way by
considering asymmetric versions of the α-distance and (α, δ)-lifting presented in Sec-
tion 4. Most rules in apRHL remain valid in apRHL? (rule [transp] constitutes the only
exception).

We next give formal definitions of the asymmetric counterparts of the notions stud-
ied in Sections 4.1 and 4.3 and briefly discuss how their properties translate to the
asymmetric setting. We present only the left variant of the logic, the right variant is
analogous. We first define an asymmetric variant of α-distance:

∆?
α(µ1, µ2)

def
= max

f :A→[0,1]
∆?

α(µ1 f, µ2 f)

where ∆?
α(a, b) = max{a − αb, 0}. Given α ∈ R

≥1, δ ∈ [0, 1] and R ⊆ A × B, we define

the asymmetric lifting of R as the relation
?∼α,δ

R such that µ1
?∼α,δ

R µ2 iff there exists
µ ∈ D(A×B) satisfying

(1) range R µ,
(2) π1 µ ≤ µ1 ∧ π2 µ ≤ µ2, and
(3) ∆?

α(π1 µ, µ1) ≤ δ

The distance ∆?
α(·, ·) enjoys all properties of Lemma 4.3, except symmetry; the gener-

alized triangle inequality (4) can be strengthened to

∆?
αα′(µ1, µ3) ≤ ∆?

α(µ1, µ2) + α ∆?
α′(µ2, µ3)

Lemma A.3 can be reformulated as ∆?
α(µ1, µ2) = µ1(A0) − αµ2(A0) where µ1 and µ2

are discrete distributions over A and A0 = {a ∈ A | µ1(a) ≥ αµ2(a)}. This relates both
variants of α-distance by ∆α(µ1, µ2) = max{∆?

α(µ1, µ2),∆
?
α(µ2, µ1)}. Finally, for every

pair of distributions µ1 and µ2 over a discrete set A one can upper-bound ∆?
α(µ1, µ2) by

∑

a∈A ∆?
α(µ1(a), µ2(a)) as Lemma 4.6 does for standard α-distance.

The new notion of lifting satisfies both the monotonicity condition of Lemma 4.9 and
an analogue of Theorem 4.11. Theorem 4.12 can also be strengthened in accordance
with the triangle inequality condition of ∆?

α to yield

µ1
?∼α,δ

R µ2 ∧ µ2
?∼α′,δ′

S µ3 =⇒ µ1
?∼αα′,δ+αδ′

R◦S µ3

The fundamental property of lifting can also be transposed to the asymmetric set-
ting. Given f : A → [0, 1], g : B → [0, 1] and R ⊆ A × B, we say that f is R-dominated
by g, and write it f ≤R g, iff for every a ∈ A and b ∈ B, a R b implies f a ≤ g b.
Theorem 4.10 is reformulated as follows:

µ1
?∼α,δ

R µ2 ∧ f1 ≤R f2 =⇒ ∆?
α(µ1 f1, µ2 f2) ≤ δ

We next define validity in apRHL? and show how the asymmetric logic can be used
to relate the distributions generated by probabilistic programs.

Definition 5.5 (Validity in apRHL?). We say that a judgment c1 ∼α,δ c2 : Ψ ⇒ Φ is
valid in apRHL?, written |=? c1 ∼α,δ c2 : Ψ⇒ Φ, iff

∀m1 m2. m1 Ψ m2 =⇒ (Jc1K m1)
?∼α,δ

Φ (Jc2K m2)

ACM Transactions on Programming Languages and Systems, Vol. X, No. Y, Article N, Publication date: September 2012.

N:20 Barthe, Köpf, Olmedo, Zanella-Béguelin

LEMMA 5.6. If |=? c1 ∼α,δ c2 : Ψ ⇒ Φ, then for all memories m1,m2 and unit-valued
functions f1, f2 :M→ [0, 1],

m1 Ψ m2 ∧ f1 ≤Φ f2 =⇒ ∆?
α(Jc1K m1 f1, Jc2K m2 f2) ≤ δ

It is not hard to see that Corollary 5.3 and its converse remain valid if the validity of
judgment c ∼exp(ε),δ c : Ψ ⇒ ≡ is taken in apRHL? instead of apRHL. (This is true for
any symmetric precondition Ψ). Therefore, approximate differential privacy can also
be cast in terms of apRHL?. We immediately obtain a proof system for reasoning about
the validity of apRHL? judgments. Except for [transp], all apRHL rules in Figures 4
and 5 can be transposed to apRHL?. For consistency, we keep the names of the original
rules and decorate them with a ?. E.g., the rule for random assignments reads

∀m1 m2. m1 Ψ m2 =⇒ ∆?
α(Jµ1K m1, Jµ2K m2) ≤ δ

|=? x1
$← µ1 ∼α,δ x2

$← µ2 : Ψ⇒ x1〈1〉 = x2〈2〉
[rand∗]

and rule [comp] can be strengthened to

|=? c1 ∼α,δ c2 : Ψ⇒ Φ |=? c2 ∼α′,δ′ c3 : Ψ′ ⇒ Φ′

|=? c1 ∼αα′,δ+α δ′ c3 : Ψ ◦Ψ′ ⇒ Φ ◦ Φ′ [comp?]

In Section 6.4 we demonstrate the benefits of apRHL? over apRHL. Concretely, we
show how apRHL? can be used to prove a differential privacy bound for an approxima-
tion algorithm for the Minimum Vertex Cover problem that improves over the bound
that can be proved using apRHL.

5.5. Sequential and Parallel Composition Theorems

Composition theorems play an important role in the construction and analysis of dif-
ferentially private mechanisms. There are two main forms of composition, namely se-
quential and parallel. We briefly explain each of them, and establish their connections
with reasoning principles in apRHL.

The sequential composition theorem states that the composition of an (ε, δ)-
differentially private computation with an (ε′, δ′)-differentially private computa-
tion yields an (ε + ε′, δ + δ′)-differentially private computation [Dwork et al. 2006a;
McSherry 2009]. The apRHL rule for sequential composition [seq] provides a coun-
terpart to this first theorem. One can curb the linear growth in ε by shifting some
of the privacy loss to δ [Dwork et al. 2010], a result which is established using an
information-theoretic analogue of the dense model theorem. Proving the soundness
of this alternative bound is a significant challenge, which we leave for future work.

The parallel composition theorem states that the composition of an (ε, δ)-
differentially private computation with another (ε′, δ′)-differentially private compu-
tation that operates on a disjoint part of the dataset yields a (max(ε, ε′),max(δ, δ′))-
differentially private computation [McSherry 2009]. This theorem has a natural coun-
terpart in apRHL. To make this claim precise, we introduce the parallel composition of
two commands, as a construct taking two commands that operate on disjoint parts of
the memory. Formally, the construction c X‖Y c′ is only well defined when X and Y are
disjoint sets of variables, with c reading and writing variables from X , and c′ reading
and writing variables from Y . The semantics of c X‖Y c′ coincides with the semantics
of c; c′:

Jc X‖Y c′K def
= Jc; c′K

ACM Transactions on Programming Languages and Systems, Vol. X, No. Y, Article N, Publication date: September 2012.

Probabilistic Relational Reasoning for Differential Privacy N:21

Now assume that c X‖Y c′ is well-defined. Let Ψ and Ψ′ be relational formulae that
depend only on variables in X and Y , respectively. We establish the following rule [par]

|= c ∼α,δ c : Ψ⇒ ≡ |= c′ ∼α′,δ′ c
′ : Ψ′ ⇒ ≡

|= c X‖Y c′ ∼max(α,α′),max(δ,δ′) c X‖Y c′ : Ψ ∨Ψ′ ⇒ ≡ [par]

whose proof follows from the observation that for every command c0

|= c0 ∼1,0 c0 : ≡ ⇒ ≡
and uses the sequential composition rule to derive

|= c X‖Y c′ ∼α,δ c X‖Y c′ : Ψ⇒ ≡ |= c X‖Y c′ ∼α′,δ′ c X‖Y c′ : Ψ′ ⇒ ≡
The validity of [par] then follows from the rules of weakening and case analysis.

To see why [par] captures parallel composition of computations as described above,
instantiate Ψ to express that memories coincide on variables in X and differ in the
value of at most one variable in Y . Symmetrically, instantiate Ψ′ to express that mem-
ories coincide on Y and differ in at most one variable in X . The disjunction Ψ ∨ Ψ′

captures the fact that the initial memories differ in the value of at most one variable
in X∪Y , i.e. that they are adjacent in the sense of the standard definition of differential
privacy.

6. CASE STUDIES

We illustrate the versatility of our framework by proving from first principles the
correctness of the Laplacian, Gaussian and Exponential mechanisms. We then apply
these mechanisms to prove differential privacy for an algorithm solving the k-Median
problem, several streaming algorithms, and an approximation algorithm for the Mini-
mum Vertex Cover problem.

6.1. Laplacian, Gaussian and Exponential Mechanisms

Many algorithms for computing statistics and data mining are numeric, meaning that
they return (approximations of) real numbers. The Laplacian and Gaussian mecha-
nisms of Dwork et al. [Dwork et al. 2006b; Dwork et al. 2006a] are fundamental tools
for making such computations differentially private. This is achieved by perturbing the
algorithm’s true output with symmetric noise calibrated according to its sensitivity.

In the reminder, we use L(r, σ) and N (r, σ) to denote, respectively, the Laplace and
Gaussian distribution with mean r and scale factor σ. Their density functions at x
satisfy

L(r, σ)(x) ∝ exp

(

−|x− r|
σ

)

and N (r, σ)(x) ∝ exp

(

−|x− r|2
σ

)

To transform a deterministic computation f : A → R into a differentially private
computation, one needs to set r to the true output of the computation and choose σ (i.e.
the amount of noise) according to the sensitivity of f . Informally, the sensitivity of f
measures how far apart it maps nearby inputs. Formally, the sensitivity Sf is defined
relative to a metric d on A as

Sf
def
= max

a,a′|d(a,a′)≤1
|f a− f a′|

The justification for the Laplacian mechanism is a result that states that for a func-
tion f : A → R, the randomized algorithm that on input a returns a value sampled
from distribution L(f(a),Sf/ε) is ε-differentially private [Dwork et al. 2006b].

While the Laplacian mechanism transforms numerical algorithms into computa-
tions that satisfy standard differential privacy, the Gaussian mechanism achieves only

ACM Transactions on Programming Languages and Systems, Vol. X, No. Y, Article N, Publication date: September 2012.

N:22 Barthe, Köpf, Olmedo, Zanella-Béguelin

approximate differential privacy. The randomized algorithm that on input a returns a
value drawn from distribution N (f(a), σ) is (ε, δ)-differentially private provided σ is
chosen so that the tail of N (0, σ) satisfies a particular bound involving ε and δ. We
elaborate on such constrain later.

One limitation of the Laplacian and Gaussian mechanisms is that they are confined
to numerical algorithms. The Exponential mechanism [McSherry and Talwar 2007] is
a general mechanism for building differentially private algorithms with arbitrary (but
discrete) output domains. The Exponential mechanism takes as parameters a base
distribution µ on a set B, and a scoring function s : A × B → R

≥0; intuitively, values
b maximizing s(a, b) are the most appealing output for an input a. The Exponential
mechanism is a randomized algorithm that takes a value a ∈ A and returns a value
b ∈ B that approximately maximizes the score s(a, b), where the quality of the approxi-
mation is determined by a parameter ε > 0. Formally, the Exponential mechanism Eεs,µ
maps every element in A to a distribution in B whose probability mass at b is:

Eεs,µ(a) b =
exp(ε s(a, b)) (µ b)

∑

b′∈B

exp(ε s(a, b′)) (µ b′)

The definition implicitly assumes that the sum in the denominator is bounded for
all a ∈ A. McSherry and Talwar [McSherry and Talwar 2007] show that Eεs,µ is 2εSs-
differentially private, where Ss is the maximum sensitivity of s w.r.t. a, for all b.

We define the three mechanisms we consider as instances of a general construction

(·)] that takes as input a function f : A → B → R
≥0 and returns another function

f] : A→ D(B) such that for every a ∈ A the probability mass of f] a at b is given by:

f] a b =
f a b

∑

b′∈B

f a b′

Using this construction, the Exponential mechanism for a scoring function s, base dis-
tribution µ and scale factor ε is defined as

Eεs,µ def
= (λa b. exp(ε s(a, b)) (µ b))]

whereas the Laplacian and Gaussian mechanisms with mean value r and scale factor
σ are defined, respectively, as

L(r, σ) def
=

(

λa b. exp

(

−|b− a|
σ

))]

r N (r, σ) def
=

(

λa b. exp

(

−|b− a|2
σ

))]

r

Rigorously speaking, we consider discrete versions of the Laplacian and Gaussian

mechanisms over integers. (When instantiating the operator (·)] in the definition of
both mechanisms, we take A = B = Z.)

We derive the correctness of Gaussian mechanism as a consequence of the following
lemma.

LEMMA 6.1. Let B be a discrete set and consider f : A→ B → R
≥0 such that f]

is well defined. Moreover, let a1, a2 in A and α ≥ 1 be such that
∑

b∈B f a1 b ≤
α
∑

b∈B f a2 b and
∑

b∈B f a2 b ≤ α
∑

b∈B f a1 b. Then for every α′ ≥ 1,

∆αα′(f] a1, f
] a2) ≤ max{f] a1 1S1

, f] a2 1S2
}

where S1 = {b ∈ B | f a1 b > α′ f a2 b} and S2 = {b ∈ B | f a2 b > α′ f a1 b}.

ACM Transactions on Programming Languages and Systems, Vol. X, No. Y, Article N, Publication date: September 2012.

Probabilistic Relational Reasoning for Differential Privacy N:23

m1 Ψ m2 =⇒ |JrK m1 − JrK m2| ≤ k exp(ε) ≤ α

|= x $← L(r, k
ε) ∼α,0 y $← L(r, k

ε) : Ψ⇒ x〈1〉 = y〈2〉 [lap]

m1 Ψ m2 =⇒ |JrK m1 − JrK m2| ≤ k exp(ε) ≤ α B
(

σ, σε−k2

2k

)

≤ δ

|= x $← N (r, σ) ∼α,δ y $← N (r, σ) : Ψ⇒ x〈1〉 = y〈2〉 [norm]

m1 Ψ m2 =⇒ d(JaK m1, JaK m2) ≤ k exp(2kSsε) ≤ α

|= x $← Eεs,µ(a) ∼α,0 y $← Eεs,µ(a) : Ψ⇒ x〈1〉 = y〈2〉 [exp]

Fig. 6. Rules for the Laplacian, Gaussian and Exponential mechanisms

The correctness of the Laplacian and Exponential mechanisms is derived from the
following corollary.

COROLLARY 6.2. Let B be a discrete set and consider f : A→ B → R
≥0 such that f]

is well defined. Moreover, let a1, a2 in A and α ≥ 1 be such that for all b, f a1 b ≤ α f a2 b
and f a2 b ≤ α f a1b . Then,

∆α2(f] a1, f
] a2) = 0

If moreover
∑

b∈B f a b =
∑

b∈B f a′ b, then

∆α(f
] a1, f

] a2) = 0

The privacy guarantees for the Laplacian, Gaussian and Exponential mechanisms
are stated as rules [lap], [norm] and [exp] in Figure 6. The premise of rule [lap] requires
to prove that the values around which the mechanism is centered are within distance
k. This is the case when these values are computed by a k-sensitive function start-
ing from adjacent inputs, which corresponds to the usual interpretation of the guar-
antees provided by the Laplacian mechanism [Dwork et al. 2006b]. In the premise
of rule [norm], B (σ, x) denotes the probability that the normal distribution N (0, σ)
takes values greater than x. The rule can be simplified by considering particular (up-
per) bounds of B (σ, x). For instance, the Gaussian mechanism of [Dwork et al. 2006a]

is recovered from rule [norm] by adopting the bound B (σ, x) ≤ σe−x2/σ

2x
√
π

, while that

of [Nikolov et al. 2012] by considering a Chernoff bound. For the sake of generality,
we present rule [norm] in a generic way and assume no particular bound for B (σ, x).

As a further illustration of the expressive power of CertiPriv, we have also defined a
Laplacian mechanism Ln for lists; given σ ∈ R

+ and a vector a ∈ Z
n, the mechanism

Ln outputs a vector in Z
n whose i-th component is drawn from distribution L(a[i], σ).

More formally, we have proved the soundness of the following rule

m1 Ψ m2 =⇒ ∑

1≤i≤n

|Ja[i]K m1 − Ja[i]K m2| ≤ k

|= x $← Ln(a, k
ε) ∼exp(ε),0 y $← Ln(a, k

ε) : Ψ⇒ x〈1〉=y〈2〉 [lapn]

6.2. Statistics over Streams

In this section we present analyses of algorithms for computing private and contin-
ual statistics in data streams [Chan et al. 2010]. As in [Chan et al. 2010], we focus
on algorithms for private summing and counting. More sophisticated algorithms, e.g.
computing heavy hitters in a data stream, can be built using sums and counters as
primitive operations and inherit their privacy and utility guarantees.

We consider streams of elements in a bounded subset D ⊆ Z, i.e. with |x− y| ≤ b for
all x, y ∈ D. This setting is slightly more general than the one considered by Chan et

ACM Transactions on Programming Languages and Systems, Vol. X, No. Y, Article N, Publication date: September 2012.

N:24 Barthe, Köpf, Olmedo, Zanella-Béguelin

al. [Chan et al. 2010], where only streams over {0, 1} are considered. On the algorith-
mic side, the generalization to bounded domains is immediate; for the privacy analysis,
however, one needs to take the bound b into account because it conditions the sensi-
tivity of computations. This requires a careful definition of metrics and propagation of
bounds, which is supported by CertiPriv.

Although in our implementation we formalize streams as finite lists, we use array-
notation in the exposition for the sake of readability. Given an array a of n elements in

D, the goal is to release, for every point 0 ≤ j < n the aggregate sum c[j] =
∑j

i=0 a[i]
in a privacy-preserving manner. As observed in [Chan et al. 2010], there are two im-
mediate solutions to the problem. The first is to maintain an exact aggregate sum c[j]
and output at each iteration a curated version c[j] $← L(c[j], b/ε) of that sum. The sec-
ond solution is to maintain and output a noisy aggregate sum c̃[j], which is updated at
iteration j + 1 according to

a[j + 1] $← L(a[j + 1], b/ε); c̃[j + 1]← c̃[j] + a[j + 1]

The stream c[0] · · · c[n−1] offers weak, nε-differential privacy, because every element
of a may appear in n different elements of c, each with independent noise. However,
each c[j] offers good accuracy because noise is added only once. In contrast, the stream
c̃[0] · · · c̃[n−1] offers improved, ε-differential privacy, because each element of a appears
only in one ε-differentially private query. However, as shown in [Chan et al. 2010], the
sum c̃[j] yields poor accuracy because noise is added j times during its computation.

One solution proposed by Chan et al. [Chan et al. 2010] is a combination of both
basic methods of releasing partial sums that achieves a good compromise between
privacy and accuracy. The idea is to split the stream a into chunks of length q, where
the less accurate (but more private) method is used to compute the sum within the
current chunk, and the more accurate (but less private) method is used to compute

summaries of previous chunks. Formally, let st =
∑q−1

i=0 a[t q + i] be the sum over the
t-th chunk of a and let st $← L(st, b/ε) be the corresponding noisy version. Then, for
each j = qr + k, with k < q, we compute

ĉ[j] =

r−1
∑

t=0

st +

k
∑

i=0

a[qr + i]

The sequence ĉ[0] · · · ĉ[n − 1] offers 2ε-differential privacy, intuitively because each el-
ement of a is accessed twice during computation. Moreover, ĉ[j] also offers improved
accuracy over c̃[j] because noise is added only r+ k times rather than j = qr+ k times.

We will now turn the above informal security analysis into a formal analysis of pro-
gram code. The code for computing st is given as the function PARTIALSUM in Figure 7,
the code for computing c is given as the function PARTIALSUM’ in Figure 8, and the
code for computing ĉ is given as the function SMARTSUM in Figure 9. We next sketch
the key steps in our proofs of differential privacy bounds for each of these algorithms.
For all of our examples, we use the pre-condition

Ψ def
= length(a〈1〉) = length(a〈2〉) ∧ a〈1〉 .

= a〈2〉 ∧
∀i. 0 ≤ i < length(a〈1〉) =⇒ |a[i]〈1〉 − a[i]〈2〉| ≤ b

which relates two lists a〈1〉 and a〈2〉 whenever they have the same length, differ in at
most one element, and the distance between the elements at the same position at each
array is upper-bounded by b.

PARTIALSUM. The proof of differential privacy of PARTIALSUM proceeds in two key
steps. First, we prove (using the pRHL fragment of apRHL) that

|= c1−5 ∼1,0 c1−5 : Ψ⇒ |s〈1〉 − s〈2〉| ≤ b

ACM Transactions on Programming Languages and Systems, Vol. X, No. Y, Article N, Publication date: September 2012.

Probabilistic Relational Reasoning for Differential Privacy N:25

function PARTIALSUM(a)
1 s← 0; i← 0;
2 while i < length(a) do
3 s← s+ a[i];
4 i← i+ 1;
5 end;
6 s← L(s, b/ε)

Fig. 7. A simple ε-differentially private algorithm for sums over streams

function PARTIALSUM’(a)
1 a $← L

n(a, b/ε);
2 s[0]← a[0]; i← 1;
3 while i < length(a) do
4 s[i]← s[i− 1] + a[i];
5 i← i+ 1;
6 end

Fig. 8. An ε-differentially private algorithm for partial sums over streams

where c1−5 corresponds to the code in lines 1-5 in Figure 7, i.e. the initialization and
the loop. We apply the rule [lap] that gives a bound for the privacy guarantee achieved
by the Laplacian mechanism (see Figure 6) to c6 = s $← L(s, b/ε) (the instruction in line
6) and derive

|= c6 ∼exp(ε),0 c6 : |s〈1〉 − s〈2〉| ≤ b⇒ s〈1〉 = s〈2〉
Using rule [seq], applied to c1−5 and c6, we derive the following statement about

PARTIALSUM, which implies that its output s is ε-differentially private.

|= PARTIALSUM(a) ∼exp(ε),0 PARTIALSUM(a) : Ψ⇒ s〈1〉 = s〈2〉

PARTIALSUM’. Our implementation of PARTIALSUM’ in Figure 8 differs slightly
from the description given above in that we first add noise to the entire stream (line
1), before computing the partial sums of the noisy stream (lines 2-6). This modification
allows us to take advantage of the proof rule for the Laplacian mechanism on lists.
By merging the addition of noise into the loop, our two-pass implementation can be
turned into an observationally equivalent one-pass implementation suitable for pro-
cessing streams of data.

The proof of privacy for PARTIALSUM’ proceeds in the following basic steps. First, we
apply the rule [lapn] to the random assignment in line 1 (noted as c1) of PARTIALSUM’.
We obtain

|= c1 ∼exp(ε),0 c1 : Ψ⇒ a〈1〉 = a〈2〉
i.e. the output a is ε-differentially private at this point. For lines 2-6 (denoted by c2−6),
we prove (using the pRHL fragment of apRHL) that

|= c2−6 ∼1,0 c2−6 : a〈1〉 = a〈2〉 ⇒ s〈1〉 = s〈2〉
This is straightforward because of the equality appearing in the pre-condition; this
result can be derived using apRHL rules, but is also an immediate consequence of the
preservation of α-distance by probabilistic computations (see Lemma 4.3).

Finally, we apply the rule for sequential composition to c1 and c2−6 and obtain

|= PARTIALSUM’(a) ∼exp(ε),0 PARTIALSUM’(a) :Ψ⇒ s〈1〉=s〈2〉
which implies that the output s of PARTIALSUM’ is ε-differentially private.

ACM Transactions on Programming Languages and Systems, Vol. X, No. Y, Article N, Publication date: September 2012.

N:26 Barthe, Köpf, Olmedo, Zanella-Béguelin

function SMARTSUM(a, q)
1 i← 0; c← 0;
2 while i < length(a)/q do
3 b← PARTIALSUM(a[i q..i(q + 1) − 1]);
4 x← PARTIALSUM’(a[i q..i(q + 1)− 1]);
5 s← OFFSETCOPY(s, x, c, iq, q);
6 c← c+ b;
7 i← i+ 1;
8 end

Fig. 9. A 2ε-differentially private algorithm for partial sums over streams (a[i..j] denotes the sub-array of
a at entries i through j).

SMARTSUM. Our implementation of the smart private sum algorithm in Figure 9
makes use of PARTIALSUM and PARTIALSUM’ as building blocks, which enables us to
reuse the above proofs. In addition, we use of a procedure OFFSETCOPY that given two
lists s and x, a constant c and non-negative integers i, q, returns a list which is identical
to s, but where the entries s[i] · · · s[i+ (q − 1)] are replaced by the first q elements of x,
plus a constant offset c, i.e. s[i+ j] = x[j] + c for 0 ≤ i < q. We obtain

�s←OFFSETCOPY(s, x, c, i, q)∼1,0 s←OFFSETCOPY(s, x, c, i, q) : ={s,x,c,i,q} ⇒ s〈1〉 = s〈2〉
We combine this result with the judgments derived for PARTIALSUM and PARTIAL-
SUM’ using the rule for sequential composition, obtaining

|= c4−7 ∼exp(2ε),0 c4−7 : Ψ⇒ s〈1〉 = s〈2〉
where c4−7 denotes the body of the loop in lines 4-7. To conclude, we apply the rule for
while loops in Fig. 5 with α1(i) = 1 and α2 = exp(2ε). This instantiation of the rule
states that a loop that is non-interfering in all but one iteration is 2ε-differentially pri-
vate, if the interfering loop iteration is 2ε-differentially private. More technically, the
existence of a single interfering iteration is built into the rule using a stable predicate
of the state of the program. In our case, the critical iteration corresponds to the one in
which the chunk processed contains the entry in which the two streams differ.

6.3. k-Median

We discuss next a private version of the k-Median problem [Gupta et al. 2010]. This
problem constitutes an instance of the so called facility location problems, whose goal
is to find an optimal placement for a set of facilities intended to serve a given set of
clients. To model this family of problems we assume the existence of a finite set of
points V and a quasimetric d : V × V → R

≥0 on this set. (A quasimetric is metric with-
out the symmetry requirement.) Facilities and clients are represented by the points in
V , whereas d measures the cost of matching a client to a facility. Given an integer k
and a set C ⊆ V of clients, the aim of the k-Median problem is to select a set F ⊆ V of
facilities of size k that minimizes the sum of the distance of each client to the nearest
facility. Formally, this corresponds to minimizing the objective function

costC(F) def
=
∑

c∈C

d(c, F) where d(c, F) def
= min

f∈F
d(c, f)

As finding the optimal solution is hard in general, in practice, one has to resort to
heuristic techniques. In particular, one can perform a time-bounded local search to find
an approximation of the optimal solution. Local search is a general-purpose heuristic
aimed to find a solution within a search space that maximizes (or minimizes) the value
of some objective function. Given a neighborhood relation on the search space and an
initial candidate solution, the local search heuristic proceeds by iteratively replacing

ACM Transactions on Programming Languages and Systems, Vol. X, No. Y, Article N, Publication date: September 2012.

Probabilistic Relational Reasoning for Differential Privacy N:27

function KMEDIAN(C, ε, S0)
1 i← 0;S[0]← S0;
2 while i < T do
3 (x, y) $← pick swap(ε, C, S[i], S[i] × (V \ S[i]));
4 S[i+ 1]← (S[i] \ {x}) ∪ {y};
5 i← i+ 1
6 end;
7 j $← pick solution(ε, C, T, S)

Fig. 10. A 2ε∆(T + 1)-differentially private algorithm for computing the k-Median

the current solution with one within its neighborhood, until some time bound or some
“good” sub-optimal solution is reached. The simplest way to implement the local search
technique for the k-Median problem is by considering two sets of facilities to be neigh-
bors iff they differ in exactly one point and halting upon a predefined number of iter-
ations. More precisely, the implementation we consider begins with an initial solution
S0 and in the i-th iteration, finds, if possible, a pair of points (x, y) ∈ Si × (V \ Si) such
that the solution obtained from Si by swapping x for y outperforms Si; if this is the
case, it sets the new solution Si+1 to (Si \ {x}) ∪ {y}.

Observe that the aforementioned heuristic might leak some information about the
set of clients C. Gupta et al. [Gupta et al. 2010] showed how to turn this algorithm into
a differentially private algorithm that conceals the presence or absence of any client
in C. The crux is to rely on the Exponential mechanism to choose the pair of points
(x, y) ∈ Si × (V \ Si) in a differentially private way. The description of the algorithm is
given in Figure 10. We assume that the quasi-metric space (V, d) is fixed. Moreover, the
algorithm is parametrized by an integer T , which determines the number of solution
updates the local search will perform. The integer k is implicitly determined by the
size of the initial solution S0. Lines 1 − 6 iteratively refine S0 and store all the inter-
mediate solutions in S (we use array-notation to refer to these solutions, in our Coq
formalization we use lists). Line 7 picks the (index of the) solution to be output by the
algorithm.

In each iteration of the loop, the algorithm updates the current solution S[i] by sub-
stituting one of its points. That is, it chooses a point x in S[i] and a point y not belonging
to S[i] and swaps them. In order to do so in a differentially private way the algorithm
uses (a variant of) the Exponential mechanism. Specifically, the pair of points (x, y)
is drawn from the parametrized distribution pick swap. Given C,F ⊆ V , R ⊆ V × V
and ε > 0, distribution pick swap(ε, C, F,R) assigns to each pair (x, y) in R a probability
proportional to exp (−ε costC((F \ {x}) ∪ {y})). Technically, this mechanism is defined

as an instance of the construction (·)] introduced in Section 6.1:

pick swap(ε, C, F,R) def
= gε,R

] (C,F)

where gε,R has type P (V)
2 → R→ R

≥0 and is defined as

g (C,F) (x, y) def
= exp (−ε costC((F \ {x}) ∪ {y}))

During a solution update, pairs of vertices with lower resulting cost are more likely
to be chosen. However, swapping such pairs might deliver increased values of the cost
function (for instance, when dealing with a local minimum). This raises the need to
choose one of the computed solutions, in accordance with the value assigned to them
by the objective function. Likewise, this choice should not leak any information about
the clients in C. This is accomplished by distribution pick solution in line 7, which is
defined in the same spirit as pick swap by equation:

pick solution(ε, C, T, S) def
= hε,T,S

] C

ACM Transactions on Programming Languages and Systems, Vol. X, No. Y, Article N, Publication date: September 2012.

N:28 Barthe, Köpf, Olmedo, Zanella-Béguelin

where T ∈ N, S is an array of T sets of points from V , and hε,T,S has type P (V) →
{0, . . . , T − 1} → R

≥0 and is defined as

hε,T,S(C, j)
def
= exp (−ε costC(S[j]))

The original proof [Gupta et al. 2010] shows that the algorithm in Figure 10 is
2ε∆(T + 1)-differentially private, where ∆ = maxv1,v2∈V d(v1, v2) is the diameter of
the quasi-metric space. The key steps in the proof are as follows. First show that for
every F ⊆ V , the function cost (·)(F) has sensitivity ∆. Let C1 = {c0, c1, . . . , cm} and
C2 = {c′0, c1, . . . , cm} be two subsets of V differing in at most one point. Then,

|costC1
(F)− costC2

(F)| =
∣

∣

∣

∣

min
f∈F

d(c0, f)−min
f∈F

d(c′0, f)

∣

∣

∣

∣

≤ ∆

where the last inequality holds because both terms minf∈F d(c0, f) and minf∈F d(c′0, f)
are non-negative and upper-bounded by ∆. Now observe that the mechanisms used
to choose the pair of points (x, y) (line 3) and to pick the output solution (line 7) can
be viewed as instances of the Exponential mechanism with uniform base distributions
and score functions λC F (x, y).− costC((F \ {x}) ∪ {y}) and λC j.− costC(S[j]) respec-
tively, having each of them sensitivity ∆. Therefore each of them is 2ε∆-differentially
private. Since privacy composes additively and step 3 is run T times one concludes
that the algorithm is 2ε∆(T + 1)-differentially private.

Next we present a language-based analysis of this security result using apRHL. The
privacy statement is formalized by the judgment

|= KMEDIAN(C, ε, S0) ∼exp(2ε∆(T+1)),0 KMEDIAN(C, ε, S0) : Ψ⇒ S[j]〈1〉 = S[j]〈2〉 (2)

where Ψ def
= S0〈1〉 = S0〈2〉 ∧ C〈1〉 .

= C〈2〉. We let c = KMEDIAN(C, ε, S0) and use the
same convention as in Section 6.2 to denote program fragments by indicating the ini-
tial and final lines in subscript.

We begin by applying the rule for sequential composition [seq], which enables to
derive the privacy condition (2) from judgments

|= c1−6 ∼exp(2ε∆T),0 c1−6 : Ψ⇒ I

and

|= c7 ∼exp(2ε∆),0 c7 : I ⇒ S[j]〈1〉 = S[j]〈2〉
where I def

= i〈1〉 = i〈2〉 ∧ S〈1〉 = S〈2〉 ∧ C〈1〉 .
= C〈2〉.

The former is derived with an application of rule [while] with n = T , Θ = I,
α = exp(2∆ε), and δ = 0. Rule [while] is enough because α and δ are constant across
iterations. To prove the premise

|= c3−5 ∼exp(2ε∆),0 c3−5 : I ∧ (i < T)〈1〉 ∧ (i < T)〈2〉 ⇒ I ∧ ¬(i < T)〈1〉 ∧ ¬(i < T)〈2〉
we use rule [assn] to deal with lines 4 and 5, rule [rand] to deal with the random
assignment in line 3, and rule [frame] to prepare for this application. By setting µ =
pick swap(ε, C, S[i], S[i]× (V \ S[i])), the premise

∀m1 m2. m1 I m2 =⇒ ∆exp(2ε∆)(JµK m1, JµK m2)

of rule [rand] can be discharged by Lemma 6.2, which requires showing that for all C1,
C2, F , x and y satisfying C1

.
= C2 ∧ x ∈ F ∧ y /∈ F ,

exp(−ε costC1
((F \ {x}) ∪ {y})) ≤ exp(ε∆) exp(−ε costC2

((F \ {x}) ∪ {y}))
This inequality is a direct consequence of the sensitivity property of the function cost

stated above.

ACM Transactions on Programming Languages and Systems, Vol. X, No. Y, Article N, Publication date: September 2012.

Probabilistic Relational Reasoning for Differential Privacy N:29

We are left to verify the second premise of the [seq] rule. We follow a similar reason-
ing to the one above, that is, we rely on rule [rand] and on rule [frame] to prepare for
its application. The reasoning boils down to showing

∀m1 m2. m1 S = m2 S ∧m1 C
.
= m2 C =⇒ ∆exp(2ε∆)(Jµ

′K m1, Jµ
′K m2)

where µ′ = pick solution(ε, C, T, S). Similarly, this requires proving that for all C1, C2, S
and j satisfying C1

.
= C2 ∧ 0 ≤ j < T ,

exp(−ε costC1
(S[j])) ≤ exp(ε∆) exp(−ε costC2

(S[j]))

which follows from the sensitivity of function cost .

6.4. Minimum Vertex Cover

We conclude this section with a more detailed account of the proof of differential pri-
vacy of the Minimum Vertex Cover approximation algorithm of Section 2. To obtain
sharper privacy bounds, we recast the privacy statement using the asymmetric logic
apRHL?. Rather than a single pRHL judgment, we need to prove the following pair of
apRHL? judgments:

|=? VERTEXCOVER(V,E, ε) ∼exp(ε),0 VERTEXCOVER(V,E, ε) : Ψ1 ⇒ Φ (3)

|=? VERTEXCOVER(V,E, ε) ∼exp(ε),0 VERTEXCOVER(V,E, ε) : Ψ2 ⇒ Φ (4)

where

Ψ1
def
= V 〈1〉 = V 〈2〉 ∧E〈2〉 = E〈1〉 ∪ {(t, u)}

Ψ2
def
= V 〈1〉 = V 〈2〉 ∧E〈1〉 = E〈2〉 ∪ {(t, u)}

Φ def
= π〈1〉 = π〈2〉

Let us focus first on (3). We prove the validity of this judgment using an asymmet-
ric variant of the generalized rule for while loops given in Figure 5. This rule, which
we call [gwhile?], has the same shape as [gwhile], but judgments in the premises and
conclusion are interpreted in apRHL?. We apply the rule with parameters

α1(i) = exp

(

2

(n− i)wi

)

α2 = 1,

the loop invariant

Θ =
(t ∈ π〈1〉 ∨ u ∈ π〈1〉 =⇒ E〈1〉 = E〈2〉) ∧
(t /∈ π〈1〉 ∧ u /∈ π〈1〉 =⇒ E〈2〉 = E〈1〉 ∪ {(t, u)}) ∧
V 〈1〉 = V 〈2〉 ∧ π〈1〉 = π〈2〉 ∧ i〈1〉 = i〈2〉,

and the stable property

P = t ∈ π ∨ u ∈ π

The first and second judgments appearing in the premises of the rule are of the form

|=? c; assert P ∼α,0 c; assert P : Ψ′ ⇒ Φ′ and |=? c; assert ¬P ∼α,0 c; assert ¬P : Ψ′ ⇒ Φ′

where c is the body of the loop. For each of these premises, we first hoist the asser-
tion immediately after the random assignment that chooses the vertex v in c. As a
result, the expression in the assertion becomes (t, u /∈ (v :: π)) in the case of the first
premise, and (t ∈ (v :: π) ∨ u ∈ (v :: π)) in the case of the second. We then compute the
weakest pre-condition of the assignments that now follow the assertions. The resulting
judgments simplify, after applying the [weak?] and [frame?] rules, to judgments of the
form

|=? c′ ∼α,0 c′ : Ψ′′ ⇒ v〈1〉 = v〈2〉

ACM Transactions on Programming Languages and Systems, Vol. X, No. Y, Article N, Publication date: September 2012.

N:30 Barthe, Köpf, Olmedo, Zanella-Béguelin

where

Ψ′′ def
= E〈2〉 = E〈1〉 ∪ {(t, u)} ∧ V 〈1〉 = V 〈2〉 ∧ t, u /∈ π ∧ i〈1〉 = i〈2〉 = j ∧ π〈1〉 = π〈2〉

For the first premise we have α = α1(j) and

c′ = v $← choose(V,E, ε, n, i); assert (t, u /∈ (v :: π))

whereas for the second premise we have α = α2 and

c′ = v $← choose(V,E, ε, n, i); assert (t∈(v :: π) ∨ u∈(v :: π))

To establish the validity of each judgment, we cast the code for c′ as a random assign-
ment where v is sampled from the interpretation of choose(V,E, ε, n, i) restricted to v
satisfying the condition in the assertion. For the first premise, the restriction amounts
to v 6= u, t whereas for the second it amounts to v = t ∨ v = u. In either case, we apply
the asymmetric rule for random assignments [rand?] and are thus left to prove that
the distance ∆?

α between the corresponding distributions is 0. In view of the variant of
Lemma 4.6 for ∆?

α this in turn amounts to verifying that for each vertex x, the ratio
between the probability of choosing x in each distribution is bounded by α, which di-
rectly translates into the inequalities presented in the initial analysis of the algorithm.
Technically, these inequalities are proved by appealing to a variant of Corollary 6.2.

To prove the remaining judgment (4) we follow a similar reasoning; we apply rule
[gwhile?] with parameters

α1(i) = 1 α2 = exp(ε/4),

the loop invariant

Θ =
(t ∈ π〈1〉 ∨ u ∈ π〈1〉 =⇒ E〈1〉 = E〈2〉) ∧
(t /∈ π〈1〉 ∧ u /∈ π〈1〉 =⇒ E〈1〉 = E〈2〉 ∪ {(t, u)}) ∧
V 〈1〉 = V 〈2〉 ∧ π〈1〉 = π〈2〉 ∧ i〈1〉 = i〈2〉,

and the same stable property as before

P = t ∈ π ∨ u ∈ π

As a final remark, we observe that the use of apRHL? is fundamental to prove the
privacy bound ε from [Gupta et al. 2010], as opposed to [Barthe et al. 2012], where the
use of apRHL yields a looser bound of 5ε/4. This is because the proof in apRHL? allows
to prove independently that exp(ε) is a bound for the ratios

Pr [VERTEXCOVER(G1, ε) : π = ~v]

Pr [VERTEXCOVER(G2, ε) : π = ~v]
and

Pr [VERTEXCOVER(G2, ε) : π = ~v]

Pr [VERTEXCOVER(G1, ε) : π = ~v]
,

while a proof in apRHL requires to prove this simultaneously. As a consequence, the
proof in apRHL? consists of two independent applications of the asymmetric rule
[gwhile?]. One application requires to bound for each iteration of the loop the ratio

Pr[v〈2〉 = x]

Pr[v〈1〉 = x]

while the other requires to bound its reciprocal. For each application, one can
choose independent—and thus tighter—parameters α1 and α2; namely (α1(i), α2) =
(exp (2/((n− i)wi)) , 1) and (α1(i), α2) = (1, exp(ε/4)). In contrast, when using the sym-
metric logic apRHL, one needs to choose a single pair of parameters to bound both
ratios simultaneously, namely (α1(i), α2) = (exp (2/((n− i)wi)) , exp(ε/4)). This trans-
lates into a looser privacy bound.

ACM Transactions on Programming Languages and Systems, Vol. X, No. Y, Article N, Publication date: September 2012.

Probabilistic Relational Reasoning for Differential Privacy N:31

7. LIFTING AS AN OPTIMIZATION PROBLEM

Proving the validity of an apRHL judgment c1 ∼α,δ c2 : Ψ ⇒ Φ boils down to proving
that for any pair of memories m1,m2 related by the pre-condition Ψ, the distributions
Jc1K m1 and Jc2K m2 are related by the (α, δ)-lifting of the post-condition Φ. Thus, a first
step to automate reasoning in apRHL is to provide a procedure to decide the (α, δ)-
lifting of a relation.

In this section, we establish a correspondence between deciding (α, δ)-lifting and
finding a minimum loss flow in networks with multiplicative losses and gains. Our
result extends and generalizes a known connection between less expressive classes of
liftings and network flow problems [Jonsson et al. 2001; Desharnais et al. 2008]. This
correspondence allows us to cast the problem of proving that a pair of distributions is
in the (α, δ)-lifting of a relation as an optimization problem, and to use any available
algorithm to solve the latter (e.g. linear programming methods).

We begin by recalling some basic definitions about flow networks [Lawler 1976;
Murty 1992]. A network is a tuple (V,E,⊥,>, c) where G = (V ∪ {⊥,>}, E) is a fi-
nite directed graph with a distinguished source (⊥) and sink (>), and c : E → R

≥0 is
a function assigning a non-negative capacity c(e) to each edge e in E. A network with
losses and gains (NLG) is a network in which each edge e is also given a positive gain
γ(e) ∈ R

>0. For such a network we say that a mapping f : E → R
≥0 is a feasible flow

iff it satisfies the following conditions:

0 ≤ f(e) ≤ c(e) ∀e ∈ E (capacity constraints)
Ex f (v) = 0 ∀v ∈ V (flow conservation)

where Ex f (v) =
∑

e∈in(v) γ(e)f(e) −
∑

e∈out(v) f(e) is the flow excess at vertex v and

in(v) and out(v) represent the sets of incoming and outgoing edges, respectively.
This problem generalizes the standard network flow problem in the sense that one

allows flow along an edge not to be conserved: if f(u, v) units of flow enter edge (u, v)
then γ(u, v)f(u, v) arrive at its head v. Due to these losses and gains, the flow f⊥ =
−Exf (⊥) leaving the source and the flow f> = Ex f (>) arriving at the sink might be
different. The difference f⊥ − f> is called the loss of f .

The minimum flow loss problem is the problem of finding a feasible flow f∗ of
minimum loss. This is usually done by fixing the value of f⊥ and maximizing f>
(or dually, by fixing f> and minimizing f⊥). Since the minimum flow loss problem
can be formulated as a linear program, it can be solved in polynomial time using,
e.g. the ellipsoid method or Karmarkar’s algorithm. It can also be solved by polyno-
mial combinatorial algorithms, which exploit the structure of the underlying network
[Tardos and Wayne 1998; Goldfarb et al. 1997].

We now show how deciding whether µ1 ∼α,δ
R µ2 holds can be reduced to finding

feasible flows in a suitable NLG. For given distributions µ1 ∈ D(A), µ2 ∈ D(B),
and R ⊆ A × B we define the NLG N (µ1, µ2, R, α) by setting V = A ∪ B and
E = ({⊥} ×A) ∪R ∪ (B × {>}), and defining capacity and gain as follows:

c(u, v) =

{

µ1(v) if u = ⊥ and v ∈ A
µ2(u) if u ∈ B and v = >
1 if u ∈ A and v ∈ B

γ(u, v) =







α−1 if u = ⊥ and v ∈ A
1 if u ∈ B and v = >
α if u ∈ A and v ∈ B

That is, the vertex adjacency relation corresponds to R, together with edges from the
source to A and from B to the sink. Intuitively, the edges exiting the source and the
edges entering the sink labelled with their capacities represent distributions µ1 and
µ2, respectively, while the flow along edges joining R-related elements determines a
product distribution over A × B. In Figure 11 we illustrate the construction of such a
network.

ACM Transactions on Programming Languages and Systems, Vol. X, No. Y, Article N, Publication date: September 2012.

N:32 Barthe, Köpf, Olmedo, Zanella-Béguelin

⊥ >

a1

a2

a3

a4

b1

b2

b3

c(⊥,
ai)

= µ1(a
i)

γ(⊥,
ai)

= α
−1

c(ai, bj) = 1
γ(ai, bj) = α c(bj ,>) = µ2(bj)γ(bj ,>) = 1

Fig. 11. Network N (µ1, µ2, R, α) used to interpret the lifting of relation R as a minimum flow loss problem.
Here, A = {a1, · · · , a4}, B = {b1, · · · , b3}, and R = {(a1, b1), (a2, b1), (a3, b2), (a3, b3), (a4, b3)}.

The following result establishes a correspondence between feasible flows in the net-

work N (µ1, µ2, R, α) and witnesses for the lifting µ1 ∼α,δ
R µ2.

THEOREM 7.1. Let µ1 and µ2 be a pair of distributions over finite sets A and B and
let R ⊆ A×B. Then, the statements

(1) there exists a feasible flow f inN (µ1, µ2, R, α) s.t. f⊥ ≥ µ1(A)−δ and f> ≥ µ2(B)−δ
(2) distributions µ1 and µ2 are related by the (α, δ)-lifting of R,

are equivalent when α = 1; if α ≥ 1, then (1) implies (2).

As a corollary, one can efficiently decide whether µ1 ∼α,δ
R µ2 by solving a minimum flow

loss problem in N (µ1, µ2, R, α). It suffices to find a feasible flow f∗ that maximizes f>
subject to f⊥ = µ1(A) − δ. If f∗

> ≥ µ2(B) − δ then one has µ1 ∼α,δ
R µ2, in which case a

witness distribution µ for the lifting is readily obtained by taking µ(a, b) = f∗(a, b).

8. RELATED WORK

Our work builds upon program verification techniques, and in particular (probabilistic
and relational) program logics, to reason about differential privacy. We briefly review
relevant work in these areas.

Differential privacy. There is a vast body of work on differential privacy. We refer to
recent overviews, see e.g. [Dwork 2008; Dwork 2011], for an account of some of the lat-
est developments in the field, and focus on language-based approaches to differential
privacy. The Privacy Integrated Queries (PINQ) platform [McSherry 2009] supports
reasoning about the privacy guarantees of programs in a simple SQL-like language.
The reasoning is based on the sensitivity of basic queries such as Select and GroupBy,
the differential privacy of building blocks such as NoisySum and NoisyAvg, and meta-
theorems for their sequential and parallel composition. AIRAVAT [Roy et al. 2010]
leverages these building blocks for distributed computations based on MapReduce.

The linear type system of [Reed and Pierce 2010] extends sensitivity analysis to a
higher-order functional language. By using a suitable choice of metric and probability
monads, the type system also supports reasoning about probabilistic, differentially pri-
vate computations. As in PINQ, the soundness of the type system makes use of known
composition theorems and relies on assumptions about the sensitivity/differential pri-
vacy of nontrivial building blocks, such as arithmetic operations, conditional swap op-
erations, or the Laplacian mechanism. While the type system can handle functional
data structures, it does not allow for analyzing programs with conditional branch-
ing. Work on the automatic derivation of sensitivity properties of imperative pro-

ACM Transactions on Programming Languages and Systems, Vol. X, No. Y, Article N, Publication date: September 2012.

Probabilistic Relational Reasoning for Differential Privacy N:33

grams [Chaudhuri et al. 2011] addresses this problem and can (in conjunction with the
Laplacian mechanism) be used to derive differential privacy guarantees of programs
with control flow. Although this approach supports reasoning about probabilistic com-
putations, the reasoning is restricted to Lipschitz conditions.

In contrast to [McSherry 2009; Reed and Pierce 2010; Chaudhuri et al. 2011], Cer-
tiPriv supports reasoning about differential privacy guarantees from first principles.
In particular, CertiPriv enabled us to prove (rather than to assume) the correctness of
Laplacian, Gaussian and Exponential mechanisms, and the differential privacy of com-
plex interleavings of (not necessarily differentially private) probabilistic computations.
This comes at a price in automation; while the above systems are mostly automated,
reasoning in apRHL in general cannot be fully automated.

Tschantz et al. [Tschantz et al. 2011] consider the verification of privacy properties
based on I/O-automata. They focus on the verification of the correct use of differentially
private sanitization mechanisms in interactive systems, where the effect of a mecha-
nism is soundly abstracted using a single, idealized transition. Our verification-based
approach shares many similarities with this method. In particular, their definition of
differential privacy is also based on a notion of lifting that closely resembles the one we
use to define validity in apRHL, and their unwinding-based verification method can be
regarded as an abstract, language-independent, equivalent of apRHL. However, their
method is currently limited to reason about ε-differential privacy.

An early approach to quantitative confidentiality analysis [Pierro et al. 2004] uses
the distance of output distributions to quantify information flow. Their measure is
closely related to (0, δ)-approximate differential privacy, which can be reasoned about
in CertiPriv. More recent approaches to quantitative information-flow focus on mea-
sures of confidentiality based on information-theoretic entropy. Techniques for code-
based structural reasoning about these measures are developed in [Clark et al. 2007].
For an overview and a discussion of the relationship between entropy-based measures
of confidentiality and differential privacy, see [Barthe and Köpf 2011].

Relational program verification. Program logics have a long tradition and have been
used effectively to reason about functional correctness of programs. In contrast, pri-
vacy is a 2-safety property [Terauchi and Aiken 2005; Clarkson and Schneider 2010],
that is, a (universally quantified) property about two runs of a program. There have
been several proposals for applying program logics to 2-safety, but most of these pro-
posals are confined to deterministic programs.

Program products [Zaks and Pnueli 2008; Barthe et al. 2011b] conflate two pro-
grams into a single one embedding the semantics of both. Product programs allow
reducing the verification of 2-safety properties to the verification of safety properties
on the product program, which can be done using standard program verification meth-
ods. Self-composition [Barthe et al. 2004] is a specific instance of product program.

Benton [Benton 2004] develops a relational Hoare logic (RHL) for a core imperative
language and shows how it can be used to reason about information flow properties
and correctness of compiler optimizations. Amtoft et al. [Amtoft and Banerjee 2004;
Amtoft et al. 2006] develop specialized relational logics for information flow. Backes et
al. [Backes et al. 2009] compute relational weakest preconditions as a basis for quanti-
fying information leaks. Further applications of relational program verification include
determinism [Burnim and Sen 2009] and robustness [Chaudhuri et al. 2011].

CertiCrypt [Barthe et al. 2009] is a machine-checked framework to reason about
probabilistic computations in the presence of adversarial code. The main components
of CertiCrypt are a formalization of pRHL, a relational Hoare logic for probabilistic
programs, and a set of certified transformations. Although CertiCrypt has been used to
verify several emblematic cryptographic constructions, pRHL does not support reason-

ACM Transactions on Programming Languages and Systems, Vol. X, No. Y, Article N, Publication date: September 2012.

N:34 Barthe, Köpf, Olmedo, Zanella-Béguelin

ing about statistical distance. Using a specialization of aPRHL with α = 1, Barthe et
al. [Barthe et al. 2012] prove indifferentiability from a random oracle of a hash func-
tion into elliptic curves. Moreover, Almeida et al. [Almeida et al. 2012] use the same
logic to reason about statistical zero-knowledge.

EasyCrypt [Barthe et al. 2011a] is an automated tool that verifies automatically
pRHL judgments using SMT solvers and a verification condition generator. In a
follow-up work, we have extended EasyCrypt with support for reasoning about apRHL
judgments and probabilistic operators, and with a simple mechanism to infer rela-
tional loop invariants. Moreover, we use this extension to build automated proofs
of differential privacy for some of the examples reported in this paper, and in-
teractive game-based proofs [Barthe et al. 2009] of computational differential pri-
vacy [Mironov et al. 2009] for 2-party computations.

Verification of probabilistic programs. Reif [Reif 1980], Kozen [Kozen 1985], and
Feldman and Harel [Feldman and Harel 1984], were among the first to develop
axiomatic logics for probabilistic computations. This line of work was further
developed by Jones [Jones 1993], Morgan et al. [Morgan et al. 1996], den Har-
tog [den Hartog 1999], and more recently by Chadha et al. [Chadha et al. 2007]. Al-
though their expressiveness varies, these logics are sufficiently expressive to reason
about the probability of events in distributions generated by probabilistic programs.
For instance, these logics have been used for proving termination of random walks, and
correctness of probabilistic primality tests. As generalizations of Hoare logics, these
logics are tailored towards trace properties rather than 2-safety properties like differ-
ential privacy. It should be possible to develop relational variants of these logics or to
use self-composition for reasoning about differential privacy.

Hurd [Hurd 2003; Hurd et al. 2005] was among the first to develop a machine-
checked framework to reason about probabilistic programs. His formalization is
based on the standard notion of σ-algebras, and partly follows earlier formalizations
in Mizar. Building on Hurd’s work, Coble [Coble 2010], and Mhamdi, Hasan and
Tahar [Mhamdi et al. 2010; Mhamdi et al. 2011] formalized integration theory in the
HOL proof assistant. Coble [Coble 2008] also used the formalization to reason about
privacy of solutions to the Dining Cryptographers problem. In contrast, our work
is based on the ALEA library [Audebaud and Paulin-Mohring 2009], which follows a
monadic approach to discrete probabilities. The library has been used to formally ver-
ify several examples of probabilistic termination. More recently, it has been used to
reason about the security of watermarking algorithms [Baelde et al. 2012] and (in our
own work) about cryptographic constructions [Barthe et al. 2009].

9. CONCLUSIONS

CertiPriv is a machine-checked framework that supports fine-grained reasoning about
an expressive class of privacy policies in the Coq proof assistant. In contrast to pre-
vious language-based approaches to differential privacy, CertiPriv allows to reason di-
rectly about probabilistic computations and to build proofs from first principles. As a
result, CertiPriv achieves flexibility, expressiveness, and reliability, and appears as a
plausible starting point for formally analyzing new developments in the field of differ-
ential privacy.

In a follow-up work we study how to increase automation in differential privacy
proofs using SMT solvers to mechanize reasoning in apRHL. It would be interesting to
combine reasoning in apRHL with other automated analyses, such as the linear type
system of [Reed and Pierce 2010], to achieve a higher degree of automation.

ACM Transactions on Programming Languages and Systems, Vol. X, No. Y, Article N, Publication date: September 2012.

Probabilistic Relational Reasoning for Differential Privacy N:35

APPENDIX

We present proof sketches of most results in the body of the article. All results pre-
sented here and in the body of the paper have been formally verified using the Coq
proof assistant, with the only exceptions of Lemma 4.8 and Theorem 7.1 which are not
central to our development. We present first some auxiliary lemmas.

A. AUXILIARY LEMMAS

In the remainder, for a distribution µ ∈ D(A) and a set E ⊆ A, we note the probability
µ 1E as µ(E). Moreover, for sets A and B and a relation R ⊆ A × B, we use π1(R) to
denote the set {a ∈ A | ∃b. a R b} and R(a) to denote the set {b ∈ B | a R b}.

LEMMA A.1. Let µ ∈ D(A) satisfy predicate range P µ. Then, for any M : A→ D(B),
any predicate Q over B and any pair of functions f, g : A→ [0, 1],

a) (∀a. P a =⇒ f a = g a) =⇒ µ f = µ g
b) (∀a. P a =⇒ range Q (M a)) =⇒ range Q (bind µ M)

PROOF.
a) To prove that µ f = µ g it suffices to show that µ (λa. |f a− g a|) = 0. Since range P µ
holds, we can conclude by showing that the function (λa. |f a− g a|) is null at every
point satisfying P , which follows from the premise of the implication.
b) Immediate from a).

LEMMA A.2. For any distribution µ over a discrete set A,

range P µ ⇐⇒ (∀a. µ(a) > 0 =⇒ P a)

PROOF. For the left to right direction, consider an element a not satisfying P and
show that µ(a) = µ1a = 0. It suffices to verify that 1a is null at every element satis-
fying P , which is trivial because 1a is only not null at a. For the right to left direction,
consider a function f such that ∀a. P a =⇒ f(a) = 0 and show that µ f = 0 as follows:

µ f =
∑

a∈A

µ(a)f(a) =
∑

a∈A | 0<µ(a)

µ(a)f(a) ≤
∑

a∈A | P a

µ(a)f(a) = 0

LEMMA A.3. Let µ1 and µ2 be two distributions over a discrete set A. Moreover, let
A0

def
= {a ∈ A | µ1(a) ≥ αµ2(a)} and A1

def
= {a ∈ A | µ2(a) ≥ αµ1(a)}. Then,

∆α(µ1, µ2) = max{µ1(A0)− αµ2(A0), µ2(A1)− αµ1(A1)}
PROOF. The inequality

∆α(µ1, µ2) ≥ max{µ1(A0)− αµ2(A0), µ2(A1)− αµ1(A1)}
follows trivially from the definition of α-distance between distributions. To prove the
converse inequality, observe that for any f : A→ [0, 1] we have:

µ1 f − αµ2 f =
∑

a∈A

µ1(a)f(a)− α
∑

a∈A

µ2(a)f(a)

=
∑

a∈A0

(µ1(a)− αµ2(a))f(a) +
∑

a/∈A0

(µ1(a)− αµ2(a))f(a)

≤
∑

a∈A0

µ1(a)− αµ2(a) = µ1(A0)− αµ2(A0)

In a similar way one can prove that µ2 f − αµ1 f ≤ µ2(A1) − αµ1(A1). By combining
these two results one gets the desired inequality

∆α(µ1, µ2) ≤ max{µ1(A0)− αµ2(A0), µ2(A1)− αµ1(A1)}

ACM Transactions on Programming Languages and Systems, Vol. X, No. Y, Article N, Publication date: September 2012.

N:36 Barthe, Köpf, Olmedo, Zanella-Béguelin

LEMMA A.4. For any two distributions µ1, µ2 over a discrete set A,

µ2 ≤ µ1 =⇒ ∆α(µ1, µ2) = µ1(A0)− αµ2(A0)

where A0
def
= {a ∈ A | µ1(a) ≥ αµ2(a)}.

PROOF. Immediate from Lemma A.3, as condition µ2 ≤ µ1 implies that A1 = ∅, and
thus ∆α(µ1, µ2) = max{µ1(A0)− αµ2(A0), 0}.

LEMMA A.5. Let A and B be two discrete sets. Then, for any µ1, µ2 ∈ D(A) and
M1,M2 : A→ D(B) that satisfy

∆α(µ1, µ2) ≤ δ and ∀a. ∆α′(M1 a,M2 a) ≤ δ′

we have ∆αα′(bind µ1 M1, bind µ2 M2) ≤ δ + δ′. If, moreover, we have range R µ1 and
range R µ2 for some predicate R, then the second hypothesis can be relaxed to

∀a. R a =⇒ ∆α′(M1 a,M2 a) ≤ δ′

PROOF. As a first step, observe that

∆αα′(bind µ1 M1, bind µ2 M2) ≤ ∆αα′(θ1, θ2)

where θ1, θ2 ∈ D(A×B) are defined as

θ1
def
= bind µ1 (λa. unit (a,M1 a)) θ2

def
= bind µ2 (λa. unit (a,M2 a))

This follows from Lemma 4.3.6, since π2θ1 = bind µ1 M1 and π2θ2 = bind µ2 M2.
We now apply Lemma A.3 to bound ∆αα′(θ1, θ2). We are left to prove

θ1(X0)− αα′ θ2(X0) ≤ δ + δ′ and θ2(X1)− αα′ θ1(X1) ≤ δ + δ′

where X0
def
= {(a, b) | θ1(a, b) ≥ αα′ θ2(a, b)} and X1

def
= {(a, b) | θ2(a, b) ≥ αα′ θ1(a, b)}.

We proceed to prove the first inequality. In what follows we use ν1(a) (resp. ν2(a)) to
denote the expression M1(a)(X0(a)) (resp. M2(a)(X0(a))).

θ1(X0)− αα′ θ2(X0) =
∑

(a,b)∈X0

µ1(a) M1(a)(b)− αα′ µ2(a) M2(a)(b)

(1)
=

∑

a∈π1(X0)

∑

b∈X0(a)

µ1(a) M1(a)(b)− αα′µ2(a) M2(a)(b)

=
∑

a∈π1(X0)

µ1(a) ν1(a)− αα′µ2(a) ν2(a)

(2)

≤
∑

a∈π1(X0)
α′ν2(a)>1

µ1(a)− αµ2(a) +
∑

a∈π1(X0)
α′ν2(a)≤1

µ1(a)
(

α′ν2(a) + δ′
)

− αα′µ2(a) ν2(a)

=
∑

a∈π1(X0)
α′ν2(a)>1

µ1(a)− αµ2(a) +
∑

a∈π1(X0)
α′ν2(a)≤1

µ1(a)δ
′ +

∑

a∈π1(X0)
α′ν2(a)≤1

α′ν2(a)
(

µ1(a)− αµ2(a)
)

≤
∑

a∈π1(X0)
α′ν2(a)>1

µ1(a)− αµ2(a) +
∑

a∈π1(X0)
α′ν2(a)≤1

µ1(a)δ
′ +

∑

a∈π1(X0)
α′ν2(a)≤1

µ1(a)≥αµ2(a)

µ1(a)− αµ2(a)

Equality (1) holds by a simple reordering of the terms in the sum; to justify (2) we
rely on the fact that the expression µ1(a) ν1(a) − αα′µ2(a) ν2(a) can be bounded by
µ1(a) − αµ2(a) when α′ν2(a) > 1 and on hypothesis ∀a. ∆α′(M1 a,M2 a) ≤ δ′ to bound

ACM Transactions on Programming Languages and Systems, Vol. X, No. Y, Article N, Publication date: September 2012.

Probabilistic Relational Reasoning for Differential Privacy N:37

ν1(a) by α′ν2(a) + δ′. (Observe that inequality (2) remains valid in the variant of the
lemma where we have the weaker hypothesis ∀a. R a =⇒ ∆α′(M1 a,M2 a) ≤ δ′.
This is because for inequality (2) to hold it suffices to bound ν1(a) by α′ν2(a) + δ′ only
when µ1(a) > 0.) By letting Y1

def
= {a ∈ π1(X0) | α′ν2(a) ≤ 1 =⇒ µ1(a) ≥ αµ2(a)} and

Y2
def
= {a ∈ π1(X0) | α′ν2(a) ≤ 1} we have

θ1(X0)− αα′ θ2(X0) ≤ µ1(Y1)− αµ2(Y1) + µ1(Y2)δ
′ ≤ δ + δ′

We follow a similar reasoning to prove θ2(X1)− αα′ θ1(X1) ≤ δ + δ′ and conclude.

PROPOSITION A.6. Let A and B be two (non-empty) discrete sets. Then, for any pair
of distributions µ1 ∈ D(A) and µ ∈ D(A× B), there exists a distribution µ′ ∈ D(A× B)
that satisfies:

π1µ
′ = µ1 and ∆α(µ, µ

′) ≤ ∆α(π1µ, µ1)

If, moreover, R ⊆ A×B is a full relation and range R µ holds, then range R µ′ also holds.

PROOF. Let g be some map from A to B (the existence of such a map is guaranteed
as B is non-empty). Define µ′ as follows:

µ′(a, b) def
=











µ1(a) µ(a, b)

(π1µ)(a)
if 0 < (π1µ)(a)

µ1(a) 1{g(a)}(b) otherwise

The proof of equality π1µ
′ = µ1 is immediate by doing a case analysis on whether π1µ

is null at a or not. In view of Lemma A.3, in order to prove that ∆α(µ, µ
′) ≤ ∆α(π1µ,

µ1) it suffices to show inequalities

µ′(X0)− α µ(X0) ≤ ∆α(π1µ, µ1) and µ(X1)− α µ′(X1) ≤ ∆α(π1µ, µ1)

where X0
def
= {(a, b) | µ′(a, b) ≥ α µ(a, b)} and X1

def
= {(a, b) | µ(a, b) ≥ α µ′(a, b)}. To

prove the first inequality we consider the pair of sets X0
0

def
= {(a, b) ∈ X0 | 0 < (π1µ)(a)}

and X1
0

def
= {(a, b) ∈ X0 | (π1µ)(a) = 0} and observe that

µ′(X0
0)− αµ(X0

0) =
∑

(a,b)∈X0
0

(

µ1(a)− α(π1µ)(a)
) µ(a, b)

(π1µ)(a)

=
∑

a∈π1(X0
0
)

(

µ1(a)− α(π1µ)(a)
)

∑

b∈X0
0
(a)

µ(a, b)

(π1µ)(a)

≤
∑

a∈π1(X
0

0)
µ1(a)≥απ1µ(a)

µ1(a)− α(π1µ)(a)

µ′(X1
0)− αµ(X1

0) =
∑

(a,b)∈X1
0

µ1(a) 1{g(a)}(b)− αµ(a, b)

=
∑

a∈π1(X1
0
)

µ1(a)
∑

b∈X1
0
(a)

1{g(a)}(b)−
∑

a∈π1(X1
0
)

α
∑

b∈X1
0
(a)

µ(a, b)

(1)

≤
∑

a∈π1(X1
0
)

µ1(a)− α(π1µ)(a) ≤
∑

a∈π1(X
1

0
)

µ1(a)≥α(π1µ)(a)

µ1(a)− α(π1µ)(a)

ACM Transactions on Programming Languages and Systems, Vol. X, No. Y, Article N, Publication date: September 2012.

N:38 Barthe, Köpf, Olmedo, Zanella-Béguelin

Inequality (1) holds since for every a in π1(X
1
0), we have

∑

b∈X1(a)
1{g(a)}(b) ≤ 1 and

∑

b∈X1
0
(a) µ(a, b) = (π1µ)(a) = 0. Combining the two inequalities above we get:

µ′(X0)− α µ(X0) = µ′(X0
0)− αµ(X0

0) + µ′(X1
0)− αµ(X1

0)

≤
∑

a∈π1(X0)
µ1(a)≥απ1µ(a)

µ1(a)− α(π1µ)(a) ≤ ∆α(π1µ, µ1)

To prove inequality µ(X1)−α µ(X1)
′ ≤ ∆α(π1µ, µ1), we split the set X1 into X0

1 and X1
1

as done with X0 and show that µ(X0
1)−αµ′(X0

1) ≤ ∆α(π1µ, µ1) and µ(X1
1)−αµ′(X1

1) = 0.
Assume that R is full and that we have rangeR µ. When defining µ′ let us choose map

g such that a R g(a) for every a ∈ A. We derive range R µ′ from Lemma A.2. Assume
µ′(a, b) > 0. Then, from the definition of µ′ we have either µ1(a)µ(a, b) > 0 or b = g(a).
In the first case, we have a R b from hypothesis range R µ; in the second case, a R b
follows from the definition of g. Then, range R µ′ follows.

LEMMA A.7. For any relation R ⊆ A×B, a R b =⇒ (unit a) ∼1,0
R (unit b)

PROOF. The proof is immediate by considering (unit a)× (unit b) as witness distribu-

tion for the lifting (unit a) ∼1,0
R (unit b).

B. PROOFS

PROOF OF LEMMA 4.2. The inequality maxE⊆A ∆α(µ1(E), µ2(E)) ≤ ∆α(µ1, µ2) fol-
lows from the definition of α-distance between distributions while its converse is a
direct consequence of Lemma A.3.

PROOF OF THEOREM 4.10. Let µ be a witness for the lifting µ1 ∼α,δ
R µ2. Then,

µ1 f1 − αµ2 f2
(1)

≤ µ1 f1 − α(π2 µ) f2
(2)
= µ1 f1 − α(π1 µ) f1

(3)

≤ δ

From the definition of µ we have π2 µ ≤ µ2 and ∆α(µ1, π1 µ) ≤ δ, which imply (1)
and (3), respectively. We also have range R µ , which combined with Lemma A.1.a and
hypothesis f1 =R f2 entails formula (π2 µ) f2 = (π1 µ) f1 and shows equality (2).

In what follows we will rely extensively on the fact that for any distribution µ over
the product of two discrete sets A and B, we can compute the probability mass function
of its projection (π1µ)(a) (resp. (π2µ)(b)) as

∑

b∈B µ(a, b) (resp.
∑

a∈A µ(a, b)).

PROOF OF THEOREM 4.12. Recall that the probability mass function of the pro-
posed witness is

µ(a, c) =
∑

b∈B, 0<µ2(b)

µR(a, b) µS(b, c)

µ2(b)

where µR and µS are witnesses for the liftings µ1 ∼α,δ
R µ2 and µ2 ∼α,δ′

S µ3, respectively.

FACT 1. π1µ ≤ π1µR.

PROOF. Immediate from the reasoning below:

(π1µ)(a)
(1)
=
∑

c∈C

∑

b∈B | 0<µ2(b)

µR(a, b)µS(b, c)

µ2(b)

(2)
=

∑

b∈B | 0<µ2(b)

µR(a, b)

∑

c∈C µS(b, c)

µ2(b)

(3)

≤
∑

b∈B | 0<µ2(b)

µR(a, b) ≤ (π1 µR)(a)

ACM Transactions on Programming Languages and Systems, Vol. X, No. Y, Article N, Publication date: September 2012.

Probabilistic Relational Reasoning for Differential Privacy N:39

Equalities (1) and (2) are an unfolding of µ and a reordering of the series respectively,
while inequality (3) is a consequence of hypothesis π1µS ≤ µ2.

FACT 2. ∆β(π1µ, π1µR) ≤ ∆β(π1µS , µ2) for all β > 1.

PROOF. In view of Fact 1, we can use Lemma A.4 to compute ∆β(π1µ, π1µR). Let
A0 = {a ∈ A | (π1µ)(a) ≥ β(π1µR)(a)}; the proof proceed as follows:

∆β(π1µ, π1µR) = (π1µR)(A0)− β(π1µ)(A0)

=
∑

b∈B

µR(A0, b)− β
∑

c∈C

∑

b∈B | 0<µ2(b)

µR(A0, b) µS(b, c)

µ2(b)

(1)
=
∑

b∈B

µR(A0, b)− β
∑

b∈B | 0<µ2(b)

µR(A0, b) (π1µS)(b)

µ2(b)

(2)
=

∑

b∈B | 0<µ2(b)

µR(A0, b)− β
∑

b∈B | 0<µ2(b)

µR(A0, b) (π1µS)(b)

µ2(b)

≤
∑

b∈B | β(π1µS)(b)<µ2(b)

µR(A0, b)

µ2(b)

(

µ2(b)− β(π1µS)(b)
)

(3)

≤
∑

b∈B | β(π1µS)(b)<µ2(b)

µ2(b)− β(π1µS)(b)
(4)
= ∆β(π1µS , µ2)

In (1) we perform a series reordering; step (2) is valid as for each b ∈ B, on account of
inequality 0 ≤ µR(A0, b) ≤ (π2µR)(b) ≤ µ2(b), we have µ2(b) = 0 =⇒ µR(A0, b) = 0; the
same argument allows bounding the factors µR(A0, b)/µ2(b) by 1 in (3); finally equality
(4) is justified by Lemma A.4 as, by hypothesis, π1µS ≤ µ2.

We now turn to the proof of the main claim. We have to check the three conditions
that µ should satisfy to be a witness for the lifting

µ1 ∼α α′,max(δ+α δ′,δ′+α′ δ)
R◦S µ3

For the sake of brevity we only show how to conclude that π1µ ≤ µ1 and ∆αα′(π1µ,
µ1) ≤ max(δ + α δ′, δ′ + α′ δ); the proofs of the inequalities π2µ ≤ µ3 and ∆αα′(π2µ,
µ3) ≤ max(δ + α δ′, δ′ + α′ δ) are analogous. We use Lemma A.2 to derive condition
range (R ◦ S) µ. Let (a, c) be such that µ(a, c) > 0. From the definition of µ it follows
that there exists b such that µR(a, b) > 0 and µS(b, c) > 0. Thus, from the same lemma
applied twice (but in the converse direction as before), we derive a (R ◦ S) c and hence,
range (R ◦ S) µ. To prove that π1µ is dominated by µ1 we apply transitivity with π1 µR.
The inequality π1 µ ≤ π1 µR holds on account of Fact 1, while inequality π1 µR ≤ µ1

follows from µR being a witness for the lifting µ1 ∼α,δ
R µ2. Finally, the bound on distance

∆αα′(π1 µ, µ1) is proved by transitivity with π1µR as follows:

∆αα′(π1µ, µ1)
(1)

≤ max

(

α∆α′(π1µ, π1µR) + ∆α(π1µR, µ1),
α′∆α(π1µR, µ1) + ∆α′(π1µ, π1µR)

)

(2)

≤ max

(

α∆α′(π1µS , µ2) + ∆α(π1µR, µ1),
α′∆α(π1µR, µ1) + ∆α′(π1µS , µ2)

)

(3)

≤ max (αδ′ + δ, α′δ + δ′)

Here (1) constitutes an instance of Lemma 4.3.4, (2) follows from Fact 2, and (3) follows

from µR and µS being witnesses for liftings µ1 ∼α,δ
R µ2 and µ2 ∼α′,δ′

S µ3 respectively.

ACM Transactions on Programming Languages and Systems, Vol. X, No. Y, Article N, Publication date: September 2012.

N:40 Barthe, Köpf, Olmedo, Zanella-Béguelin

PROOF OF LEMMMA 4.13. We first sketch a proof when M1 a 1A′ = M2 b 1B′ =1 for

all a, b. Let µ ∈ D(A × B) be a witness for µ1 ∼α,δ
R µ2 and let M : A × B → D(A′ × B′)

map R-related values a, b to a witness distribution of the lifting (M1 a) ∼α′,δ′

R′ (M2 b)
and non R-related values a, b to the product distribution (M1 a)× (M2 b). Hence,

i) range R µ,
ii) π1 µ ≤ µ1 ∧ π2 µ ≤ µ2,

iii) ∆α(π1 µ, µ1) ≤ δ ∧ ∆α(π2 µ, µ2) ≤ δ,
iv) a R b =⇒ range R′ M(a, b),
v) π1 (M(a, b)) ≤M1 a ∧ π2 (M(a, b)) ≤M2 b, and

vi) ∆α′(π1 (M(a, b)),M1 a) ≤ δ′ ∧ ∆α′(π2 (M(a, b)),M2 b) ≤ δ′.

Hypothesis M1 a 1A′ = M2 b 1B′ = 1 is fundamental to show the validity of vi) when a
and b are not related by R. For such values, it guarantees that π1 (M(a, b)) = M1 a and
π2 (M(a, b)) = M2 b, and therefore

∆α′(π1 (M(a, b)),M1 a) = ∆α′(π2 (M(a, b)),M2 b) = 0 ≤ δ′

We claim that bind µ M is witness of the lifting (bind µ1 M1) ∼αα′,δ+δ′

R′ (bind µ2 M2).
The condition range R′ (bind µ M) follows from Lemma A.1.b and properties i) and iv),
whereas condition π1(bind µ M) ≤ bind µ1 M1 can be shown by applying transitivity
with bind (π1 µ) M1; inequality π1(bind µ M) ≤ bind (π1 µ) M1 follows from property v),
whereas inequality bind (π1 µ) M1 ≤ bind µ1 M1 follows from the monotonicity of the
bind operator and property ii). Condition π2(bind µ M) ≤ bind µ2 M2 is proved analo-
gously, by applying transitivity with distribution bind (π2 µ) M2.

Finally, we prove condition ∆αα′(π1 (bind µ M), bind µ1 M1) ≤ δ + δ′ using Propo-
sition A.6. A direct application of this proposition and properties iii) and vi) above,
implies there exists a distribution µ′ ∈ D(A ×B) and M ′ : A×B → D(A′ ×B′) s.t.

vii) π1 µ′ = µ1,
viii) ∆α(µ, µ

′) ≤ δ,
ix) π1 (M ′(a, b)) = M1 a, and
x) ∆α′(M(a, b),M ′(a, b)) ≤ δ′

Hence,

∆αα′(π1 (bind µ M), bind µ1 M1)
(1)
= ∆αα′(π1 (bind µ M), π1 (bind µ′ M ′))

(2)

≤ ∆αα′(bind µ M, bind µ′ M ′)
(3)

≤ δ + δ′

Equality (1) holds because combining vii) and ix) one gets bind µ1 M1 = π1 (bind µ′ M ′);
inequality (2) is a direct application of Lemma 4.3.6 while inequality (3) can be
justified by Lemma A.5 and hypotheses viii) and x). The remaining inequality
∆αα′(π2 (bind µ M), bind µ2 M2) ≤ δ + δ′ is shown analogously.

The proof proceeds similarly when R is full. The major difference between is that
now the validity of propositions vi) and x) can be guaranteed only when a R b holds.
This only affects the argument that we use to justify inequality

∆αα′(bind µ M, bind µ′ M ′) ≤ δ + δ′

To justify it, we use the variant of Lemma A.5 that requires that the inequality
∆α′(M(a, b),M ′(a, b)) ≤ δ′ holds only when a R b. This variant has as additional hy-
potheses range R µ and range R µ′. The first follows from i), while the second follows
from Proposition A.6.

ACM Transactions on Programming Languages and Systems, Vol. X, No. Y, Article N, Publication date: September 2012.

Probabilistic Relational Reasoning for Differential Privacy N:41

PROOF OF LEMMA 4.8. For the “only if” direction we use Lemma A.3 to bound
∆α(µ1/R, µ2/R). We thus introduce sets A0

def
= {S ∈ A/R | (µ1/R)(S) ≥ α(µ2/R)(S)}

and A1
def
= {S ∈ A/R | (µ2/R)(S) ≥ α(µ1/R)(S)}. We have now to show that δ is an

upper bound of both (µ1/R)(A0)−α(µ2/R)(A0) and (µ2/R)(A1)−α(µ1/R)(A1). Let µ be

a witness for the lifting µ1 ∼α,δ
R µ2. Then,

(µ1/R)(A0)− α(µ2/R)(A0) =
∑

S∈A0

µ1(S)− αµ2(S)

=
∑

S∈A0

µ1(S)− α(π1 µ)(S) + α(π1 µ)(S)− αµ2(S)

(1)
=
∑

S∈A0

µ1(S)− α(π1 µ)(S) + α(π2 µ)(S)− αµ2(S)

(2)

≤
∑

S∈A0

µ1(S)− α(π1 µ)(S) = µ1(A0)− α(π1 µ)(A0) ≤ δ

The validity of (1) amounts to showing that (π1µ)(S) = (π2µ)(S) for all S ∈ A0. This
equality can be restated as µ f1 = µ f2, where f1(a1, a2) = 1a1∈S and f2(a1, a2) = 1a2∈S .
By Lemma A.1.a this reduces in turn to verifying that f1 and f2 are R-equivalent,
which is immediate. Finally, inequality (2) is a direct consequence of condition π2 µ ≤
µ2. To show that (µ2/R)(A1)− α(µ1/R)(A1) ≤ δ we follow a similar reasoning.

For the “if” direction, we propose

µ(a1, a2)
def
=







µ1(a1)µ2(a2)

µ̃([a1])
if a1Ra2 ∧ 0 < µ̃([a1])

0 otherwise

as a witness for the lifting µ1 ∼α,δ
R µ2, where µ̃([a]) = max{µ1([a]), µ2([a])}.

We next verify the three conditions that µ must satisfy. Lemma A.2 readily entails
range R µ. Computing the first and second projections of µ gives:

(π1µ)(a) =







µ1(a)
µ2([a])

µ̃([a])
if 0 < µ̃([a])

0 otherwise
(π2µ)(a) =







µ2(a)
µ1([a])

µ̃([a])
if 0 < µ̃([a])

0 otherwise

from which one can observe that π1µ ≤ µ1 and π2µ ≤ µ2. We can then use Lemma A.3
to bound ∆α(π1µ, µ1). It yields equality ∆α(π1 µ, µ1) = µ1(A1) − α(π1 µ)(A1), where
A1

def
= {a ∈ A | µ1(a) ≥ α(π1 µ)(a)}. We now have

∆α(π1µ, µ1) =
∑

a∈A1

µ1(a)− α(π1µ)(a)
(1)
=

∑

a∈A1

0<µ̃([a])

µ1(a)− αµ1(a)
µ2([a])

µ̃([a])

(2)
=

∑

a∈A1

0<µ1([a])
αµ2([a])≤µ1([a])

µ1(a)

µ1([a])

(

µ1([a])− αµ2([a])
)

+
∑

a∈A1

0<µ̃([a])
µ1([a])<αµ2([a])

µ1(a)− αµ1(a)
µ2([a])

µ̃([a])

(3)

≤
∑

a∈A1

0<µ1([a])
αµ2([a])≤µ1([a])

µ1(a)

µ1([a])

(

µ1([a])− αµ2([a])
)

ACM Transactions on Programming Languages and Systems, Vol. X, No. Y, Article N, Publication date: September 2012.

N:42 Barthe, Köpf, Olmedo, Zanella-Béguelin

(4)
=

∑

[·]∈A/R

∑

a∈[·]∩A1

µ1([·])≥αµ2([·])

µ1(a)

µ1([·])
(

µ1([·])− αµ2([·])
)

=
∑

[·]∈A/R
µ1([·])≥αµ2([·])

(

µ1([·])− αµ2([·])
)

∑

a∈[·]∩A1

0<µ1([·])

µ1(a)

µ1([·])

(5)

≤
∑

[·]∈A/R
µ1([·])≥αµ2([·])

µ1([·]) − αµ2([·]) = (µ1/R)(X)− α(µ2/R)(X)

where X = {[·] ∈ A/R | µ1([·]) ≥ αµ2([·])}
≤ ∆α(µ1/R, µ2/R) ≤ δ

In (1) we unfold the above computed π1µ and use the fact that µ1(a) = 0 when
µ̃([a]) = 0. In (2) we reorder terms and substitute µ1([a]) for µ̃([a]) when µ1([a]) ≥
αµ2([a]). Inequality (3) is valid because for each a such that µ1([a]) < αµ2([a]),

µ1(a) ≤ αµ1(a)
µ2([a])
µ̃([a]) . To see this observe that in case µ2([a]) ≤ µ1([a]), the term equals

µ1(a)
µ1([a])

(

µ1([a]) − αµ2([a])
)

, whereas if µ2([a]) > µ1([a]), it simplifies to (1 − α)µ1(a). In

(4) we reorder the series in order to group all terms µ1(a)
µ1([a])

(

µ1([a])− αµ2([a])
)

with a in

the same equivalence class. Finally, inequality (5) holds because for every [·] ∈ A/R,

we have
∑

a∈[·]∩A1

0<µ1([·])

µ1(a)
µ1([·]) ≤ 1. The inequality ∆α(π2 µ, µ2) ≤ δ is proved analogously.

PROOF OF LEMMA 6.1. Let T be a subset of B. The reasoning below shows that
f] a1 T − αα′f] a2 T ≤ f] a1 S1.

f] a1 T =

∑

b∈T∩S1
f a1 b

∑

b∈B f a1 b
+

∑

b∈T∩S1
f a1 b

∑

b∈B f a1 b
≤ α′

∑

b∈T∩S1
f a2 b

∑

b∈B f a1 b
+

∑

b∈T∩S1
f a1 b

∑

b∈B f a1 b

≤ αα′
∑

b∈T∩S1
f a2 b

∑

b∈B f a2 b
+

∑

b∈T∩S1
f a1 b

∑

b∈B f a1 b
≤ αα′f] a2 T + f] a1 S1

Similarly, we can show that f] a2 T − αα′f] a1 T ≤ f] a2 S2. The final result follows
from Lemma A.3.

PROOF OF COROLLARY 6.2. From Lemma 6.1 with α′ = α. Observe that hypothesis

∀b ∈ B, f(a1, b) ≤ α f(a2, b) ∧ f(a2, b) ≤ α f(a1, b)

implies S1 = S2 = ∅. Hence, f] a1 1S1
= f] a2 1S2

= 0, and thus ∆α2(f] a1, f
] a2) = 0.

PROOF OF SOUNDNESS OF RULE [EXP]. Applying rule [rand], we are left to prove
that for any pair of memories m1,m2 s.t. m1 Ψ m2,

∆exp(kSsε)2(Eεs,µ(JaK m1), Eεs,µ(JaK m2)) ≤ 0 (5)

Let f a b = exp(ε s(a, b) µ(b)), γ = exp(kSsε), a1 = JaK m1, and a2 = JaK m2.
From the first premise of rule [exp] we have d(a1, a2) ≤ k, and hence for all b ∈ B,

s(a1, b)− s(a2, b) ≤ kSs. Moreover,

µ(b)kSsε ≤ kSsε =⇒ exp(µ(b)kSsε) ≤ γ

=⇒ exp(µ(b)(s(a1, b)− s(a2, b))ε) ≤ γ

=⇒ f(a1, b) ≤ γf(a2, b)

ACM Transactions on Programming Languages and Systems, Vol. X, No. Y, Article N, Publication date: September 2012.

Probabilistic Relational Reasoning for Differential Privacy N:43

Hence, for all b ∈ B, f(a1, b) ≤ γf(a2, b), and analogously f(a2, b) ≤ γf(a1, b). Observe
that (5) is equivalent to ∆γ2(f] a1, f

] a2) ≤ 0, which follows from Lemma 6.2.

PROOF OF SOUNDNESS OF RULE [NORM]. Applying rule [rand], we are left to prove
that for every pair of memories m1,m2 s.t. m1 Ψ m2,

∆exp(ε)(N (JrK m1, σ),N (JrK m2, σ)) ≤ B
(

σ,
1

2
(σε − k2)/k

)

≤ δ (6)

We prove (6) by applying Lemma 6.1 with A = B = Z, f a b = exp
(

−|b− a|2/σ
)

,
a1 = JrK m1, a2 = JrK m2, α = 1 and α′ = exp(ε). We conclude by showing inequality

max{f] a1 1S1
, f] a2 1S2

} ≤ B
(

σ,
1

2
(σε − k2)/k

)

(7)

(Here S1 and S2 are defined as in the statement of Lemma 6.1.) The reader can verify
that (7) is entailed by |a1 − a2| ≤ k, which follows from the first premise of the rule.

PROOF OF THEOREM 7.1. Direction (2) =⇒ (1) for α = 1 follows from
[Desharnais et al. 2008, Theorem 7]. We sketch a proof of the converse. Let f be a
feasible flow in N (µ1, µ2, R, α) with f⊥ ≥ µ1(A) − δ and f> ≥ µ2(B) − δ. Observe first
that from the flow conservation constraints at vertices a ∈ A and b ∈ B, we have

f(⊥, a) = α
∑

b∈R(a)

f(a, b) f(b,>) = α
∑

a∈R−1(b)

f(a, b) (8)

We propose as a witness for the lifting µ1 ∼α,δ
R µ2, the distribution µ ∈ D(A × B) with

probability mass function

µ(a, b) =

{

f(a, b) if a R b

0 otherwise

Clearly µ(a, b) ≥ 0 for all (a, b) ∈ A × B and a simple computation using (8) yields
µ(A,B) ≤ α−1 ≤ 1; thus µ is a proper sub-probability distribution over A×B. We now
proceed to verify that µ is a witness for the lifting. Property range R µ is immediate by
the definition of µ. Inequality π1µ ≤ µ1 follows from (8):

(π1µ)(a) ≤ α(π1µ)(a) = α
∑

b∈R(a)

µ(a, b) = α
∑

b∈R(a)

f(a, b) = f(⊥, a) ≤ c(⊥, a) = µ1(a)

The same reasoning applies for the inequality π2µ ≤ µ2. We are left to prove that
∆α(π1 µ, µ1) ≤ δ and ∆α(π2 µ, µ2) ≤ δ. We focus on the former inequality, the latter
can be shown with a similar argument. Lemma A.3 together with condition π1µ ≤ µ1

implies ∆α(π1µ, µ1) = µ1(A0) − α(π1µ)(A0) where A0
def
= {a ∈ A | µ1(a) ≥ α(π1µ)(a)}.

Thus,

µ1(A) − δ ≤ f⊥ =
∑

a∈A

f(⊥, a) =
∑

a/∈A0

f(⊥, a) +
∑

a∈A0

f(⊥, a)

(1)

≤
∑

a/∈A0

µ1(a) +
∑

a∈A0

f(⊥, a)
(2)

≤
∑

a/∈A0

µ1(a) + α
∑

a∈A0

∑

b∈R(a)

f(a, b)

=
∑

a/∈A0

µ1(a) + α
∑

a∈A0

∑

b∈R(a)

d(a, b) = µ1(A)− µ1(A0) + α(π1µ)(A0)

Inequality (1) holds since f(⊥, a) ≤ c(⊥, a) = µ1(a), whereas (2) is immediate from (8).
Hence we have µ1(A0)− α(π1µ)(A0) ≤ δ, which concludes the proof.

ACM Transactions on Programming Languages and Systems, Vol. X, No. Y, Article N, Publication date: September 2012.

N:44 Barthe, Köpf, Olmedo, Zanella-Béguelin

REFERENCES

ALMEIDA, J. B., BARBOSA, M., BANGERTER, E., BARTHE, G., KRENN, S., AND ZANELLA-BÉGUELIN, S.
2012. Full proof cryptography: verifiable compilation of efficient zero-knowledge protocols. In ACM Con-
ference on Computer and Communications Security, T. Yu, G. Danezis, and V. D. Gligor, Eds. ACM,
488–500.

AMTOFT, T., BANDHAKAVI, S., AND BANERJEE, A. 2006. A logic for information flow in object-oriented pro-
grams. In 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2006. ACM, New York, 91–102.

AMTOFT, T. AND BANERJEE, A. 2004. Information flow analysis in logical form. In SAS, R. Giacobazzi, Ed.
Lecture Notes in Computer Science Series, vol. 3148. Springer, 100–115.

AUDEBAUD, P. AND PAULIN-MOHRING, C. 2009. Proofs of randomized algorithms in Coq. Sci. Comput.
Program. 74, 8, 568–589.

BACKES, M., KÖPF, B., AND RYBALCHENKO, A. 2009. Automatic discovery and quantification of information
leaks. In 30th IEEE Symposium on Security and Privacy, S&P 2009. IEEE Computer Society, 141–153.

BAELDE, D., COURTIEU, P., GROSS-AMBLARD, D., AND PAULIN-MOHRING, C. 2012. Towards provably
robust watermarking. In ITP, L. Beringer and A. P. Felty, Eds. Lecture Notes in Computer Science
Series, vol. 7406. Springer, 201–216.

BARTHE, G., D’ARGENIO, P., AND REZK, T. 2004. Secure information flow by self-composition. In 17th
IEEE Workshop on Computer Security Foundations, CSFW 2004. IEEE Computer Society, Washington,
100–114.

BARTHE, G., GRÉGOIRE, B., HERAUD, S., AND ZANELLA-BÉGUELIN, S. 2011a. Computer-aided security
proofs for the working cryptographer. In Advances in Cryptology – CRYPTO 2011. Lecture Notes in
Computer Science Series, vol. 6841. Springer, Heidelberg, 71–90.

BARTHE, G., GRÉGOIRE, B., AND ZANELLA-BÉGUELIN, S. 2009. Formal certification of code-based crypto-
graphic proofs. In 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2009. ACM, New York, 90–101.

BARTHE, G. AND KÖPF, B. 2011. Information-theoretic bounds for differentially private mechanisms. In
24rd IEEE Computer Security Foundations Symposium, CSF 2011. IEEE Computer Society, Los Alami-
tos, 191–204.

BARTHE, G., KÖPF, B., OLMEDO, F., AND ZANELLA-BÉGUELIN, S. 2012. Probabilistic relational reasoning
for differential privacy. In 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2012. ACM, New York, 97–110.

BARTHE, G., OLMEDO, F., AND ZANELLA-BÉGUELIN, S. 2011b. Verifiable security of Boneh-Franklin
identity-based encryption. In 5th International Conference on Provable Security, ProvSec 2011. Lecture
Notes in Computer Science Series, vol. 6980. Springer, Heidelberg, 68–83.

BEIMEL, A., NISSIM, K., AND OMRI, E. 2008. Distributed private data analysis: Simultaneously solving
how and what. In Advances in Cryptology – CRYPTO 2008. Lecture Notes in Computer Science Series,
vol. 5157. Springer, Heidelberg, 451–468.

BENTON, N. 2004. Simple relational correctness proofs for static analyses and program transformations. In
31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2004. ACM,
New York, 14–25.

BURNIM, J. AND SEN, K. 2009. Asserting and checking determinism for multithreaded programs. In
ESEC/SIGSOFT FSE, H. van Vliet and V. Issarny, Eds. ACM, 3–12.

CHADHA, R., CRUZ-FILIPE, L., MATEUS, P., AND SERNADAS, A. 2007. Reasoning about probabilistic se-
quential programs. Theoretical Computer Science 379, 1-2, 142–165.

CHAN, T.-H. H., SHI, E., AND SONG, D. 2010. Private and continual release of statistics. In 37th Interna-
tional colloquium on Automata, Languages and Programming, ICALP 2010. Lecture Notes in Computer
Science Series, vol. 6199. Springer, Heidelberg, 405–417.

CHAUDHURI, S., GULWANI, S., LUBLINERMAN, R., AND NAVIDPOUR, S. 2011. Proving programs robust.
In 8th joint meeting of the European Software Engineering Conference and the ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, ESEC/FSE ’11. ACM.

CLARK, D., HUNT, S., AND MALACARIA, P. 2007. A static analysis for quantifying information flow in a
simple imperative language. Journal of Computer Security 15, 3, 321–371.

CLARKSON, M. R. AND SCHNEIDER, F. B. 2010. Hyperproperties. Journal of Computer Security 18, 6, 1157–
1210.

COBLE, A. R. 2008. Formalized information-theoretic proofs of privacy using the hol4 theorem-prover. In
Privacy Enhancing Technologies, N. Borisov and I. Goldberg, Eds. Lecture Notes in Computer Science
Series, vol. 5134. Springer, 77–98.

ACM Transactions on Programming Languages and Systems, Vol. X, No. Y, Article N, Publication date: September 2012.

Probabilistic Relational Reasoning for Differential Privacy N:45

COBLE, A. R. 2010. Anonymity, information, and machine-assisted proof. Tech. Rep. UCAM-CL-TR-785,
University of Cambridge, Computer Laboratory. July.

DEN HARTOG, J. 1999. Verifying probabilistic programs using a hoare like logic. In ASIAN, P. S. Thiagarajan
and R. H. C. Yap, Eds. Lecture Notes in Computer Science Series, vol. 1742. Springer, 113–125.

DESHARNAIS, J., LAVIOLETTE, F., AND TRACOL, M. 2008. Approximate analysis of probabilistic processes:
Logic, simulation and games. In 5th International Conference on Quantitative Evaluation of Systems,
QEST 2008. IEEE Computer Society, 264–273.

DWORK, C. 2008. Differential privacy: A survey of results. In Theory and Applications of Models of Compu-
tation. Lecture Notes in Computer Science Series, vol. 4978. Springer, Heidelberg, 1–19.

DWORK, C. 2011. A firm foundation for private data analysis. Commun. ACM 54, 1, 86–95.

DWORK, C., KENTHAPADI, K., MCSHERRY, F., MIRONOV, I., AND NAOR, M. 2006a. Our data, ourselves:
Privacy via distributed noise generation. In Advances in Cryptology – EUROCRYPT 2006. Lecture Notes
in Computer Science Series, vol. 4004. Springer, Heidelberg, 486–503.

DWORK, C., MCSHERRY, F., NISSIM, K., AND SMITH, A. 2006b. Calibrating noise to sensitivity in private
data analysis. In 3rd Theory of Cryptography Conference, TCC 2006. Lecture Notes in Computer Science
Series, vol. 3876. Springer, Heidelberg, 265–284.

DWORK, C., ROTHBLUM, G. N., AND VADHAN, S. P. 2010. Boosting and differential privacy. In Symposium
on Foundations of Computer Science – FOCS 2010. IEEE, 51–60.

FELDMAN, Y. A. AND HAREL, D. 1984. A probabilistic dynamic logic. J. Comput. Syst. Sci. 28, 2, 193–215.

GOLDFARB, D., JIN, Z., AND ORLIN, J. 1997. Polynomial-time highest-gain augmenting path algorithms for
the generalized circulation problem. Math. Oper. Res. 22, 4, 793–802.

GUPTA, A., LIGETT, K., MCSHERRY, F., ROTH, A., AND TALWAR, K. 2010. Differentially private combina-
torial optimization. In 21st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2010. SIAM,
1106–1125.

HAEBERLEN, A., PIERCE, B. C., AND NARAYAN, A. 2011. Differential privacy under fire. In 20th USENIX
Security Symposium. USENIX Association.

HURD, J. 2003. Formal verification of probabilistic algorithms. Tech. Rep. UCAM-CL-TR-566, University of
Cambridge, Computer Laboratory. May.

HURD, J., MCIVER, A., AND MORGAN, C. 2005. Probabilistic guarded commands mechanized in HOL. Theor.
Comput. Sci. 346, 1, 96–112.

JONES, C. 1993. Probabilistic non-determinism. Ph.D. thesis, University of Edinburgh.

JONSSON, B., YI, W., AND LARSEN, K. G. 2001. Probabilistic extensions of process algebras. In Handbook
of Process Algebra, J. Bergstra, A. Ponse, and S. Smolka, Eds. Elsevier, Amsterdam, 685–710.

KASIVISWANATHAN, S. P. AND SMITH, A. 2008. A note on differential privacy: Defining resistance to arbi-
trary side information. Cryptology ePrint Archive, Report 2008/144.

KIFER, D. AND MACHANAVAJJHALA, A. 2011. No free lunch in data privacy. In 2011 International Confer-
ence on Management of Data, SIGMOD ’11. ACM, 193–204.

KOZEN, D. 1985. A probabilistic pdl. J. Comput. Syst. Sci. 30, 2, 162–178.

LAWLER, E. 1976. Combinatorial optimization: networks and matroids. Holt, Rinehart and Winston.

MCSHERRY, F. AND TALWAR, K. 2007. Mechanism design via differential privacy. In 48th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2007. IEEE Computer Society, Washington,
94–103.

MCSHERRY, F. D. 2009. Privacy integrated queries: an extensible platform for privacy-preserving data anal-
ysis. In 35th SIGMOD International Conference on Management of Data, SIGMOD 2009. ACM, New
York, 19–30.

MHAMDI, T., HASAN, O., AND TAHAR, S. 2010. On the formalization of the lebesgue integration theory in
hol. In ITP, M. Kaufmann and L. C. Paulson, Eds. Lecture Notes in Computer Science Series, vol. 6172.
Springer, 387–402.

MHAMDI, T., HASAN, O., AND TAHAR, S. 2011. Formalization of entropy measures in hol. In ITP, M. C. J. D.
van Eekelen, H. Geuvers, J. Schmaltz, and F. Wiedijk, Eds. Lecture Notes in Computer Science Series,
vol. 6898. Springer, 233–248.

MIRONOV, I., PANDEY, O., REINGOLD, O., AND VADHAN, S. 2009. Computational differential privacy. In
Advances in Cryptology – CRYPTO 2009. Lecture Notes in Computer Science Series, vol. 5677. Springer,
Heidelberg, 126–142.

MORGAN, C., MCIVER, A., AND SEIDEL, K. 1996. Probabilistic predicate transformers. ACM Trans. Pro-
gram. Lang. Syst. 18, 3, 325–353.

MURTY, K. 1992. Network programming. Prentice Hall.

ACM Transactions on Programming Languages and Systems, Vol. X, No. Y, Article N, Publication date: September 2012.

N:46 Barthe, Köpf, Olmedo, Zanella-Béguelin

NIKOLOV, A., TALWAR, K., AND ZHANG, L. 2012. The geometry of differential privacy: the sparse and
approximate cases. CoRR abs/1212.0297.

PIERRO, A. D., HANKIN, C., AND WIKLICKY, H. 2004. Approximate non-interference. Journal of Computer
Security 12, 1, 37–82.

PITT, L. 1985. A simple probabilistic approximation algorithm for vertex cover. Tech. Rep. TR-404, Yale
University.

RAMSEY, N. AND PFEFFER, A. 2002. Stochastic lambda calculus and monads of probability distributions.
In 29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2002.
ACM, New York, 154–165.

REED, J. AND PIERCE, B. C. 2010. Distance makes the types grow stronger: a calculus for differential pri-
vacy. In 15th ACM SIGPLAN International Conference on Functional programming, ICFP 2010. ACM,
New York, 157–168.

REIF, J. H. 1980. Logics for probabilistic programming (extended abstract). In STOC, R. E. Miller, S. Gins-
burg, W. A. Burkhard, and R. J. Lipton, Eds. ACM, 8–13.

ROY, I., SETTY, S. T. V., KILZER, A., SHMATIKOV, V., AND WITCHEL, E. 2010. Airavat: security and privacy
for MapReduce. In 7th USENIX Conference on Networked Systems Design and Implementation, NSDI
2010. USENIX Association, Berkeley, 297–312.

SABELFELD, A. AND SANDS, D. 2000. Probabilistic noninterference for multi-threaded programs. In 13th
IEEE Workshop on Computer Security Foundations, CSFW 2000. IEEE Computer Society, Los Alamitos,
200–215.

SEGALA, R. AND TURRINI, A. 2007. Approximated computationally bounded simulation relations for prob-
abilistic automata. In 20th IEEE Computer Security Foundations Symposium, CSF 2007. IEEE Com-
puter Society, 140–156.

TARDOS, E. AND WAYNE, K. 1998. Simple generalized maximum flow algorithms. In Integer Programming
and Combinatorial Optimization. Lecture Notes in Computer Science Series, vol. 1412. Springer Berlin
/ Heidelberg, 310–324.

TERAUCHI, T. AND AIKEN, A. 2005. Secure information flow as a safety problem. In 12th International Sym-
posium on Static Analysis, SAS 2005. Lecture Notes in Computer Science Series, vol. 3672. Springer,
Heidelberg, 352–367.

THE COQ DEVELOPMENT TEAM. 2010. The Coq Proof Assistant Reference Manual Version 8.3. Online –
http://coq.inria.fr.

TSCHANTZ, M. C., KAYNAR, D., AND DATTA, A. 2011. Formal verification of differential privacy for inter-
active systems. Electronic Notes in Theoretical Computer Science 276, 61–79.

ZAKS, A. AND PNUELI, A. 2008. Covac: Compiler validation by program analysis of the cross-product. In
FM, J. Cuéllar, T. S. E. Maibaum, and K. Sere, Eds. Lecture Notes in Computer Science Series, vol.
5014. Springer, 35–51.

Received September 2012; revised March 2013; accepted

ACM Transactions on Programming Languages and Systems, Vol. X, No. Y, Article N, Publication date: September 2012.

http://coq.inria.fr

	Introduction
	Illustrative Example
	Preliminaries
	Probabilities and Reals
	Distributions

	First Principles
	Skewed Distance between Distributions
	Differential Privacy
	Approximate Lifting of Relations to Distributions

	Approximate Relational Hoare Logic
	Programming Language
	Validity and Privacy
	Logic
	An Asymmetric Variant of apRHL
	Sequential and Parallel Composition Theorems

	Case Studies
	Laplacian, Gaussian and Exponential Mechanisms
	Statistics over Streams
	k-Median
	Minimum Vertex Cover

	Lifting as an Optimization Problem
	Related Work
	Conclusions
	Auxiliary Lemmas
	Proofs

