
Separation Logic Modulo Theories

Juan Antonio Navarro Pérez1 and Andrey Rybalchenko2

1 University College London
2 Microsoft Research Cambridge and Technische Universität München

Abstract. Logical reasoning about program behaviours often requires
dealing with heap structures as well as scalar data types. Advances in Sat-
isfiability Modulo Theories (SMT) offer efficient procedures for dealing
with scalar values, yet they lack expressive support for dealing with heap
structures. In this paper, we present an approach that integrates separa-
tion logic—a prominent logic for reasoning about linked data structures
on the heap—and existing SMT solving technology. Our model-based
approach communicates heap aliasing information between theory and
separation logic reasoning, providing an efficient decision procedure for
discharging verification conditions in program analysis and verification.

1 Introduction

Satisfiability Modulo Theory (SMT) solvers play an important role in the con-
struction of abstract interpretation tools [11, 12]. They efficiently reason about
various scalar data types, e.g., bit-vectors and numbers, as well as uninterpreted
functions and arrays [1,7,14,15,18]. Today’s SMT solvers, however, lack support
for dealing with dynamically allocated heap data structures. Thus, a combina-
tion of theory reasoning with separation logic [25]—a successful logical formalism
of resource allocation—has the potential to boost a wide range of program anal-
ysis systems: manual/tool assisted proof development [17, 21], extended static
checking [5, 16], and automatic inference of heap shapes [2, 8].

In this paper we develop a method to augment an SMT solver with sep-
aration logic reasoning for linked list segments and their length. Our method
decides the validity of entailments of the form Π ∧ Σ→Π ′ ∧ Σ′, where Π, Π ′
are arbitrary theory assertions decided by the SMT solver, while Σ, Σ′ sym-
bolically describe a spatial conjunction of pointers and acyclic list segments. In
contrast, existing decision procedures combine list segments with conjunctions
of equality and disequality predicates only. Moreover, the length information on
list segments allows our techniques to prove properties where a tight interaction
between program data and the shape of heap structures is needed.

The crux of our method lies in an interaction of the model-based approach
to theory combination [13] and a so-called match function that derives logical
implication between pairs of spatial conjunctions. Models of Π, called stacks,
guide the process of showing that all heaps satisfying Σ also satisfy Σ′. The
match function produces an assertion describing a set of stacks for which the
current derivation is applicable. This assertion is used to prune the search space

and find more stacks for which the entailment has not been proved yet. Our
method thus benefits from the efficiency of SMT solvers to maintain a logical
representation of the search space already explored.

In summary, we present an efficient SMT-based decision procedure for sepa-
ration logic with acyclic list segments with length. Our main contribution is the
entailment checking algorithm for separation logic in combination with decidable
theories, together with its formal proof of correctness.

Related work Our approach improves upon a previous separation logic proving
method [22], which relied on paramodulation for equality reasoning [23] and pro-
vided improvements of several orders of magnitude on efficiency with respect to
existing systems at the time. The current work extends this method, which only
dealt with pure equalities, to support arbitrary theory expressions in both pure
and spatial parts of the entailment. Our new match function generalises previous
unfolding inference rules—in turn based on inferences from [3, 4]—and runs in
linear time avoiding case reasoning as performed by most other systems. The
logic context of an SMT solver, rather than literals in a clausal representation,
maintains the explored search space. Doing so we remove a technical limitation
from the approach in [22]: spatial reasoning no longer requires access to equality
reasoning steps, and off-the-shelf SMT solvers become directly applicable.

Separation logic entailment checking in the fragment limited to list segments
and pure equalities was shown to be decidable in polynomial time [10], and a tool
exploiting this result has been developed [19]. Although we are mainly interested
in reasoning about rich theory assertions describing stacks, exploration of this
polynomial time result is an interesting direction for future work. In the opposite
direction, work such as that from Botinc̆an et al. [6] and Chin et al. [9] develop
techniques for dealing with more general user-specified predicates beyond simple
list segments. The former work, moreover, also relies on SMT for pure reasoning.
The cost of this increased expressivity, however, is that such procedures become
incomplete. Our logic is more restrictive, allowing us to develop a more efficient,
sound, terminating and complete procedure for entailment checking.

Piskac et al. [24] also developed a decision procedure for the list segment
fragment. Their approach translates entailments to an intermediate logic which,
given suitable axioms, is then decided by an SMT solver. The technique works as
well for slightly more general structures, such as sorted list segments and doubly
linked lists, but further generalisations probably require changes and extensions
in the intermediate logic. We believe that generalisations to our approach are
more straightforward, since to support other predicates we only need to define a
suitable subtract operator, as we discuss for the case of linked list segments with
length later in Section 4 of this paper.

Finally, Iosif et al. [20] have recently proved a decidability result for a large
class of separation logic formulas with recursive predicate definitions. Their re-
sult, which without a doubt represents a major advance in the theory of sepa-
ration logic, is based on a monadic second order logic encoding where formulas
with a bounded tree width are known to be decidable. Although their fragment
considered still has a few limitations—unlike our algorithm, their decidability re-

2

sult does not apply for structures with dangling data pointers—these theoretical
results have opened up exciting directions for future research.

2 Illustration

To motivate our work, we illustrate how our algorithm discharges a verification
condition produced in the analysis of a program. Consider the following C++

snippet that retrieves data associated with the k-th element of a linked list.

struct node { int data; node* next };

node* get(node* p, int k) { /* assume: ∃n. 0 ≤ k < n ∧ lseg(p, nil, n) */
node* q = p;
for (int i = 0; i < k; i++) q = q->next;
return q->data;

}

The implementation is memory safe only if the value of k is less than the length
of the list rooted at p, as made explicit by the assumption at the beginning of the
function. The lseg(p, nil, n) predicate denotes that, starting from the location p
in the heap and following an acyclic chain of exactly n next-pointers, we reach
the end of the list, i.e., nil. When the start/finish locations are equal, and thus
necessarily n = 0, the list is empty and no nodes are allocated.

We remark that, due to the crucial mix of arithmetic and spatial reasoning
involved—on how indices relate to the length of chains of dynamic pointers—the
automated verification of even such simple code is often beyond the capabilities
of existing program analysers. An analyser would symbolically execute the code,
producing a series of verification conditions to be discharged. At some point, for
example, the analyser needs to establish the validity of the entailment

Π︷ ︸︸ ︷
i ' i′ + 1∧

Σ︷ ︸︸ ︷
lseg(p, q′, i′) ∗ next(q′, q) ∗ lseg(q, nil, n− i′ − 1)

→ lseg(p, q, i) ∗ lseg(q, nil, n− i)︸ ︷︷ ︸
Σ′

,

explicating changes in the program state—respectively denoted by primed and
regular variables—before and after the execution of each loop iteration. Note
the use of ‘'’ for equality in the formal language, distinguished from ‘=’ in the
meta language. The star connective ‘∗’ states that memory cells allocated by the
heap predicates are necessarily disjoint or separated from each other in memory;
while next(q′, q) represents a heap portion of exactly one node allocated at q′
(the value of q before the loop execution) whose next pointer has the same value
as q (after executing the loop).

Proving this entailment—which still involves a mix of arithmetic and spatial
reasoning—shows that lseg(p, q, i) ∗ lseg(q, nil, n − i) is a loop invariant. To this
end, the algorithm performs the following key steps: First it enumerates pure
models, assignments to program variables, that allow satisfying both Π and Σ in

3

the antecedent. For each pure model s, the algorithm attempts to (symbolically)
prove that every heap h satisfying the antecedent, s, h |= Π∧Σ, also satisfies the
consequence, s, h |= Σ′. The assignment is generalised as an assertionM pruning
models of Π that lead to similar reasoning steps as with s. The entailment is
valid if and only if all models of the antecedent are successfully considered.

So, we first build a constraint characterising the satisfiability of the spatial
part of the antecedent. This constraint requires each spatial predicate in Σ to
be sound, e.g. list lengths are non-negative, and each pair of predicates to be
separated from each other. In particular, if two predicates start at the same
heap location, necessarily one of them must be an empty heap with no allocated
nodes. For our example entailment, the soundness of lseg(p, q′, i′) requires that
the length of the list segment is non-negative, i.e. 0 ≤ i′, and the start/finish
locations coincide if and only if the length of the list is zero, i.e. p ' q′↔ i′ ' 0.
The soundness condition of lseg(q, nil, n− i′ − 1) is similarly determined.

soundness of . . .
0 ≤ i′ ∧ (p ' q′↔ i′ ' 0) lseg(p, q′, i′)
0 ≤ n− i′ − 1 ∧ (q ' nil↔ n− i′ − 1 ' 0) lseg(q, nil, n− i′ − 1)

Additionally, say, for the pair of predicates lseg(p, q′, i′) and lseg(q, nil, n− i′−1)
their separation condition is represented as p ' q → (p ' q′ ∨ q ' nil), i.e., if
the start location p of the first predicate is equal to the start location q of the
second predicate then either one of them must represent an empty segment. The
separation condition for each pair of predicates in Σ is similarly computed.

separation of . . .
p ' q′→ p ' q′ lseg(p, q′, i′) and next(q′, q)
p ' q→ (p ' q′ ∨ q ' nil) lseg(p, q′, i′) and lseg(q, nil, n− i′ − 1)
q′ ' q→ q ' nil next(q′, q) and lseg(q, nil, n− i′ − 1)

Finally, to make sure that nothing is allocated at the nil location we have to
assert, say for lseg(p, q′, i′), that if the start location p is nil then necessarily the
finish location q′ is also nil. For the case of next(q′, q) we simply assert that q′ is
not nil. We thus obtain three additional assertions.

nil is not allocated by . . .
p ' nil→ q′ ' nil lseg(p, q′, i′)
q′ 6' nil next(q′, q)
q ' nil→ nil ' nil lseg(q, nil, n− i′ − 1)

We refer to the conjunction of all above assertions as well-formed(Σ).
Crucially, these assertions do not contain spatial predicates any more, so an

SMT solver is used to search for models of Π∧well-formed(Σ). If no such model
exists the entailment is vacuously true. In our example, however, the solver finds
the model s = {p 7→ 42, q′ 7→ 47, q 7→ 29, i′ 7→ 1, i 7→ 2, n 7→ 3}. To show that,

4

with respect to this assignment s, every heap h model of Σ is also a model of Σ′,
we try to establish a match between Σ and Σ′. Specifically for each predicate
in Σ′ we seek a matching ‘chain’ of predicates in Σ such that the finish and start
location of adjacent predicates is equal with respect to s.

So, we first search for a match for lseg(p, q, i) ∈ Σ′ connecting p to q in
i steps within the antecedent Σ. Trivially, since s(p) = s(p), the chain must
begin with lseg(p, q′, i′) leaving us yet to connect q′ with q in i − i′ steps. This
issues a new request to match lseg(q′, q, i− i′) against the remaining predicates
from Σ, namely, next(q′, q) ∗ lseg(q, nil, n− i′− 1). Similarly, the chain must now
continue with next(q′, q) and a new request to match lseg(q, q, i− i′−1) is issued.
This time, however, s |= i − i′ − 1 ' 0 so the match is completed. In the same
vein, we search for a match for lseg(q, nil, n− i) ∈ Σ′ against the only remaining
lseg(q, nil, n− i′ − 1) in Σ. Luckily, since s |= n− i ' n− i′ − 1, both connect q
to nil in the same number of steps and the match quickly succeeds. Since all
predicates of Σ′ are matched, and all predicates in Σ were used in a match, we
conclude that Σ and Σ′ have match exactly with respect to the current s.

The algorithm keeps track of the assertions required on s for the match to
succeed, namely M = (i − i′ − 1 ' 0 ∧ n − i ' n − i′ − 1). The matching
proof obtained for this particular assignment s is thus generalised to all models
satisfyingM , and we may continue the enumeration of models for the antecedent
excluding those where M is true.

A second call to the SMT solver reveals that Π∧well-formed(Σ)∧¬M is now
unsatisfiable. Although our spatial reasoning procedure is unaware of this fact,
the arithmetic capabilities of the SMT solver easily figure out that the hypothesis
Π = (i ' i′ + 1) forces M to be always true. Since matching is possible for all
models of the antecedent, we thus conclude that the entailment is valid.

3 Preliminaries

We write f : X → Y to denote a function with domain X = dom f and range Y ;
and f : X ⇀ Y to denote a finite partial function with dom f ⊆ X. We write
f1 ∗ · · · ∗ fn to simultaneously assert the disjointness of the domains of n func-
tions, namely dom fi ∩ dom fj = ∅ when i 6= j, and denote the, therefore, well
defined function f = f1∪· · ·∪fn. We sometimes describe functions by explicitly
enumerating their elements; for example f = {a 7→ b, b 7→ c} is the function such
that dom f = {a, b}, f(a) = b, and f(b) = c.

Satisfiability modulo theories We assume a first-order many-sorted language
where each function symbol f of arity n has a signature f : τ1×· · ·×τn → τ , i.e.
the symbol f takes n arguments of respective sorts τi and produces an expression
of sort τ . A constant symbol is a 0-ary function symbol. Constant and function
symbols are combined respecting their sorts to build syntactically valid expres-
sions. We use x : τ to denote an expression x of sort τ . Each sort τ is associated
with a set of values, for convenience also denoted τ . In particular we assume
that booleans and integers, namely B = {true, false} and Z = {. . . ,−1, 0, 1, . . .},

5

are among the available sorts. We refer to a function symbol of boolean sort as
a predicate symbol, and a boolean expression as a formula.

Some symbols have fixed predefined theory interpretations. For example the
predicate ' : τ × τ → B tests equality between two expressions of the same sort;
while theory symbols from the boolean domain, i.e. conjunction (∧), disjunc-
tion (∨), negation (¬), truth (>), falsity (⊥), entailment (→), boolean equiva-
lence (↔), and first-order quantifiers (∀, ∃), have their standard interpretations.
We similarly assume theory symbols for integer arithmetic with their usual in-
terpretation and use nil as an alias for the integer constant 0.

Some function symbols are also left uninterpreted. A variable, in particular,
is an uninterpreted constant symbol. Interpretations map uninterpreted symbols
to values of the appropriate sort. We write s(x) to denote the result of evaluating
the expression x under the interpretation s. For example, if s = {n 7→ 2} then
s(1 + n) = 3. A formula F is satisfiable if there is an s such that s(F) = true;
in such case we also write s |= F and say that s is a model of F . A formula is
valid if it is satisfied by all interpretations. The job of an SMT solver is, given a
formula F , to find a model such that s |= F or prove that none exists.

Separation logic On top of the theories already supported by the SMT solver,
we define spatial symbols to build expressions to describe properties about heaps.
We thus introduce the spatial predicate symbols emp : B, next : Z × Z → B,
lseg : Z×Z×Z→ B, and ∗ : B×B→ B for, respectively, the empty heap, a points-
to relation, an acyclic list segment with length, and the spatial conjunction. A
spatial formula is one that may include spatial symbols, and a pure formula is
one where no spatial symbols occur.

A stack is an interpretation for pure expressions, mapping uninterpreted
symbols to suitable values. A heap is a partial finite map h : Z⇀ Z that connects
memory locations, represented as integers, and gives meaning to spatial symbols.
Given a stack s, a heap h, and a spatial formula F we inductively define the
spatial satisfaction relation s, h |= F as s, h |= Π if Π is pure and s |= Π,
s, h |= emp if h = ∅, s, h |= next(x, y) if h = {s(x) 7→ s(y)}, s, h |= F1 ∗ F2 if
h = h1 ∗h2 for some h1 and h2 such that s, h1 |= F1 and s, h2 |= F2. The acyclic
list segment with length is inductively defined by

lseg(x, z, n) = (x ' z ∧ n ' 0 ∧ emp)
∨ (x 6' z ∧ n > 0 ∧ ∃y. next(x, y) ∗ lseg(y, z, n− 1)) .

For example, given that s = {x 7→ 3, y 7→ 2, n 7→ 1} and h = {3 7→ 5, 5 7→ 2}, it
follows that s, h |= lseg(x, y, n+ 1). As with pure formulas, we say that a spatial
formula F is satisfiable if there is a pair (s, h) such that s, h |= F ; and valid if it
is satisfied by every stack-heap pair. In particular the entailment F →G is valid
if and only if every model of F is also a model of G. For a spatial formula F , we
write s |= F to denote that s, h |= F for all heaps h.

We remark that this definition does not treat nil in any special way. To regain
its expected behaviour, i.e. on a spatial formula F nothing may be allocated at
the nil location, it is enough to consider F ∗ next(nil, nil) instead. Furthermore,

6

function prove(Π ∧Σ→Π ′ ∧Σ′)
1: Γ := Π ∧ well-formed(Σ)
2: ∆ := alloc(Σ)
3: if satisfiable Γ ∧ ¬Π ′ return invalid
4: while exists s such that s |= Γ do
5: M := match(s,∆,Σ,Σ′)
6: if s 6|= M return invalid
7: Γ := Γ ∧ ¬M
8: return valid

function match(s,∆,Σ,Σ′)
9: if exists S ∈ Σ such that s |= empty(S)
10: return empty(S) ∧match(s,∆,Σ \ S,Σ′)
11: if exists S′ ∈ Σ′ such that s |= empty(S′)
12: return empty(S′) ∧match(s,∆,Σ,Σ′ \ S′)
13: if exists S ∈ Σ and S′ ∈ Σ′ such that s 6|= separated(S, S′)
14: (S′′, D) := subtract(∆,S′, S)
15: if s |= sound(S′′) ∧D return ¬separated(S, S′) ∧ sound(S′′)

∧D ∧match(s,∆,Σ \ S, (Σ′ \ S′) ∗ S′′)
16: if Σ = ∅ and Σ′ = ∅ return > else return ⊥

Fig. 1. Model-driven entailment checker

although the language allows spatial conjunctions of arbitrary boolean formulas,
we focus on the fragment where such conjuncts are restricted to spatial pred-
icates. In the following when we say “a spatial conjunction” what we actually
mean is “a spatial conjunction of spatial predicates”. Also for convenience, a spa-
tial conjunction Σ = S1 ∗ · · · ∗Sn is often treated in the meta level as a multi-set
of boolean spatial predicates where |Σ| = n is the number of conjuncts. We use
set theory symbols, which are always to be interpreted as multi-set operations,
to describe relations among spatial predicates and conjunctions. For example:

next(y, z) ∈ lseg(x, y) ∗ next(y, z) next(x, y) ∗ next(x, y) 6⊆ next(x, y)
emp ∗ emp ∗ emp \ emp = emp ∗ emp .

4 Decision procedure for list segments and theories

We begin this section describing the building blocks that, when put together
as shown in the prove and match functions of Figure 1, constitute a decision
procedure for entailment checking. The procedure works for entailments of the
form Π ∧ Σ→Π ′ ∧ Σ′, where both Π and Π ′ are pure formulas, with respect
to any background theory supported by the SMT solver, while both Σ and Σ′
are spatial conjunctions.

To abstract away the specific details of individual spatial predicates, we first
define addr(S), sound(S), and empty(S)—respectively the address, soundness,

7

and emptiness condition of a spatial predicate S—as follows:

S addr(S) sound(S) empty(S)
emp nil > >

next(x, y) x > ⊥
lseg(x, y, n) x 0 ≤ n ∧ (x ' y↔ n = 0) x ' y

The soundness condition is a formula that must be satisfied by any model of
the spatial predicate, formally: if s, h |= S then s |= sound(S). If, furthermore,
the emptiness condition is also true, then its corresponding heap model must
be empty. Conversely, if the emptiness condition is false then the address of the
predicate must necessarily occur in the domain of any heap satisfying the spatial
predicate. Formally: given s |= sound(S) ∧ empty(S) it follows s, h |= S if and
only if h = ∅; and if s, h |= ¬empty(S)∧S then, necessarily, s(addr(S)) ∈ dom h.

Separation We begin defining the notion of separation which is used, in par-
ticular, at lines 13 and 15 of the algorithm in Figure 1. Given any two spatial
predicates S and S′, the formula

separated(S, S′) = addr(S) ' addr(S′)→ empty(S) ∨ empty(S′)

states that two predicates are separated if either their addresses are distinct or
one of the two predicates is empty. Otherwise, if both predicates are non-empty
and share the same address, the formula S ∗ S′ would not be satisfied. More
formally, if s, h |= S ∗ S′ then necessarily s |= separated(S, S′). We also say that
two spatial predicates S and S′ collide, with respect to the given stack s, if it is
the case that s 6|= separated(S, S′).

Well-formedness The well-formedness condition, found at line 1 in Figure 1,
is defined for a spatial conjunction Σ = S1 ∗ · · · ∗ Sn as the pure formula

well-formed(Σ) =
∧

1≤i≤n
sound(Si) ∧

∧
1≤i<j≤n

separated(Si, Sj) ,

which states that all predicates are sound and every pair is separated. The reader
might want to revisit the example in Section 2, where the well-formedness of
Σ = lseg(p, q′, i′) ∗next(q′, q) ∗ lseg(q, nil, n− i′− 1) is computed. In fact, since nil
is not special in our definition of the semantics, what we computed was the well-
formedness of Σ∗next(nil, nil), and the last three assertions for the non-allocation
of nil are just the separation conditions with respect to the added next(nil, nil).
The importance of the well-formedness condition comes from the fact that, as
the next theorem states, it characterises the satisfiability of spatial conjunctions.

Theorem 1. A spatial conjunction Σ is satisfiable if, and only if, the pure for-
mula well-formed(Σ) is satisfiable.

8

Allocation Given a stack s and a spatial conjunction Σ = S1 ∗ · · · ∗ Sn, the
allocated set alloc(Σ|s) =

{
s(addr(Si)) | s 6|= empty(Si)

}
is a set of locations

necessarily allocated by any heap h satisfying Σ. That is, for all h such that
s, h |= Σ it follows that alloc(Σ|s) ⊆ dom h.

The allocation function, found at line 2 in Figure 1, is defined without refer-
ence to any stack as

alloc(Σ) = λx.
∨

1≤i≤n
¬empty(Si) ∧ x ' addr(Si) ,

mapping a given variable x to a formula symbolically testing whether x should
be allocated on heaps satisfying Σ. That is, if ∆ = alloc(Σ) and s is any stack,
we have that s(x) ∈ alloc(Σ|s) if and only if s |= ∆(x). For instance, taking the
same example Σ as before,

∆(x) = (p 6' q′ ∧ x = p) ∨ (x ' q′) ∨ (q 6' nil ∧ x = q) ∨ (x ' nil) .

Thus x is considered allocated if it is equal to q′ or nil; or if it is equal to the
start location, p or q, of a non-empty list segment.

Subtraction We now proceed towards the introduction of the subtraction op-
eration, occurring at line 14 in Figure 1, which lies at the core of our matching
function. When trying to prove an entailment s |= Σ → Σ′, we want to show
that any heap model of Σ is also a model of Σ′. Thus, if we find a pair of col-
liding predicates S ∈ Σ and S′ ∈ Σ′, the portion of the heap that satisfies S
must overlap with the portion of the heap satisfying S′. In fact, it is not hard
to convince oneself—for the list segment predicates considered—that the heap
model of S′ should match exactly that of S plus some extra surplus.

Given two spatial predicates S, S′, and an allocation function ∆, the sub-
traction operation (S′′, D) := subtract(∆,S′, S) returns a pair where S′′ is the
remainder of subtracting S from S′, and D is an additional side condition. Intu-
itively, if D is not satisfied, then there is a counterexample for the subtraction
(c.f. Proposition 2 later). Specifically, for each pair of predicates we have:

S′ S S′′ D
next(x′, z) next(x, y) emp y ' z
lseg(x′, z, n) next(x, y) lseg(y, z, n− 1) >
next(x′, z) lseg(x, y, n) emp y ' z ∧ n ' 1
lseg(x′, z, n) lseg(x, y,m) lseg(y, z, n−m) y 6' z→∆(z) ∨m ' 1

Formalising our stated intuition, the following proposition states how if S′′ is
obtained by subtracting S from S′ then, under suitable assumptions, the spatial
predicate S′ is equivalent to S ∗S′′. The validity of this statement, as well as the
following proposition, is easily verified by inspection of the relevant definitions.

Proposition 1. Let Σ be a spatial conjunction and S, S′ a pair of spatial pred-
icates. Let ∆ = alloc(Σ), let (S′′, D) = subtract(∆,S′, S), and let s be a stack
such that s |= ¬separated(S, S′)∧sound(S′′)∧D. Then the following claims hold.

9

1. s, h |= Σ ∗ S ∗ S′′→Σ ∗ S′ for every heap h.
2. if s, h |= Σ ∗ S′ and s, h1 |= S for some h1 ⊆ h then s, h |= Σ ∗ S ∗ S′′.

Conversely, the following proposition states that if S and S′ collide, but the
subtraction is not successful, i.e. D is not satisfied, then it is possible to build a
counterexample to the original entailment.

Proposition 2. Let Σ be a spatial conjunction and S, S′ a pair of spatial pred-
icates. Let ∆ = alloc(Σ), let (S′′, D) = subtract(∆,S′, S), and let s be a stack
such that s |= ¬separated(S, S′). If s 6|= sound(S′′) ∧D then there is a h1 such
that s, h1 |= S, but for all h such that h1 ⊆ h we have s, h 6|= Σ ∗ S′.

As an example suppose we want to determine the validity of Σ ∗ S → S′,
where each Σ = lseg(y, z,m), S = lseg(x, y, n), and S′ = lseg(x, z, n + m). We
would then have that ∆ = λv. (y 6' z ∧ v ' y), S′′ = lseg(y, z, n + m − n), and
D = (y 6' z→∆(z)∨n ' 1) = (y 6' z→ (y 6' z∧z ' y)∨n ' 1). Assume a stack
s = {x 7→ 1, y 7→ 2, z, 7→ 3, n 7→ 2,m 7→ 1}. With respect to s, it is clear that S
and S′ collide, as they are both non-empty lists starting on the same location
s(x) = 1. However, s 6|= D, since s |= y 6' z but s 6|= ∆(z), because z is not
necessarily allocated in Σ, and s(n) = 2 6= 1. Proposition 2 asserts the existence
of a heap, in this case say h1 = {1 7→ 3, 3 7→ 2}, such that s, h1 |= lseg(x, y, n)
but cannot be extended into a model of lseg(x, z, n+m) as this would introduce
a cycle. In particular with the heap h = h1 ∗ {2 7→ 3} we have s, h 6|= Σ ∗S→S′,
providing a counterexample for the original entailment. We end this section with
the remark that, in order to generalise our method to other inductive predicates,
it is enough to find a suitable subtract operator satisfying the conditions imposed
by Propositions 1 and 2.

Matching and proving To finalise the description of our decision procedure
for entailment checking we have only left to put all the ingredients together, as
shown in Figure 1, into the match and prove functions.

The match function tries to establish whether s |= Σ → Σ′, in a context
where ∆ specifies heap locations that must be allocated. The function proceeds
by matching predicates in Σ with those in Σ′, reducing their number of conjuncts
as progress is made, and succeeding if eventually both Σ and Σ′ become empty.
Furthermore, when successful, the function returns an assertion M generalising
the matching proof to all stacks that, like s, also satisfy M .

The function begins by inspecting Σ and Σ′ to discard, at lines 10 and 12,
any predicates that are empty with respect to s, recursively calling itself to verify
the rest of the entailment. After removing all such empty predicates, if a pair of
colliding predicates S ∈ Σ and S′ ∈ Σ′ is found, on line 14 we then proceed to
compute subtract(∆,S′, S) = (S′′, D). If the subtraction is successful, signalled
by the fact that s |= sound(S′′)∧D, we may replace S′ with S ∗S′′ in Σ′, before
removing S from both Σ and Σ′ and proceeding with the next recursive call.
Alternatively, we reach the bottom of the recursion at line 16, succeeding only if
both Σ and Σ′ have become empty. This behaviour is formalised in the following
theorem, proved later in Section 5.

10

Theorem 2. Given three spatial conjunctions Σ̂, Σ, Σ′, let ∆ = alloc(Σ̂ ∗Σ),
and let s be a stack such that s |= well-formed(Σ̂ ∗ Σ). It follows that: 1) the
function match(s,∆,Σ,Σ′) always terminates with a result M , 2) the execution
requires O(|Σ|+ |Σ′|) recursive steps, 3) if s |= M then the entailment M ∧ Σ̂ ∗
Σ→ Σ̂ ∗Σ′ is valid, and 4) if s 6|= M then s 6|= Σ̂ ∗Σ→ Σ̂ ∗Σ′.

The main prove function, which determines whether Π ∧ Σ → Π ′ ∧ Σ′ is
valid, begins computing with the pure formula Γ := Π ∧ well-formed(Σ) and
the allocation function∆ := alloc(Σ). An SMT solver is first used to test whether
there are any models for Γ ∧ ¬Π ′ since, if this is the case, then it is possible to
build a counterexample that satisfies the antecedent but not the consequence of
the entailment. Otherwise the function proceeds iteratively using the SMT solver
to find models of Γ to guide the search for a proof or a counterexample. Given one
such stack s, the match function is called to check the validity of the entailment
with respect to s. If successful, match returns a formula M generalising the
conditions in which the entailment is valid, so the search may continue for models
where M does not hold. Iterations proceed until either all models have been
checked or a counterexample is found in the process. Formally we state the
following theorem, whose proof is given in Section 5.

Theorem 3. Given an entailment Π ∧ Σ → Π ′ ∧ Σ′ we have: i) the function
prove(Π ∧Σ→Π ′ ∧Σ′) always terminates, and ii) the return value corresponds
to the validity of Π ∧Σ→Π ′ ∧Σ′.

5 Proofs of correctness

This section presents the main technical contribution of the paper, the proof of
correctness of our entailment checking algorithm. The proof itself closely follows
the structure of the previous section, filling in the technical details required to as-
sert the statements of Theorem 1, on well-formedness, Theorem 2, on matching,
and finally Theorem 3 on entailment checking.

Well-formedness Soundness of the well-formed condition well-formed(Σ), the
first half of Theorem 1, is easily shown by noting that if a spatial conjunction Σ
is satisfiable with respect to some stack and a heap, the formula well-formed(Σ)
is also necessarily true with respect to the same stack.

Proposition 3. Given s, h |= Σ it follows s |= well-formed(Σ).

Proof. Let Σ = S1 ∗ · · · ∗Sn. Since s, h |= Σ, there is a partition h = h1 ∗ · · · ∗hn
such that each s, hi |= Si. From the soundness definition it immediately follows
that s, hi |= sound(Si) for each predicate. For every pair Si and Sj with i < j,
if either s |= empty(Si) or s |= empty(Sj), then trivially s |= separated(Si, Sj).
Assume otherwise that s |= ¬empty(Si)∧¬empty(Sj). It then follows that both
s(addr(Si)) ∈ dom hi and s(addr(Sj)) ∈ dom hj . Since by construction hi and hj
have disjoint domains, we have s(addr(Si)) 6= s(addr(Sj)). This implies the fact
that s |= separated(Si, Sj). ut

11

For completeness of well-formed, the second half of Theorem 1, we prove a
more general result. In particular if s |= well-formed(Σ) and R is a set of reserved
locations, disjoint from the necessarily allocated alloc(Σ|s), then we show how
to build a heap h such that s, h |= Σ and dom h ∩R = ∅.

Proposition 4. Given a spatial conjunction Σ, a stack s |= well-formed(Σ),
and a finite set of locations R such that alloc(Σ|s) ∩ R = ∅, there is a heap h
such that s, h |= Σ and dom h ∩R = ∅.

Proof. Let Σ = S1 ∗ · · · ∗ Sn. The proof is by induction on n and its base case,
when n = 0, is trivially satisfied by h = ∅.

For n > 1, let Σ′ = Σ\S1 = S2∗· · ·∗Sn and let R′ = R∪alloc(S1|s). By con-
struction the formula well-formed(Σ)→well-formed(Σ′) is valid so, in particular,
we also have s |= well-formed(Σ′). Furthermore, since s |= separated(S1, Sj) for
all 2 ≤ j ≤ n, it follows that alloc(S1|s)∩alloc(Σ′|s) = ∅ and, moreover, we also
obtain that alloc(Σ′|s)∩R′ = ∅. Inductively applying the proposition on Σ′ and
the set R′ we obtain a heap h′ such that s, h′ |= Σ′ and dom h′ ∩R′ = ∅. Let

h1 =


∅ if S1 = emp
{s(x) 7→ s(y)} if S1 = next(x, y)
{s(x) 7→ `1, `1 7→ `2, . . . , `s(n)−1 7→ s(y)} if S1 = lseg(x, y, n)

where, if needed, the set of locations {`1, . . . , `s(n)−1} ∩ (R ∪ dom h′) = ∅; since
R∪dom h′ is finite but there are infinitely many locations, it is always possible to
find suitable values. It is clear that s, h1 |= S1 and, furthermore, dom h1∩dom h′

so h = h1 ∗ h′ is well defined. From these it follows that both s, h |= Σ and
dom h ∩R = ∅. ut

Theorem 1 follows as a corollary of Propositions 3 and 4.

Matching and proving The following proposition is the main ingredient re-
quired to establish the soundness and completeness of the match function of
Figure 1. The proof, although quite long and rather technical, follows the in-
tuitive description from Section 4 about the behaviour of match. Each of the
main cases in the proof corresponds, respectively, to the conditions on lines 10
and 12, when discarding empty predicates, line 14, when a either a successful or
unsuccessful subtraction is performed, and finally line 16, when the base case of
the recursion is reached.

The first three cases are further divided each in two sub-cases, one for the
situation when the recursive call is successful and a proof of validity is estab-
lished, and one for the situation when a counterexample is built. The final case,
the base of the recursion, is also divided into three sub-cases: when not all pred-
icates in Σ′ have been matched, when all predicates in Σ′ were consumed but
not all in Σ, and finally when both Σ and Σ′ have become empty.

Proof (of Theorem 2). Termination of the function follows since, at each recur-
sive call, the length of either Σ or Σ′ is reduced. This also establishes the fact

12

that there are O(|Σ| + |Σ′|) recursive calls. Now, given that the function does
terminate, the proof is by induction on the recursive definition of match.

Note that, during the inductive proof, the spatial conjunction Σ̂ ∗Σ always
remains invariant. When a predicate S is removed from Σ, we implicitly add
it to Σ̂, keeping track of the already matched fragment from the original an-
tecedent. This also keeps ∆ = alloc(Σ̂ ∗Σ) always invariant between calls.

– Suppose we reach line 10, with a predicate S ∈ Σ such that s |= empty(S).
Recursively let M ′ = match(s,∆,Σ \ S,Σ′) and M = empty(S)∧M ′. Since
s |= empty(S) we have s |= M if and only if s |= M ′.
• if s |= M ′, by induction the entailment M ′ ∧ (Σ̂ ∗ S) ∗ (Σ \ S)→ Σ̂ ∗Σ′

is valid. Since M →M ′ then M ∧ Σ̂ ∗Σ→ Σ̂ ∗Σ′ is also valid.
• if s 6|= M ′, by induction s 6|= (Σ̂ ∗S) ∗ (Σ \S)→ Σ̂ ∗Σ′, which is exactly

the same as s 6|= Σ̂ ∗Σ→ Σ̂ ∗Σ′.
– Suppose we reach line 12 with a predicate S′ ∈ Σ such that s |= empty(S′).

Recursively let M ′ = match(s,∆,Σ,Σ′ \ S′) and also M = empty(S′)∧M ′.
Again s |= M if and only if s |= M ′.
• if s |= M ′, by induction M ′ ∧ Σ̂ ∗ Σ → Σ̂ ∗ (Σ′ \ S′) is valid. To prove
that M ∧ Σ̂ ∗Σ→ Σ̂ ∗Σ′ is also valid, take any pair s′, h |= M ∧ Σ̂ ∗Σ.
From the inductive entailment we have s′, h |= Σ̂ ∗ (Σ′ \ S′) and from
the fact that s′ |= empty(S′) also s′, ∅ |= S′. Thus s′, h |= Σ̂ ∗Σ′.
• if s 6|= M ′, by induction there is a heap h such that s, h |= Σ̂ ∗ Σ but
s, h 6|= Σ̂ ∗ (Σ′ \ S′). If it were the case that s, h |= Σ̂ ∗Σ′, from the fact
that s |= empty(S′) it would follow that s, h |= Σ̂∗(Σ′\S′), contradicting
the information from the inductive step. Thus s, h 6|= Σ̂ ∗Σ′.

– Suppose we reach line 13, with two of predicates S ∈ Σ and S′ ∈ Σ′, such
that s 6|= separated(S, S′). We compute (S′′, D) := subtract(∆,S′, S), and
further suppose that s |= sound(S′′)∧D so that we reach the next recursive
call at line 15. Recursively let M ′ = match(s,∆, (Σ \ S), (Σ′ \ S′) ∗ S′′) and
M = ¬separated(S, S′) ∧ sound(S′′) ∧D ∧M ′. As before we have s |= M if
and only if s |= M ′.
• if s |= M ′, by inductionM ′∧(Σ̂ ∗S)∗(Σ \S)→(Σ̂ ∗S)∗((Σ′\S′)∗S′′) is

valid. To prove that M ∧ Σ̂ ∗Σ→ Σ̂ ∗Σ′ is also valid, now take any pair
s′, h |= M ∧ Σ̂ ∗Σ. Since Σ̂ ∗Σ = (Σ̂ ∗ S) ∗ (Σ \ S), from the inductive
entailment after some rearrangement s′, h |= Σ̂ ∗ (Σ′ \ S′) ∗ (S ∗ S′′) and
from Proposition 1 also s′, h |= Σ̂ ∗ (Σ′ \ S′) ∗ S′. Thus s′, h |= Σ̂ ∗Σ′.

• if s 6|= M ′, by induction after some rearrangement there is a heap h such
that s, h |= Σ̂ ∗Σ but s, h 6|= Σ̂ ∗ (Σ′ \ S′) ∗ (S ∗ S′′). Partition the heap
h = h1 ∗ h2 such that s, h1 |= S and s, h2 |= Σ̂ ∗ (Σ \ S). If it were the
case that s, h |= Σ̂ ∗Σ′, from the second item on Proposition 1 it follows
that s, h |= Σ̂ ∗ (Σ′ \ S′) ∗ (S ∗ S′′), contradicting the inductive step. We
therefore have that s, h 6|= Σ̂ ∗Σ′

– Suppose again we reach line 13, with two colliding predicates S and S′; we
compute (S′′, D) := subtract(∆,S′, S); but this time s 6|= sound(S′′) ∧D so
we reach line 16 with non-empty Σ and Σ′, returning M = ⊥. Since s 6|= M
we have to show that s 6|= Σ̂ ∗Σ→ Σ̂ ∗Σ′.

13

From Proposition 2 there is a heap h1 such that s, h1 |= S and for any
extension h, i.e. h1 ⊆ h, we have s, h 6|= Σ̂ ∗ (Σ′ \ S′) ∗ S′. Applying Propo-
sition 4 with R = dom h1, it is possible to obtain another heap h2 such that
s, h2 |= Σ̂ ∗ (Σ \ S) and dom h1 ∩ dom h2 = ∅. Let h = h1 ∗ h2, from this it
follows that s, h |= Σ̂ ∗Σ, and we already knew that s, h 6|= Σ̂ ∗Σ′.

– Finally suppose that we reach line 16, with no remaining pairs of colliding
predicates in Σ and Σ′. We may find ourselves in several situations:
• Σ′ 6= ∅, so there is a S′ ∈ Σ′ with s 6|= empty(S′), but it does not collide

with any S ∈ Σ, so the function returns M = ⊥ and we have to prove
that s 6|= Σ̂ ∗ Σ→ Σ̂ ∗ Σ′. If S collides with some predicate in Σ̂, then
the consequence is immediately unsatisfiable and from Proposition 4 we
obtain a model for Σ̂ ∗ Σ. Otherwise let R = {s(addr(S′))}, since S′
does not collide with anything in Σ̂ ∗Σ, we have R∩ alloc(Σ̂ ∗Σ|s) = ∅
and again from Proposition 4 there is a h such that s, h |= Σ̂ ∗ Σ and
s(addr(S′)) 6∈ dom h. Since s(addr(S′)) must be included, by necessity,
on any model of Σ̂ ∗Σ′, it follows as we wanted that s, h 6|= Σ̂ ∗Σ′.
• Σ′ = ∅ but Σ 6= ∅, so there is a S ∈ Σ with s 6|= empty(S), the function
returns M = ⊥ and thus we have to prove that s 6|= Σ̂ ∗ Σ → Σ̂. From
Proposition 4 with R = ∅ there is a h such that s, h |= Σ̂ ∗Σ. Partition
the heap h = h1 ∗ h2 such that s, h1 |= Σ̂ and s, h2 |= Σ. Since there is
a non-empty S in Σ it must be the case that h2 6= ∅ and h1 ⊂ h is a
strict subset. Because all our considered spatial predicates are precise, it
therefore follows that s, h 6|= Σ̂.
• Both Σ′ = ∅ and Σ = ∅, so the function returns M = >. In this final
case it is trivial that s |= M and M ∧ Σ̂→ Σ̂ is valid. ut

We are now ready to prove the termination and correctness of the main prove
function as stated earlier in Theorem 3.

Proof (of Theorem 3). Termination is established since each iteration of the loop
at line 4 strictly reduces the number satisfying models of Γ . Since there is only a
finite number of distinct formulas that may be built by conjunctions of empty(S),
sound(S), ¬separated(S, S′) and the side condition of subtract(∆,S′, S)—the
building blocks for the return value M of match—all combinations will be ex-
hausted at some point.

For correctness we first note that, starting from line 1, it is established that
the formula Γ→Π∧well-formed(Σ) is valid and, since later only more conjuncts
are appended to Γ , this invariant is maintained throughout the execution.

If the formula Γ ∧¬Π ′ in line 3 is satisfiable, then there is a stack s such that
s |= Γ but s 6|= Π ′. From Proposition 4 there is a heap h such that s, h |= Π ∧Σ
but, since it already fails on the pure part, s, h 6|= Π ′ ∧ Σ′ and the program
reports that the entailment is invalid. Otherwise, if Γ ∧ ¬Π ′ is unsatisfiable, it
follows that Π ∧Σ→Π ′ is valid. In order to show this take any s′, h |= Π ∧Σ,
from Proposition 3 we have that s′ |= Π ∧well-formed(Σ). It therefore must be
the case that s′ |= Π ′ or s′ would be a model of the unsatisfiable Γ ∧ ¬Π ′.

To finalise we now prove that line 4 at the base of the loop always satisfies
the invariants that if Γ ∧Σ→Σ′ is valid then also Π ∧Σ→Σ′ is. Just before

14

entering the loop we have Γ = Π∧well-formed(Σ). Assuming Γ ∧Σ→Σ′ is valid
take any s′, h |= Π ∧Σ, from Proposition 3 it follows that s′ |= well-formed(Σ)
and therefore, from our assumption, s′, h |= Π ′ ∧Σ′.

If we enter the code of the loop we have s |= Γ and M = match(s,∆,Σ,Σ′).
If s 6|= M from Theorem 2 there is a heap h such that s, h |= Π ∧ Σ but,
however, s, h 6|= Σ′, providing as required a counterexample for the entailment.
Alternatively, if s |= M , from Γ ∧ ¬M ∧Σ→Σ′ we have to prove Π ∧Σ→Σ′.
Take any s′, h |= Π ∧ Σ, if s′, h |= M then again from Theorem 2 the formula
M ∧Σ→Σ′ is valid, and s′, h |= Σ′. Otherwise, if s′, h 6|= M , from our previous
assumption it would also follow that s′, h |= Σ′.

We reach the final line if Γ becomes unsatisfiable and, since Γ ∧ Σ → Σ′

would then be trivially valid, we prove as desired the validity of Π ∧Σ→Σ′. ut

6 Experiments

We implemented our entailment checking algorithm in a tool called Aster*ıx us-
ing Z3 as the pure theory back-end. Due to the current lack of realistic bench-
marks making use of such theory features, we only report the running times of
our new implementation against already published benchmarks from [22].

These are benchmarks with a significant number of repeated spatial atoms
in the entailment, generated by “cloning” multiple copies of verification con-
ditions obtained when running Smallfoot [5] against its own benchmark suite.
They are particularly difficult for the unfolding implemented in slp [22] and the
match function in Aster*ıx. We observe a significant improvement, since our match
function collects constraints that are potentially useful for other applications of
match and relies on the efficiency of a highly optimised SMT solver.

Copies Smallfoot slp Aster*ıx
1 0.01 0.11 0.17
2 0.07 0.06 0.19
3 1.03 0.08 0.23
4 9.53 0.13 0.26
5 55.85 0.38 0.31
6 245.69 2.37 0.39
7 (64%) 20.83 0.54
8 (15%) 212.17 0.85
9 — — 1.49

10 — — 2.81

Acknowledgements This research was supported in part by the ERC project
308125 VeriSynth.

References
1. C. Barrett and C. Tinelli. CVC3. In CAV, pages 298–302, 2007.

15

2. J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. W. O’Hearn, T. Wies, and
H. Yang. Shape analysis for composite data structures. In CAV, 2007.

3. J. Berdine, C. Calcagno, and P. W. O’Hearn. A decidable fragment of separation
logic. In FSTTCS, number 3328 in LNCS, pages 97–109, 2004.

4. J. Berdine, C. Calcagno, and P. W. O’Hearn. Symbolic execution with separation
logic. In APLAS, pages 52–68, 2005.

5. J. Berdine, C. Calcagno, and P. W. O’Hearn. Smallfoot: Modular automatic as-
sertion checking with separation logic. In FMCO, 2006.

6. M. Botincan, M. J. Parkinson, and W. Schulte. Separation logic verification of c
programs with an SMT solver. Electr. Notes Theor. Comput. Sci., 254:5–23, 2009.

7. R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebastiani. The
MathSAT 4SMT solver. In CAV, pages 299–303, 2008.

8. C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Compositional shape analysis
by means of bi-abduction. In POPL, pages 289–300, 2009.

9. W.-N. Chin, C. David, H. H. Nguyen, and S. Qin. Automated verification of shape,
size and bag properties via user-defined predicates in separation logic. Sci. Comput.
Program., 77(9):1006–1036, 2012.

10. B. Cook, C. Haase, J. Ouaknine, M. J. Parkinson, and J. Worrell. Tractable
reasoning in a fragment of separation logic. In CONCUR, pages 235–249, 2011.

11. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In POPL, 1977.

12. P. Cousot, R. Cousot, and L. Mauborgne. The reduced product of abstract domains
and the combination of decision procedures. In FOSSACS, pages 456–472, 2011.

13. L. de Moura and N. Bjørner. Model-based theory combination. Electron. Notes
Theor. Comput. Sci., 198(2), 2008.

14. L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, 2008.
15. D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem prover for program

checking. J. ACM, 52(3), 2005.
16. D. Distefano and M. Parkinson. jStar: Towards practical verification for Java. In

OOPSLA, pages 213–226, 2008.
17. R. Dockins, A. Hobor, and A. W. Appel. A fresh look at separation algebras and

share accounting. In APLAS, pages 161–177, 2009.
18. B. Dutertre and L. D. Moura. The Yices SMT solver. Technical report, Computer

Science Laboratory, SRI International, 2006.
19. C. Haase, S. Ishtiaq, J. Ouaknine, and M. Parkinson. SeLoger: A tool for graph-

based reasoning in separation logic. In CAV, 2013.
20. R. Iosif, A. Rogalewicz, and J. Simacek. The tree width of separation logic with

recursive definitions. In CADE, 01 2013.
21. A. Nanevski, G. Morrisett, A. Shinnar, P. Govereau, and L. Birkedal. Ynot: De-

pendent types for imperative programs. In ICFP, pages 229–240, 2008.
22. J. A. Navarro Pérez and A. Rybalchenko. Separation Logic + Superposition Cal-

culus = Heap Theorem Prover. In PLDI, pages 556–566, 2011.
23. R. Nieuwenhuis and A. Rubio. Paramodulation-based theorem proving. In J. A.

Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, volume I,
chapter 7, pages 371–443. Elsevier, 2001.

24. R. Piskac, T. Wies, and D. Zufferey. Automating separation logic using SMT. In
CAV, 2013.

25. J. Reynolds. Separation logic: A logic for shared mutable data structures. In LICS,
pages 55–74, 2002.

16

