
A selection of lower bounds for arithmetic circuits

Neeraj Kayal
Microsoft Research India

neeraka@microsoft.com

Ramprasad Saptharishi
Microsoft Research India
ramprasad@cmi.ac.in

January 31, 2014

It is convenient to have a measure of the amount of work involved in a
computing process, even though it be a very crude one ... We might, for
instance, count the number of additions, subtractions, multiplications,
divisions, recordings of numbers,...

from Rounding-off errors in matrix processes, Alan M. Turing, 1948.

1 Introduction

Polynomials originated in classical mathematical studies concerning geometry and solutions to
systems of equations. They feature in many classical results in algebra, number theory and geom-
etry - e.g. in Galois and Abel’s resolution of the solvability via radicals of a quintic, Lagrange’s
theorem on expressing every natural number as a sum of four squares and the impossibility of
trisecting an angle (using ruler and compass). In modern times, computer scientists began to in-
vestigate as to what functions can be (efficiently) computed. Polynomials being a natural class of
functions, one is naturally lead to the following question:

What is the optimum way to compute a given (family of) polynomial(s)?

Now the most natural way to compute a polynomial f(x1, x2, . . . , xn) over a field F is to start with
the input variables x1, x2, . . . , xn and then apply a sequence of basic operations such as additions,
subtractions and multiplications1 in order to obtain the desired polynomial f . Such a computa-
tion is called a straight line program. We often represent such a straight-line program graphically
as an arithmetic circuit - wherein the overall computation corresponds to a directed acylic graph
whose source nodes are labelled with the input variables {x1, x2, . . . , xn} and the internal nodes
are labelled with either + or × (each internal node corresponds to one computational step in the
straight-line program). We typically allow arbitrary constants from the underlying field on the in-
coming edges of a + gate so that a + gate can in fact compute an arbitrary F-linear combination of
its inputs. The complexity of the computation corresponds to the number of operations, also called
the size of the corresponding arithmetic circuit. With arithmetic circuits being the relevant model,
the informal question posed above can be formalized by defining the optimal way to compute

1 One can also allow more arithmetic operations such as division and square roots. It turns out however that one
can efficiently simulate any circuit with divisions and square roots by another circuit without these operations while
incurring only an polynomial factor increase in size.

1

a given polyomial as the smallest arithmetic circuit in terms of the size that computes it. While
different aspects of polynomials have been studied extensively in various areas of mathematics,
what is unique to computer science is the endeavour to prove upper and lower bounds on the size
of arithmetic circuits computing a given (family of) polynomials. Here we give a biased survey
of this area, focusing mostly on lower bounds. Note that there are already two excellent surveys
of this area - one by Avi Wigderson [Wig02] and the other by Amir Shpilka and Amir Yehudayoff
[SY10]2. Our intention in writing the survey is the underlying hope that revisiting and assimilat-
ing the known results pertaining to circuit lower bounds will in turn help us make progress on this
beautiful problem. Consequently we mostly present here those results which we for some reason
felt we did not understand comprehensively enough. We conclude with some recent lower bound
results for homogeneous bounded depth formulas. Some notable lower bound results that we are
unable to present here due to space and time constraints are as follows. A quadratic lower bound
for depth three circuits by Shpilka and Wigderson [SW01], for bounded occur bounded depth
formulas by Agrawal, Saha, Saptharishi and Saxena [ASSS12] and the n1+Ω(1/r) lower bound for
circuits of depth r by Raz [Raz10].

Overview. The state of affairs in arithmetic complexity is such that despite a lot of attention we
still have only modest lower bounds for general circuits and formulas. In order to make progress,
recent work has focused on restricted subclasses. We first present the best known lower bound for
general circuits due to Baur and Strassen [BS83], and a lower bound for formulas due to Kalorkoti
[Kal85]. The subsequent lower bounds that we present follow a common roadmap and we articu-
late this in Section 4, and present some simple lower bounds to help the reader gain familiarity. We
then present (a slight generalization of) an exponential lower bound for monotone circuits due to
Jerrum and Snir [JS82]. Moving on to more restricted (but still nontrivial and interesting) models,
we first present an exponential lower bound for depth three circuits over finite fields due to Grig-
oriev and Karpinski [GK98] and multilinear formulas. We conclude with some recent progress on
lower bounds for homogeneous depth four circuits.

Remark. Throughout the article, we shall use Detn and Permn to refer to the determinant and permanent
respectively of a symbolic n× n matrix ((xij))1≤i,j≤n.

2 Existential lower bounds

Before we embark on our quest to prove lower bounds for interesting families of polynomials,
it is natural to ask as to what bounds one can hope to achieve. For a multivariate polynomial
f(x) ∈ F[x], denote by S(f) the size of the smallest arithmetic circuit computing f .

Theorem 1. [Folklore.] For “most” polynomials f(x) ∈ F[x] of degree d on n variables we have

S(f) ≥ Ω

(√(
n+ d

d

))
.

Sketch of Proof. We prove this here only in the situation where the underlying field F is a finite
field and refer the reader to another survey ([CKW11], Chapter 4) for a proof in the general case.

2 A more specialized survey by Chen, Kayal and Wigderson [CKW11] focuses on the applications of partial deriva-
tives in understanding the structure and complexity of polynomials.

2

So let F = Fq be a finite field. Any line of a straight line program computing f can be expressed
as taking the product of two Fq-linear combinations of previously computed values. Hence the
total number of straight-line programs of length s is at most qO(s2). On the other hand there are
q(

n+d
d) polynomials of degree d on n variables. Hence most n-variate polynomials of degree d

require straight-line programs of length at least (equivalently arithmetic circuits of size at least)

s = Ω

(√(
n+d
d

))
.

Hrubes and Yehudayoff [HY11] showed that in fact most n-variate polynomials of degree d with

zero-one coefficients have complexity at least Ω

(√(
n+d
d

))
. Now it turns out that this is in fact a

lower bound on the number of multiplications in any circuit computing a random polynomial.
Lovett [Lov11] complements this nicely by giving a matching upper bound. Specifically, it was
shown in [Lov11] that for any polynomial f of degree d on n variables there exists a circuit com-

puting f having at most
(√(

n+d
d

))
· (nd)O(1) multiplications.

3 Weak lower bounds for general circuits and formulas

Despite several attempts by various researchers to prove lower bounds for arithmetic circuits or
formulas, we only have very mild lower bounds for general circuits or formulas thus far. In this
section, we shall look at the two modest lower bounds for general circuits and formulas.

3.1 Lower bounds for general circuits

The only super-linear lower bound we currently know for general arithmetic circuits is the follow-
ing result of Baur and Strassen [BS83].

Theorem 2 ([BS83]). Any fan-in 2 circuit that computes the polynomial f = xd+1
1 + · · ·+ xd+1

n has size
Ω(n log d).

3.1.1 An exploitable weakness

Each gate of the circuit Φ computes a local operation on the two children. To formalize this, define
a new variable yg for every gate g ∈ Φ. Further, for every gate g define a quadratic equation Qg as

Qg =

{
yg − (yg1 + yg2) if g = g1 + g2

yg − (yg1 · yg2) if g = g1 · g2.

Further if yo corresponds to the output gate, then the system of equations

{Qg = 0 : g ∈ Φ} ∪ {yo = 1}

completely characterize the computations of Φ that results in an output of 1.
The same can also be extended for multi-output circuits that compute several polynomials simul-
taneously. In such cases, the set of equations

{Qg = 0 : g ∈ Φ} ∪ {yoi = 1 : i = 1, . . . , n}

3

completely characterize computations that result in an output of all ones. The following classical
theorem allows us to bound the number of common roots to a system of polynomial equations.

Theorem 3 (Bézout’s theorem). Let g1, . . . , gr ∈ F[X] such that deg(gi) = di such that the number
of common roots of g1 = · · · = gr = 0 is finite. Then, the number of common roots (counted with
multiplicities) is bounded by

∏
di.

Thus in particular, if we have a circuit Φ of size s that simultaneously computes
{
xd1, . . . , x

d
n

}
, then

we have dn inputs that evaluate to all ones (where each xi must be a d-th root of unity). Hence,
Bézout’s theorem implies that

2s ≥ dn =⇒ s = Ω(d log n).

Observe that
{
xd1, . . . , x

d
n

}
are all first-order derivatives of f = xd+1

1 + · · · + xd+1
n (with suitable

scaling). A natural question here is the following — if f can be computed an arithmetic circuit of
size s, what is the size required to compute all first-order partial derivatives of f simultaneously?
The naı̈ve approach of computing each derivative separately results in a circuit of size O(s · n).
Baur and Strassen [BS83] show that we can save a factor of n.

Lemma 4 ([BS83]). Let Φ be an arithmetic circuit of size s and fan-in 2 that computes a polynomial
f ∈ F[X]. Then, there is a multi-output circuit of size O(s) computing all first order derivatives of f .

Note that this immediately implies that any circuit computing f = xd+1
1 + · · ·+ xd+1

n requires size
Ω(d log n) as claimed by Theorem 2.

3.1.2 Computing all first order derivatives simultaneously

Since we are working with fan-in 2 circuits, the number of edges is at most twice the size. Hence
let s denote the number of edges in the circuit Φ, and we shall prove by induction that all first
order derivatives of Φ can be computed by a circuit of size at most 5s. Pick a non-leaf node v in
the circuit Φ closest to the leaves with both its children being variables, and say x1 and x2 are the
variables feeding into v. In other words, v = x1 � x2 where � is either + or ×.
Let Φ′ be the circuit obtained by deleting the two edges feeding into v, and replacing v by a new
variable. Hence, Φ′ computes a polynomial f ′ ∈ F[X ∪ {v}] and has at most (s − 1) edges. By
induction on the size, we can assume that there is a circuit D(Φ′) consisting of at most 5(s − 1)
edges that computes all the first order derivatives of f ′.
Observe that since f ′ |(v=x1�x2)= f(x), we have that

∂f

∂xi
=

(
∂f ′

∂xi

)
v=x1�x2

+

(
∂f ′

∂v

)
v=x1�x2

(
∂(x1 � x2)

∂xi

)
.

Hence, if v = x1 + x2 then

∂f

∂x1
=

(
∂f ′

∂x1

)
v=x1+x2

+

(
∂f ′

∂v

)
v=x1+x2

∂f

∂x2
=

(
∂f ′

∂x2

)
v=x1+x2

+

(
∂f ′

∂v

)
v=x1+x2

∂f

∂xi
=

(
∂f ′

∂xi

)
v=x1+x2

for i > 2.

4

If v = x1 · x2, then

∂f

∂x1
=

(
∂f ′

∂x1

)
v=x1·x2

+

(
∂f ′

∂v

)
v=x1·x2

· x2

∂f

∂x2
=

(
∂f ′

∂x2

)
v=x1·x2

+

(
∂f ′

∂v

)
v=x1·x2

· x1

∂f

∂xi
=

(
∂f ′

∂xi

)
v=x1·x2

for i > 2.

Hence, by adding at most 5 additional edges to D(Φ′), we can construct D(Φ) and hence size of
D(Φ) is at most 5s. (Lemma 4)

3.2 Lower bounds for formulas

This section would be devoted to the proof of Kalorkoti’s lower bound [Kal85] for formulas com-
puting Detn, Permn.

Theorem 5 ([Kal85]). Any arithmetic formula computing Permn (or Detn) requires Ω(n3) size.

The exploitable weakness in this setting is again to use the fact that the polynomials computed at
intermediate gates share many polynomial dependencies.

Definition 6 (Algebraic independence). A set of polynomials {f1, . . . , fm} is said to be algebraically
independent if there is no non-trivial polynomial H(z1, . . . , zm) such that H(f1, . . . , fm) = 0.
The size of the largest algebraically independent subset of f = {f1, . . . , fm} is called the transcendence
degree (denoted by trdeg(f)).

The proof of Kalorkoti’s theorem proceeds by defining a complexity measure using the above notion
of algebraic independence.

The Measure: For any subset of variables Y ⊆ X , we can write a polynomial f ∈ F[X] of the form
f =

∑s
i=1 fi ·mi where mi’s are distinct monomials in the variables in Y , and fi ∈ F [X \ Y]. We

shall denote by tdY (f) the transcendence degree of {f1, . . . , fs}
Fix a partition of variables X = X1 t · · · t Xr. For any polynomial f ∈ F[X], define the map
Γ[Kal] : F[X]→ Z≥0 as

Γ[Kal](f) =

r∑
i=1

tdXi(f).

The lower bound proceeds in two natural steps:

1. Show that Γ[Kal](f) is small whenever f is computable by a small formula.

2. Show that Γ[Kal](Detn) is large.

5

3.2.1 Upper bounding Γ[Kal] for a formula

Lemma 7. Let f be computed by a fan-in two formula Φ of size s. Then for any partition of variables
X = X1 t · · · tXr, we have Γ[Kal](f) = O(s).

Proof. For any node v ∈ Φ, let LEAF(v) denote the leaves of the subtree rooted at v and let
LEAFXi(v) denote the leaves of the subtree rooted at v that are in the part Xi. Since the under-
lying graph of Φ is a tree, it follows that the size of Φ is bounded by a twice the number of leaves.
For each part Xi, we shall show that tdXi(f) = O(|LEAFXi(Φ)|), which would prove the required
bound.

Fix an arbitrary part Y = Xi. Define the following three sets of nodes

V0 = {v ∈ Φ : |LEAFY (v)| = 0 and |LEAFY (PARENT(v))| ≥ 2}
V1 = {v ∈ Φ : |LEAFY (v)| = 1 and |LEAFY (PARENT(v))| ≥ 2}
V2 = {v ∈ Φ : |LEAFY (v)| ≥ 2} .

Each node v ∈ V0 computes a polynomial in fv ∈ F[X \ Y], and we shall replace the subtree at v
by a node computing the polynomial fv. Similarly, any node v ∈ V1 computes a polynomial of the
form f

(0)
v + f

(1)
v yv for some yv ∈ Y and f

(0)
v , f

(1)
v ∈ F[X \ Y]. We shall again replace the subtree

rooted at v by a node computing f (0)
v + f

(1)
v yv.

Hence, the formula Φ now reduces to a smaller formula ΦY with leaves being the nodes in V0 and
V1 (and nodes in V2 are unaffected). We would like to show that the size of the reduced formula,
which is at most twice the number of its leaves, is O(|LEAFY (Φ)|).

Observation 8. |V1| ≤ |LEAFY (Φ)|.

Proof. Each node in V1 has a distinct leaf labelled with a variable in Y . Hence, |V1| is bounded by
the number of leaves labelled with a variable in Y . (Obs)

This shows that the V1 leaves are not too many. Unfortunately, we cannot immediately bound the
number of V0 leaves, since we could have a long chain of V2 nodes each with one sibling being a
V0 leaf. The following observation would show how we can eliminate such long chains.

Observation 9. Let u be an arbitrary node, and v be another node in the subtree rooted at uwith LEAFY (u) =
LEAFY (v). Then the polynomial gu computed at u and the polynomial gv computed at v are related as
gu = f1gv + f2 for some f1, f2 ∈ F[X \ Y].

Proof. If LEAFY (u) = LEAFY (v), then every node on the path from u to v must have a V0 leaf as
the other child. The observation follows as all these nodes are + or × gates. (Obs)

Using the above observation, we shall remove the need for V0 nodes completely by augmenting
each node u (computing a polynomial gu) in ΦY with polynomials f (0)

u , f
(1)
u ∈ F[X \ Y] to enable

them to compute f (1)
u gu+f

(0)
u . Let this augmented formula be called Φ̂Y . Using Observation 9, we

can now contract any two nodes u and v with LEAFY (u) = LEAFY (v), and eliminate all V0 nodes
completely. Since all V2 nodes are internal nodes, the only leaves of the augmented formula Φ̂Y

are in V1. Hence, the size of the augmented formula Φ̂Y is bounded by 2 |V1|, which is bounded
by 2 |LEAFY (Φ)| by Observation 8.

6

Suppose Φ computes a polynomial f , which can be written as f =
∑t

i=1 fi ·mi with fi ∈ F[X \ Y]

andmi’s being distinct monomials in Y . Since Φ̂Y also computes f , each fi is a polynomial combi-
nation of the polynomials SY =

{
f

(0)
u , f

(1)
u : u ∈ Φ̂Y

}
. Since Φ̂Y consists of at most 2 |LEAFY (Φ)|

augmented nodes, we have that tdY (f) ≤ |SY | ≤ 4 |LEAFY (Φ)|. Therefore,

tdY (f) = trdeg {fi : i ∈ [t]} ≤ 4 |LEAFY (Φ)|

Hence,

Γ[Kal](Φ) =

r∑
i=1

tdXi(fi) ≤ 4

(
r∑
i=1

|LEAFXi |

)
= O(s).

3.2.2 Lower bounding Γ[Kal](Detn)

Lemma 10. Let X = X1 t · · · tXn be the partition as defined by Xt = {xij : i− j ≡ t mod n}. Then,
Γ[Kal](Detn) = Ω(n3).

Proof. By symmetry, it is easy to see that tdXi(Detn) is the same for all i. Hence, it suffices to show
that tdY (Detn) = Ω(n2) for Y = Xn = {x11, . . . , xnn}.
To see this, observe that the determinant consists of the monomials

(
x11...xnn
xiixjj

)
· xijxji for every

i 6= j. Hence, tdY (Detn) ≥ trdeg {xijxji : i 6= j} = Ω(n2). Therefore, Γ[Kal](Detn) = Ω(n3).

The proof of Theorem 5 follows from Lemma 7 and Lemma 10.

4 “Natural” proof strategies

The lower bounds presented in Section 3 proceeded by first identifying a weakness of the model,
and exploiting it in an explicit manner. More concretely, Section 3.2 presents a promising strat-
egy that could be adopted to prove lower bounds for various models of arithmetic circuits. The
crux of the lower bound was the construction of a good map Γ that assigned a number to every
polynomial. The map Γ[Kal] was useful to show a lower bound in the sense that any f computable
by a small formula had small Γ[Kal](f). In fact, all subsequent lower bounds in arithmetic circuit
complexity have more or less followed a similar template of a “natural proof”. More concretely,
all the subsequent lower bounds we shall see would essentially follow the outlined plan.

Step 1 (normal forms) For every circuit in the circuit class C of interest, express the
polynomial computed as a small sum of simple building blocks.

For example, every ΣΠΣ circuit is a small sum of products of linear polynomials which are the build-
ing blocks here. In this case, the circuit model naturally admits such a representation but we shall
see other examples with very different representations as sum of building blocks.

Step 2 (complexity measure) Construct a map Γ : F[x1, . . . , xn] → Z≥0 that is sub-
additive i.e. Γ(f1 + f2) ≤ Γ(f1) + Γ(f2).

7

In most cases, Γ(f) is the rank of a large matrix whose entries are linear functions in the coefficients
of f . In such cases, we immediately get that Γ is sub-additive.
The strength of the choice of Γ is determined by the next step.

Step 3 (potential usefulness) Show that if B is a simple building block, then Γ(B) is
small. Further, check if Γ(f) for a random polynomial f is large (potentially).

This would suggest that if any f with large Γ(f) is to be written as a sum of B1 + · · · + Bs, then
sub-additivity and the fact that Γ(Bi) is small for each i and Γ(f) is large immediately imply that
s must be large. This implies that the complexity measure Γ does indeed have a potential to prove
a lower bound for the class. The next step is just to replace the random polynomial by an explicit
polynomial.

Step 4 (explicit lower bound) Find an explicit polynomial f for which Γ(f) is large.

These are usually the steps taken in almost all the known arithmetic circuit lower bound proofs.
The main ingenuity lies in constructing a useful complexity measure, which is really to design Γ
so that it is small on the building blocks.

Of course, there could potentially be lower bound proofs that do not follow the road-map outlined.
For instance, it could be possible that Γ is not small for a random polynomial, but specifically
tailored in a way to make Γ large for the Permn. Or perhaps Γ need not even be sub-additive and
maybe there is a very different way to argue that all polynomial in the circuit class have small
Γ. However, this has been the road-map for almost all lower bounds so far (barring very few
exceptions). As a warmup, we first present some very simple applications of the above plan to
prove lower bounds for some very simple subclasses of arithmetic circuits in the next section.
We then move on to more sophisticated proofs of lower bounds for less restricted subclasses of
circuits.

5 Some simple lower bounds

Let us start with the simplest complete3 class of arithmetic circuits – depth-2 circuits or ΣΠ circuits.

5.1 Lower bounds for ΣΠ circuits

Any ΣΠ circuit of size s computes a polynomial f = m1 + · · ·+ms where each mi is a monomial
multiplied by a field constant. Therefore, any polynomial computed by a small ΣΠ circuit must
have a small number of monomials. Hence, it is obvious that any polynomial that has many
monomials require large ΣΠ circuits.
This can be readily rephrased in the language of the outline described last section by defining Γ(f)
to simply be the number of monomials present in f . Hence, Γ(f) ≤ s for any f computed by a ΣΠ
circuit of size s. Of course, even a polynomial like f = (x1 + x2 + · · · + xn)n have Γ(f) = nΩ(n)

giving the lower bound.

3in the sense that any polynomial can be computed in this model albeit of large size

8

5.2 Lower bounds for Σ∧Σ circuits

A Σ∧Σ circuit of size s computes a polynomial of the form f = `d11 + · · · + `dss where each `i is a
linear polynomial over the n variables.4

Clearly as even a single `d could have exponentially many monomials, the Γ defined above cannot
work in this setting. Nevertheless, we shall try to design a similar map to ensure that Γ(f) is small
whenever f is computable by a small Σ∧Σ circuit.

In this setting, the building blocks are terms of the form `d. The goal would be to construct a sub-
additive measure Γ such that Γ(`d) is small. Here is the key observation to guide us towards a good
choice of Γ.

Observation 11. Any k-th order partial derivative of `d is a constant multiple of `d−k.

Hence, if ∂=k(f) denotes the set of k-th order partial derivatives of f , then the space spanned by
∂=k(`d) has dimension 1. This naturally leads us to define Γ exploiting this weakness.

Γk(f)
def
= dim

(
∂=k(f)

)
It is straightforward to check that Γk is indeed sub-additive and hence Γk(f) ≤ s whenever f
is computable by a Σ∧Σ circuit of size s. For a random polynomial f , we should be expecting
Γk(f) to be

(
n+k
k

)
as there is unlikely to be any linear dependencies among the partial derivatives.

Hence, all that needs to be done is to find an explicit polynomial with large Γk.
If we consider Detn or Permn, then any partial derivative of order k is just an (n− k)× (n− k) mi-
nor. Also, these minors consist of disjoint sets of monomials and hence are linearly independent.
Hence, Γk(Detn) =

(
n
k

)2. Choosing k = n/2, we immediately get that any Σ∧Σ circuit computing
Detn or Permn must be of size 2Ω(n).

5.3 Low-rank ΣΠΣ

A slight generalization of Σ∧Σ circuits is a rank-r ΣΠΣ circuit that computes a polynomial of the
form

f = T1 + . . . + Ts

where each Ti = `i1 . . . `id is a product of linear polynomials such that dim {`i1, . . . , `id} ≤ r.

Thus, Σ∧Σ is a rank-1 ΣΠΣ circuit, and a similar partial-derivative technique for lower bounds
works here as well.
In the setting where r is much smaller than the number of variables n, each Ti is essentially an
r-variate polynomial masquerading as an n-variate polynomial using an affine transformation. In
particular, the set of n first order derivatives of T have rank at most r. This yields the following
observation.

Observation 12. Let T = `1 . . . `d with dim {`1, . . . , `d} ≤ r. Then for any k, we have

Γk(T)
def
= dim

(
∂=k(T)

)
≤

(
r + k

k

)
.

4such circuits are also called diagonal depth-3 circuits in the literature

9

Thus once again by sub-additivity, for any polynomial f computable by a rank-r ΣΠΣ circuit of
size s, we have Γk(f) ≤ s ·

(
r+k
r

)
. Note that a random polynomial is expected to have Γk(f) close

to
(
n+k
k

)
, which could be much larger for r � n. We already saw that Γk(Detn) =

(
n
k

)2. This
immediately gives the following lower bound, the proof of which we leave as an exercise to the
interested reader.

Theorem 13. Let r ≤ n2−δ for some constant δ > 0. For k = εnδ, where ε > 0 is sufficiently small, we
have (

n
k

)2(
r+k
k

) = exp
(

Ω(nδ)
)
.

Hence, any rank-r ΣΠΣ circuit computing Detn or Permn must have size exp
(
Ω(nδ)

)
.

This technique of using the rank of partial derivatives was introduced by Nisan and Wigderson
[NW97] to prove lower bounds for homogeneous depth-3 circuits (which also follows as a corollary
of Theorem 13). The survey of Chen, Kayal and Wigderson [CKW11] give a comprehensive expo-
sition of the power of the partial derivative method.

With these simple examples, we can move on to other lower bounds for various other more inter-
esting models.

6 Lower bounds for monotone circuits

This section would present a slight generalization of a lower bound by Jerrum and Snir [JS82]. To
motivate our presentation here, let us first assume that the underlying field is R, the field of real
numbers. A monotone circuit over R is a circuit having +,× gates in which all the field constants
are non-negative real numbers. Such a circuit can compute any polynomial f over R all of whose
coefficients are nonnegative real numbers, such as for example the permanent. It is then natural to
ask whether there are small monotone circuits over R computing the permanent. Jerrum and Snir
[JS82] obtained an exponential lower bound on the size of monotone circuits over R computing
the permanent. Note that this definition of monotone circuits is valid only over R (actually more
generally over ordered fields but not over say finite fields) and such circuits can only compute
polynomials with non-negative coefficients. Here we will present Jerrum and Snir’s argument in
a slightly more generalized form such that the circuit model makes sense over any field F and is
complete, i.e. can compute any polynomial over F. Let us first explain the motivation behind the
generalized circuit model that we present here. Observe that in any monotone circuit over R, there
is no cancellation as there are no negative coefficients. Formally, for a node v in our circuits let us
denote by fv the polynomial computed at that node. For a polynomial f let us denote by Mon(f)
the set of monomials having a nonzero coefficient in the polynomial f .

1. If w = u+ v then
Mon(fw) = Mon(fu) ∪Mon(fv).

2. If w = u× v then

Mon(fw) = Mon(fu) ·Mon(fv)
def
= {m1 ·m2 : m1 ∈ Mon(fu),m2 ∈ Mon(fv)} .

10

This means that for any node v in a monote circuit over R one can determine Mon(fv) in a very
syntactic manner starting from the leaf nodes. Let us make precise this syntactic computation that
we have in mind.

Definition 14 (Formal Monomials.). Let Φ be an arithmetic circuit. The formal monomials at any
node v ∈ Φ, which shall be denoted by FM(v), shall be inductively defined as follows:

If v is a leaf labelled by a variable xi, then FM(v) = {xi}. If it is labelled by a constant, then
FM(v) = {1}.
If v = v1 + v2, then FM(v) = FM(v1) ∪ FM(v2).

If v = v1 × v2, then

FM(v) = FM(v1) · FM(v2)

def
= {m1 ·m2 : m1 ∈ FM(v1),m2 ∈ FM(v2)} .

Note that for any node v in any circuit we have Mon(fv) ⊆ FM(v) but in a monotone circuit over
R this containment is in fact an equality at every node. This motivates our definition of a slightly
more general notion of a monotone circuit as follows.

Definition 15 (Monotone circuits). A circuit C is said to be syntactically monotone (simply monotone
for short) if Mon(fv) = FM(v) for every node v in C.

The main theorem of this section is the following:

Theorem 16 ([JS82]). Over any field F, any syntactically monotone circuit C computing Detn or Permn

must have size at least 2Ω(n).

The proof of this theorem is relatively short assuming the following structural result (which is
present in standard depth-reduction proofs [VSBR83, AJMV98]).

Lemma 17. Let f be a degree d polynomial computed by a monotone circuit of size s. Then, f can be
written of the form f =

∑s
i=1 fi · gi where the fi’s and gi’s satisfy the following properties.

1. For each i ∈ [s], we have d
3 < deg gi ≤ 2d

3 .

2. For each i, we have FM(fi) · FM(gi) ⊆ FM(f).

We shall defer this lemma to the end of the section and first see how this would imply Theorem 16.
The complexity measure Γ(f) in this case is just the number of monomials in f , but it is the above
normal form that is crucial in the lower bound.

Proof of Theorem 16. Suppose Φ is a circuit of size s that computes Detn. Then by Lemma 17,

Detn =

s∑
i=1

fi · gi

with FM(fi) · FM(gi) ⊆ FM(Detn). The building blocks are terms of the form T = f · g, where
FM(f) · FM(g) ⊆ FM(Detn).

11

Since all the monomials in Detn are products of variables from distinct columns and rows, the
rows (and columns) containing the variables f depends on is disjoint from the rows (and columns)
containing variables that g depends on. Hence, there exists sets of indices A,B ⊆ [n] such that f
depends only on {xjk : j ∈ A, k ∈ B} and g depends only on

{
xjk : j ∈ A, k ∈ B

}
.

Further, since Detn is a homogeneous polynomial of degree n, we also have that both f and g must
be homogeneous as well. Also as all monomials of g using distinct row and column indices from
A and B respectively, we see that deg g = |A| = |B| and deg f = |A| = |B|. Using Lemma 17, let
|A| = αn for some 1

3 ≤ α ≤
2
3 . This implies that Γ(f) ≤ (αn)!, and Γ(g) ≤ ((1− α)n)! and hence

Γ(f · g) ≤ (αn)!((1− α)n)! ≤ n!(
n
n/3

)
as 1

3 ≤ α ≤
2
3 . Also, Γ is clearly sub-additive and we have

Γ(f1g1 + · · ·+ fsgs) ≤ s · n!(
n
n/3

) .
Since Γ(Detn) = n!, this forces s ≥

(
n
n/3

)
= 2Ω(n).

We only need to prove Lemma 17 now.

6.1 Proof of Lemma 17

Without loss of generality, assume that the circuit Φ is homogeneous5, and consists of alternating
layers of + and× gates. Also, assume that all× gates have fan-in two, and orient the two children
such that the formal degree of the left child is at least as large as the formal degree of the right
child. Such circuits are also called left-heavy circuits.

Definition 18 (Proof tree). A proof tree of an arithmetic circuit Φ is a sub-circuit Φ′ such that

• The root of Φ is in Φ′

• If a multiplication gate with v = v1 × v2 ∈ Φ′, then v1 and v2 are in Φ′ as well.

• If an addition gate v = v1 + · · ·+ vs ∈ Φ′, then exactly one vi is in Φ′.

Such a sub-circuit Φ′, represented as a tree (duplicating nodes if required), shall be called a proof tree of Φ.

Let PROOFTREES(Φ) denote the set of all proof trees of Φ. It is easy to see that any proof tree of
Φ computes a monomial over the variables. Further, if Φ was a monotone circuit computing a
polynomial f , then every proof tree computes a monomial in f . Therefore,

f =
∑

Φ′∈PROOFTREES(Φ)

[Φ′]

where [Φ′] denotes the monomial computed by Φ′. Of course, the number of proof trees is expo-
nential and the above expression is huge. However, we could use a divide-and-conquer approach
to the above equation using the following lemma.

5It is a forklore result that any circuit can be homogenized with just a polynomial blow-up in size. Further, this process
also preserves monotonicity of the circuit. A proof of this may be seen in [SY10].

12

Lemma 19. Let Φ′ be a left-heavy formula of formal degree d. Then there is a node v on the left-most path
of Φ′ such that d3 ≤ deg(v) < 2d

3 .

Proof. Pick the lowest node on the left-most path that has degree at least 2d
3 . Then, its left child

must be a node of degree less than 2d
3 , and also at least d3 (because the formula is left-heavy).

For any proof tree Φ′ and a node v on its left-most path, define [Φ′ : v] to be the output polynomial
of the proof tree obtained by replacing the node v on the left-most path by 1. If v does not occur
on the left-most path of Φ′, define [Φ′ : v] to be 0. We will denote the polynomial computed at a
node v by fv. Then, the above equation can now be re-written as:

f =
∑

Φ′∈PROOFTREES(Φ)

[Φ′]

=
∑
v∈Φ

d
3
≤deg v< 2d

3

fv ·

 ∑
Φ′∈PROOFTREES(Φ)

[Φ′ : v]


=

∑
v∈Φ

d
3
≤deg v< 2d

3

fv · gv where gv =
∑

Φ′∈PROOFTREES(Φ)

[Φ′ : v].

Since d
3 ≤ deg v < 2d

3 , we also have that d3 < deg gv ≤ 2d
3 and the last equation is what was required

by Lemma 17.

7 Lower bounds for depth-3 circuits over finite fields

This section shall present the lower bound of Grigoriev and Karpinski [GK98] for Detn. A follow-
up paper of Grigoriev and Razborov [GR00] extended the result over function fields, also includ-
ing a weaker lower bound for the permanent, but we shall present a slightly different proof that
works for the permanent as well.

Theorem 20. [GK98] Any depth-3 circuit computing Detn (or Permn) over a finite field Fq (q 6= 2)
requires size 2Ω(n).

Main idea: Let q = |F|. SupposeC = T1+· · ·+Ts, where each Ti is a product of linear polynomials.
Define rank(Ti) as in Section 5.3 to be the dimension of the set of linear polynomials that Ti is a
product of.
In Section 5.3, we saw that the dimension of partial derivatives would handle low rank Ti’s. As
for the high rank Ti’s, since Ti is a product of at least r linearly independent linear polynomials, a

random evaluation keeps Ti non-zero with probability at most
(

1− 1
q

)r
. Since q is a constant, we

have that a random evaluation of a high rank Ti is almost always zero. Hence, in a sense, C can
be “approximated” by just the low-rank components.
Grigoriev and Karpinski [GK98] formalize the above idea as a measure by combining the partial
derivative technique seen in Section 5.3 with evaluations to show that Detn cannot be approxi-
mated by a low-rank ΣΠΣ circuit.

13

7.1 The complexity measure

For any polynomial f ∈ F[x11, . . . , xnn], define the matrix Mk(f) as follows — the columns of
Mk(f) are indexed by k-th order partial derivatives of f , and rows by elements of Fn2

, with the
entry being the evaluation of the partial derivative (column index) at the point (row index).

The rank ofMk(f) could be a possible choice of a complexity measure but Grigoriev and Karpinski
make a small modification to handle the high rank Tis. Instead, they look at the matrix Mk(f)
and remove a few erroneous evaluation points and use the rank of the resulting matrix. For any
A ⊆ Fn2

, let us define Mk(f ;A) to be the matrix obtained from Mk(f) by only taking the rows
whose indices are in A. Also, let Γ

[GK]
k,A (f) denote rank(Mk(f ;A)).

7.2 Upper-bounding Γ
[GK]
k,A for a depth-3 circuit

Our task here is to give an upper bound on the complexity measure for a ΣΠΣ-circuit of size s. We
first see that the task reduces to upper bounding the measure for a single term via subadditivity.
It follows from the linearity of the entries of the matrix.

Observation 21 (Sub-additivity). Γ
[GK]
k,A (f + g) ≤ Γ

[GK]
k,A (f) + Γ

[GK]
k,A (g).

Now fix a threshold r0 = βn for some constant β > 0 (to be chosen shortly), and let k = γn for
some γ > 0 (to be chosen shortly). We shall call a term T = `1 · · · `d to be of low rank if rank(T) ≤ r0,
and large rank otherwise. By the above observation, we need to upper-bound the measure Γ

[GK]
k,A

for each term T , for a suitable choice of A.

Low rank terms (rank(T) ≤ r0):
Suppose T = `1 · · · `d with {`1, . . . , `r} being a maximal independent set of linear polynomi-
als (with r ≤ r0). Then, T can be expressed as a linear combination of terms from the set
{`e11 . . . `err : ei ≤ d ∀i ∈ [r]}. And since the matrix Mk(f) depends only on evaluations in Fn2

,
we can use the relation that xq = x in F to express the function T : Fn2 → F as a linear combination
of {`e11 . . . `err : ei < q ∀i ∈ [r]}. Therefore, for any set A ⊆ Fn2

, we have that

Γ
[GK]
k;A (T) ≤ rank(Mk(f)) ≤ qr ≤ qβn.

High rank terms (rank(T) > r0):
Suppose T = `1 . . . `d whose rank is greater than r0 = βn, and let {`1, . . . , `r} be a maximal
independent set. We want to use the fact that since T is a product of at least r independent linear
polynomials, most evaluations would be zero. We shall be choosing our A to be the set where all
k-th order partial derivatives evaluate to zero.
On applying the product rule of differentiation, any k-th order derivative of T can be written as
a sum of terms each of which is a product of at least r − k independent linear polynomials. Let
us count the erroneous points ET ⊆ Fn2

that keep at least r − k of {`1, . . . , `r} non-zero, or in other
words makes at most k of {`1, . . . , `r} zero.

Pr
a∈Fn2

[at most k of `1, . . . , `r evaluate to zero] ≤
k∑
i=0

(
r

i

)(
1

q

)i(
1− 1

q

)r−i

14

Hence, we can upper-bound |ET | as

|ET | ≤
k∑
i=0

(
r

i

)
(q − 1)r−iqn

2−r

= O

(
k ·
(
r

k

)(
1− 1

q

)r−k
qn

2

)
if r > qk

= qn
2 · αn for some 0 < α < 1.

By choosingA = Fn2 \E where E =
⋃
T of large rank ET , we have thatMk(T ;A) is just the zero matrix

and hence Γ
[GK]
k,A (T) = 0.

Putting it together, if C = T1 + · · ·+ Ts, then

Γ
[GK]
k,A (C) ≤ s · qβn. (1)

where A = Fn2 \ E for some set E of size at most s · αn · qn2
for some 0 < α < 1.

7.3 Lower-bounding Γ
[GK]
k,A for Detn and Permn

We now wish to show that Mk(Detn;A) has large rank. The original proof of Grigoriev and
Karpinski is tailored specifically for the determinant, and does not extend directly to the per-
manent. The following argument is a proof communicated by Srikanth Srinivasan [Sri13] that
involves an elegant trick that he attributes to [Kou08]. The following proof is presented for the
determinant, but immediately extends to the permanent as well.

Note that if we were to just consider Mk(Detn), it would have been easy to show that the rank is
full by looking at just those evaluation points that keep exactly one (n−k)×(n−k) minor non-zero
(set the main diagonal of the minor to ones, and every other entry to zero). Hence, Mk(Detn) has
the identity matrix embedded inside and hence must be full rank. However, we are missing a few
of the evaluations (since a small set E of evaluations is removed) and we would still like to show
that the matrix continues to have full column-rank.

Lemma 22. Let p(X) be a non-zero linear combination of r × r minors of the matrix X = ((xij)). Then,

Pr
A∈Fn2

q

[p(A) 6= 0] ≥ Ω(1).

This immediately implies that for every linear combinations of the columns of Mk(Detn), a con-
stant fraction of the coordinates have non-zero values. Since we are removing merely a set E of
size (1 − o(1))qn

2
, there must continue to exist coordinates that are non-zero. In other words, no

linear combination of columns of Mk(Detn;A) results in the zero vector.
The proof of the above lemma would be an induction on the number of minors contributing to
the linear combination. As a base case, we shall use a well-known fact about Detn and Permn of
random matrices.

15

Proposition 23. If A is a random n× n matrix with entries from a fixed finite field Fq, then for q 6= 2 we
have

Pr[det(A) 6= 0] ≥ q − 2

q − 1
= Ω(1).

We shall defer the proof of this proposition for later, and proceed with the proof of Lemma 22.

Proof of Lemma 22. If p(X) is a scalar multiple of a single non-zero minor, then we already have
the lemma from Proposition 23. Hence, let us assume that there are at least two distinct minors
participating in the linear combination p(X). Without loss of generality, assume that the first row
occurs in some of the minors, and does not in others. That is,

p(X) =

 ∑
i:Row1∈Mi

ciMi

 +

 ∑
j:Row1 /∈Mj

cjMj


=

(
x11M

′
1 + · · ·+ x1nM

′
n

)
+ M ′′ (expanding along the first row).

To understand a random evaluation of p(X), let us first set rows 2, . . . , n to random values, and
then setting row 1 to random values.

Pr
A

[p(A) 6= 0] ≥ Pr[x11M
′
1 + · · ·+ x1nM

′
n +M ′′ 6= 0 | some M ′i 6= 0]

×Pr[some M ′i 6= 0]

Note that once we have set rows 2, . . . , n to random values, p(X) reduces to a linear polynomial in
{x11, . . . , x1n}. Further, a random evaluation of any non-constant linear polynomial is zero with
probability exactly

(
1− 1

q

)
. Hence,

Pr
A

[p(A) 6= 0] ≥ Pr[x11M
′
1 + · · ·+ x1nM

′
n +M ′′ 6= 0 | some M ′i 6= 0]

×Pr[some M ′i 6= 0]

=

(
1− 1

q

)
· Pr[some M ′i 6= 0].

Now comes Koutis’ Trick: the term
(

1− 1
q

)
· Pr[some M ′i 6= 0] is exactly the probability that

x11M
′
1 + · · ·+ x1nM

′
n is non-zero! Hence,

Pr
A

[p(A) 6= 0] = Pr[x11M
′
1 + · · ·+ x1nM

′
n +M ′′ 6= 0]

≥ Pr[x11M
′
1 + · · ·+ x1nM

′
n 6= 0]

= Pr

 ∑
i:Row1∈Mi

ciMi

 6= 0

 .
which is just the linear combination obtained by only considering those minors that contain the
first row. Repeating this process for other rows/columns until only one minor remains, we have

Pr
A

[p(A) 6= 0] ≥ Pr
A

[det(A) 6= 0] =
q − 2

q − 1
(by Proposition 23).

16

We now give a proof of Proposition 23.

Proof of Proposition 23. We shall fix random values to the first row of A. Then,

Pr
A

[Detn(A) = 0] ≤ Pr[a11M1 + · · ·+ a1nMn = 0 | some a1i non-zero]

+ Pr[a11 = · · · = a1n = 0]

= Pr[a11M1 + · · ·+ a1nMn = 0 | some a1i non-zero]

+
1

qn
.

Whenever there is some a1i that is non-zero, then a11M1 + · · ·+ a1nMn is a non-zero linear combi-
nation of minors. By a similar argument as in the proof of Lemma 22, we have that

Pr[a11M1 + · · ·+ a1nMn = 0 | not all a1i are zero] ≤ Pr[Detn−1(A) = 0].

Unfolding this recursion, we have

Pr[Detn(A) = 0] ≤ 1

q
+

1

q2
+ · · ·+ 1

qn
=

1

q − 1

=⇒ Pr[Detn(A) 6= 0] ≥
(

1− 1

q − 1

)
=

q − 2

q − 1
.

7.4 Putting it all together

Hence, if Detn is computed by a depth-3 circuit of top fan-in s over F, then

s · qβn = Ω

((
n

k

)2
)

= Ω
(

22H(γ)·n
)

=⇒ log s = Ω((2H(γ)− β log q)n)

where H(γ) is the binary entropy function6. By choosing γ < q−q/2, we can find a β such that
qγ < β (which was required in Section 7.2) and 2H(γ) > β log q, yielding the lower bound

s = exp
(

Ω(q−q/2 · q log q · n)
)

= 2Ω(n)

(Theorem 20)

6The binary entropy function is defined as H(γ)
def
= −γ log2(γ) − (1 − γ) log2(1 − γ). It is well known that

(
n
k

)
≈

2nH(k/n).

17

8 Lower bounds for multilinear models

Raz [Raz09] showed that multilinear formulas computing the Detn or Permn must be of size
nΩ(logn). The complexity measure used by Raz also led to exponential lower bounds for constant
depth multilinear circuits [RY09] and super-linear lower bounds for syntactic multilinear circuits
[RSY08]. We shall first give some intuition behind the complexity measure before actually seeing
the lower bounds.

8.1 The partial derivative matrix

Intuition

A natural first step is to try the simpler task of proving lower bounds for depth-3 multilinear
circuits.

f = `11 . . . `1d + · · ·+ `s1 . . . `sd

The task is now to construct a measure Γ such that Γ(`1 . . . `d) is small whenever each `i is a lin-
ear polynomial and different `i’s are over disjoint sets of variables. Consider the simplest case of
f = (a1+b1x)(a2+b2y). An observation is that the coefficients of f are given by the 2×2 matrix ob-

tained as [a1 b1]T [a2 b2] =

[
a1a2 a1b2
a2b1 b1b2

]
. In other words, a polynomial f = a0 + a1x+ a2y+ a3xy

factorizes into two variable disjoint factors if and only if the matrix
[
a0 a1

a2 a3

]
has rank 1. A

straight-forward generalization of this to multiple variables yields the partial derivative matrix
(which was first introduced by Nisan [Nis91] in the context of non-commutative ABPs)

Definition 24. For any given partition of variables X = Y t Z, define the partial derivative matrix
MY,Z(f) to be the matrix described as follows — the rows are indexed by monomials in Y , columns indexed
by monomials in Z, and the (i, j)-th entry of the matrix is the coefficient of the monomial mi(Y) ·mj(Z) in
f . We shall use Γ

[Raz]
Y,Z (f) to denote rank(MY,Z(f)). Further, we shall call a polynomial f to be full-rank

if MY,Z(f) is full-rank.

Here are some basic properties of the partial derivative matrix which would be extremely useful
in later calculations.

Observation 25 (Sub-additivity). For any partition X = Y tZ and any pair of multilinear polynomials
f and g in F[X] we have Γ

[Raz]
Y,Z (f + g) ≤ Γ

[Raz]
Y,Z (f) + Γ

[Raz]
Y,Z (g)

Proof. Follows from the linearity of the matrix.

Observation 26 (Multiplicativity). If f1 ∈ F[Y1, Z1] and f2 ∈ F[Y2, Z2] with Y = Y1 t Y2 and Z =
Z1 t Z2, then

Γ
[Raz]
Y,Z (f1 · f2) = Γ

[Raz]
Y1,Z1

(f1) · Γ
[Raz]
Y2,Z2

(f2)

Proof. It is not hard to see that MY,Z(f1 · f2) is the tensor product MY1,Z1(f1)⊗MY2,Z2(f2), and the
rank of a tensor product of two matrices is the product of the ranks.

Observation 27. Γ
[Raz]
Y,Z (f) ≤ 2min(|Y |,|Z|)

18

Proof. The number of rows is 2|Y | and number of columns is 2|Z|, and hence the rank is upper-
bounded by the minimum.

Let us get back to lower bounds for multilinear models, and attempt to use Γ
[Raz]
Y,Z (f) defined

above. Unfortunately, there are examples of simple polynomials like f = (y1 + z1) . . . (yn + zn)

with Γ
[Raz]
Y,Z (f) = 2n. Raz’s idea here was to look at Γ

[Raz]
Y,Z (f) for a random partition, and show that

with high probability the rank of the partial derivative matrix is far from full. As a toy example,
we shall see why this has the potential to give lower bounds for depth-3 multilinear circuits.

Lemma 28. Let f(X) = `1 . . . `d be an n-variate multilinear polynomial. If X = Y t Z is a random
partition with |Y | = |Z| = |X|/2, then with high probability we have

Γ
[Raz]
Y,Z (f) ≤ 2|X|/2 · 2−|X|/16.

It is to be noted that we should expect a random polynomial to be full-rank with respect to any
partition, so the measure Γ

[Raz]
Y,Z (f) is expected to be 2|X|/2 which should yield a lower bound of

2Ω(|X|).

Sketch of Proof. Without loss of generality we can assume that each `i depends on at least two
variables as removing the `i’s that depend on just one variable does not alter Γ

[Raz]
Y,Z (f) with respect

to any partition. Let |X| = n.
Using Observation 26, Γ

[Raz]
Y,Z (f) ≤ 2d and hence if d < n/3 then we are done. Hence assume that

d ≥ n/3. By a simple averaging argument, there must hence be at least d/4 of the `i’s that depend
on at most 3 variables; we shall refer to these as the small `i’s.
Since the partition is chosen at random, on expectation a quarter of the small `i’s would have all
its variables mapped to either Y or Z, hence not contributing to Γ

[Raz]
Y,Z (f). Therefore, with high

probability,
Γ

[Raz]
Y,Z (f) ≤ 2d · 2−d/16 ≤ 2n/2 · 2−n/16.

More generally, if f = g1(X1) . . . gt(Xt) where the Xi’s are mutually disjoint, then a random par-
tition is very unlikely to partition all the Xi’s into almost equal parts. This shall be formalized in
the next section to prove the lower bound for multilinear formulas.

8.2 Lower bound for multilinear formulas

We now present the lower bound for multilinear formulas due to [Raz09]. The first step of our
roadmap is to find a suitable normal form for multilinear formulas. The normal form that we use
is from the survey by Shpilka and Yehudayoff [SY10].

8.2.1 Formulas to log-product sums

The following structural lemma shows that any multilinear formula can be converted in to a small
sum of log-product polynomials. The techniques of the following lemma can also be used in other
settings with minor modifications, and we shall encounter a different version of this lemma later
as well.

19

Definition 29. A multilinear polynomial f ∈ F[X] is called a multilinear log-product polynomial if
f = g1 . . . gt and there exists a partition of variables X = X1 t · · · tXt such that

• gi ∈ F[Xi] for all i ∈ [t].

• |X|
3i
≤ |Xi| ≤ 2|X|

3i
for all i, and |Xt| = 1

Lemma 30. Let Φ be a multilinear formula of size s computing a polynomial p. Then f can be written as a
sum of (s+ 1) log-product multivariate polynomials.

Proof. Similar to Lemma 19, let v be a node in Φ such that set of variables Xv that it depends on
satisfies |X|3 ≤ |Xv| ≤ 2|X|

3 . If Φv is the polynomial computed at this node, then f can be written as

f = Φv · g1 + Φv=0 for some g1 ∈ F[X \Xv].

where Φv=0 is the formula obtained by replacing the node v by zero. Note that the subtree at the
node v is completely disjoint from Φv=0. Hence the sum of the sizes of Φv and Φv=0 is at most s.
Hence, g1 ∈ F[X \ Xv] and |X|3 ≤ |X \Xv| ≤ 2|X|

3 . Inducting on the formulas Φv and Φv=0 gives
the lemma.

8.2.2 Log-products are far from full-rank on a random partition

The main technical part of the proof is to show that log-product multivariate polynomials are far
from full-rank under a random partition of variables. This would let us show that a sum of log-
product multivariate polynomials cannot be full rank unless it is a very large sum.

Main idea: Suppose f = g1 . . . gt where each gi ∈ F[Xi]. Let X = Y t Z be a random partition
with |Y | = |Z| = |X|/2, and Yi = Y ∩ Xi and Zi = Z ∩ Xi. Let di =

∣∣∣ |Yi|−|Zi|
2

∣∣∣ measure the
imbalance between the sizes of Yi and Zi, and we shall say Xi is k-imbalanced if di ≥ k. Let
bi = |Yi|+|Zi|

2 = |Xi|
2 .

By Observation 26, we know that

Γ
[Raz]
Y,Z (f) = Γ

[Raz]
Yi,Zi

(g1) . . .Γ
[Raz]
Yi,Zi

(gt)

≤ 2min(|Y1|,|Z1|) · · · · 2min(|Yt|,|Zt|)

= 2b1−d1 · · · 2bt−dt =
2|X|/2

2d1+···+dt .

Hence, even if one of the Xi’s is a little imbalanced, then the product is far from full-rank.

Lemma 30 shows that the size of Xi decreases slowly with i, and it is not hard to show that

|Xi| ≥
√
|X| for i ≤ t′

def
= log |X|

100 . We wish to show that the probability that none of gi (for i ≤ t′)
is k-unbalanced for k = |X|1/20 is very small. Let Ei be the event that Xi is not k-unbalanced. The
goal is to upper bound the probability that all the events Ei hold. These probability calculations
would follow from this lemma about the hypergeometric distribution.

Hypergeometric Distribution: Fix parameters n, g, r ≥ 0, and let G ⊆ [n] with |G| = g. Infor-
mally, the hypergeometric distribution is the distribution obtained on the intersection sizes of a

20

random set of size r with a fixed set of size g from a universe of size n. Formally, the random
variableH(n, g, r) is defined as:

Pr [H(n, g, r) = k] = Pr
R⊆[n],|R|=r

[|R ∩G| = k] =

(
g
k

)(
n−g
r−k
)(

n
r

)
The following lemma shows that for a fairly large range of parameters, the hypergeometric distri-
bution does not put too much mass on any value.

Lemma 31. Let n, g, r be parameters such that n4 ≤ r ≤
3n
4 and 0 ≤ g ≤ 2n

3 . Then for any t ≤ g,

Pr [H(n, g, r) = t] ≤ O

(
1
√
g

)
.

The proof of this lemma follows from standard binomial coefficient estimates on the probability.

Let us go back to estimating the probability that all the events Ei hold.

Pr [E1 ∧ · · · ∧ Et′] = Pr[E1] · Pr[E2 | E1] · · ·Pr[Et′ | E1 ∧ · · · ∧ Et′−1].

The event E1 is just the probability that a random set Y of size |X|/2 intersects X1 in t places
where t ∈

[
|Xi|

2 − k,
|Xi|

2 − k
]
. This is just a particular setting of the hypergeometric distribution

and Lemma 31 asserts that

Pr[E1] ≤ O

(
2k√
|X|

)
.

To apply a similar bound for the other terms, consider the event Ei given that E1, . . . , Ei−1 hold.
Let X ′ = X \ (X1 ∪ . . . ∪ Xi−1) and Y ′ = Y ∩ X ′. The fact that E1, . . . , Ei−1 hold means that the
partition has been fairly balanced in the first (i − 1) parts and hence |Y ′| ≤ |X ′| + ik. Hence, we
would still be in the range of parameters in Lemma 31 to also get that

∀i ≤ t′ Pr[Ei | E1 ∧ · · · ∧ Ei−1] ≤ O

(
2k√
|X|

)
=⇒ Pr [E1 ∧ · · · ∧ Et′] ≤ |X|−ε log|X| for some ε > 0

=⇒ Pr
[
Γ

[Raz]
Y,Z (g1 . . . gt) ≤ 2(|X|/2)−|X|1/20

]
≤ |X|−ε log|X| .

Hence, if g1 . . . gt is a log-product multilinear polynomial, then with probability at least(
1− |X|−ε log |X|) we have that Γ

[Raz]
Y,Z (g1 . . . gt) ≤ 2(|X|/2)−|X|1/20 . Further, if f is computable by

a multilinear formula of size s then, by Lemma 30, f can be written as a sum of (s+1) log-product
multilinear polynomials. Hence, with probability at least

(
1− (s+ 1)|X|−ε log |X|)we have that

Γ
[Raz]
Y,Z (f) ≤ (s+ 1) · 2(|X|/2)−|X|1/20 .

Hence, if (s + 1) < |X|(ε/2) log |X|, then with high probability a random partition would ensure
Γ

[Raz]
Y,Z (f)� 2|X|/2. Let us record this as a lemma.

Lemma 32. Let f ∈ F[X] be computed by a multilinear formula of size s < |X|(ε/2) log |X| for a small
enough constant ε > 0. Then with probability at least (1− |X|−(ε/2) log |X|) we have

Γ
[Raz]
Y,Z (f) ≤ (s+ 1) · 2|X|/2 · 2−|X|1/20

for a random partition X = Y t Z with |Y | = |Z| = |X|/2.

21

8.2.3 Detn and Permn have large rank

The last step of the proof would be to find an explicit polynomial whose partial derivative matrix
under a random partition has large rank. As earlier, our candidate polynomial would be Detn or
Permn. Unfortunately, both these polynomials are over n2 variables and degree n. It is not hard
to verify that the rank of the partial derivative matrix of Detn or Permn can never be greater than
22n. Hence directly using Lemma 32, we would have 2O(n) competing with 2n

2/2−nO(1)
which is

simply futile. A simple fix is to first randomly restrict ourselves to fewer variables and then apply
Lemma 32.
Let m = n1/3. Let σ be a random restriction that assigns random values to all but 2m randomly
chosen variables. We shall call this set of 2m variables as X , and randomly partition this into
two sets Y and Z of size m each. Hence, σ(Detn) reduces to a multilinear polynomial over 2m
variables. It is also worth noting that a multilinear formula remains a multilinear formula under
this restriction. The following claim is easy to verify.

Claim 33. With probability at least 1/2, the variables in X belong to distinct rows and columns.

We shall restrict ourselves to only these random restrictions, and without loss of generality let the
sets be Y = {x1,1, x3,3, . . . , x2m−1,2m−1} and Z = {x2,2, x4,4, . . . , x2m,2m}. For ease of notation, we
shall refer to x2i−1,2i−1 as yi and x2i,2i as zi for i = 1, . . . ,m.
Consider the following restriction:

f = Det



y1 1
1 z1

. . .
ym 1
1 zm

1
. . .

1


= (y1z1 − 1) . . . (ymzm − 1)

It is easy to check that Γ
[Raz]
Y,Z (f) = 2m. Although this is a single restriction with large rank, the

Schwartz-Zippel-DeMillo-Lipton lemma immediately gives that random restriction would also
have rank 2m with high probability7. We shall record this as a lemma.

Lemma 34. With probability at least 1/100, we have that Γ
[Raz]
Y,Z (σ(Detn)) = 2m where σ is a random

restriction to 2m variables for m = n1/3.

Combining Lemma 34 with Lemma 32, we have the following theorem.

Theorem 35 ([Raz09]). Any multilinear formula computing Detn or Permn must be of size nΩ(logn).

7provided the underlying field is large, but this isn’t really a concern as we can work with a large enough extension
if necessary

22

8.3 Stronger lower bounds for constant depth multilinear formulas

Looking back at Lemma 32, we see that whenever f(X) is computable by a size s multilinear for-
mula Γ

[Raz]
Y,Z (f) is exponentially smaller than 2|X|/2 with probability

(
1− s · |X|−ε log |X|). Hence we

had to settle for a nΩ(logn) lower bound not because of the rank deficit but rather because of the
bounds in the probability estimate. Unfortunately, this lower bound technique cannot yield a bet-
ter lower bound for multilinear formulas as there are explicit examples of polynomials computable
by poly-sized multilinear circuits with Γ

[Raz]
Y,Z (f) = 2|X|/2 under every partition [Raz06]. However,

the probability bound can be improved in the case of constant depth multilinear circuits to give
stronger lower bounds.
Note that Lemma 32 was proved by considering multilinear log-products (Definition 29) as the
building blocks. To show that a multilinear log product g1(X1) . . . g`(X`) has small rank under
a random partition, we argued that the probability that all the Xi’s are partitioned in a roughly
balanced fashion is quite small. This was essentially done by thinking of this as ` = O(log n)
close-to-independent events, each with probability 1/poly(n).
If ` was much larger than log n (with other parameters being roughly the same), it should be in-
tuitively natural to expect a much lower probability of all the Xi’s being partitioned in a roughly
balanced manner. This indeed is the case for constant depth multilinear circuits, and we briefly
sketch the key points where they differ from the earlier proof. The first is an analogue of Defini-
tion 29 in this setting.

Definition 36. A multilinear polynomial f is said to be a multilinear t-product if f can be written as
f = g1 . . . gt with the following properties:

• The variable sets of the gi are mutually disjoint

• Each gi non-trivially depends on at least t variables

Lemma 37. Let f be a multilinear polynomial of degree d over n variables that is computed by a depth-∆
multilinear formula Φ of size s. Then, f can be written as a sum of at most s multilinear t-products for
t = (n/100)1/2∆, and a multilinear polynomial of degree at most n/100.

Proof. If d < n/100, then the lemma is vacuously true. Since Φ is a formula of depth ∆ and
computes a polynomial of degree d > n/100, there must be at least one product gate v of fan-in at
least

(
n

100

)1/∆
= t2. Then similar to Lemma 30,

f = Φv · f ′ + Φv=0

As Φv is a product of t2 polynomials, by grouping the factors together we have that Φv · f ′ is a
multilinear t-product. Further, Φv=0 is a multilinear polynomial that is computable by a depth-∆
formula of smaller size and we can induct on Φv=0.

Lemma 38. Let f(X) be an n-variate polynomial computed by a depth-∆ multilinear formula of size s.
If X = Y t Z is a randomly chosen partition with |Y | = |Z| = n/2, then with probability at least
(1− s · exp(−nΩ(1/∆))) we have

Γ
[Raz]
Y,Z (f) ≤ (s+ 1) · 2n/2 · exp(−nΩ(1/∆))

23

Sketch of Proof. By Lemma 37, we have that f can be written as g0 + g1 + · · ·+ gs where deg(g0) ≤
n/100 and g1, . . . , gs are multilinear t-products. Note that since g0 is a multilinear polynomial
of degree at most (n/100), the number of monomials in g0 is at most

(
n

n/100

)
≤ 2n/10. Hence,

Γ
[Raz]
Y,Z (g0) ≤ 2n/10.

For the other gi’s, we can bound the probability that Γ
[Raz]
Y,Z (gi) is large in a very similar fashion as

in Lemma 32, as the probability that all the factors of gi are partitioned in a balanced manner is
roughly the intersection of t independent events. By very similar estimates, this probability can
be bounded by (1/poly(n))t. Hence, with high probability

Γ
[Raz]
Y,Z (f) ≤ Γ

[Raz]
Y,Z (g0) + · · ·+ Γ

[Raz]
Y,Z (gs) ≤ (s+ 1) · 2n/2 · exp(−nΩ(1/∆)).

Combining Lemma 38 with Lemma 34, we have the following theorem of Raz and Yehudayoff.

Theorem 39 ([RY09]). Any multilinear formula of depth ∆ computing Detn or Permn must be of size
exp(nΩ(1/∆)).

9 Lower bounds for depth-4 circuits

This section shall address a recent technique for proving lower bounds for some depth-4 circuits.

Definition 40. A depth-4 circuit, also referred to as a ΣΠΣΠ circuit, computes a polynomial of the form

f = Q11 . . . Q1d + · · · + Qs1 . . . Qsd

The number of summands s is called the top fan-in of the circuit.
Further, a ΣΠ[a]ΣΠ[b] circuit is a depth-4 circuit computing a polynomial of the form

f = Q11 . . . Q1a + · · · + Qs1 . . . Qsa where degQij ≤ b for all i, j.

9.1 Significance of the model

In a surprising series of results on depth reduction, Agrawal and Vinay [AV08] and subsequent
strengthenings of Koiran [Koi12] and Tavenas [Tav13] showed that depth-4 circuits more or less
capture the complexity of general circuits.

Theorem 41 ([AV08, Koi12, Tav13]). If f is an n variate degree-d polynomial computed by a size s
arithmetic circuit, then f can also be computed by a ΣΠ[O(

√
d)]ΣΠ[

√
d] circuit of size exp

(
O(
√
d log s)

)
.

Conversely, if an n-variate degree-d polynomial requires ΣΠ[O(
√
d)]ΣΠ[

√
d] circuits of size exp

(
Ω(
√
d log s)

)
,

then it requires arbitrary depth arithmetic circuits of size nΩ(log s/ logn) to compute it.

Thus proving strong enough lower bounds for this special case of depth-4 circuits imply lower
bounds for general circuits. The main results of the section is some recent lower bound [GKKS13,
KSS13, FLMS13] that comes very close to the required threshold.

24

9.2 Building the complexity measure

As a simpler task, let us first attempt to prove lower bounds for expressions of the form

f = Qd1 + · · · + Qds

where each of theQi’s are quadratics. This is exactly the problem studied by Kayal [Kay12], which
led to the complexity measure for proving depth-4 lower bounds.

The goal is to construct a measure Γ such that Γ(f) is small whenever f is a power of a quadratic.
As a first attempt, let us look at the space of k-th order partial derivatives of Qd (for a suitable
choice of k). Unlike the case of Σ∧Σ-circuits where the the space of k-th order partial derivatives
of `d had dimension 1, the space of partial derivatives ofQd could be as large as it can be expected.
Nevertheless, the following simple observation would provide the key intuition.

Observation 42. Any k-th order partial derivative of Qd is of the form Qd−kp where p is a polynomial of
degree at most k. Hence, if k � d, then all k-th order partial derivatives of Qd share large common factors.

This suggests that instead of looking at linear combinations of the partial derivatives of Qd, we
should instead be analysing low-degree polynomial combinations of them.

Definition 43. Let ∂=k(f) refer to the set of all k-th order partial derivatives of f , and x≤` refer to the set
of all monomials of degree at most `. The shifted partials of f , denoted by

〈
∂=k (f)

〉
≤`, is the vector space

spanned by
{
x≤` · ∂=k(f)

}
. The dimension of this space shall be denoted by Γ

[Kay]
k,` (f).

The above observation shows that any element of
〈
∂=k

(
Qd
)〉
≤` is divisible by Qd−k and we

thereby have the following lemma.

Lemma 44. If f = Qd where Q is a quadratic, then Γ
[Kay]
k,` (f) ≤

(
n+k+`
n

)
, the number of monomials of

degree (k + `).

Note that if f was instead a random polynomial, we would expect the measure dim
(〈
∂=k (f)

〉
≤`

)
to be about

(
n+k
n

)
·
(
n+`
n

)
, which is much larger than

(
n+k+`
n

)
for suitable choice of k, `. Hence this

measure Γ
[Kay]
k,` is certainly potentially useful for this model. Very similar to the above lemma, one

can also show the following upper bound for the building blocks of ΣΠ[a]ΣΠ[b] circuits.

Lemma 45. Let f = Q1 . . . Qa with degQi ≤ b for all i. Then,

Γ
[Kay]
k,` (f) = dim

(〈
∂=k (f)

〉
≤`

)
≤

(
a

k

)(
n+ (b− 1)k + `

n

)
.

It is easy to check that Γ
[Kay]
k,` is a sub-additive measure, and we immediately have this corollary.

Corollary 46. Let f be an n-variate polynomial computed by a ΣΠ[a]ΣΠ[b] circuit of top fan-in s. Then,

Γ
[Kay]
k,` (f) ≤ s ·

(
a

k

)(
n+ (b− 1)k + `

n

)
.

Or in other words for any choice of k, `, we have that any ΣΠ[a]ΣΠ[b] circuit computing a polynomial f
must have top fan-in s at least

Γ
[Kay]
k,` (f)(

a
k

)(
n+(b−1)k+`

n

) .
25

Intuition from algebraic geometry

Another perspective for the shifted partial derivatives comes from algebraic geometry. Any zero
a ∈ Fn of Q is a zero of multiplicity d of Qd. This implies that the set of common zeroes of all k-th
order partial derivatives ofQd (for k ≈

√
d) is large. On the other hand if f is a random polynomial,

then with high probability there are no roots of large multiplicity.
In algebraic geometry terminology, the common zeroes of a set of polynomials is called the variety
of the ideal generated by them. Further there is also a well-defined notion of a dimension of a variety
which measures how large a variety is. Let F[x]≤r refer to the set of polynomials of degree at most
r, and let γI(r) = dim (I ∩ F[x]≤r). Intuitively, if γI(r) is large, then there are many constraints and
hence the variety is small. In other words the growth of γI(r) is inversely related to the dimension
of the variety of I , and this is precisely captured by what is known as the Affine Hilbert function
of I . More about the precise definitions of the Affine Hilbert function etc. can be found in any
standard text in algebraic geometry such as [CLO07].

In our setting, the ideal we are interested in is I =
〈
∂=kf

〉
. If f is a homogeneous polynomial,

then I∩F[x]≤r =
〈
∂=k (f)

〉
≤` where ` = r−(deg(f)−k). Hence studying the dimension of shifted

partial derivatives is exactly studying γI(r) which holds all information about the dimension of
the variety.

9.3 Lower bounding shifted partials of explicit polynomials

For a random polynomial R(x), we would expect that

Γ
[Kay]
k,` (R) ≈ min

{(
n+ `+ d− k

n

)
,

(
n+ k

n

)(
n+ `

n

)}
The terms on the RHS correspond to trivial upper bounds, where first term is the total number of
monomials of degree (`+ d− k) and the second term is the total number shifted partials.

Claim 47. For k = ε
√
d for a small enough ε > 0, and ` = cn

√
d

logn for a large enough constant c, we have

min
{(

n+`+d−k
n

)
,
(
n+k
n

)(
n+`
n

)}
(O(
√
d)

k

)(
n+(
√
d−1)k+`
n

) = 2Ω(
√
d logn)

The proof of this claim is easily obtained by using standard asymptotic estimates of binomial co-
efficients. Note that using Corollary 46, the above claim shows that if we can find an explicit
polynomial whose dimension of shifted partials are as large as above, then we would have an
exp(Ω(

√
d log n)) lower bound for the top fan-in of ΣΠ[

√
d]ΣΠ[

√
d] circuits computing this polyno-

mial.

If we have a set of polynomials with distinct leading monomials, then they are clearly linearly
independent. Hence one way of lower bounding the dimension of a space of polynomials is to
find a sufficiently large set of polynomials with distinct monomials in the space. The vector space
of polynomials we are interested is

〈
∂=k (f)

〉
≤`, and if we choose a structured polynomial f we

can hope to be able to estimate the number of distinct leading monomials in this vector space.

26

9.3.1 Shifted partials of the determinant and permanent

The first lower bound for ΣΠ[
√
d]ΣΠ[

√
d] circuits was by Gupta, Kamath, Kayal and Saptharishi

[GKKS13] for the determinant and the permanent polynomial. We shall describe the lower bound
for Detn, although it would carry over immediately to Permn as well. As mentioned earlier, we
wish to estimate the number of distinct leading monomials in

〈
∂=k (Detn)

〉
≤` = span

{
x≤`∂=kDetn

}
.

[GKKS13] made a relaxation to merely count the number of distinct leading monomials among the
generators

{
x≤`∂=kDetn

}
instead of their span.

The first observation is that any k-th order partial derivative of Detn is just an (n − k) × (n − k)
minor. Let us fix a monomial ordering induced by the lexicographic ordering on the variables:

x11 � x12 · · · � x1n � x21 � · · · � xnn.

Under this ordering, the leading monomial of any minor is just the product of variables on the
main diagonal of the sub-matrix corresponding to the minor, and hence is a term of the form
xi1j1 . . . xi(n−k),j(n−k)

where i1 < · · · < in−k and j1 < · · · < jn−k; let us call such a sequence of
indices as an (n − k)-increasing sequences in [n] × [n]. Further, for any (n − k)-increasing se-
quence, there is a unique minor M whose leading monomial is precisely the product of the vari-
ables indexed by the increasing sequence. Therefore, the task of lower bounding distinct leading
monomials in

{
x≤`∂=kDetn

}
reduces to the following combinatorial problem.

Claim 48. For any k, ` > 0, we have

Γ
[Kay]
k,` (Detn) ≥ #

{
monomials of degree (`+ n− k) that

contain an (n− k)-increasing sequence

}
.

We could start with an (n−k)-increasing sequence, and multiply by a monomial of degree ` to ob-
tain a monomial containing an increasing sequence. Of course, the issue is that this process is not
invertible and hence we might overcount. To fix this issue, [GKKS13] assign a canonical increasing
sequence to every monomial that contains an increasing sequence and multiply by monomials of
degree ` that do not change the canonical increasing sequence.

Definition 49. Let D2 = {x1,1, . . . , xn,n, x1,2, x2,3, . . . , xn−1,n}, the main diagonal and the diagonal just
above it. For any monomial m define the canonical increasing sequence of m, denoted by χ(m), as
(n − k)-increasing sequence of m that is entirely contained in D2 and is ordered highest according to the
ordering ’�’. If m contains no (n− k)-increasing sequence entirely in D2, then we shall say the canonical
increasing sequence is empty.

The reason we restrict ourselves to D2 is because it is easier to understand which monomials
change the canonical increasing sequence and which monomials do not.

Lemma 50. Let S be an (n − k)-increasing sequence completely contained in D2, and let mS be the
monomial obtained by multiplying the variables indexed by S. There are at least (2(n − k) − 1) variables
in D2 such that if m is any monomial over these variables, then χ(mS) = χ(m ·mS).

Proof. Note that for any xi,j ∈ D2 other than xn,n, exactly one of xi+1,j or xi,j+1 is in D2 as well;
let us refer to this element in D2 as the companion of xi,j . It is straightforward to check that for any
(n− k)-increasing sequence S, the elements of S and their companions do not alter the canonical
increasing sequence.

27

It is a simple exercise to check that the number of (n − k)-increasing sequences contained in D2

is
(
n+k
2k

)
. Further, as we are free to use the n2 − 2n + 1 variables outside D2, and the 2(n − k) − 1

variables that don’t alter the canonical increasing sequence, we have the following lemma.

Lemma 51. For any k, ` ≥ 0,

dim

(〈
∂=k (Detn)

〉
≤`

)
≥

(
n+ k

2k

)(
(n2 − 2n+ 1) + 2(n− k)− 1 + `

`

)
.

Although this lower bound is not as large as expected for a random polynomial, this is still suffi-
cient to give strong lower bounds for depth-4 circuits. By choosing k = ε

√
n for a small enough

ε > 0, and ` = n2√n, Lemma 51 with Corollary 46 yields the lower bound of Gupta, Kamath,
Kayal and Saptharishi [GKKS13]

Theorem 52. Any ΣΠ[O(
√
n)]ΣΠ[

√
n] circuit computing Detn or Permn has top fanin 2Ω(

√
n).

It is worth noting that although Claim 47 suggests that we should be able to obtain a lower bound
of exp(Ω(

√
n log n)) for Detn, [GKKS13] also showed that the above estimate for the dimension of

shifted partial derivatives for the determinant is fairly tight. Hence the dimension of shifted par-
tials cannot give a stronger lower bound for the determinant polynomial. However, it is possible
that the estimate is not tight for the permanent and the dimension of shifted partial derivatives of
the permanent is provably strictly larger than that of the determinant! It is conceivable that one
should be able to prove an exp(Ω(

√
n log n)) lower bound for the permanent using this measure.

Indeed, subsequently an exp(Ω(
√
d log n)) was proved [KSS13, FLMS13] for other explicit polyno-

mials which we now outline.

9.3.2 Shifted partials of the Nisan-Wigderson polynomial

Very shortly after [GKKS13]’s 2Ω(
√
n) lower bound, Kayal, Saha and Saptharishi [KSS13] gave a

stronger lower bound for a different polynomial. Their approach was to engineer an explicit
polynomial F for which the dimension of shifted partial derivatives is easier to estimate. The main
idea was that, if any k-th order partial derivative of the engineered polynomial is a monomial, then
once again estimating dim

(〈
∂=k (F)

〉
≤`

)
reduces to a monomial counting problem. If we could

ensure that no two monomials of F have a gcd of degree k or more, then we would immediately
get that all k-th order partial derivatives of F are just monomials (albeit possibly zero). If we were
to interpret the set of non-zero monomials of F as just subsets over the variables, then the above
constraint can be rephrased as a set system with small pairwise intersection. Such systems are well
studied and are known as Nisan-Wigderson designs [NW94]. With this in mind, [KSS13] studied
the following polynomial family inspired by an explicit construction of a Nisan-Wigderson design.

Definition 53 (Nisan-Wigderson Polynomial). . Let n be a power of 2 and let Fn be the finite field
with n elements that are identified with the set {1, . . . , n}. For any 0 ≤ k ≤ n, the polynomial NWk is a
n2-variate polynomial of degree n defined as follows:

NWk(x1,1, . . . , xn,n) =
∑

p(t) ∈ Fn[t]
deg(p) < k

x1,p(1) . . . xn,p(n).

28

It is easy to show that the above family of polynomials is in VNP. Further, since any two distinct
univariate polynomials of degree less than k intersects in less than k places, we have the following
observation.

Observation 54. Any two monomials of NWk intersect in less than k variables. Hence, any k-th order
partial derivative of NWk(x) is a monomial (which could possibly be zero).

Hence, the problem of lower bounding the shifted partials of NWk reduces to the problem of
counting distinct monomials of degree ` + d − k that are divisible by one of these k-th order
derivatives. [KSS13] additionally used the observation that two random k-th order partial deriva-
tives of NWk are monomials that are far from each other. Using this, they estimate the number
of distinct shifts of these monomials and showed that the dimension of shifted partial deriva-
tives of NWk is very close to the trivial upper bound as in Claim 47. We sketch the argument by
Chillara and Mukhopadhyay [CM14]. Formally, for any two multilinear monomials m1 and m2,
let the ∆(m1,m2) denote min {|m1| − |m1 ∩m2|,m2 − |m1 ∩m2|} (abusing notation by identifying
the multilinear monomials with the set of variables that divide it).

Lemma 55 ([CM14]). Let m1, . . . ,ms be monomials over N variables such that ∆(mi,mj) ≥ d for all
i 6= j. Then the number of distinct monomials that may be obtained by multiplying some mi by arbitrary
monomials of degree ` is at least s

(
N+`
N

)
−
(
s
2

)(
N+`−d
N

)
.

Proof. For i = 1, . . . , s, let Ai be the set of monomials that can be obtained by multiplying mi with
a degree ` monomial. By inclusion-exclusion,∣∣∣∣∣

s⋃
i=1

Ai

∣∣∣∣∣ ≥
s∑
i=1

|Ai| −
∑
i<j

|Ai ∩Aj | .

Note that each Ai is of size exactly
(
N+`
N

)
. Further, since ∆(mi,mj) ≥ d, any monomial that is

divisible by mi and mj must necessarily be divisible by mi and the variables in mj not in mi.
Hence, |Ai ∩Aj | ≤

(
N+`−d
N

)
. The lemma follows by substituting these above.

Note that any two distinct monomials of NWk intersect in at most k places. For each monomial
mi of NWk, let m′i be any non-zero k-th order partial derivative of mi. Therefore, ∆(m′i,m

′
j) ≥

n− 2k ≥ n
2 for k = ε

√
n. Since we have nk monomials of pairwise distance at least n/2, the above

lemma immediately yields a lower bound for the shifted partials of NWk.

Theorem 56 ([KSS13]). Let k = ε
√
d for some constant ε > 0. Then for any ` = Θ

(
n2√n
logn

)
,

dim

(〈
∂=k (NWk)

〉
≤`

)
≥ nk

2
·
(
n2 + `

n2

)
Sketch of Proof. As mentioned earlier, we have nk monomials {m′i}with pairwise distance at least
n
2 . Using Lemma 55, it suffices to show that

nk ·
(
n2 + `

n2

)
≥ 2 ·

(
nk

2

)
·
(
n2 + `− n

2

n2

)
and this follows easily from standard binomial coefficient estimates.

Combining with Corollary 46, we have the lower bound of [KSS13] using standard estimates.

29

Theorem 57 ([KSS13]). Any ΣΠ[O(
√
n)]ΣΠ[

√
n] computing the NWk polynomial, where k = ε

√
n for a

sufficiently small ε > 0, must have top fan-in exp(Ω(
√
n log n)).

[KSS13] used the above lower bound to give an nΩ(logn) lower bound for a subclass of formulas
called regular formulas. The interested reader can refer to [KSS13] for more details.

9.3.3 Shifted partials of the Iterated-matrix-multiplication polynomial

Fourier, Limaye, Malod and Srinivasan [FLMS13] showed the same lower bound as [KSS13] but
for the iterated matrix multiplication polynomial which is known to have polynomial sized circuits
computing it.

Definition 58 (Iterated matrix multiplication polynomial). Let M1, . . . ,Md be n × n matrices with
distinct variables as entries, i.e. Mk =

((
x

(k)
ij

))
i,j≤n

for k = 1, . . . , d. The polynomial IMMn,d is a

(n2d)-variate degree-d polynomial defined as the (1, 1)-th entry of the matrix product M1 . . .Md:

IMMn,d(x) = (M1 . . .Md)1,1

A more useful perspective is to interpret this as a canonical algebraic branching program.

Definition 59 (Algebraic branching program). An algebraic branching program (ABP) comprises of a
layered directed graph G with (d + 1) layers of vertices, where the first and last layer consists of a single
node (called source and sink respectively), all other layers consist of n vertices, and edges are only between
successive layers and have linear polynomials as edge-weights. The ABP is set to compute the polynomial f
defined as

f(x) =
∑

source-sink path ρ

weight(ρ)

where the weight of any path is just the product of the edge weights on the path.

The canonical ABP comprises of the graph where the i-th vertex of layer (`−1) is connected to the
j-th vertex of layer ` with edge-weight x(`)

ij for every choice of i, j and `. It is easy to see that the
polynomial computed by the canonical ABP is in fact IMMn,d.

To lower bound the dimension of shifted partial derivatives of IMMn,d, firstly note that a deriva-
tive with respect to any variable (or edge) simply results in the sum of all source-sink paths that
pass through this edge. [FLMS13] use the following simple but crucial observation to assist in
bounding the dimension of shifted partials.

Observation 60. Assume that d is even. Let e1, e3, . . . , ed−1 be an arbitrary set of edges such that ei is
between layer i and i + 1. Then, there is a unique path from source to sink that passes through all these
edges.

Proof. Since these are edges in alternate layers, their starting and ending points uniquely deter-
mine the edges that are picked up from the even-numbered layers to complete the source-sink
path.

Since we are interested in k-th order derivatives for k ≈ ε
√
d, [FLMS13] consider the following

restriction by removing some edges from the underlying graph:

30

• Select (2k − 1) layers `1, . . . , `2k−1 that are roughly equally spaced between the first and the
last layer. These layers, and the first and the last layers, shall be untouched and shall be
called pristine layers.

• In all the other layers, retain only those edges connecting vertex i of this layer to vertex i of
the next.

This restriction effectively makes the graph similar to an ABP with 2k + 1 layers. Let the poly-
nomial computed by the restricted ABP be IMM′n,d(x). Since IMM′n,d was obtained by just setting
some variables of IMMn,d to zero, the dimension of shifted partial derivatives of IMM′n,d can only
be smaller than that of IMMn,d. Similar to Observation 60, we have the following observation.

Observation 61. For every choice of k edges from odd-numbered pristine layers, there is a unique source-
sink path that passes through them.
In other words, for any choice of k variables chosen by picking one from each odd-numbered pristine layer,
then the k-th order partial derivative of IMM′n,d with respect to these k variables is a non-zero monomial.

Once again, we can lower bound the dimension of shifted partial derivatives of IMM′n,d by a
monomial counting problem. Similar to the earlier case, [FLMS13] show that the monomials thus
obtained are far from one another. We state their main lemma below without proof.

Lemma 62 ([FLMS13]). There are at least nk/2 monomials of IMM′n,d of pairwise distance at least n4 .

Again, using Lemma 55 and standard binomial coefficient estimates, this implies that the shifted
partial derivatives of IMM′n,d is almost as large as the trivial upper bound.

Theorem 63 ([FLMS13]). Let k = ε
√
d for a sufficiently small ε > 0 and ` be an integer such that

n1/16 ≤ N+`
` ≤ n

1/4 where N is the number of variables IMM′n,d depends on. Then,

dim

(〈
∂=k (IMMn,d)

〉
≤`

)
≥ dim

(〈
∂=k

(
IMM′n,d

)〉
≤`

)
= Ω

(
nk/2 ·

(
N + `

`

))
.

Combining with Corollary 46, we get the lower bound of [FLMS13].

Theorem 64 ([FLMS13]). Any ΣΠ[O(
√
d)]ΣΠ[

√
d] circuit computing IMMn,d, with d ≤ nδ for a suffi-

ciently small δ > 0, has top fan-in exp(Ω(
√
d log n)).

Similar to [KSS13], the above result also implies nΩ(logn) lower bounds for regular formulas com-
puting IMMn,d.

10 Conclusion

The field of arithmetic complexity, like Boolean complexity, abounds with open problems and
proving lower bounds for almost any natural subclass of arithmetic circuits is interesting espe-
cially if the currently known techniques/ complexity measures do not apply to that subclass8.

8 Some of the complexity measures that we describe here yield lower bounds for slightly more general subclasses of
circuits.

31

The surveys [Wig02, SY10, CKW11] mark out the frontiers of this area in the form of many open
problems and we invite the reader to try some of them.

References

[AJMV98] Eric Allender, Jia Jiao, Meena Mahajan, and V. Vinay. Non-Commutative Arithmetic
Circuits: Depth Reduction and Size Lower Bounds. Theoretical Computer Science, 209(1-
2):47–86, 1998.

[ASSS12] Manindra Agrawal, Chandan Saha, Ramprasad Saptharishi, and Nitin Saxena. Jaco-
bian hits circuits: hitting-sets, lower bounds for depth-d occur-k formulas & depth-3
transcendence degree-k circuits. In Symposium on Theory of Computing (STOC), pages
599–614, 2012.

[AV08] Manindra Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four. In Foun-
dations of Computer Science (FOCS), pages 67–75, 2008.

[BS83] Walter Baur and Volker Strassen. The complexity of partial derivatives. Theoretical
Computer Science, 22:317–330, 1983.

[CKW11] Xi Chen, Neeraj Kayal, and Avi Wigderson. Partial Derivatives in Arithmetic Com-
plexity (and beyond). Foundation and Trends in Theoretical Computer Science, 2011.

[CLO07] D.A. Cox, J.B. Little, and D. O’Shea. Ideals, Varieties and Algorithms. Undergraduate
texts in mathematics. Springer, 2007.

[CM14] Suryajith Chillara and Partha Mukhopadhyay. Depth-4 Lower Bounds, Determinan-
tal Complexity : A Unified Approach. Symposium on Theoretical Aspects of Computing
(STACS), 2014.

[FLMS13] Hervé Fournier, Nutan Limaye, Guillaume Malod, and Srikanth Srinivasan. Lower
bounds for depth 4 formulas computing iterated matrix multiplication. Electronic Col-
loquium on Computational Complexity (ECCC), 20:100, 2013.

[GK98] Dima Grigoriev and Marek Karpinski. An exponential lower bound for depth 3 arith-
metic circuits. In Symposium on Theory of Computing (STOC), pages 577–582, 1998.

[GKKS13] Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Approaching
the chasm at depth four. In Conference on Computational Complexity (CCC), 2013.

[GR00] Dima Grigoriev and Alexander A. Razborov. Exponential lower bounds for depth 3
arithmetic circuits in algebras of functions over finite fields. Appl. Algebra Eng. Commun.
Comput., 10(6):465–487, 2000.

[HY11] Pavel Hrubeš and Amir Yehudayoff. Arithmetic complexity in ring extensions. Theory
of Computing, 7(8):119–129, 2011.

[JS82] Mark Jerrum and Marc Snir. Some exact complexity results for straight-line computa-
tions over semirings. Journal of the ACM, 29(3):874–897, 1982.

32

[Kal85] Kyriakos Kalorkoti. A Lower Bound for the Formula Size of Rational Functions. SIAM
Journal of Computing, 14(3):678–687, 1985.

[Kay12] Neeraj Kayal. An exponential lower bound for the sum of powers of bounded degree
polynomials. Technical report, Electronic Colloquium on Computational Complexity
(ECCC), 2012.

[Koi12] Pascal Koiran. Arithmetic circuits: The chasm at depth four gets wider. Theoretical
Computer Science, 448:56–65, 2012.

[Kou08] Ioannis Koutis. Faster algebraic algorithms for path and packing problems. In ICALP,
pages 575–586, 2008.

[KSS13] Neeraj Kayal, Chandan Saha, and Ramprasad Saptharishi. A super-polynomial lower
bound for regular arithmetic formulas. Electronic Colloquium on Computational Complex-
ity (ECCC), 20:91, 2013.

[Lov11] Shachar Lovett. Computing polynomials with few multiplications. Theory of Comput-
ing, 7(13):185–188, 2011.

[Nis91] Noam Nisan. Lower bounds for non-commutative computation. In Symposium on
Theory of Computing (STOC), pages 410–418, 1991.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs Randomness. Journal of Computer and
System Sciences, 49(2):149–167, 1994.

[NW97] N. Nisan and A. Wigderson. Lower bounds on arithmetic circuits via partial deriva-
tives. Computational Complexity, 6(3):217–234, 1997.

[Raz06] Ran Raz. Separation of multilinear circuit and formula size. Theory of Computing,
2(1):121–135, 2006.

[Raz09] R. Raz. Multi-linear formulas for permanent and determinant are of super-polynomial
size. Journal of the ACM, 56(2), 2009.

[Raz10] Ran Raz. Tensor-rank and lower bounds for arithmetic formulas. In Symposium on
Theory of Computing (STOC), pages 659–666, 2010.

[RSY08] Ran Raz, Amir Shpilka, and Amir Yehudayoff. A lower bound for the size of syn-
tactically multilinear arithmetic circuits. SIAM Journal on Computing, 38(4):1624–1647,
2008.

[RY09] Ran Raz and Amir Yehudayoff. Lower bounds and separations for constant depth
multilinear circuits. Computational Complexity, 18(2):171–207, 2009.

[Sri13] Srikanth Srinivasan. personal communication, 2013.

[SW01] A. Shpilka and A. Wigderson. Depth-3 arithmetic circuits over fields of characteristic
zero. Computational Complexity, 10(1):1–27, 2001.

33

[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results
and open questions. Foundations and Trends in Theoretical Computer Science, 5:207–388,
March 2010.

[Tav13] Sébastien Tavenas. Improved bounds for reduction to depth 4 and depth 3. In Mathe-
matical Foundations of Computer Science (MFCS), pages 813–824, 2013.

[VSBR83] Leslie G. Valiant, Sven Skyum, S. Berkowitz, and Charles Rackoff. Fast Parallel Compu-
tation of Polynomials Using Few Processors. SIAM Journal of Computing, 12(4):641–644,
1983.

[Wig02] Avi Wigderson. Arithmetic complexity - a survey. Lecture Notes, 2002.

34

	Introduction
	Existential lower bounds
	Weak lower bounds for general circuits and formulas
	Lower bounds for general circuits
	An exploitable weakness
	Computing all first order derivatives simultaneously

	Lower bounds for formulas
	Upper bounding [Kal] for a formula
	Lower bounding [Kal](Detn)

	``Natural'' proof strategies
	Some simple lower bounds
	Lower bounds for circuits
	Lower bounds for circuits
	Low-rank

	Lower bounds for monotone circuits
	Proof of Lemma 17

	Lower bounds for depth-3 circuits over finite fields
	The complexity measure
	Upper-bounding [GK]k,A for a depth-3 circuit
	Lower-bounding [GK]k,A for Detn and Permn
	Putting it all together

	Lower bounds for multilinear models
	The partial derivative matrix
	Lower bound for multilinear formulas
	Formulas to log-product sums
	Log-products are far from full-rank on a random partition
	Detn and Permn have large rank

	Stronger lower bounds for constant depth multilinear formulas

	Lower bounds for depth-4 circuits
	Significance of the model
	Building the complexity measure
	Lower bounding shifted partials of explicit polynomials
	Shifted partials of the determinant and permanent
	Shifted partials of the Nisan-Wigderson polynomial
	Shifted partials of the Iterated-matrix-multiplication polynomial

	Conclusion

