
Atom-Aid: Detecting and Surviving Atomicity Violations∗

Brandon Lucia† Joseph Devietti† Karin Strauss†‡ Luis Ceze†

†Computer Science and Engineering
University of Washington

{blucia0a, devietti, kstrauss, luisceze}@cs.washington.edu

‡Advanced Architecture and Technology Laboratory
AMD

Abstract
Writing shared-memory parallel programs is error-prone.

Among the concurrency errors that programmers often face are
atomicity violations, which are especially challenging. They hap-
pen when programmers make incorrect assumptions about atomic-
ity and fail to enclose memory accesses that should occur atomi-
cally inside the same critical section. If these accesses happen to
be interleaved with conflicting accesses from different threads, the
program might behave incorrectly.

Recent architectural proposals arbitrarily group consecutive dy-
namic memory operations into atomic blocks to enforce memory or-
dering at a coarse grain. This provides what we call implicit atom-
icity, as the atomic blocks are not derived from explicit program
annotations. In this paper, we make the fundamental observation
that implicit atomicity probabilistically hides atomicity violations
by reducing the number of interleaving opportunities between mem-
ory operations. We then propose Atom-Aid, which creates implicit
atomic blocks intelligently instead of arbitrarily, dramatically re-
ducing the probability that atomicity violations will manifest them-
selves. Atom-Aid is also able to report where atomicity violations
might exist in the code, providing resilience and debuggability. We
evaluate Atom-Aid using buggy code from applications including
Apache, MySQL, and XMMS, showing that Atom-Aid virtually elim-
inates the manifestation of atomicity violations.

1. Introduction

Extracting performance from emerging multicore architectures

requires parallel programs. However, writing such programs is dif-

ficult and largely inaccessible to most programmers. When writing

explicitly parallel programs for shared memory multiprocessors,

programmers need to pay special attention to keeping shared data

consistent. This is usually done by specifying critical sections using

locks. However, this is typically error-prone and often leads to syn-

chronization defects, such as data-races, deadlocks, and atomicity

violations.

Atomicity violations are very challenging concurrency errors.

They happen when programmers make incorrect assumptions about

atomicity and fail to enclose memory accesses that should occur

atomically inside the same critical section. According to a recent

comprehensive study [15], atomicity violations account for about

two thirds of all the examined non-deadlock concurrency bugs.

∗This work was supported in part by the National Science Foundation

under grant CNS-0720593 and a gift from Microsoft Research.

These bugs are hard to find due to their subtle nature and the non-

determinism in multithreaded execution. Hence, we can not afford

to assume code will be free of bugs, so it is important to both detect

bugs and survive them by preventing their manifestation. Interest-

ingly, the manifestation of concurrency bugs is very much influ-

enced by how multithreaded programs are executed, which deter-

mines the global interleaving of memory operations. For a given

memory semantics exposed to the software, there are multiple valid

global interleavings of memory operations. We can choose to al-

low only a subset of those interleavings to avoid concurrency bugs

while still exposing the same memory semantics to the software.

We leverage this property in our work.

Recent architectural proposals arbitrarily group consecutive

memory operations into atomic blocks (e.g., BulkSC [6], ASO [29]

and Implicit Transactions [26]). Those systems provide what we

call implicit atomicity, as they arbitrarily group a sequence of dy-

namic memory operations of a program thread into an atomic block

(or chunk) without following any program annotation. This signif-

icantly reduces the amount of interleaving between memory opera-

tions of different threads, as interleavings only happen at a coarse

granularity. The main goal of such proposals is to bridge the perfor-

mance gap of memory consistency models by enforcing consistency

at a coarse grain.

In this paper, we show that implicit atomicity has the very in-

teresting property of being able to hide atomicity violations if their

memory operations happen to fall within the boundaries of a chunk.

We build upon this observation and propose Atom-Aid, an architec-

ture that divides the dynamic instruction stream into chunks intel-

ligently instead of arbitrarily, further increasing the odds that an

atomicity violation will be hidden.

Figure 1 shows a simple example: counter is a shared vari-

able, and both the read and update of counter are inside distinct

critical sections under the protection of lock L, implying that the

code is free of data-races. However, the code is still incorrect as

a call to increment() from another thread could be interleaved

right in between the read and update of counter, leading to incor-

rect behavior (e.g., two concurrent calls to increment() could

cause counter to be incremented only once). This is a subtle er-

ror, and an easy mistake to make, since determining when atomicity

is necessary, and which operations need to be grouped atomically

can be difficult and prone to misconceptions. In fact, even programs

written for transactional memory (TM) [12, 14, 18, 22] are subject

to atomicity violations if the transactions are not inserted in the ap-

propriate places.

Atomicity violations lead to incorrect program behavior if there

is an unfortunate interleaving between memory accesses of differ-

int counter; // shared variable
 // protected by lock L

void increment() {
 int temp;

 lock (L);
 temp = counter;
 unlock (L);

 temp++;

 lock (L);
 counter = temp;
 unlock (L);
}

The read and
update of counter

should have
happened inside the
same critical section

Bad interleavings of
remote thread

Figure 1. A simple example of an atomicity violation. The read
and update of counter from two threads may interleave such
that the counter is incremented only once.

ent threads that breaks the atomicity assumptions made by the pro-

grammer. The chance of an atomicity violation manifesting itself

depends on the chance of such an unfortunate interleaving. In Fig-

ure 2(a), we show the four opportunities where interleavings can

happen in traditional systems with fine-grain interleaving. In con-

trast, Figure 2(b) shows where interleavings can happen when the

memory operations of the atomicity violation happen to be inside

the same chunk. In these cases, the atomicity violation is hidden.

In Section 3, we explain and analyze this observation in detail.

...

lock(L)

ld $R1 [counter]

unlock(L)

inc $R1

lock(L)

st [counter] $R1

unlock(L)

...

...

lock(L)

ld $R1 [counter]

unlock(L)

inc $R1

lock(L)

st [counter] $R1

unlock(L)

...

(a)

Opportunities
for interleaving

(b)

Implicit atomic blocks
arbitrarily defined by

the processor

Figure 2. Opportunities for interleaving. (a) shows where inter-
leaving from other threads can happen in a traditional system.
(b) shows where such interleavings can happen in systems that
provide implicit atomicity.

This paper makes two contributions. First, we make the funda-

mental observation that systems with implicit atomicity can natu-

rally hide some atomicity violations. We justify this observation

with a probability analysis and empirical evidence. Second, we

propose Atom-Aid, an architecture that uses hardware signatures

to detect likely atomicity violations and dynamically adjust chunk

boundaries, making the system both detect and survive atomic-

ity violations without requiring any program annotation. To the

best of our knowledge, this is the first paper on surviving atom-

icity violations without requiring global checkpointing and recov-

ery [21, 25, 30]. Since we do not want atomicity violations to go un-

noticed by the programmer, Atom-Aid is also able to report where

atomicity violations may exist in the code, providing resilience and

debuggability. Finally, we provide an evaluation using buggy code

from real applications which shows that Atom-Aid is able to reduce

the chances that an atomicity violation will lead to wrong program

behavior by several orders of magnitude (98.7% to 100% reduc-

tion).

This paper is organized as follows. Section 2 gives background

information on implicitly atomic systems and atomicity violations.

In Section 3, we explain our observation with a probability study.

Section 4 presents the Atom-Aid algorithm and architectural com-

ponents. We present our evaluation infrastructure and results in

Sections 5 and 6, respectively. Finally, Section 7 discusses related

work and Section 8 concludes.

2. Background
2.1. Implicit Atomicity

In systems that support implicit atomicity, memory operations in

the dynamic instruction stream are arbitrarily grouped into atomic

chunks. This way, consistency enforcement can be supported at the

coarse grain of chunks, as opposed to being supported at the gran-

ularity of individual instructions. Examples of such systems are

BulkSC [6], Atomic Sequence Ordering (ASO) [29], and Implicit

Transactions [26], all of them proposed recently. We say these sys-

tems provide implicit atomicity because chunks do not follow any

annotation in the program, in contrast to explicit atomic transac-

tions in TM. In essence, systems with implicit atomicity take peri-

odic checkpoints (e.g., every 2,000 dynamic instructions) to form

chunks of dynamic instructions that appear to execute atomically

and in isolation. It is important to note that chunks are not program-

ming constructs as transactions are in TM. Other systems, such as

the TCC prototype [12, 28], use periodic transaction commits to

support legacy code, showing that implicit atomicity can be imple-

mented as a direct extension of hardware-based TM systems. TM

systems will soon be available commercially [1].

The goal of supporting consistency enforcement at a coarse

grain is to bridge the performance gap between strict and relaxed

memory models, while keeping hardware complexity low. Enforc-

ing memory consistency at the granularity of chunks and complet-

ing chunks atomically allows the processor to fully reorder instruc-

tions within a chunk while preserving the ordering requirements

of the memory consistency model, since the order of instructions

within a chunk is not exposed to remote processors. As a result,

BulkSC [6], ASO [29] and Implicit Transactions [26] can all offer

sequential consistency with the performance of more relaxed mem-

ory models such as release consistency [11].

Supporting coarse-grain consistency enforcement with implicit

atomicity has two interesting properties, which we leverage in cre-

ating Atom-Aid. First, coarse-grain memory ordering reduces the

amount of interleaving of memory operations from different pro-

cessors — they can only interleave at the granularity of chunks.

This implies that the effects of remote threads are only visible at

chunk boundaries. Figure 3 contrasts fine with coarse-grain inter-

leaving. In Figure 3(a), interleaving can happen in between any

instructions (shown on the left side) and there are six possible in-

terleavings (shown on the right side), whereas in Figure 3(b), in-

terleaving opportunities only happen between chunks, and there are

far fewer possible interleavings — only two in this example. The

second interesting property is that the software is oblivious to the

granularity of consistency enforcement, allowing the system to ar-

bitrarily choose chunk boundaries and adjust the size of chunks dy-

2

namically without affecting program correctness or the memory se-

mantics observed by the software.

b1
b2

a1
a2

(a) (b)

PA

Possible
fine-grain

interleavings

...

PB

a1
a2

b1
b2

Processors
Possible

coarse-grain
interleavings

a1
a2

b1
b2

a1
a2

PA PB

b1
b2

Chunks

Processors

a1
a2
b1
b2

a1
b1
a2
b2

b1
b2
a1
a2

Figure 3. Fine (a) and coarse-grain (b) access interleaving.
There are six possible interleavings for the fine-grained system
and two possible interleavings for the coarse-grained system.

Atom-Aid can be implemented in any architecture that sup-

ports implicit atomicity or, more generally, any system that sup-

ports forming arbitrary atomic blocks from the dynamic instruction

stream. However, for the purpose of illustration, in this paper we

assume an underlying system similar to BulkSC [6], in which pro-

cessors repeatedly execute chunks separated by checkpoints — no

dynamic instruction is executed outside a chunk. We now briefly

describe BulkSC, as its mechanisms naturally provide much of what

an implementation of Atom-Aid needs, irrespective of the underly-

ing system. Once again, it is important to note that Atom-Aid does

not rely on BulkSC specifically.

Bulk [5] is a set of hardware mechanisms that simplify the sup-

port of common operations in environments with multiple specu-

lative threads (or tasks) such as Transactional Memory (TM) and

Thread-Level Speculation (TLS). A hardware module called the

bulk disambiguation module (BDM) dynamically summarizes the

addresses that a task reads and writes into read (R) and write (W)

signatures, respectively. A signature is an inexact encoding of ad-

dresses following the principles of Bloom filters [2], which are sub-

ject to aliasing. Consequently, a signature represents a superset of

the original address set. The BDM also includes units that perform

signature operations such as union, intersection, expansion, etc.

BulkSC leverages a cache hierarchy with support for Bulk op-

erations and a processor with efficient checkpointing. The memory

subsystem is extended with an arbiter to guarantee a total order of

commits. As a processor executes a chunk speculatively, it buffers

the updates to memory in the cache and generates a R and a W sig-

nature. When chunk i completes, the processor sends the arbiter a

request to commit, together with signatures Ri and Wi. The arbiter

intersects Ri and Wi with the W signatures of all the currently-

committing chunks. If all intersections are empty, Wi is saved in

the arbiter and also forwarded to all interested caches for commit.

Each cache uses Wi to perform bulk disambiguation and potentially

abort local chunks in case a conflict exists. Chunks are periodic and

boundaries are chosen arbitrarily (e.g., every 2,000 instructions).

Finally, forward progress is guaranteed by reducing chunk sizes in

the presence of repeated chunk aborts.

2.2. Atomicity Violations
Data-races are the most widely known concurrency defects.

They occur when there are conflicting accesses from different

threads to the same piece of shared data, at least one access is a

write and there are no synchronizing events between the threads

to prevent these simultaneous accesses. There has been significant

work on tools [8, 9, 19, 24] and hardware support [20, 31] for data-

race detection. However, as pointed out by Flanagan et al. [10],

data-race freedom does not imply a concurrent program is correct,

as the program can still have atomicity violations.

The code snippet in Figure 1 does not have a data race (all ac-

cesses to counter are properly synchronized), however the code

is still incorrect. In this example, what is missing is atomicity, since

both the read and update of counter should have been atomic

to avoid unwanted interleaving of accesses to counter from other

threads. Atomicity is a non-interference property stronger than free-

dom from data-races, as pointed out by Flanagan et al. [10]. An

atomicity violation exists in the code when the programmer makes

incorrect assumptions about atomicity and fails to enclose accesses

that should have been performed atomically inside the same critical

section. Note that atomicity violations can also exist in programs

that use TM-based synchronization as opposed to locks — the pro-

grammer can fail to enclose memory accesses to shared variables

that are supposed to be performed atomically inside the same trans-

action.

If there are no atomicity violations in a concurrent execution, it

is said to be serializable. This means that there is some sequential

execution of the sections assumed atomic by the programmer —

one in which the interleaving does not occur — that is equivalent,

and guaranteed to produce the same final state as the one produced

when the interleaving occurs. Conversely, if there is an atomicity

violation, the concurrent execution is not serializable — i.e., there

is no equivalent sequential execution that is guaranteed to produce

the same final state. We can apply this concept directly to shared

data accesses by determining whether the interleavings of memory

accesses to a shared variable are serializable. Lu et al. [16] used

this analysis to determine same-variable unserializable access in-

terleavings detected by their AVIO system. Table 1 reproduces the

analysis presented in [16]. The column “Interleaving” represents

the interleaving in the format AB ← C, where AB is the pair of

local memory accesses interleaved by C, the access from a remote

thread. For example, RR ← W corresponds to two local read ac-

cesses interleaved by a remote write access.

Interleaving Serializes? Comment

R ←R Yes —
R

R ←W No
Interleaved write makes two local reads

R inconsistent.

R ←R Yes —
W

R ←W No
Local write may depend on result of read, which

W is overwritten by remote write before local write.

W ←R Yes —
R

W ←W No Local read does not get expected value.
R

W ←R No
Intermediate value written by first write is made

W visible to other threads.

W ←W Yes —
W

Table 1. Memory interleaving serializability analysis cases
(from [16]).

3

Terminology used in this paper. Throughout the rest of this pa-

per, we use the following terminology. Atomicity-lacking section is

the region of code between (and including) the memory operations

that were supposed to be atomic — e.g., the code between (and in-

cluding) the read and update to counter in Figure 1. The size of

an atomicity violation is the number of dynamic instructions in the

atomicity-lacking section. An opportunity for interleaving is any

point in the execution of a thread where the operation of remote

threads can be observed. This corresponds to chunk boundaries

in systems with implicit atomicity or between any pair of memory

operations in conventional systems. An atomicity violation is said

to be exposed if it is possible for two memory operations assumed

to be atomic by the programmer to be interleaved by another re-

mote memory operation — i.e., there is at least one opportunity

for interleaving inside the atomicity-lacking section. Conversely,

an atomicity violation is hidden if the memory operations cannot

be interleaved — i.e., there are no opportunities for interleaving

in the atomicity-lacking section. An atomicity violation manifests
itself if and only if it is exposed and the specific concurrent execu-

tion is unserializable (according to Table 1), which will likely lead

to incorrect program behavior. We refer to a likely atomicity vi-
olation when an unserializable interleaving could potentially have

happened but did not necessarily happen (e.g., the local accesses

and remote access of Table 1 were nearby in time but were not nec-

essarily interleaved). Finally, we refer to implicitly atomic systems
and chunk granularity systems interchangeably.

3. Implicit Atomicity Hides Atomicity Viola-
tions

In this section, we contrast chunk granularity systems with in-

struction granularity systems, and show that the implicit atomicity

in chunk granularity systems probabilistically reduces the chances

of atomicity violations being exposed and, consequently, manifest-

ing themselves. This happens when an atomicity-lacking section

is completely enclosed within a chunk. We call this phenomenon

natural hiding.

Achieving the same effect of implicit atomicity statically, by

having a compiler automatically insert arbitrary transactions in a

program, is very challenging because it could hurt performance,

or even prevent forward progress [3]. On the other hand, systems

that support implicit atomicity do provide forward progress guaran-

tees [6].

3.1. Probability Study
We now show analytically that chunk granularity systems have a

lower probability of exposing atomicity violations than instruction

granularity systems. For the following analysis, let c be the default

size of chunks in number of dynamic instructions; d be the size of

the atomicity violation — the number of dynamic instructions in

the atomicity-lacking section; and, let Phide be the probability of

the atomicity-lacking section falling inside a single chunk — i.e.,
the probability of hiding the atomicity violation.

Figure 4 illustrates how we derive the probability that an

atomicity-lacking section will fall inside a chunk. If the first op-

eration of the atomicity-lacking section is within the first (c − d)
instructions of a chunk with a total of c instructions, the first and

second atomicity-lacking operations will fall in the same chunk and

will be committed atomically, hiding the atomicity violation. With

this model, we can express the probability of hiding an atomicity

violation as shown in Figure 4.

chunk
boundaries

atomicity
lacking
section

c

(c-d)th
instruction

dIf the first operation
falls anywhere in here,
the two operations are

in the same chunk,
and hence atomic.

Phide =

(
0 if c < d
c−d+1

c
if c ≥ d

Figure 4. Atomicity-lacking section within chunk boundaries.
Phide is the probability that two atomicity-lacking operations will
fall within the same chunk.

Note that we can assume an instruction granularity system as

a system with chunk size equal to one instruction (c = 1), which

will imply Phide = 0, since the size of an atomicity violation is at

least two instructions (d ≥ 2). This is consistent with the intuition

that an instruction granularity system cannot hide atomicity viola-

tions. Also note that, in the worst case, atomicity-lacking sections

are bigger than chunks in actual chunk-based systems, Phide = 0
as well. This shows that chunk granularity systems can hide atom-

icity violations, but never increase the chances of them manifesting

themselves.

Figure 5 shows the probability of hiding an atomicity violation

for various violation sizes as chunk sizes increase, according to the

expression of Phide shown in Figure 4. As expected, we observe

that increasing chunk size increases the probability of hiding an

atomicity violation, but this is subject to diminishing returns.

0 1000 2000 3000 4000 5000 6000 7000 8000
size of chunks (insns)

0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ili

ty
 o

f h
id

in
g

at
om

ic
ity

 v
io

la
tio

n

Violation size
100 insns
250 insns
500 insns
750 insns
1000 insns
1500 insns
2000 insns

Figure 5. Probability of hiding atomicity violations of different
sizes as a function of chunk size.

From our experiments, we observe that the typical atomicity vi-

olation ranges from 500 to 750 instructions. Assuming a chunk

size of 2,000 instructions, we observe in Figure 5 that the expected

probability of naturally hiding these typical atomicity violations is

63-75%.

4

4. Actively Hiding Atomicity Violations with
Smart Chunking

In Section 3, we show that implicit atomicity can naturally hide

some atomicity violations. We also point out in Section 2.1 that the

choice of where to place chunk boundaries is arbitrary and does

not affect the memory semantics. The idea behind Atom-Aid’s

smart chunking is to automatically determine where to place chunk

boundaries in order to further reduce the probability of exposing

atomicity violations. Atom-Aid does this by detecting potential

atomicity violations and inserting a chunk boundary right before the

first memory access of these potential violations, hoping to enclose

all memory accesses of an atomicity-lacking section inside the same

chunk. In essence, Atom-Aid infers where critical sections should

be in the dynamic instruction stream and inserts chunk boundaries

accordingly. Note that this process is transparent to software and it

is oblivious to synchronization constructs that might be present in

the code.

Atom-Aid detects potential atomicity violations by observing

the memory accesses of each chunk and the interleaving of mem-

ory accesses from other committing chunks in the system. When

Atom-Aid detects at least two nearby accesses to the same variable

a by the local thread and at least one recent access to a by another

thread, it looks at the types of the accesses involved and determines

if these accesses are potentially unserializable. If so, Atom-Aid

starts monitoring accesses to a. When the local thread accesses a
again, Atom-Aid decides if a chunk boundary should be inserted.

Atom-Aid keeps a history of memory accesses by recording the

read and write sets of the most recent local chunks and recently

committed remote chunks.

Figures 6 and 7 show how the idea is applied to the counter

increment example, assuming BulkSC provides implicit atomicity.

Atom-Aid maintains the read and write sets of the previously com-

mitted chunk, which are called RP and WP , respectively. Recall

that, in BulkSC, processors committing chunks send their write sets

to other processors in the system, allowing Atom-Aid to learn what

was written recently by remote committing chunks (WRP). In Fig-

ure 6, processors P1 and P2 are both executing increment().

While there is a chance that the read and update of counter will

be atomic due to natural hiding, in Figure 6 that did not happen.

In the example, the read of the counter is inside the previously

committed chunk (P), while the update is part of the chunk cur-

rently being built (C). When counter is updated in C, Atom-Aid

determines that counter was read by the previous local chunk

(counter ∈ RP) and recently updated by a remote processor

(counter ∈ WRP). This characterizes a potential violation,

making counter a member of the set of all variables possibly

involved in an atomicity violation — the chunkBreakSet. Later

(Figure 7), when P1 accesses counter again, Atom-Aid detects

that counter ∈ chunkBreakSet and, therefore, a chunk bound-

ary should be inserted before the read from counter is executed.

This increases the chances that both accesses to counter will be

enclosed in the same chunk, making them atomic. While the atom-

icity violation in Figure 6 is exposed, it does not mean it has man-

ifested itself. Also, as will be explained in the next section, even

if the atomicity violation is naturally hidden, Atom-Aid is still able

to detect it. This shows that Atom-Aid is able to detect atomicity

violations before they manifest themselves.

P2P1

...

lock(L)

ld $R1 [counter]

unlock(L)

inc $R1

lock(L)

st [counter] $R1

unlock(L)

...

...

lock(L)

ld $R1 [counter]

unlock(L)

inc $R1

lock(L)

st [counter] $R1

unlock(L)

...

WRP

WP

RP

WC

RC

[counter] RP

[counter] WRP
⇒

[counter] might be
involved in an atomicity

violation, add it to
chunkBreakSet

Figure 6. Actively hiding an atomicity violation: how Atom-Aid
discovers that counter might be involved in an atomicity vio-
lation and adds it to the chunkBreakSet.

...

lock(L)

ld $R1 [counter]

unlock(L)

inc $R1

lock(L)

st [counter] $R1

unlock(L)

...

[counter] chunkBreakSet
⇒ force a chunk break.

Default
chunk
size

P1

Figure 7. Actively hiding an atomicity violation: when counter
is accessed, a chunk is automatically broken because it belongs
to the chunkBreakSet.

In the following sections, we explain in detail how the detection

algorithm works and how Atom-Aid decides where to place chunk

boundaries. We also describe an architecture built around signature

operations that implements the mechanisms used by the algorithm.

4.1. Detecting Likely Atomicity Violations

As mentioned earlier, the goal of Atom-Aid is to detect potential

atomicity violations before they happen. When it finds two nearby

accesses by the local thread to the same address and one recent ac-

cess by another thread to that same address, Atom-Aid examines the

types of accesses to determine whether they are potentially unseri-

alizable. If they are, Atom-Aid treats them as potential atomicity

violations. Atom-Aid needs to keep track of three pieces of infor-

mation: (i) the type t (read or write) and address a of the memory

operation currently executing; (ii) the read and write sets of the cur-

rent and previously committed chunk, referred to as RC , WC , RP

5

and WP , respectively; and, (iii) the read and write sets of chunks

committed by remote processors while the previously committed

chunk was executing (referred to as RRP and WRP), together with

read and write sets of chunks committed by other processors while

the current chunk is executing (referred to as RRC and WRC).

Table 2 shows how this information is used to determine whether

these accesses constitute potential atomicity violations. The first

column shows the type of a given local memory access, the sec-

ond column shows which interleavings Atom-Aid tries to iden-

tify when it observes this local memory access, and the third col-

umn shows how Atom-Aid identifies them. For example, con-

sider the first two cases: when the local memory access is a read,

the two possible non-serializable interleavings are RR ← W and

WR ← W . To detect if either of them has happened, Atom-Aid

uses the corresponding set expressions in the third column. Specif-

ically, to identify a potential RR ← W interleaving, Atom-Aid

first checks whether a can be found in any of the local read sets

(a ∈ RC ∨ a ∈ RP). If it is, Atom-Aid then checks whether a
can also be found in any of the remote write sets of a chunk com-

mitted by another processor, either while the previous local chunk

was executing (a ∈ WRP) or since the beginning of the current

local chunk (a ∈ WRC). If the condition is satisfied, Atom-Aid

identifies address a as potentially involved in an atomicity violation

and adds it to the processor’s chunkBreakSet. Note that this case

is not necessarily an atomicity violation because the remote write

might not have actually interleaved between the two reads. Also,

since Atom-Aid keeps only two chunks’ worth of history, it is only

capable of detecting atomicity violations that are shorter than the

size of two chunks, which is not a limiting factor since Atom-Aid

can not hide atomicity violations larger than a chunk.

Local Op. Interleaving Expression

read

R ←W
(a ∈ RC ∨ a ∈ RP)∧

R (a ∈ WRC ∨ a ∈ WRP)
W ←W

(a ∈ WC ∨ a ∈ WP)∧
R (a ∈ WRC ∨ a ∈ WRP)

write

R ←W
(a ∈ RC ∨ a ∈ RP)∧

W (a ∈ WRC ∨ a ∈ WRP)
W ←R

(a ∈ WC ∨ a ∈ WP)∧
W (a ∈ RRC ∨ a ∈ RRP)

Table 2. Cases when an address is added to the chunkBreakSet.

4.2. Adjusting Chunk Boundaries
After an address is added to the processor’s chunkBreakSet, ev-

ery access to this address by the local thread triggers Atom-Aid. If

Atom-Aid placed a chunk boundary right before all accesses that

trigger it, Atom-Aid would not actually prevent any atomicity vi-

olation from being exposed. To see why, consider Figure 7 again.

Suppose the address of variable counter has been previously in-

serted in the chunkBreakSet. When the load from counter exe-

cutes, it triggers Atom-Aid, which can then place a chunk boundary

right before this access. When the store to counter executes, it

triggers Atom-Aid again. If it placed another chunk boundary at

that point, Atom-Aid would actually expose the atomicity violation,

instead of hiding it as intended.

There are other situations in which breaking a chunk by plac-

ing a new chunk boundary is undesirable. For example, atomicity

violations involving multiple accesses might cause Atom-Aid to be

invoked several times. We actually want Atom-Aid to place a chunk

boundary before the first access, but not before every single access.

Another example is the case when an address has just been added to

the chunkBreakSet. Chances are that the local thread is still manip-

ulating the corresponding variable, in which case avoiding a chunk

break can actually be beneficial.

To intelligently determine whether to place a chunk boundary

when it is triggered, Atom-Aid uses a simple policy consisting of

two conditions. Figure 8 shows this policy in a flowchart. The first

condition (1) determines that Atom-Aid never breaks a chunk more

than once — after a forced break, the newly created chunk will be as

large as the default chunk size. The second condition (2) determines

that, if Atom-Aid adds any address to the chunkBreakSet during the

execution of a given chunk, it cannot break that chunk.

Address a is accessed

a chunkBreakSet?No Yes

Do nothing

Yes

Break chunk

Yes Current chunk
already forced

broken?

1

Current chunk
changed

chunkBreakSet ?

No

2

No

Figure 8. Chunk-breaking policy in a flowchart.

4.3. An Architecture Based on Signature Opera-
tions

We based our Atom-Aid implementation on BulkSC because its

signatures offer a convenient way of storing read and write sets of

chunks. To collect the information required by the algorithm de-

scribed in Section 4.1, we add three pairs of signatures to the orig-

inal BulkSC design. Figure 9 shows all signatures used by Atom-

Aid. Signatures RC and WC , which hold the read and write sets of

the currently executing chunk, are used by BulkSC for chunk dis-

ambiguation and memory versioning. Signatures RP and WP hold

the read and write signatures of the previously committed chunk.

When a chunk commits, RC and WC are copied into RP and WP ,

respectively. Signature RRC encodes all local downgrades due to

remote read requests received while the current chunk is execut-

ing. Likewise, signature WRC holds all signatures received from

remote processors while the current chunk executes. When the cur-

rent chunk commits, signatures RRC and WRC are copied into sig-

natures RRP and WRP , respectively, which thus encode the re-

mote operations that happened during the execution of the previous

chunk. If a chunk is aborted, only signatures RC and WC are dis-

carded, keeping the rest of the memory access history intact.

The chunkBreakSet itself can be implemented by using yet an-

other signature. In this case, checking if an address is in the

chunkBreakSet is done with a simple membership operation on the

signature. Alternatively, the chunkBreakSet can be implemented

as an extension to the cache tags. An extra bit per cache line

tag indicates whether or not the corresponding line address is part

of the chunkBreakSet. When a cache line is accessed, this bit is

6

WP

RP

WC

RC

Previous
Chunk (P)

Current
Chunk (C)

WRP

RRP

WRC

RRC

st

ld

st

ld

from other
processors' W

signatures

Signatures
for local
Chunks

Signatures
encoded with

remote
accesses

remote reads
(downgrades)

Figure 9. Signatures used by Atom-Aid to detect likely atomicity
violations.

checked to determine whether the corresponding address belongs

to the chunkBreakSet.
Both the signature and cache-based implementations can sup-

port word-granularity addresses. With the signature-based imple-

mentation, this can be done by simply encoding word addresses as

opposed to line addresses. With the cache-based implementation,

this can be done by having one bit per word in a cache line to indi-

cate whether the corresponding word is present in the chunkBreak-
Set.

The trade-off between these two implementations is one be-

tween complexity and effectiveness. While a signature-based im-

plementation is simpler and does not require the address to be

present in the cache, it suffers from aliasing (false positives), es-

pecially if the chunkBreakSet contains many data addresses. With

the cache-based implementation, there is no aliasing but the im-

plementation of this approach is more complex. In addition, the

chunkBreakSet information of a particular cache line is lost on

cache displacements.

As mentioned earlier, we want Atom-Aid to be useful for de-

bugging tools as well. We envision doing this by making the

chunkBreakSet visible to software and providing a fast user-level

trapping mechanism that is triggered at every memory access to ad-

dresses in chunkBreakSet.

4.3.1. Implementation Discussion

While we have assumed a BulkSC-like system in this paper,

other systems that support implicit atomicity can leverage Atom-

Aid. Take, for example, a TCC-like [12] system with a mechanism

for automatic hardware-defined (implicit) transactions. In TCC,

disambiguation is not done with signatures, but write sets are still

sent between processors during commit. It is possible to record the

information Atom-Aid needs by augmenting TCC with structures

to hold the incoming write sets when remote processors commit. It

is also possible to use similar structures to hold the read and write

sets for previously executed chunks. Furthermore, with minor ex-

tensions, Atom-Aid can also be implemented in systems that do not

support full-fledged implicit atomicity for coarse-grain memory or-

dering, as long as they support forming atomic blocks dynamically.

The performance impact of the architectural structures required

by Atom-Aid is negligible. The membership operation with signa-

tures is very fast because it does not involve any associative search

and only requires simple logic [5, 23]. As a result, accessing signa-

tures is likely to be much faster than accessing the cache to read or

modify data. Also, all accesses to signatures required by both the

detection algorithm and the chunk breaking policy can be done in

parallel. In case the chunkBreakSet is implemented as an extension

to the cache tags, it is also unlikely that it will affect performance,

since both the data and the bit indicating that the corresponding

address is part of the chunkBreakSet can be fetched simultaneously.

One final implementation detail is that from all the state required by

Atom-Aid, the only that would make sense to be preserved through

a context switch is the chunkBreakSet — but it is not necessary to

do so.

5. Experimental Setup
5.1. Simulation Infrastructure

We model a system that resembles BulkSC [6] using the

PIN [17] dynamic binary instrumentation infrastructure. Our model

includes chunk-based execution, using signatures to represent read

and write sets, and the mechanisms required by Atom-Aid’s algo-

rithm. Unless otherwise noted, the signature configuration used is

the same as in [5]. Since the simulator is based on binary instrumen-

tation and runs workloads in a real multiprocessor environment, it

is subject to non-determinism. For this reason, we present results

averaged across a large number of runs, with error bars showing the

95% confidence interval for the average.

Our simulations need to determine whether a particular

atomicity-lacking section is fully enclosed within a chunk to assess

how often they are hidden. We do that by explicitly annotating the

code with the beginning and end of each atomicity-lacking section.

The model then checks dynamically if these markers fall within the

same chunk. If so, the corresponding atomicity violation is consid-

ered hidden. It is important to note that these annotations are not

used by Atom-Aid’s algorithm in any way — their sole purpose is

to evaluate the techniques we propose.

5.2. Simulated Workloads
For our experiments, we use two types of workloads: bug ker-

nels and entire applications. The goal of using bug kernels is to

generate extreme conditions in which atomicity-lacking sections

are executed more often than in real applications. We can then use

them to perform stress tests of Atom-Aid in a short amount of time.

We also include entire applications (MySQL, Apache, XMMS) for

a more complete evaluation. For the MySQL runs, we used the

SQL-bench test-insert workload, which performs insert and select

queries. For Apache runs, we used the ApacheBench workload. For

XMMS, we played a media file with the visualizer on.

We created bug kernels from real applications based on previous

literature on atomicity violations [10, 16, 30]. We made sure that

the atomicity violation in the original application remained intact

in the kernel version. Wherever possible, we also included program

elements that affect timing, such as I/O, to mimic realistic interleav-

ing behavior in the kernel workloads.

Table 3 lists the workloads we use in our evaluation. We provide

the number of threads each workload uses, the average, minimun,

maximum and standard deviation values of violation sizes, along

with a brief description of each bug.

We have a reasonably wide range of violation sizes, from 80

to 3,600 dynamic instructions. The violation sizes found in real

7

Atomicity Violation Size

Workload Workload
Threads Avg. Std. Dev. Min-Max Description

Type Name

kernels

Apache-extract 2 973 18.63 909-1014 Kernel version of above Apache log system bug.

BankAccount 2 85 1.21 81-91

Shared bank account data structure bug.Simultaneous

withdrawal and deposit with incorrectly synchronized

program may lead to inconsistent final balance.

BankAccount2 2 2407 1.38 2403-2411 Same as previous, with larger atomicity violation.

CircularList 2 587 1.88 585-595

Shared work list data ordering bug. Removing,

processing, and adding work units to list

non-atomically may reorder work units in list.

CircularList2 2 3593 2.92 3588-3608 Same as previous, with larger atomicity violation.

LogProc&Sweep 5 278 1.69 272-282

Shared data structure NULL dereference bug. Threads

inconsistently manipulate shared log. One thread

sets log pointer to NULL, another reads it and crashes.

LogProc&Sweep2 5 2498 5.55 2489-2514 Same as previous, with larger atomicity violation.

MySQL-extract 2 239 0.40 239-243 Kernel version of above MySQL log system bug.

StringBuffer 2 556 0.00 556-556

java.lang.StringBuffer overflow bug [10]. On append,

not all required locks are held. Another thread may

change buffer during append. State becomes inconsistent.

real

Apache 25 464 0.00 464-464

Logging bug in Apache httpd-2.0.48. Two threads access

same log entry without holding locks and change entry

length. This leads to missing data or crash.

Security backdoor in MySQL-4.0.12. While one thread closes

MySQL 28 722 8.37 713-736 file and sets log status to closed, other thread accesses

log. Logging thread sees closed log, and discards entries.

Visualizer bug in XMMS-1.2.10, a media player. While

XMMS 6 586 6.93 572-595 visualizer is accessing PCM stream data, data in PCM

can be changed, or freed, causing corruption or crash.

Table 3. Bug benchmarks used to evaluate Atom-Aid.

applications are as large as several hundred instructions, never ex-

ceeding one thousand instructions. We believe that the reason these

atomicity violations are relatively short is because long atomicity

violations are easier to find during testing, since they are bound

to manifest more often. The violations found in most bug ker-

nels are similar in size to the real applications. However, we ar-

tificially added more work to a few atomicity-lacking sections to

evaluate larger violation sizes (BankAccount2, CircularList2 and

LogProc&Sweep2). Note that, for Apache and MySQL, the viola-

tion sizes in the full application and the kernel versions are differ-

ent. This is because in Apache-extract there was additional work

in generating random log entries, and MySQL-extract does not use

MySQL’s custom implementation of memcpy.

The real applications we study use a significant number of

threads, ranging from 6 to 28. Most bug kernels use only 2 threads

because they are sufficient to reproduce the original atomicity vio-

lation.

For the experiments we present in Section 6, we simulate each of

the bug kernels forty times for each chunk size, varying chunk size

from 750 to 8,000 instructions. Due to restrictions in simulation

time, we run each of the real applications five times, with a chunk

size of 4,000 instructions.

6. Evaluation
Our evaluation consists of four parts. Section 6.1 shows an ex-

perimental validation of the probability study we present in Sec-

tion 3.1 and verifies that implicit atomicity is indeed capable of

hiding a significant number of atomicity violation instances. Sec-

tion 6.2 shows that Atom-Aid further improves that number, hid-

ing almost all atomicity violation instances. Section 6.3 presents

data on Atom-Aid’s dynamic behavior and includes a comparison

between an implementation that uses hardware signatures and one

that uses exact sets. Finally, Section 6.4 discusses how the informa-

tion collected by Atom-Aid can be used to help locate bugs in the

source code.

6.1. Natural Hiding
We validate the probability study in Section 3.1 by running

the workloads from Table 3 in our simulator configured as a sys-

tem with implicit atomicity but no Atom-Aid support. We vary

chunk sizes and measure how often atomicity violation instances

fall within a single chunk.

Figure 10 shows the percentage of atomicity violation instances

naturally hidden for each of the bug kernels as the chunk size in-

creases. The lines in the plot correspond to Phide (see Figure 4)

for the average violation size of each bug kernel shown in Table 3.

Most experimental data points are very close to the lines derived

from the analytical model. This verifies the accuracy of the model

as well as our hypothesis that implicitly atomic systems can natu-

rally hide atomicity violations. While Figure 10 does not include

data for real applications, the left bar of each cluster in Figure 11(b)

shows the natural hiding effect in real applications for a chunk size

of 4,000 instructions, which also follows the analytical model.

Overall, implicit atomicity with chunk sizes as small as 4,000

dynamic instructions naturally hides 70% or more of the atomic-

ity violation instances for nine of the twelve workloads. The re-

maining workloads have artificially large atomicity violations that

prevent natural hiding at chunk sizes of 2,000 dynamic instructions

or less, and keep the probability of natural hiding lower than for

other workloads at larger chunk sizes. Intuitively, as the chunk size

increases, this difference is gradually reduced.

These results show that implicit atomicity by itself can naturally

hide a large fraction of atomicity violations. However, as we will

show in the next section, Atom-Aid can significantly improve the

hiding effect with a proactive approach.

8

0 1000 2000 3000 4000 5000 6000 7000 8000
chunk size (insns)

0

20.0

40.0

60.0

80.0

100.0

pe
rc

en
t o

f a
to

m
ic

ity
 v

io
la

tio
ns

 h
id

de
n

BankAccount
MySQL-extract
LogProc&Sweep
StringBuffer
CircularList
Apache-extract
BankAccount2
LogProc&Sweep2
CircularList2

Figure 10. Experimental data on the natural hiding of atomicity
violations with implicit atomicity for various chunk sizes and bug
kernels. Points show empirical data, curves show data predicted
by our analytical model (Phide).

6.2. Active Hiding with Smart Chunking

In this section, we assess how Atom-Aid improves the hid-

ing capabilities of implicit atomicity with smart chunking. Fig-

ure 11(a) shows the percentage of atomicity violations hidden by

Atom-Aid for each bug kernel as the chunk size increases, whereas

Figure 11(b) contrasts the hiding effects of Atom-Aid with plain

natural hiding of implicit atomicity for real applications.

Our results show that Atom-Aid is able to hide virtually 100%

of atomicity violation instances present in our benchmarks, includ-

ing the real applications, with chunk sizes of only 4,000 dynamic

instructions. Even with smaller chunk sizes, Atom-Aid hides the

majority of atomicity violation instances. Notable exceptions are

Apache-extract and the three bug kernels with artificially larger

atomicity violations. As explained in Section 6.1, these larger atom-

icity violations cannot be hidden by smaller chunks. Apache-extract

suffers from early chunk breaks, which decrease the chance of hid-

ing atomicity violations when smaller chunk sizes are used. How-

ever, the problem disappears when chunk sizes reach 4,000 dynamic

instructions because chunks become large enough to enclose both

the access that caused an early break and the actual atomicity vio-

lation in its entirety, and thus hide it completely.

Overall, Atom-Aid’s smart chunking algorithm is capable of

hiding a much higher percentage of atomicity violation instances

than just natural hiding. Moreover, Atom-Aid reduces the num-

ber of exposed atomicity violation instances by several orders of
magnitude when compared to current commercial systems — i.e.

hides more than 99% of atomicity violation instances in virtually

all workloads.

6.3. Characterization and Sensitivity

Table 4 characterizes Atom-Aid’s behavior by providing data

collected from each of the bug kernels. We only use kernels in this

study, as opposed to real applications, because they provide a more

controlled environment for our measurements and they run faster.

Columns 2 and 3 reproduce data from Figures 10 and 11, re-

spectively. They show the percentage of hidden atomicity viola-

tions with natural hiding and smart chunking for a chunk size of

4,000 dynamic instructions. Again, while about 67% of atomicity

violations are hidden naturally on average, smart chunking is able

to hide virtually 100% of them.

Column 4 (% Smart Chunks) shows what fraction of chunks are

created by the smart chunking algorithm as the program executes,

while Column 5 (% Unnecessary Smart Chunks) shows what per-

centage of these additional chunks does not help hide atomicity vi-

olations. % Unnecessary Smart Chunks is large for some work-

loads, showing that Atom-Aid may often create chunks unneces-

sarily. However, % Smart Chunks is typically low, so even if it

creates many unnecessary chunks, Atom-Aid still adds only a small

fraction of all chunks. This implies Atom-Aid is unlikely to have

noticeable impact on performance [6].

Columns 6 and 7 illustrate the behavior of Atom-Aid’s atomic-

ity violation detection algorithm. Column 6 (chunkBreakSet Size)

shows how many distinct data addresses, at a line granularity, are

identified as involved in a potential atomicity violation. Atom-Aid’s

algorithm selects, on average, only four data items as being po-

tentially involved in an atomicity violation. Column 7 (# Break
PCs) shows how many distinct static memory operations in the code

caused Atom-Aid’s smart chunking algorithm to break a chunk. On

average, it breaks chunks in only three places in the program. These

results show that Atom-Aid is quite selective at identifying data ad-

dresses and points in the program that are potentially involved in

atomicity violations. These can be reported to a programmer who

in turn has reasonably precise information about the potential atom-

icity violation and can use it to debug the application. We further

explore this aspect of Atom-Aid in Section 6.4.

So far, we have discussed data on an implementation of Atom-

Aid that exclusively uses hardware signatures for disambiguat-

ing chunks, detecting chunk interleaving and maintaining the

chunkBreakSet. Exact Atom-Aid corresponds to the behavior of a

non-signature based implementation of Atom-Aid. For that, all sig-

natures in the design presented in Section 4.3 are simulated ideally

as unlimited size exact sets — there is no aliasing when detecting

potential violations or when determining if a memory address is in

the chunkBreakSet and a chunk should be broken. We present these

results in the group of columns entitled Exact Atom-Aid in Table 4.

The behavior of the exact implementation of Atom-Aid would be

similar to the behavior of an implementation that uses cache tag ex-

tensions as a way of keeping the sets of addresses (see Section 4.3).

First and most important, % Hidden for the exact implemen-

tation (Column 8) is practically the same as % Hidden for the

signature-based implementation (Column 3), showing that the im-

pact of signature impreciseness on the effectiveness of Atom-Aid is

negligible. As expected, % Smart Chunks (Columns 4 and 9) is, on

average, higher for the signature-based Atom-Aid, since aliasing in

signatures causes chunks to be broken more frequently. However,

the difference is small. The same phenomenon is also reflected in

the percentage of unnecessary smart chunks (Columns 5 and 10),

which is significantly lower for Exact Atom-Aid. As noted previ-

ously, however, this has negligible impact on performance.

9

Apache-extract

BankAccount

BankAccount2

CircularList

CircularList2

LogProc&Sweep

LogProc&Sweep2

MySQL-extract

StringBuffer

(a) Bug kernels.

0

20.0

40.0

60.0

80.0

100.0

pe
rc

en
t o

f a
to

m
ic

ity
 v

io
la

tio
ns

 h
id

de
n

Chunk size
750 insns
1000 insns
1500 insns
2000 insns
4000 insns
6000 insns
8000 insns

Apache
MySQL

XMMS

(b) Real applications. Chunks of 4,000 instructions.

0

20.0

40.0

60.0

80.0

100.0

Natural hiding
Active hiding

86.2

99.0

81.5

99.9

85.4

98.8

Figure 11. Average percentage of atomicity violations hidden by Atom-Aid. Error bars show the 95% confidence interval.

Natural Signature-Based Atom-Aid Exact Atom-Aid

% Smart % Unnecessary chunkBreakSet # Break % Smart % Unnecessary

Bug Benchmark % Hidden % Hidden Chunks Smart Chunks Size PCs % Hidden Chunks Smart Chunks

Apache-extract 75.77 99.03 4.4 79.4 5 3 99.94 1.1 16.7

BankAccount 97.84 99.99 12.5 75.2 4 3 99.99 6.4 50.4

BankAccount2 39.6 100.00 11.7 74.8 4 3 100.00 6.1 49.6

CircularList 71.14 99.95 12.5 0.0 2 2 99.95 12.5 0.0

CircularList2 9.92 99.90 11.1 0.1 2 2 99.90 11.1 0.1

LogProc&Sweep 93.14 99.88 12.4 0.2 11 4 99.89 12.4 0.4

LogProc&Sweep2 37.64 99.73 11.0 0.1 2 2 99.78 11.0 0.1

MySQL-extract 91.89 100.00 18.8 46.1 3 6 100.00 18.7 45.6

StringBuffer 86.21 100.00 6.2 0.0 3 2 100.00 6.2 0.0

Average 67.02 99.83 11.2 30.6 4 3 99.94 9.5 18.1

Table 4. Characterization of Atom-Aid for both the signature and non-signature implementations.

6.4. Debuggability Discussion

Showing that Atom-Aid is able to hide almost all atomicity

violation instances demonstrates that the algorithm inserts chunk

boundaries in the appropriate places. Atom-Aid is also able to re-

port the program counter (PC) of the memory instruction where

chunk boundaries were automatically inserted. Since these places

in the program are the boundaries of potentially buggy or missing

critical sections, they can be used to aid the process of locating bugs

in the code. While a detailed analysis of a complete debugging tool

is outside the scope of this paper, we were able to use the feed-

back from Atom-Aid to locate the code for the bugs in MySQL and

Apache used in past work on bug detection [16, 30], and even detect

a new bug in XMMS.

We used the following process to locate bugs: (i) collect the set

of PCs where chunk boundaries were inserted; (ii) group PCs into

the line of code and function in which they appear; and, finally,

(iii) traverse the resulting list of functions, from most frequently

appearing to least, and then examine the lines of each function, from

the most frequently appearing line to least. Using this process, we

were able to locate bugs by inspecting a relatively small number of

points in the code.

Table 5 shows some data on our experience of finding atomic-

ity bugs in real applications. The first group of columns (Program
Totals) shows the total number of files, functions, and lines of code

for the entire application. The second group (Chunk Break Points)

shows the number of files, functions and lines of code for which

Atom-Aid broke chunks while the application executed. The third

group (# of Inspections) shows the number of files, functions and

lines of code we had to inspect before we located a bug.

For Apache, only 85 lines of code in 6 files need to be inspected

to locate the bug. For MySQL, this number is larger (more than

300), but MySQL has a larger code base, with almost 400,000 lines

of code. We identified a bug in XMMS that was not previously

known1 after inspecting only 9 lines of code. Overall, the informa-

tion provided by Atom-Aid is useful in directing the programmer’s

attention to the right region of code, even if using a simple heuristic

like the one we present here. However, we feel that more sophisti-

cated techniques could result in even more effective methods.

Program Totals Chunk Break Points # of Inspections
Files Func. Lines Files Func. Lines Files Func. Lines

Apache 729 3361 290k 52 206 956 6 8 85

MySQL 871 15231 394k 44 228 681 27 84 353

XMMS 268 1368 81k 7 23 42 2 4 9

Table 5. Characterization of the bug detection process for real
applications using Atom-Aid.

7. Related Work
Atom-Aid is a hardware-supported mechanism to detect and sur-

vive atomicity violations. While there is significant amount of work

on concurrency bug detection, survival is not widely discussed.

1The XMMS project leads were contacted regarding the bug. However,

no feedback was received by the time the final version of this paper was

submitted.

10

The most relevant prior work on hardware support for atomicity

violation detection is AVIO [16]. AVIO uses training runs to extract

interleaving invariants and then checks if these invariants hold in fu-

ture runs. AVIO monitors interleaving by extending the caches and

leveraging the cache coherence protocol. Atom-Aid monitors inter-

leavings differently, by leveraging hardware signatures. In addition,

Atom-Aid monitors potential violations (ones that might not have

necessarily happened), does not distinguish training from detection,

and leverages implicit atomicity to survive concurrency bugs.

Serializability Violation Detection (SVD) [30] uses a heuristic

to infer potential critical sections based on data and control de-

pendences with the goal of determining if they are unserializable.

In [30], the authors briefly mention that their algorithm could pos-

sibly be implemented in hardware and envision bug avoidance via

global checkpoint and restart [21, 25]. Atom-Aid, like SVD, at-

tempts to infer critical section boundaries dynamically. However,

Atom-Aid uses memory access history and interleaving to detect

potential violations and its bug avoidance relies only on dynam-

ically making the potential violation atomic, not requiring global

checkpoint and restart.

ReEnact [20] is another hardware proposal that targets concur-

rency bugs. However, it focuses on identifying and surviving data-

races only, not atomicity violations, as Atom-Aid does. It discusses

attempting to automatically repair data-races based on a library of

race patterns.

There has been substantial work on hardware-supported TM

systems [12, 14, 18, 22], as well as languages with new constructs

for atomicity [4, 7, 13, 27]. Note that Atom-Aid can also be ap-

plied to these new proposals because all of them are still subject to

atomicity violations caused by the programmer specifying incorrect

atomicity constraints.

8. Conclusion
With parallel programming going mainstream, it is inevitable

that programmers will have to deal with concurrency bugs, as such

bugs are very easy to introduce and very difficult to remove. For

these reasons, we believe that multiprocessor systems should not

only help detect bugs but also survive them. Atomicity violations

are a common and challenging category of concurrency bugs as they

are often the result of incorrect assumptions about atomicity made

by the programmer.

In this paper, we have shown that implicit atomicity has the

property of naturally hiding some atomicity violations by signifi-

cantly reducing the degree of memory operation interleaving. We

justify this observation with a probability analysis and extensive ex-

perimental data. Building on top of this observation, we proposed

Atom-Aid, a new approach to detecting potential atomicity viola-

tions and proactively choosing chunk boundaries to avoid exposing

the violations, without requiring any special program annotation or

global checkpointing mechanism.

In our evaluation of Atom-Aid using both kernels of known bugs

from the literature and full applications such as MySQL, Apache,

and XMMS, we show that Atom-Aid reduces the chance that an

atomicity violation will lead to wrong program behavior by several

orders of magnitude, in some cases hiding 100% of the atomicity

violations. We also show that the information derived by Atom-Aid

to guide chunk boundary placement can be used to aid debugging

efforts. We believe Atom-Aid is a meaningful step toward a system

that offers both resilience to and detectability of concurrency bugs.

Acknowledgments

We thank the anonymous reviewers for their very useful com-

ments. We thank Jim Larus and Shaz Qadeer from Microsoft Re-

search for their feedback on the initial idea. We also thank Mark

Oskin, Susan Eggers, Tayfun Elmas, Martha Mercaldi Kim, Lucas

Kreger-Stickles and Andrew Putnam from the University of Wash-

ington for their invaluable feedback on the manuscript. Finally,

we thank David Schlosser, Rich Witek and Alan Lee from AMD

for their feedback and support. Brandon Lucia was supported by

the Clairmont L. Egtvedt Fellowship and The Faithful Steward En-

dowed Fellowship.

References
[1] Sun slots transactional memory into Rock. http://www.

theregister.co.uk/2007/08/21/sun transactional
memory rock/.

[2] B. Bloom. Space/Time Trade-Offs in Hash Coding with Allowable

Errors. Communications of the ACM, July 1970.

[3] C. Blundell, E. Lewis, and M. Martin. Deconstructing Transactional

Semantics: The Subtleties of Atomicity. In Workshop on Duplicating,
Deconstructing, and Debunking, 2005.

[4] B. Carlstrom, A. McDonald, H. Chafi, J. Chung, C. Minh,

C. Kozyrakis, and K. Olukotun. The ATOMOS Transactional Pro-

gramming Language. In Conference on Programming Language De-
sign and Implementation, 2006.

[5] L. Ceze, J. Tuck, C. Cascaval, and J. Torrellas. Bulk Disambiguation

of Speculative Threads in Multiprocessors. In International Sympo-
sium on Computer Architecture, 2006.

[6] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas. BulkSC: Bulk En-

forcement of Sequential Consistency. In International Symposium on
Computer Architecture, 2007.

[7] P. Charles, C. Donawa, K. Ebcioglu, C. Grothoff, A. Kielstra, C. von

Praun, V. Saraswat, and V. Sarkar. X10: An Object-Oriented Ap-

proach to Non-Uniform Cluster Computing. In International Con-
ference on Object-Oriented Programming, Systems, Languages, and
Applications, 2003.

[8] A. Dinning and E. Schonberg. An Empirical Comparison of Moni-

toring Algorithms for Access Anomaly Detection. In Symposium on
Principles and Practices of Parallel Programming, 1990.

[9] D. Engler and K. Ahscraft. RacerX: Effective, Static Detection of

Race Conditions and Deadlocks. In Symposium on Operating Systems
Principles, 2003.

[10] C. Flanagan and S. Qadeer. A Type and Effect System for Atomicity.

In Conference on Programming Language Design and Implementa-
tion, 2003.

[11] K. Gharachorloo, D. Lenoski, J. Laudon, P. B. Gibbons, A. Gupta,

and J. L. Hennessy. Memory Consistency and Event Ordering in Scal-

able Shared-Memory Multiprocessors. In International Symposium on
Computer Architecture, 1990.

[12] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D. Davis,

B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Oluko-

tun. Transactional Memory Coherence and Consistency. In Interna-
tional Symposium on Computer Architecture, 2004.

[13] T. Harris and K. Fraser. Language Support for Lightweight Transac-

tions. In International Conference on Object-Oriented Programming,
Systems, Languages, and Applications, 2003.

11

[14] M. Herlihy and J. E. B. Moss. Transactional Memory: Architectural

Support for Lock-Free Data Structures. In International Symposium
on Computer Architecture, 1993.

[15] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from Mistakes A Com-

prehensive Study on Real World Concurrency Bug Characteristics. In

International Conference on Architectural Support for Programming
Languages and Operating Systems, 2008.

[16] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: Detecting Atomicity Vio-

lations via Access Interleaving Invariants. In International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2006.

[17] C. K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-

lace, V. Janapa Reddi, and K. Hazelwood. PIN: Building Customized

Program Analysis Tools with Dynamic Instrumentation. In Confer-
ence on Programming Language Design and Implementation, 2005.

[18] K. Moore, J. Bobba, M. J. Moravam, M. Hill, and D. Wood. LogTM:

Log-based Transactional Memory. In International Symposium on
High-Performance Computer Architecture, 2006.

[19] R. Netzer and B. Miller. Improving the Accuracy of Data Race Detec-

tion. In Symposium on Principles and Practices of Parallel Program-
ming, 1991.

[20] M. Prvulovic and J. Torrellas. ReEnact: Using Thread-Level Specu-

lation Mechanisms to Debug Data Races in Multithreaded Codes. In

International Symposium on Computer Architecture, 2003.

[21] M. Prvulovic, Z. Zhang, and J. Torrellas. ReVive: Cost-Effective Ar-

chitectural Support for Rollback Recovery in Shared-Memory Multi-

processors. In International Symposium on Computer Architecture,

2002.

[22] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing Transactional Mem-

ory. In International Symposium on Computer Architecture, 2005.

[23] D. Sanchez, L. Yen, M. D. Hill, and K. Sankaralingam. Implementing

Signatures for Transactional Memory. In International Symposium on
Microarchitecture, 2007.

[24] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.

Eraser: A Dynamic Data Race Detector for Multi-Threaded Programs.

ACM Transactions on Computer Systems, November 1997.

[25] D. Sorin, M. Martin, M. Hill, and D. Wood. SafetyNet: Improving the

Availability of Shared Memory Multiprocessors with Global Check-

point/Recovery. In International Symposium on Computer Architec-
ture, 2002.

[26] E. Vallejo, M. Galluzzi, A. Cristal, F. Vallejo, R. Beivide, P. Stenstrom,

J. E. Smith, and M. Valero. Implementing Kilo-Instruction Multipro-

cessors. In International Conference on Pervasive Services, 2005.

[27] M. Vaziri, F. Tip, and J. Dolby. Associating Synchronization Con-

straints with Data in an Object-Oriented Language. In Symposium on
Principles of Programming Languages, 2006.

[28] S. Wee, J. Casper, N. Njoroge, Y. Tesylar, D. Ge, C. Kozyrakis, and

K. Olukotun. A Practical FPGA-based Framework for Novel CMP

Research. In International Symposium on Field-Programmable Gate
Arrays, 2007.

[29] T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos. Mechanisms

for Store-wait-free Multiprocessors. In International Symposium on
Computer Architecture, 2007.

[30] M. Xu, R. Bodik, and M. D. Hill. A Serializability Violation Detector

for Shared-Memory Server Programs. In Conference on Programming
Language Design and Implementation, 2005.

[31] P. Zhou, R. Teodorescu, and Y. Zhou. HARD: Hardware-Assisted

Lockset-based Race Detection. In International Symposium on High-
Performance Computer Architecture, 2007.

12

