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Abstract. Proving quantitative properties of programs, such as bounds
on resource usage or information leakage, often leads to verification con-
ditions that involve cardinalities of sets. Existing approaches for dealing
with such verification conditions operate by checking cardinality bounds
for given formulas. However, they cannot synthesize formulas that satisfy
given cardinality constraints, which limits their applicability for inferring
cardinality-based inductive arguments.

In this paper we present an algorithm for synthesizing formulas for
given cardinality constraints, which relies on the theory of counting in-
tegral points in symbolic polytopes. We cast our algorithm in terms of
a cardinality-constrained interpolation procedure, which we put to work
in a solver for recursive Horn clauses with cardinality constraints based
on abstraction refinement. We implement our technique and describe its
evaluation on a number of representative examples.

1 Introduction

Proving quantitative properties of programs often leads to verification conditions
that involve cardinalities of sets and relations over program states. For example,
determining the memory requirements for memoization reduces to bounding the
cardinality of the set of argument values passed to a function, and bounding
information leaks of a program reduces to bounding the cardinality of the set of
observations an attacker can make.

A number of recent advances for discharging verification conditions with
cardinalities consider extensions of logical theories with cardinality constraints,
such as set algebra and its generalizations [23, 29, 30], linear arithmetic [13, 37],
constraints over strings [25], as well as general SMT based settings [15]. At
their core, these approaches operate by checking whether a cardinality bound
holds for a given formula that describes a set of values. However, they cannot
synthesize formulas that satisfy given cardinality constraints. As a consequence,
the problem of automatically inferring cardinality-based inductive arguments
that imply a specified assertion remains an open challenge.

In this paper, we present an approach for synthesizing linear arithmetic for-
mulas that satisfy given cardinality constraints. Our approach relies on the the-
ory of counting integral points in polytopes, however, instead of computing the
cardinality of a given polytope (the typical use case of this theory) our approach



synthesizes a polytope for a given cardinality constraint. Our synthesizer inter-
nally organizes the search space in terms of symbolic polytopes. Such polytopes
are represented using symbolic vertices and hyperplanes, together with certain
well-formedness constraints. We derive an expression for the number of points
in the polytope in terms of this symbolic representation, which leads to a set
of constraints that at the same time represent the shape and the cardinality of
the polytope. For this, we restrict our attention to the class of unimodular poly-
topes. Unimodularity can be concisely described using constraints and provides
an effective means for reducing the search space while being sufficiently expres-
sive. We then resort to efficient SMT solvers specifically tuned to deal with the
resulting kind of non-linear constraints, e.g., Z3 [14]. We cast our approach in
terms of an algorithm #ITPy1a for cardinality constrained interpolation, that
is, #ITPr1a generates formulas that satisfy cardinality constraints along with
implication constraints.

We put cardinality-constrained interpolation to work within an automatic
verification method #HORN for inferring cardinality-based inductive program
properties, based on abstraction and its counterexample-guided refinement.
Specifically, #HORN is a solver for recursive Horn clauses with cardinality con-
straints. We rely on Horn clauses as basis because they serve as a language
for describing verification conditions for a wide range of programs, including
those with procedures and multiple threads [7, 17, 32]. Adding recursion en-
ables representing verification conditions that rely on inductive reasoning, such
as loop invariants or procedure summaries. By offering support for cardinalities
directly in the language in which we express verification conditions, our solver
can effectively leverage the interplay between the qualitative and quantitative
(cardinality) aspects of the constraints to be solved.

We implemented #ITPpia and #HORN and applied them to analyze a col-
lection of examples that show

— how a variety of cardinality-based properties (namely, bounds on informa-
tion leaks, memory usage, and execution time) and different program classes
(namely, while programs and programs with procedures) can be expressed
and analyzed in a uniform manner.

— that our approach can establish resource bounds on examples from the recent
literature at competitive performance and precision, and that it can handle
examples whose precise analysis is out of scope of existing approaches.

— that our approach can be used for synthesizing a padding-based countermea-
sure against timing side channels, for a given bound on tolerable leakage.
In summary, our paper contributes and puts to work a synthesis method for

polytopes that satisfy cardinality constraints, based on symbolic integer point
counting algorithms.

2 Example

We consider a procedure mem for Matriz chain multiplication [12] that recursively
computes the cost of multiplying matrices My, ..., M,, with optimal bracketing.



mecm calls ¢ (k) to obtain the cost of multiplying matrices M}, and M. Execut-

ing mem (i, j) computes the minimal cost of multiplying sequence M;, . ..

Even though the number of recursive
function calls is exponential in n, mcm
can be turned into an efficient algo-
rithm by applying memoization. The
amount of memory required to store
results of recursive calls is bounded
by w, as mcm is only called
with ordered pairs of arguments.

, M.

int mem(int i, int j) {

if (i == j) return O;

int minCost = infty;

for (int k=i; k <= j-1; k++) {
int v = mem(i, k)+mem(k+1, j)+c(k);
if (v < minCost) minCost = v;

}

return minCost;

Proving such a bound requires }
reasoning about recursive procedure int main(n){
calls as well as tracking dependencies mem(0, n);
between variables i and j, i.e. esti-
mating the range of each variable in
isolation and combining the estimates is not precise enough.

When using #HORN, we first set up recursive Horn constraints on an asser-
tion args(i, j,n) that contains all triples (¢, j,n) such that calling main(n) leads
to a recursive call mem(i, 5), following [17]. Then, #HORN solves these constraints
using a counterexample guided abstraction and refinement based procedure. As
an intermediate step, #HORN deals with an interpolation query that requires
finding a polytope ¢qrgs over i,7 and n such that

RE2AG=0AT=nVi=1AT=1) > Puge (D)
;s n+1)-(n+42
n > 0= [{(i,5) | Pargs}| < HLEER 2)

Constraint (1) requires that @445 contains triples obtained by symbolically ex-
ecuting mem, a typical interpolation query, while (2) ensures that s satisfies
the bound by referring to the cardinality of ¢4y through an application of
cardinality operator | - |.

Given (1) and (2), #ITPr1a computes the solution @grgs = (0 <i <1 A G <
j <n An>2). The cardinality of {(¢,J) | @args} is 2n + 1, hence @qrgs satisfies
the above bound. #HORN uses this solution to refine the abstraction function.
In particular, it starts using the predicate ¢ < j, which is crucial for tracking
that mcm is only called on ordered pairs.

3 Counting integer points in polytopes

In this section, we first revisit the theory of counting integral points in polytopes.
We then discuss the derivation of expressions for the number of integer points
in unimodular polytopes with symbolic vertices and hyperplanes.

Preliminaries Let ¢1,...,94 be d-dimensional vectors. A cone with genera-
tors gi,...,9q is the set of all positive linear combinations of its generators.
A cone is unimodular if the absolute value of the determinant of the matrix



(g1 --. ga) is equal to one. The vertex cone of a polytope P at vertex v is the
smallest cone that originates from v and that includes P. We let gy,1,- .., gud
denote its generators. Finally, a polytope P is unimodular if all its vertex cones
are unimodular.

Generating functions The integral points contained in a set S C R? in
d—dimensional space can be represented in terms of a generating function f(S, x)
which is a sum of monomials, one per integer point in S, defined as follows

f(S7 JU) = Z z™, (1)

meSnNZa

where for m = (my,...,mq) we define 2™ = " - ... z}'*. This generating
function is a Laurent series, i.e. its terms may have negative degree. Note that,
for finite S, the value of f(S,x) at « = (1,..., 1), corresponds to the number of
integer points in S.

Rational function representation Generating functions are a powerful tool for
counting integer points in polytopes. This is due to two key results: First, Brion’s
theorem [9] allows to decompose the generating function of a polytope into the
sum of the generating functions of its vertex cones. Second, the generating func-
tion of unimodular vertex cones can be represented through an equivalent yet
short rational function. This rational function representation relies on a general-
ization of the equivalence ﬁ = (1+x+a2+23+...), which provides a concise
representation of the set {0,1,2,3,...}.

Overall one obtains the following rational function representation for a uni-

modular polytope P with vertices V:

v

r(Px) = Z (1 — x9v1) m . (1 _ xgvd) (2)

veY

Here, each summand represents the generating function of the vertex cone
at v with generators g1, - .., guq. Rational function representations for arbitrary
polytopes can be obtained through Barvinok’s algorithm [3] that decomposes
arbitrary vertex cones into unimodular cones.

Generating function evaluation Since z = (1,...,1) is a singularity of r(P,x)
we cannot directly obtain the number of points in the polytope by evaluation,
as such evaluation would lead to division by zero. However, this singularity can
be eliminated by applying the Laurent series expansion of r(P,z) around =z =
(1,...,1). The expansion requires first a reduction of r(P, z) from a multivariate
polynomial over (z1,...,24) to a univariate polynomial over y, see [13]. Let G
denote the set of generators for a given polytope. The reduction from x to y is
based on a vector p = (u1,. .., tq) such that

! Appendix A provides examples and alternative equivalent defintions of unimodular-
ity. For more details, see e.g. [3, 4, 13].
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We replace z; by y#i, for each ¢ € 1..d. Equation (3) ensures that no factor
in the denominator of Equation (2) becomes 0, and hence avoids introduction
of singularities. Let sub(r(P,x),y) denote the result of the above substitution.
Then, the constant term of the Laurent expansion of sub(r(P,x),y) around y = 1
yields the desired count. Computing Laurent series expansions is a standard
procedure, see e.g. Wolfram Alpha [38].

Ezample 1. Consider the unimodular polytope P = (1 > 0 A 29 > 0 A z1 +
x9 < 2) of dimension d = 2. P is given by the vertices v; = (0 0), vo = (0 2),
and v = (2 0). P contains 6 integer points, as shown by the circles below.

The generators of the vertex cones are
given by

Gvi1 = (O 1) Gui2 = (1 O)

Gup1 = (O - 1) Guvo2 = (1 - 1)
Guos1 = (—10) Gusz = (—11).

Equation (2) yields the following rational generating function (P, z).
xixd N 2923 N rixd
(el (1—e1ad) | (—afez)(1—aie; ) | (1—a3 aB)(1—2; 123)

Applying the substitution with p = (—1 1) yields the expression sub(r(P, ), y).

1 + y2 + y72
1-y)1-y™) (A-yHl-y2) (1A-y)1l-y?)

Computing the series expansion using the Wolfram alpha command
series sub(r(P,z),y) at y = 1 produces ...5(y — 1)® + 5(y — 1)®> + 6, with
the constant coefficient 6 yielding the expected count. |

Symbolic cardinality expression The rational function representation of the gen-
erating function of a unimodular polytope shown in Equation 2 refers to the
polytope’s vertices and to the generators of its vertex cones. However, these
generators and vertices do not have to be instantiated to concrete values in or-
der for the evaluation of the generating function to be possible [37]. That is,
the evaluation of the generating function can be carried out symbolically yield-
ing a formula that expresses the cardinality of a polytope as a function of its
generators, vertices, and a vector u.

In our algorithm, we will use SYMCONECARD(v, G, i) to refer to the result
of the symbolic evaluation of the generating function for the cone of a symbolic



vertex v, with generators G. By summing up SYMCONECARD(v, G, i) for all
vertex cones we obtain a symbolic expression of the number of integer points in
a symbolic polytope.?

Ezxample 2. The cardinality of a two dimensional polytope with symbolic
vertices vi,v2,v3 and generators g,,1 and g,,2, with ¢ € 1.3, is given
by Zf’zl SYMCONECARD (V;, {guv;1, gu;2}, 1), where

SYMCONECARD(v;, {gu;1, Juv,2}, 1t)
= (13 + 3pa (p2 — 20 — 1) + 15 — Bpa (2400 + 1) + 641 + 641 + 1) (1201 2)

with g1 = @ - gu,1, 2 = - o2 and p, = f1 - v;.
||

Note that, in order for SYMCONECARD(v, G, 1) to yield a valid count, the ver-
tices and generators must satisfy a number of conditions, e.g., the symbolic cones
need to be unimodular and the employed vector p needs to satisfy Equation (3).
We next present our interpolation procedure #I1TPya that creates constraints
for ensuring these conditions.

4 Interpolation with cardinality constraints

In this section, we first define interpolation with cardinality constraints. Then
we present the interpolation procedure #ITPy1a that generates constraints on
the cardinality of an interpolant and solves them using an SMT solver.

Cardinality interpolation Let k be a variable and let w be a tuple of variables.
Let ¢ and 1 be constraints in a given first-order theory. Then, a cardinality
constraint is an expression of the form

{w et =kAy

where | - | denotes the set cardinality operator. We call the free variables of ¢
that do not occur in w parameters. A cardinality constraint is parametric if it
has at least one parameter and non-parametric otherwise. Parameters define free
variables of the expression i that constrains the cardinality.

Example 3. Consider the theory of linear integer arithmetic. The cardinality
constraint |[{z | 0 < z < 10}| = k& A k < 20 is non-parametric, whereas the
constraint [{z | 0 <z <n}| =k A k <n+1 is parametric in n. Both constraints
are valid, since |[{z |0 <2z <10} =11and [{z |0 <z <n}|=n+1. |

2 This step relies on the fact that evaluating the generating function for each vertex
cone separately and summing the results is equivalent to evaluating the sum of
generating functions.



function #ITPria(w, ™, ¢, ¥, TMPL)

1 CoNs := true

2 SYMCARD := 0

3 d := length of w

4 p = vector of d fresh variables

5 Hy = J{T™mPL(v) | v eV}

6 for each v € V do

7 H := Tw™mpPL(v)

8 G =10

9 for each H € H do
10 gor = vector of d fresh variables
11 G = {gwu} UG
12 CoNns := Cons A VERT(v, H, Hv) A GENR(v, H, G, 1) A UNIM(v, Q)
13 SYMCARD := SYMCARD + SYMCONECARD(v, G, )
14 CoNs := Cons A IMPL(¢ ™, A Hy) A IMPL(A Hy, o)
15 return SMTSOLVE(CONS A IMPL(SYMCARD = k, v (k)))

Fig. 1: #ITPya for cardinality constrained interpolantion for given TMPL.

Assume constraints ¢~ and @1 such that ¢~ implies pt. A cardinality con-
strained interpolant for ¢~ , ¢ T, and cardinality constraint [{w | ¢}| =k A ¢ isa
constraint ¢ such that 1) ¢~ implies ¢, 2) ¢ implies ¢, and 3) [{w | p} =k AV
is valid. For a parametric cardinality constraint, we say that the interpolation
problem is parametric, and call it non-parametric otherwise.

Ezample 4. Let o~ = (x=0An>0) and ¢ = true. Then o = (0 <z < n) is
an interpolant that satisfies the cardinality constraint [{z | p}| =k Ak <n+1.
For ¢~ = false, o =z > 0 and cardinality constraint |[{z | o}| =k A1 <k <
10 the constraint ¢ = (0 < x < 5) is a cardinality constrained interpolant. ]

Note that our definition of interpolation differs from the standard, cardinality-
free definition given e.g. in [27] in that we do not require the free variables in
¢ to be common to both ¢~ and ¢T. We exclude this requirement because
it appears to be overly restrictive for the cardinality setting, as the cardinality
constraint imposes a lower /upper bound in addition to ¢~ and . In particular,
the common variables condition rules out both interpolants in Example 4, as the
set of common variables is empty in both cases.

In this paper, we focus on cardinality constraints with ¢ in linear arithmetic
and ¢ in (non-)linear arithmetic, which is an important combination for appli-
cations in software verification.

Interpolation algorithm We present an algorithm #ITPya for interpolation
with cardinality constraints. For simplicity of exposition, we first consider the
non-parametric case and discuss the parametric case in Section 5.



#ITPr1a finds an interpolant ¢ in a space of polytope candidates that is
defined by a template. We rely on a function TMPL that maps a symbolic vertex
v € V to a set of symbolic hyperplanes that are determined to intersect in v,
thereby partially determining the shape of ¢. Each hyperplane H € TmpL(v) is
of the form cy - w = vy

The algorithm #ITPr1a is described in Figure 1. We collect a constraint
CoNs over the symbolic vertices and symbolic hyperplanes of ¢, which ensures
that any solution yields a unimodular polytope that satisfies conditions 1) — 3)
of the definition of cardinality interpolation. In particular, #ITPya ensures that
the cardinality of ¢ satisfies ¢ by constructing a symbolic expression SYMCARD
on the cardinality of ¢ in line 13, and requiring that this expression satisfies the
cardinality constraint ¢ in line 15. Lines 12 produces well-formedness constraints
VERT(v, H, Hy) and GENR(v, H,G) that ensure a geometrically well-formed in-
stantiation of the template TMPL. The final conjunct in line 12 poses constraints
on the generators of the vertex cones in ¢ that ensure their unimodularity, as
required by Section 3. Finally, line 14 produces constraints that ensure the va-
lidity of the implications ¢~ — ¢ and ¢ — ™. The resulting constraint CONS
is passed to an SMT solver that either returns a valuation of symbolic vertices
and hyperplanes and hence determines ¢, or fails.

Constraint generation We will now describe the constraint generation of #ITPy1a
in more detail. For each symbolic vertex v we make sure that it lies on the
hyperplanes determined by TMPL(v) and in the appropriate half-space wrt. the
remaning hyperplanes. This is achieved by the following constraint.

VERT(v, H, Hy) = /\ cg-v=7g A /\ cyg v <YH
HeH HeHy\H

By making certain inequalities strict, we ensure that the polytope does not
collapse into a single point, since in this case Brion’s theorem does not hold.

SYMCONECARD and UNIM refer to the generators of vertex cones determined
by TMPL. Hence we produce a constraint that defines these generators in terms
of symbolic hyperplanes. Let g,y denote the generator of the cone at vertex v
that lies in the half-space described by hyperplane H. Then we constrain the
generators of the cone at v as follows.

GENR(v, H, G, 1) = Nyew(cr - gor <OAp-gon #0
A Nwver\ gy €7 - i = 0)

Here we require each generator g,y to lie on the facet formed by the intersec-
tion of all hyperplanes H' € H \ {H}, and pointing in the appropriate half-
space wrt. H. Additionally the generator is constrained according to Equa-
tion 3. With the generators defined, we can ensure the unimodularity of ver-
tex cones of the polytope by UNM(v,G) = (abs(det(gum,,---,9vm,)) = 1),
where G = {gum,,---,9vm,}. We then use SYMCONECARD(v, G, 1) to denote
the counting expression of the symbolic cone of vertex v for our generators. We



construct the counting expressions for the entire symbolic polytope ¢ by taking
the sum over counting expressions for its vertex cones.

Finally, we generate constraints IMPL for the implication conditions ¢~ — ¢
and ¢ — 1 by applying Farkas’ lemma [33], which is a standard tool for such
tasks [11, 31]. This lemma states that every linear consequence of a satisfiable
set of linear inequalities can be obtained as a non-negative linear combination of
these inequalities. Formally, if Aw < b is satisfiable and Aw < b implies cw <~
then there exists A > 0 such that AA = ¢ and A\b < . When dealing with
integers, Farkas’ lemma is sound but not complete, see the following discussion on
completeness. Our implementation of IMPL handles non-conjunctive implication
constraints by a standard method based on DNF conversion and Farkas’ lemma.

Ezample 5. Consider o~ = (1 < z A vQQUQHl Hy TCHZ
x—y<1Az—y>-1Ay<zAz<10), YvH,
ot = true, w = (x,y), and ¢ = (k <

120). The solution ¢ is a polytope formed Hi
by three vertices V = {v1,vq,v3}. It is  cp,
bounded by the supporting hyperplanes

‘Hy = {Hi, Ha, H3} with normal vectors

¢, , cH, and cp,, respectively. In our ex-

ample, we use TMPL such that vy — {Hy, GuiHs
Hg}, Vo > {Hl, HQ}, and V3 — {H27H3}, V1
restricting ¢ to a triangular shape.

We obtain the following constraints.

VERT(v1, {H1, H3}, Hy) = (cr, - v1 = YH, A CHg 01 = YHs A Cop - V1 < YH,)
VERT (v, {Hy, Ho}, Hy) = (cH, - v2 = YH, N CHy V2 = YH, N CH,y V2 < YH,)
VERT(vs, { H2, H3}, Hv) = (cr, - v3 = Y, A CHy ~ V3 = YHz A CH,y V3 < VH,) -

We get the following constraints on generators.

GENR(v1, {H1, H3}, {gv, 11, Gui 1} 1) =

(cH, * Goa, SONCH, - Goa, =0 A CHy - Goy iy < OAcCH, - Goy i, = 0)
GENR(v2, {H1, Ha}, {Goy 15 GuoHo b5 1) =

(cH, * Guor, SONCH,  Guorr, =0 A CHy - Guo, < O0AcH, * Guor, = 0)
GENR(v3, {H2, H3}, {gus 11+ Gua s} 1) =

(CHy - Gosts SOACHy  Gustt, = 0 A CHy * Gusr; < O0ACH, - Gusms = 0)

and unimodularity restrictions:

abs(det(glengUlH?,)) = abs(det(gvzHlvgvsz)) = abs(det(gvstvgv3H3)) =1L



The implication constraints in matrix notation are

A b
—_——~~ —— ¢ bl
-1 0 —1 ’ N —~N

C11 C12 ol

1 -1 T 1 T
< e e < | e

-1 1 Y 1 ot Y
31 €32 3
0 1 10 7

where, for each i € {1,2,3}, we obtain the following constraints for H; by an
application of Farkas’ lemma 3AX* : X > 0 A MA = C; A XD < ;. We pass
the constraints to an SMT solver and obtain the solution p = (1 <z A y <
10 A y >z —3) with [{(x,y) | ¢}| = 91. |

Theorem 1 (Soundness). If #ITPria(w, o, 1,1, TMPL) returns a solu-
tion @, then o is a cardinality constrained interpolant for ¢~ and ©* and car-
dinality constraint |{w | ¢} =k A 9.

Proof. We show that ¢ satisfies conditions 1) to 3). Conditions 1) and 2) follow
from the use of Farkas’ lemma. Since the conditions posed by VERT(v, H,Hy)
ensure that each vertex is active (part of the polytope) and that vertices are
distinct, Brion’s theorem is applicable and hence the generating function of ¢
can be expressed as the sum of the generating functions of its vertex cones. Each
of ¢’s vertex cones is unimodular by constraints UNIM(v, G) and its generating
function is hence given by the expression in Equation 2. Summing over the evalu-
ated rational generating functions of the vertex cones is equivalent to evaluating
the sum of the rational generating functions by the fact that Laurent expansion
distribute over sums. As a consequence the expression SYMCARD corresponds
to the cardinality of ¢ and, by the constraint in Line 15 in Figure 1, satisfies the
cardinality constraint .

Completeness For a given template, our method returns a solution whenever
a solution expressed by the template exists, yet subject to the following two
sources of incompleteness. First, solving non-linear integer arithmetic constraints
is an undecidable problem and hence the call to SMTSOLVE may (soundly) fail.
Second, Farkas’ lemma is incomplete over the integers. Note that these sources of
incompleteness did not strike on benchmarks from the literature, see Section 7.

5 Interpolation with parametric cardinalities

We now briefly discuss the parametric interpolation problem by contrasting it
with the non-parametric case. Computing the number of integer points in a
polytope in terms of a parameter uses the techniques described in Section 3 (see
Appendix B for an example). Hence, we can obtain the cardinality of a symbolic
polytope in terms of a parameter in a similar fashion. The key challenge we face
when extending cardinality constrained interpolation to the parametric case is a

10



quantifier alternation. While in the non-parametric case, the constraints CONS
are quantified as 3H,, IV : CONs, introducing parameters changes the quantifier
structure to IHy Vp IV : CONS, where p is a tuple of parameters in the cardinal-
ity constraint. The alternation stems from the fact that the parameter valuation
detemines the intesection points, that is, the vertices, for parametric polytopes.
This alternation has two implication on the computation of interpolants: First,
for different values of p the number of vertices of a polytope can vary due to
changes in the relative position of the bounding hyperplanes. As a consequence,
templates with fixed number of vertices are only valid for a specific parameter
range, which is called a chamber [37]. We deal with this aspect by considering a
predicate ¢cmb that restricts the parameter range to the appropriate chamber and
that satisfies the implication constraints. We then conjoin ¢mb to the inferred
polytope. 3

Second, solving the cardinality constraint requires quantifier elimination for
non-linear arithmetic. For this task we devise a constraint-based method ensuring
positivity of a polynomial on a given range by referring to its roots. We provide
a short description of this method together with an example of applying our
interpolation method on a parametric interpolation query in Appendix C.

6 Verification of programs with cardinality constraints

In this section, we sketch our algorithm #HORN for solving sets of Horn clauses
with cardinality constraints. We choose Horn clauses as a basis for representing
our verification conditions as they provide a uniform way to encode a variety of
verification tasks [5, 6, 8, 17]. The interpolation procedure #ITPr1s presented
in Section 4 is a key ingredient for, but not restricted to #HORN.

Horn clauses with cardinality constraints A Horn clause is a formula of
the form g A g1 A -+- A qx — H where g is a linear arithmetic constraint,
and q1,...,q, are uninterpreted predicates that we refer to as queries. We call
the left-hand side of the implication body and the right-hand side head of the
clause. H can either be a constraint ¢, a query ¢, or a cardinality constraint
of the form [{w | q}| <, where 5 is a polynomial. By restricting cardinality
constraints over queries to this shape, we ensure monotonicity, which is key for
the soundness of over-approximation. For a clause wg A g1 A -+ A qx — ¢, we
say that g depends on queries qi,...,qr. We call a set of clauses recursive if
the dependancy relation contains a cycle and non-recursive otherwise. For an
example set of Horn clauses with cardinality constraints see Appendix D.

For the semantics, we consider a solution function X that maps each query
symbol g occurring in a given set of clauses into a constraint. The satisfaction
relation X' |= ¢l holds for a clause ¢l = (o Aq1 A -+ A g, — H) iff the body of
cl entails the head, after replacing each ¢ by X'(gq). The lifting from clauses to
sets of clauses is canonical.

3 Note that generators do not depend on the constant terms of the hyperplanes, which
is why their constraints are not affected by variations in the parameters.

11



Algorithm description #HORN takes as input a set C' of recursive Horn
clauses with cardinality constraints and produces as output either a solution
to the clauses or a counterexample. Due the undecidability caused by recur-
sion, #HORN may not terminate. The solver executes the following main steps:
abstract inference, property checking, and refinement.

Abstract inference We iteratively build a solution for the set of inference clauses
IT={cdeC|ec=(..—q} by performing logical inference until a fixpoint
is reached. This step uses abstraction to ensure that the inference terminates,
where the abstraction is determined by a set of predicates Preds. This step is
standard [17], as clauses Z do not contain cardinality constraints.

Property checking We check whether the constructed solution satisfies all prop-
erty clauses in P = C'\ Z. The novelty in #HORN is the check for satisfaction of
cardinality constraints [{w | ¢}|, where ¢ is a linear arithmetic constraint. Here
we rely on a parametric extension of Barvinok’s algorithm [37], which on input
¢ returns a set of tuples B(p,w) = {(ecmby,c1), ...} such that whenever the
constraint e¢mb; holds, the cardinality of |[{w | ¢} is given by the expression ¢;,
which may either be a polynomial ¢; or w (which denotes the unbounded case).
We hence reduce checking satisfaction of the cardinality constraint [{w | p}| to
checking the following implication.

= Atemb.e)ezomw) (cmb = ¢ <)

If the check succeeds, the algorithm returns the solution. Otherwise, the algo-
rithm proceeds to a refinement phase in order to analyse the derivation that led
to the violation of the property clause.

Refinement We construct a counterexample, i.e., a set CEX of recursion-free
Horn clauses with cardinality constraints that represents the derivation that
led to the violation of the property clause. This counterexample may either be
genuine or spurious due to abstraction. To determine which it is, we rely on a
solver for non-recursive clauses with cardinality constraints that either produces
a solution for the clauses or reports that no such solution exists. If no solution
exists, the algorithm returns the counterexample that represents a genuine error
derivation. Otherwise it uses #ITPria to eliminate the cardinality constraint
from the clauses thus producing a set of cardinality-free Horn clauses. We solve
these clauses using existing methods [20] and obtain a set of predicates that we
use to refine the abstraction.

7 Experiments

We implemented our method in SICStus Prolog, and use its built-in constraint
solver for the simplification and projection of linear constraints, HSF [17]
for solving recursion- and cardinality-free Horn clauses, and Z3 [14] for non-
linear /boolean constraint solving. We use BARVINOK [35] for checking whether a
solution candidate satisfies a cardinality constraint. We use a 1.3 Ghz Intel Core
i5 computer with 4 GB of RAM.
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Program Bound Time
Dis1 [19] maz(n — xo) + maz(m — yo)| 0.19s
Dis2 [19] n—xo+m— 2o 0.17s
SimpleSingle [19] n 0.11s
SequentialSingle [19] n 0.11s
NestedSingle [19] n+1 0.15s
SimpleSingle2 [19] maz(n,m) 0.13s
SimpleMultiple [19] n+m 0.16s
NestedMultiple [19] maz(n — xo) + maz(m — yo)| 0.08s
SimpleMultipleDep [19] n-(m+1) 0.15s
NestedMultipleDep [19] n-(m+1) 0.09s
IsortList [21] n?-m 0.19s
LCS [21] n-x 0.15s
Example 1 [39] n 0.15s
Sum [22] 2+ 6 0.15s
Flatten [22] 8I+8 0.13s

(a) Representative examples of resource bound verification [19, 21, 22, 39], with non-
linear and disjunctive bounds on running time (the upper part of the tabe) and heap
space usage (the lower part of the table), as well as imperative and functional programs.
#HORN execution times are slightly faster than the literature. All bounds are precise.

Program ‘ Bound ‘Time Leakage bound, bits‘Initialization‘Time

mem W 0.6s log(1) j=1 1s
n s 4 n

band matrix| 3n+1 0.8s log(3) J=t1+3 0.7s

log(%) j=2un 0.7s
(b) Examples tracking relational

dependencies between variables. (c) Synthesis of countermeasures.

Table 1: Application of #HORN on three classes of examples.

Benchmarks from the literature We use #HORN to analyze a set of represen-
tative examples from the recent literature on resource bound computation (in
particular: time and heap space), with results given in Table la. We find that all
bounds derived by #HORN match those from the literature while being slightly
faster on average.

On a technical level, we bound the time consumption of loops by synthesising
a polytope that bounds the set of distinct tuples of loop indices. For example,
for a loop with indices 7 and j bounded by parameters n and m, we synthesize
a polytope the form: a <i <n+bAc<j<m+d, where a,b, c,d are inferred
by our method. For bounding heap consumption, we use the cost model of [22].
We encode maz using disjunctions.

Ezamples requiring relational dependencies We use #HORN to analyze programs
mcm for matrix chain multiplication of Section 2 and band matriz provided in
Appendix D, with results in Table 1b. These examples require the tracking of
relational dependencies between variables. The example mcm is particularly chal-
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lenging as it requires reasoning about recursive function calls. We are not aware
of any other method that can handle programs with both features. We use a
template specifying that the polytope we would like to infer consists of three
and four symbolic vertices, respectively. Note that choosing a template that is
not expressive enough might only allow to prove a coarser bound, however, one
can adress the problem of finding an appropriate template by running a loop
over templates with an increasing number of symbolic vertices.

Synthesis of countermeasures By relyingon  jn¢ find(a, e) {

recursive Horn clauses as input language,  int r=-1; t=0;

#HORN is readily applicable to a number of  for(i=0; r<0 && i<n; i++)
verification questions that go beyond reach- if (alil==e) {r=i; t++;}
ability. We illustrate this using the example /* Padding */

of procedure find(a,e), which returns the = for(j=?; j<m, j++) t++;
position of an element e in an array a. Note ¥

that the execution time of find (modeled /* 2ssert: bound cardinality of
by the variable t) reveals the position of e. set of final values of t. */
We apply #HORN for synthesizing a padding countermeasure against this tim-
ing side channel. Namely, we seek to instantiate the initialization of the variable
j such that it provides enough padding for a given bound on leakage. This is
achieved by bounding the cardinality of the set of possible final values of t. We
add an additional clause that constraints the cardinality of values for ¢ upon ter-
mination, as the logarithm of this number corresponds to the amount of leaked
information in bits, see e.g. [34]. Table 1c provides the timings and synthesized
initialization of j for different bounds on leakage.

8 Related work

Counting integer points in polytopes The theory of counting integer points in
polytopes has found wide-spread applications in program analysis. All applica-
tions we are aware of (including [2, 15, 26, 37]) compute cardinalities for given
polytopes, whereas our interpolation method computes polytopes for given car-
dinality constraints.

Verdoolaege et al. [37] also derive symbolic expressions for the number of
integer points in parametric polytopes. In their approach, the parameter gov-
erns only the offset of the bounding hyperplanes (and hence the position of the
vertices of the polytope) but not their tilt (and hence not the generators of the
vertex cones). The advantage of fixing the vertex cones is that Barvinok’s de-
composition can be applied to handle arbitrary polytope shapes. In contrast,
our interpolation procedure #ITPra (see Section 4) leaves the vertices and the
generators of the vertex cones symbolic, up to constraints that ensure their uni-
modularity. The benefit of this approach is the additional degree of freedom for
the synthesis procedure. #HORN leverages both approaches: the one from [37]
for checking cardinality constraints, and #I1TPys for refining the abstraction.

Recently, [15] presented a logic and decision procedure for satisfiability in the
presence of cardinality constraints for the case of linear arithmetic. In contrast,
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we focus on synthesizing formulas that satisfy cardinality constraints, rather
than checking their satisfiability.

Resource bounds In [24] a static analysis estimates the worst case execution
time of non-parametric loops using the box abstract domain. To compute pre-
cise bounds, the paper proposes a widening operator based on intersecting the
current abstraction with polytopes derived from conditional statements. In con-
trast, our approach generates abstraction consisting of parametric unimodular
polytopes (which include boxes as a special case). In [19], the authors com-
pute parametric resource and time bounds by instrumenting the program with
(multiple-) counters, using static analysis to compute a bound for the counters,
and combining the results to yield a bound for the entire program. In contrast,
we fit polytopes over each iteration domain of the program, thus avoiding the
need to infer counter placement and enabling higher precision by tracking depen-
dencies between variables. In [36] the authors propose a pattern-matching based
method to extract polytopes representing the iteration domain of for-loops from
C source. In contrast our method operates on unstructured programs represented
as Horn clauses. In [22] and [21], a type system for the amortized analysis for
higher-order, polymorphic programs is developed. Their focus lies on recursive
data-types while we mostly deal with recursion/loops over the integers. In [1]
and [28] the authors establish closed-form bounds on resource usage by solving
recurrence relations over scalars.

Quantitative verification Existing verification methods for other theories rely
on cardinality extensions of SAT [16], or Boolean algebra of (uninterpreted)
sets [23], multisets [29], and fractional collections [30]. These approaches focus
on either computing the model size or checking satisfiability of a formula con-
taining cardinality constraints. Cardinalities of uninterpreted sets are also used
in [18] for establishing termination and memory usage bounds based on fixed ab-
stractions. Finally, a CEGAR approach for weighted transition systems has been
presented in [10], together with abstractions for properties such as limit-average
or discounted sum.

9 Conclusion

We applied the theory of counting integer points in polytopes to devise an al-
gorithm for a cardinality-constrained extension of Craig interpolation. This al-
gorithm proceeds by posing constraints on a symbolic polytope that represent
both its shape and cardinality and then solves the constraints via state-of-the-art
SMT solvers. We embedded our interpolation procedure into a solver for recur-
sive Horn clauses with cardinality constraints and demonstrate its potential via
an experimental evaluation.
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A More on unimodularity

In this section, we give two alternative definitions of unimodularity.
Definition 1. A cone is called unimodular if and only if its generators form a

basis of Z.2.

Ezample 6. The cone given by generators (0 1), (1 0) is unimodular. In contrast,
the cone given by generators (12) and (10) is not unimodular since e.g. (11)
cannot be represented as a positive linear combination of the generators.

T2
‘:\ /T
N . 7z
1
1
,,,,,,,, s
U1 1

Fig.2: Parallelepipeds for two unimodular cones and one non-unimodular cone.
The last parallelepiped contains integer point (1 1).

Equivalently, a cone is unimodular if and only if the parallelogram spanned by its
generators contains only the origin. This parallelogram is called parallelepiped.

Definition 2. The parallelepiped of a cone K with generators gi,...,gx is the
set of points defined by

My = {3} aigi |0 < a; <1} .

Then cone K is unimodular if and only if ITx contains exactly one integer point,
namely, the origin. We provide examples in Figure 2.

B Example: Parametric counting

Ezample 7. Consider polytope @ = (z1 > 0 A 3 > 0 A 1 + 29 < n), where
the last equation is bounded by a parameter n rather than a constant. In this
polytope, the coordinates of vertices vy and w3 are linear expressions in the
parameter n, that is, for n > 0 we have v, = (0 n) and vz = (n 0). Equation (2)
yields the following generating function.

iz iz} @l zh

+ +
(1—a%2})(1—2lal)  (1—2Vz;H(1—zlzy?! -z 29)(1—27 xd)

Applying the substitution and computing the series expansion yields the con-
stant coefficient (n? + 3n + 2)/2 which is an expression of number of integer
points in @ in terms of the parameter n. |

18



C Parametric Interpolation

In this section, we provide additional details on the parametric interpolation
problem.

Example application of the interpolation algorithm

Ezample 8. Consider again the interpolation problem from Section 2. We assume
the following template where we fix some of the coefficients for simplicity of
presentation (our algorithm deals with the general case): vy — {Hj, Hy}, vg —
{Hl, HQ}, V3 {HQ,Hg} and vz — {H37H4} with H; = —1 <0, Hy = a-j < n+b,
H3; =i <1and Hy =i— j <0. We show exemplary vertex constraints for the
parametric vertex vy = (v v3).

YnIvh,v) ca-vi =n+bAvi=1Av>0A0v, < v}

Note that these vertex constraints are valid only for n such that 2 < (n 4 b)/a,
which is when w5 is active in the polytope. To ensure this we add a constraint

Vn:emb(n) = 2<(n+b)/a.

We add corresponding constraints for the other vertices of the template and
further require that ¢mb(n) be implied by the lower bound ¢~.

Evaluating the generating function (as described in Section 3) then yields
the following expression on the cardinality of ¢ in terms of a and b

SYMCARD(p) = (1/2—1/(2a%)) -n®+ (=b/a* +b/a+1/a+1) - n+ (4)
(1+2b/a)

The cardinality constraint on ¢ is given by
Ja,b¥n : emb(n) — SYMCARD(yp) < % (5)

Solving the constraints yields a = 1, b =0 and ¢mb(n) = n > 2. |

Constrained based quantifier elimination method Consider Equation 5
which provides an example constraint that we would like to solve. Our technique
builds on the following observation: 5 is equivalent to

Ja,b:V¥n: cmb(n) — (6)
0<((1—=2¢c) n?>+(B—=2¢c1) n+(2-2-cp))

where ¢g, ¢; and ¢y denote the coefficients of n in Equation 4. Let p(n) denote
the polynomial in Equation 6.

For simplicity of presentation, assume that p(n) is of full degree and therefore
has exactly two roots r; and ro. Then these roots induce a partitioning of the
domain of p(n) such that p(n) is either positive or negative throughout each
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partition. To ensure that Equation 6 holds, we then have to ensure that whenever
c¢mb(n) holds, p(n) is positive.

Exploiting the following equality which is a consequence of the factor theorem
which states that each polynomial p(n) with root r contains a factor (n — r)

pn)=m—r) - n—ro)-k=k-n>—k-(ri+m) -n+k-r-ro

we can now obtain a symbolic representation of the roots by equating the coef-
ficients of the two polynomials. This yields:

1-2-co=kAN3—=2-c1=k-(—rl—r2)A2—2-¢co=k-ry-ro.

Note that this step is a source of incompleteness as it restricts the solution space
to polynomials with roots that can be expressed in the respective theory, i.e.
integers or reals. Then we ensure that p(n) is positive whenever ¢mb(n) holds
through the following constraints

rl <72 A ((emb(n) = n <) ANl—=2-c3>0) V
((emb(n) > r1 <n<ry) Al—2-c3<0) V
((emb(n) = n >1ry) AN1—=2-¢c5>0).

Here, we ensure positivity on the respective partition by referring to the concav-
ity of p(n) through its second derivative p”(n) =1—2- ca.
Note that the above constraints are quantifier free.

D Example: Verification conditions as Horn clauses

We consider a program that accesses a matrix stored in a dynamically allocated
map m. The program manipulates the matrix through functions f and g. In the
first loop, f is applied on a band around the diagonal, in the second loop, g is
applied on the diagonal elements.

int cl1l=-1; int c2=-1;
L1: for(i=0; i<n; i++)
for (j=0; j=<i; j++)

if (i-j<3) {
m(i, j) = £(, J);
cl=i; c2=j; P1,P2,P3 P5
}
L2: for(i=0; i<n; i++) { P4 P6
v = m(i, 1); <::>

m(i, i) = g(v, 1);
cl=i; c2=i;
}
L3:

Our goal is to prove a bound on the memory consumption. To make the
reasoning more explicit, we instrument the program with auxiliary variables ¢;
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and co that store the pairs of indices used to write into the map. Thus, by
reasoning about the cardinality of the set of values (c1, ¢3) we track the memory
consumption of the program.

Let the program variables be given by the vector v = (3, j, c1, ca, n, pc) (we
do not track m, f, g,v for space reasons) and the initial states of the program
be described by the assertion init(v) = (1 =0Aj=0Ac; = -1 Acg=—-1A
pc = Lq). In the control flow graph above, we collapse the control locations for
the nested loop into a single program point L.

Some relevant transition relations are described below (we omit equalities
over variables that stay unchanged, e.g., pc’ = pc).

(v, )=(<nAj<iNi—j<3Nj=j+1A =iNchb=1])
P,V )= <nAj<iNi—j>3Nj =j+1)
p3s(v, V)= <nAj>iANG =0ANT=i+1)

We represent the bound verification condition as the following set of recursive

Horn clauses over query symbols Q = {reach, index}, where we let ¢ = (¢, ca)
and 7 ranges between 1 and 6.

Clinit:  nit(v) — reach(v)
cli + reach(v) A pi(v,v") — reach(v’)
Clproj:  reach(v) Aer > 0Aca >0 — index(c,n)
cleara: m >0 — |{c | index(c,n))} <3n+1

Query reach describes the set of reachable states and index describes the set of
indices that were used for writing to the map. The clauses cl;,;;, and clq,cla, . ..
require the invariant reach to be inductive, i.e., that is is implied by initial states
and preserved under the transition relation. The clause cl,,o; projects reachable
states on variables ¢; and ¢y, and ensures that all reachable values of ¢; and co
(except for the negative initial values) are included in index. The clause cloqrq
encodes a cardinality constraint stating that the cardinality of the set of index
values is bounded by 3n + 1. Finally, we note that the clauses are recursive, as
e.g. cl; depends on itself.
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