Using Runtime Pathsfor Macro Analysis

Mike Chen, Emre Kiciman, Anthony Accardi, Armando Fox, Eric Brewer
{mikechen, brewer} @cs.berkeley.edu, {emrek, fox} @cs.stanford.edu, anthony@tellme.com

Abstract

We introduce macro analysis, an approach used to infer
the high-level properties of dynamic, distributed systems,
and an indispensable tool when faced with tasks where lo-
cal context and individual component details are insuffi-
cient. We present a new methodology, runtime path analysis,
where paths are traced through software components and
then aggregated to understand global system behavior via
statistical inference. Our approach treats components as
gray boxes and complements existing micro analysis tools,
such as code-level debuggers. We use runtime paths to de-
duce application state, detect failures, and diagnose prob-
lems, all in an application-generic fashion.

1 Introduction

Divide and conquer, layering, and replication are funda-
mental design principles useful for building large, complex
systems, such as Internet services, sensor networks, and
peer-to-peer (P2P) systems. Such techniques make build-
ing large systems tractable, as they improve availability, in-
crease code reuse, and simplify high-level application struc-
ture. Unfortunately, debugging ease and fault monitoring do
not scale as well, since global context tends to be dispersed
across many small components. Building large, complex
systems that are reliable, yet maintainable and extensible,
remains a challenge.

Existing debugging techniques make use of various mi-
cro analysis tools, such as code-level debuggers and appli-
cation logs. Such tools tend to provide knowledge limited to
component internals, or furnish a thread-level perspective,
so that the execution context is lost at the thread bound-
aries. While they provide valuable, localized knowledge,
many of these tools fail to capture aggregate component be-
havior and macro system properties. By way of analogy,
micro analysis allows you to see the details of each hon-
eybee, but macro analysis is needed to understand how the
bees interact to keep a beehive functioning.

Various systems have exposed and exploited non-local
system context to address performance problems [11, 1].
Macro analysis makes use of non-local context to improve
system management and reliability. This is especially im-

portant for large, dynamic systems, where execution context
may be distributed across many components.

One key observation we make about dynamic, dis-
tributed systems is that most of them have a single system-
wide execution path associated with each request that they
service. Examples include Internet services that have re-
quest/response paths, and P2P systems and sensor networks
that have one-way message paths. By tracing these run-
time paths, we expose and connect various local contexts
dispersed throughout the system. We then use statistics to
analyze many of these paths and thereby better understand
the system’s behavior.

There are several open, challenging problems that can
benefit from the high-level system perspective that macro
analysis provides:

Deducing system structure: Systems evolve through both
changes to their components and changes in how
these components interact. Understanding such inter-
component relationships enables developers and oper-
ators to anticipate potential conflicts and debug prob-
lems. Unfortunately, current techniques for track-
ing changes in these relationships rely on error-prone,
manual documentation, which is infeasible for rapidly
changing systems. As systems grow and increase in
complexity, we desire automated mechanisms for de-
ducing system structure and tracking its evolution.

Detecting application-level failures. Despite our best ef-
forts at unit testing and quality assurance, services
still fail. Worse still, many application-level faults are
only seen by end users after deployment, even though
systems are constantly monitored for signs of failure.
One large commercial service has found that such er-
rors take considerably longer to detect than lower-level
failures. The difficulty is that broken or misconfig-
ured components or bad component interactions may
only exhibit symptoms at the application level, and the
global context required to programmatically diagnose
such application-level failures is usually not available.

Diagnosing failures: Failures often manifest themselves
far from their root cause. In the extreme case, faults
are not detected within the system’s boundaries at all

and are only visible to external observers. Unfortu-
nately, existing debugging and diagnosis tools have a
limited, local view of the system, and thus work best
when failures manifest themselves close to the cause.
We desire tools that use global failure information to
help operators and developers identify the root cause.

The contributions of this paper are:

1. Recognizing that macro analysis is critical when de-
veloping, evolving, and maintaining reliable systems
as they grow in size and complexity.

2. A path-based macro analysis framework, where we
first record the components and resources used to ser-
vice each request, and then use statistical analysis tech-
niques to deduce system structure, detect application-
level failures, and diagnose problems.

The paper is organized as follows: Section 2 develops
the runtime path model. Section 3 describes our analysis
framework and current status. Section 4 discusses our re-
sults addressing the challenging problems above, both in a
research setting and as part of a commercial infrastructure
at Tellme Networks. We outline future research directions
in Section 5 and discuss related work in Section 6.

2 Runtime Paths

We extend the dataflow paths in Scout [11] and Ninja
[13] * to incorporate runtime properties. A runtime path is
the control flow, resources, and performance characteristics
associated with servicing a request. Paths can be recorded
during runtime by tracing each request through a live sys-
tem, spanning the system’s layers to access direct compo-
nent and resource dependencies. Each path then provides a
vertical slice of the system from a request’s perspective.

We use the term “request” in a broad sense to mean a unit
of work. This includes both requests that require responses
(e.g., HTTP) and those that don’t (e.g., one-way messages).

There are two main requirements for a system to sup-
port runtime paths. First, it must be possible to associate
a unique path with each distinct request. For example, if
the same request is handled by different components in dif-
ferent, possibly distributed processes, we must be able to
make this connection, perhaps by using a unique 1D that
travels with the request. Second, it must be possible to re-
port observations and associate them with the components
that made them. For a pipelined system, a logging mecha-
nism together with knowledge of component request entry
and exit would be sufficient.

The components make local observations, from which
global context is obtained by stringing them together along

1Scout: “a logical channel through a multi-layered system over which
1/0 data flows within a single host”. Ninja: “a flow of typed data through
multiple services across the wide area”.

Request

Reusable
Analysis
Framework

Aggregato

Query =

Engine

Visualizer

Figure 1. Analysis Framework.

a runtime path. Each observation contains information
about some active component, such as its name, location,
timestamp, latency, and arguments. The tracing should be
extensible to allow for integration with micro analysis tech-
niques. For example, identifiers could be included in each
observation to provide a link with standard application logs.

3 AnalysisFramework

The analysis framework consists of five major mod-
ules, as illustrated in Figure 1. The Tracer tracks requests
through the target system, reporting any observations made.
Although Tracer is platform-specific, it can be application-
generic for platforms that host application components by
monitoring requests that enter and exit the components.

The Aggregator receives these observations and recon-
structs the runtime paths, which the Path Repository stores.
The Statistical Declarative Query Engine handles the data
management complexity. It enables us to transparently op-
timize data storage, and evaluate and update different anal-
ysis algorithms. Monitoring and debugging tools should
be built on top of this engine. The Visualization module
helps users understand system behavior. Paths have a natu-
ral graph representation: nodes are observations and edges
indicate request propagation.

We implemented an extensible Aggregator, a Path
Repository, and a Query Engine, with plugins for data clus-
tering and structural anomaly detection. We are currently
experimenting with different analysis algorithms.

We built a Tracer for a web server, Jetty, and a clustered
J2EE application server, JBoss [9]. The web server inserts
a unique request ID into the HTTP request header. This ID
is placed in thread local storage for intra-thread component
calls, and passed via a modified RMI library for inter-thread
calls. The total code impact was 428 lines in 10 files.

We have been running PetStore, an e-commerce appli-
cation, and ECperf [15], an industry-standard benchmark
for J2EE application servers. Both have a 3-tier architec-

ture consisting of a web server, application components,
and a database. The tracing instrumentation is application-
generic, so no application changes were necessary.

4 Applying Macro Analysis
4.1 Deducing System Structure

Understanding a service’s structure, including the rela-
tionship between external requests and the service’s internal
components and state, enables developers and operators to
anticipate potential problems before they upgrade the sys-
tem. Knowing how components and shared state are used is
critical when debugging failed requests. Dependency mod-
els have been proposed to improve system reliability and
availability [7], but there are few techniques that generate
such models automatically.

Key idea: Paths directly capture application struc-
ture.

Runtime paths record how a system services real re-
quests, which compares favorably with error-prone, human-
generated models and static analysis that predict how the
system might service such requests. Automatically gener-
ated models help developers and operators understand the
actual behavior of systems under investigation, and can be
used as input to recovery mechanisms, such as recursive
restarts [3], to reduce mean time to repair.

The Magpie project is using macro analysis techniques
to generate detailed and accurate models of distributed sys-
tem workloads [10]. While currently used for capacity plan-
ning, these models may also be applied to performance de-
bugging, system tuning, and fault diagnosis.

Keyidea: Pathsassociaterequestswith internal state.

Internet services typically store persistent state in a
database to allow for easier front-end scaling. Different re-
quests often share persistent state, but the components han-
dling each request may be unaware of any such sharing. For
example, although checkout and login requests may seem
like independent HTTP requests, they may share a user pro-
file. A bug during checkout could corrupt this shared state
and cause subsequent login failures. Such bugs are diffi-
cult to diagnose without an understanding of how various
dispersed local contexts depend on each other.

By tracing runtime paths from the web servers, through
the application components, and to the databases, we can
easily determine how state is shared across requests.

Table 1 shows the mapping between request types and
their reads and writes to database tables in PetStore, our
desired level of state granularity.

4.2 Detecting Failuresusing Anomalies

Key idea: Paths often behave differently in failure
modes. Hence we can detect failuresvia changesin path
behavior.

Database Tables
Request Type || Product | Signon | Account | Banner | Inventory
verifysignin R R R
cart R R RIW
commitorder R W
category R
search R R
productdetails R R/W
newaccount R R
checkout w

Table 1. An automatically generated partial state de-
pendency table for PetStore. To determine which request
types share state, group the rows by common entry under
the desired column. For example, the checkout request only
writes to the Inventory table, and shares state with three
other requests: cart, commitorder, and productdetails.

Application-level failure detection remains a major chal-
lenge today. In practice, quality assurance testing mainly
catches simple bugs. Many complex bugs exist in deployed
software because of difficulties accurately simulating the
workload of a production environment, difficulties model-
ing the production environment itself, incomplete test cov-
erage, and economic factors. Detecting these bugs in a live
system can be difficult, since many bug symptoms are only
evident to an end-user, such as incorrect text on a web page.

If we analyze a live system using macro analysis tech-
niques, however, we can often see secondary effects of fail-
ures. Many errors cause runtime paths to end prematurely,
while others send paths to less-often used error handlers.
Still others, such as fail-stutter faults, simply cause devia-
tions in the latencies of particular path components.

One macro analysis technique for detecting these
changes in path behavior is to search for asymmetries in the
interactions among replicated, load-balanced components.
Consider an Internet service where all but one of the middle
tier nodes are sending queries to a database. Since the mid-
dle tier nodes are replicas of one another, it is likely that the
one node’s database inactivity is a symptom of some prob-
lem. We can extend this idea to treat excessively heavy or
light component interaction volume as a sign of failure.

Another technique is to group paths by request type and
search for significant deviations in latency or structure.

4.3 Diagnosing Failuresthrough Correlations

Key idea: Runtime paths make the root cause's in-
teraction with a failed request apparent, so that we can
quickly explain a failure by a bad component-level or
systemic behavior, and can also quickly assess the user
visible impact (and hencethe priority) of the problem.

When something fails, we want to know why. The chal-
lenge here is in tracing externally observed (application-
level) failures back to a system fault or root cause.

In practice, we start with sets of suspected failed requests
(e.g., reported by users or discovered via anomaly detec-
tion) and successful requests, and face the task of identify-
ing the runtime path features underlying any real failures.

The diagnosis task can be cast as a data mining problem,
by using data clustering to group the components associated
with each failed request’s path. Using a previous prototype,
Pinpoint [4], we showed that for single component failures
the data clustering approach provides a tradeoff between
accuracy, at 70-90%, and false positives, at 20-40%. This
compares favorably with direct fault detection and other au-
tomatic analysis methods, which either offer 40% accuracy
or many (almost 90%) false positives. Also, we found that
paths are vital when dealing with multi-component faults.

Alternatively, the task can be cast as a classification
problem in the machine learning domain. Here, the root
causes would be the strongest classification rules.

An important benefit of our failure diagnosis approach is
that the runtime path data links the logically separate tasks
of failure detection and diagnosis, which enables an un-
derstanding of mechanisms where the connection between
problem causes and symptoms is not otherwise apparent.

44 A Commercial Example

Tellme Networks has developed a path-based macro
analysis infrastructure, its observation logging system, to
help ensure the high reliability of the Tellme Network.
Tellme runs voice applications; for the purpose of our cur-
rent discussion, the system is a telephony network with an
Internet back-end, and serviced requests include an audio
response to a telephone caller’s voice query.

After explaining how runtime paths behave in this ex-
ample, we will discuss a failure and describe how we used
paths to first diagnose the problem, then deduce runtime
system structure, and ultimately craft a detection algorithm.

An actual, although simplified, voice response path is il-
lustrated in Figure 2. There are 31 observations in this run-
time path, plotted by the relative time at which each obser-
vation was made. We call attention to 4 of these, indicating
when the user begins and finishes speaking an utterance and
when we start and stop sending audio in response.

The latency profile of the runtime path shown in Figure
2 is close to ideal for this system; most of the time is spent
listening to or talking to the user, and the logic connecting
the request with the response is rapidly executed. An impor-
tant metric is the latency between end of speech and start of
playback. This 1760 ms delay is perceived by the user, and
indicates how quickly the system appears to respond.

Now consider a real network failure. In this case, the
process supplying the audio to the machine on the telephone

obs num

%0 ,/} 5340 d playback
ns end playbac

95 |- E': 2940 ns start playback
20
15 |
10 |-
5 —

&/ol””’é 1180 s end of speech
09 ‘ 0 ns_start of speech

0 2000 4000

time [ms]

Figure 2. A runtime path from the Tellme Network.

network experienced an internal fault, so that it produced
very short waveforms instead of the desired ones. This fail-
ure is not catastrophic at the system level; an occasional
skipped waveform may go unnoticed at best or confuse the
user at worst. The problem is therefore difficult to detect via
low-level system monitoring and requires significant appli-
cation knowledge to handle effectively.

Despite this challenge, we quickly diagnosed this prob-
lem using global context in the observation logs. A caller,
familiar with a particular application that exhibited the
symptoms, provided details of his phone call that enabled
us to quickly locate the relevant runtime path. Once visual-
ized as in Figure 2, a short 20 ms playback time suggested
a skipped waveform, the preceding observations confirmed
that the audio server process thought it had successfully ser-
viced the audio request, and observation context informa-
tion pointed to logs for the suspect process, which made the
root cause evident. All this information was found in this
one path.

Once we understood the runtime path characteristics for
this failure, we were able to query the observation logs to
detect all similar occurrences throughout the Tellme Net-
work. We deduced enough system state to know which
components affected which applications, so we could iso-
late the failing components and assess application impact.

Finally, we were able to craft a monitor to detect failures
upon seeing an anomalous proportion of suspect paths with
structure similar to that of the path for the failed request.

5 Future Directions

In addition to refining our framework and exploring dif-
ferent algorithms, we are applying our path-based macro
analysis methodology to sensor networks and P2P systems.

Key idea: Violations of macro invariants are signs
of system intrusion or buggy implementations. Macro
analysis can help discover invariants, detect violations,
and pinpoint the offending components.

Because of the highly distributed and dynamic nature of
these systems, many domain-specific macro invariants are
difficult to validate using micro analysis or static analysis
[6]. Consider an upper bound on the number of hops made
during message delivery in a P2P system as a macro invari-
ant. By applying root cause analysis, we can identify peers
that incorrectly route messages. In this example, although
each node may detect an invariant violation, a diagnosis is
difficult without the context contained in a runtime path.

6 Reated Work

We consider both micro and macro analysis work, as
well as hybrid approaches.

Macro analysis Magpie [10] profiles web sites to observe
the processing state machine for each HTTP request
and to measure request resource consumption (CPU,
disk, and network usage) at each stage. The focus is on
building probabilistic models of the workload suitable
for performance prediction, tuning, and diagnosis.

Micro analysis. Anomaly detection has been used to iden-
tify intrusions from resource usage [5], system calls
[8], and network packets [12]. Paths provide non-local
context and may make the detection of a new class of
intrusions possible.

Hybrid: There are several recent commercial request trac-
ing systems of note. PerformaSure [14] and AppAs-
sure [2] focus on performance diagnosis. IntegriTea
[16] focuses on capturing and replaying failure con-
ditions. These systems work with isolated requests,
while we aggregate multiple paths and use statistical
techniques to infer collective system behavior.

7 Conclusion

Macro analysis satisfies a need when monitoring and de-
bugging large, complex systems where local context is of
insufficient use. To this end, we have presented a runtime
path-based approach along with a family of macro analysis
tools that are proving effective in addressing several chal-
lenging and important problems. Our method involves dy-
namically tracing runtime paths through live systems, and
recording local observations about performance, interacting
components, and resource usage along the way. We subse-
quently apply data mining techniques to statistically infer
aggregate system behavior. This approach is applicable to
a large variety of systems, and complements existing micro
analysis tools that provide additional insight into individual
components.

Our results with distributed Internet systems demonstrate
promising progress in 1) deducing system structure and de-
pendencies, 2) detecting failures via path anomalies, and 3)
diagnosing problems. We plan to extend our methodology

to peer-to-peer systems and sensor networks by validating
macro invariants.

References

[1] M. B. Abbott and L. L. Peterson. Increasing Network
Throughput by Integrating Protocol Layers. |IEEE/ACM
Transactions on Networking, 1(5):600-610, 1993.

[2] Alignment Software. AppAssure, 2002. htt p: // waw.
al i gnment sof t ware. con .

[3] G. Candea and A. Fox. Recursive Restartability: Turning
the Reboot Sledgehammer into a Scalpel. In HotOS VI,
2001.

[4] M. Chen, E. Kiciman, E. Fratkin, E. Brewer, and A. Fox.
Pinpoint: Problem Determination in Large, Dynamic Inter-
net Services. In Symposium on Dependable Networks and
Systems (IPDS Track), 2002.

[5] G. W. Dunlap, S. T. King, S. Cinar, M. Basrai, and P. M.
Chen. ReVirt: Enabling Intrusion Analysis through Virtual-
Machine Logging and Replay. In OSDI, 2002.

[6] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking
System Rules Using SystemSpecific, Programmer-Written
Compiler Extensions. In OSDI, 2000.

[7] B. Gruschke. A New Approach for Event Correlation based
on Dependency Graphs. In 5th Workshop of the OpenView
University Association, 1998.

[8] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion De-
tection Using Sequences of System Calls. Journal of Com-
puter Security, 6(3):151-180, 1998.

[9] JBoss.org. JBoss J2EE Application Server, 2001. htt p:
/I www. j boss. org.

[10] Microsoft Research. Magpie, 2003. ht t p: / / r esear ch.
m crosoft.com projects/ magpi e/.

[11] D. Mosberger and L. L. Peterson. Making Paths Explicit in
the Scout Operating System. In OSDI, 1996.

[12] V. Paxson. Bro: A System for Detecting Network Intrud-
ers in Real-time. Computer Networks (Amsterdam, Nether-
lands: 1999), 31(23-24):2435-2463, 1999.

[13] S. D. Gribble et al. The Ninja Architecture for Robust
Internet-scale Systems and Services. Computer Networks,
35(4):473-497, 2001.

[14] Sitraka. PerformaSure, 2002. htt p: //ww. si traka.
com sof t war e/ per f or masure/ .

[15] Sun Microsystems. ECperf J2EE benchmark, 2001. ht t p:
/ljava. sun.cont j 2ee/ ecperf/.

[16] TealLeaf Technology. Integrtea, 2002. http:// vwww.
t eal eaf . cont .

