
Lockr: Better Privacy for Social Networks

Amin Tootoonchian
Computer Science

University of Toronto

Stefan Saroiu
Microsoft Research

Redmond, WA

Yashar Ganjali
Computer Science

University of Toronto

Alec Wolman
Microsoft Research

Redmond, WA

ABSTRACT
Today’s online social networking (OSN) sites do little to pro-
tect the privacy of their users’ social networking information.
Given the highly sensitive nature of the information these
sites store, it is understandable that many users feel victim-
ized and disempowered by OSN providers’ terms of service.
This paper presents Lockr, a system that improves the pri-
vacy of centralized and decentralized online content sharing
systems. Lockr offers three significant privacy benefits to
OSN users. First, it separates social networking content
from all other functionality that OSNs provide. This decou-
pling lets users control their own social information: they
can decide which OSN provider should store it, which third
parties should have access to it, or they can even choose to
manage it themselves. Such flexibility better accommodates
OSN users’ privacy needs and preferences. Second, Lockr en-
sures that digitally signed social relationships needed to ac-
cess social data cannot be re-used by the OSN for unintended
purposes. This feature drastically reduces the value to oth-
ers of social content that users entrust to OSN providers.
Finally, Lockr enables message encryption using a social re-
lationship key. This key lets two strangers with a common
friend verify their relationship without exposing it to others,
a common privacy threat when sharing data in a decentral-
ized scenario.

This paper relates Lockr’s design and implementation and
shows how we integrate it with Flickr, a centralized OSN,
and BitTorrent, a decentralized one. Our implementation
demonstrates Lockr’s critical primary benefits for privacy
as well as its secondary benefits for simplifying site manage-
ment and accelerating content delivery. These benefits were
achieved with negligible performance cost and overhead.

Categories and Subject Descriptors
C.2.0 [General]: Security and protection

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CoNEXT ’09 , December 1-4, 2009, Rome, Italy.
Copyright 2009 ACM 978-1-60558-636-6/09/12. ...$10.00.

General Terms
Security, Design, Experimentation

Keywords
social networks, privacy, social attestation, witness hiding

1. INTRODUCTION
Most Internet users lack awareness of the privacy risks

posed by storing their social information in online social net-
working (OSN) sites, such as Facebook or LinkedIn. Their
outrage at discovering that they cannot permanently delete
information about friends and family members from these
sites, for example, or that they cannot prevent their informa-
tion from being divulged or sold to advertisers [24], has been
amply documented by mainstream media [1, 37, 39]. It has
also led to FTC complaints by privacy watchdogs [27] and to
the rise of grass-roots movements to prevent further erosion
of privacy when OSNs modify their Terms-of-Service [38].
Further, risks to OSN data from security attacks or acciden-
tal disclosure are significant [3]. Despite these considerable
threats, today’s OSN users have no choice but to “trust”
OSNs with the identities of their family members, friends,
and colleagues.

OSNs have thus far done little to inform users about the
privacy implications of using their sites or to offer simple and
intuitive privacy controls. In fact, many sites view owner-
ship of social networking information as a key ingredient of
their revenue streams. They therefore have little incentive to
make it possible for users to control it. Despite this current
reticence, we believe that government, media, and public
pressure will force the issue and redress the power imbal-
ance. We also believe that OSNs with compelling function-
ality will continue to remain popular, and thus financially
viable, once they have ceded data control to their users.

Compounding these privacy risks are the management
headaches users face when interacting with their OSNs. To
access their friends’ private content, today’s OSN users have
two choices: (1) they must register with all the sites that
their friends use, or (2) they must wait to receive a secret
URL where they can go view the content. With multiple reg-
istrations, OSN users must duplicate portions of their social
network information on many different OSN sites. With
secret URLs, users must send the correct URLs for each
OSN site via out-of-band mechanisms (e.g., e-mail) to their
friends. Both are tedious tasks that further raise the risk of
data loss or mismanagement.

This paper takes an initial step toward addressing the pri-

vacy problems that have plagued today’s OSNs. We present
Lockr, a system that offers three key privacy benefits for
OSN users.

1. Social attestations to decouple social network-
ing information from other OSN functionality. Lockr
users need not provide a full copy of their social network
to each online site they use to host their personal content.
Instead, they exchange social attestations: application-inde-
pendent small pieces of digitally signed meta-data issued by
one person to another that encapsulate social relationships.
The recipient of a social attestation can use it to prove the
social relationship to any online system (e.g., Alice presents
an attestation from Bob that says: “Bob says Alice is my
friend”). Although inspired by capabilities [25], attestations
do not include access rights. When making content avail-
able, owners associate a social access control list with their
content to restrict access to only those people who have a
specific social relationship to them. They exchange attes-
tations once, yet they can use them repeatedly to access
their friends’ online content without the need to register
with many OSNs, to maintain many copies of their social
networks, or to exchange secret URLs.

2. The WHPOK protocol to protect social informa-
tion from disclosure. Lockr prevents an OSN from re-
using the digitally signed social relationships revealed when
users access their data by applying to the attestation ver-
ification mechanism a variant of zero-knowledge protocols,
called a witness hiding proof of knowledge (WHPOK) [20]
protocol. This lets users prove the existence of a social rela-
tionship without providing a verifiable copy of the attesta-
tion that Web sites could store and later reuse. Without a
signature, attestations have little value to others: they are
just pieces of XML text that could easily have been fabri-
cated by the Web site.

3. Relationship keys to solve “social deadlock” and
one-way hash chains to protect data from privacy
abuse via expired attestations. Sharing information in
decentralized scenarios, such as peer-to-peer [35, 7, 11] sce-
narios, give rise to the following problem: two peers would
like to exchange content with each other only if they share a
specific common friend, yet neither wants to reveal this so-
cial relationship to a random peer that does not share this
common friend. This creates a form of “deadlock”, where
each peer is waiting on the other one to reveal its relation-
ship first. Lockr lets peers encrypt their communication to
each other using a key specific to a relationship. In this
way, no receiving peer can decrypt a message unless it has
the same social relationship as the message’s sender. Lockr
thus lets two random strangers who share a friend verify
their common social connection without a loss of privacy.
In addition, Lockr uses one-way hash chains to ensure that
relationship keys are invalidated once an attestation expires
to prevent privacy abuse.

Lockr works with both centralized Web sites and decen-
tralized P2P systems. We demonstrate its generality by
describing implementations that integrate Lockr with the
Flickr photo sharing Web site and the BitTorrent P2P file
sharing system. We use the WHPOK protocol in our imple-
mentation of Lockr for BitTorrent, but we leave an imple-
mentation of WHPOK in Lockr for Flickr for future work.
However, we were able to integrate Lockr with Flickr even

without Flickr’s cooperation. In fact, it is possible to de-
ploy Lockr on some of today’s OSN sites absent server-side
support. To accomplish this, Lockr relies on a proxy server
that compensates for missing server-side functionality.

We continue this paper with a discussion of Lockr’s ben-
efits. Section 3 then describes Lockr’s design components
and design goals, while Section 4 presents implementation
details of integrating Lockr with BitTorrent and Flickr. We
then evaluate Lockr’s performance (Section 5) and discuss
how Lockr relates to prior work (Section 6) before conclud-
ing our discussion (Section 7).

2. BENEFITS OF THE LOCKR
ARCHITECTURE

Today’s OSNs have adopted a centralized, single-site de-
sign in which users join a site to create social relationships
with other registered users. The OSN’s role is two-fold: (1)
to manage social information, and (2) to offer various social
applications, including content delivery and sharing. Unfor-
tunately, OSNs have tightly coupled these two roles. Thus,
users can neither manage their social network outside the
OSN’s site nor use their network with other third-party ap-
plications.

Our premise is that this tight coupling of social informa-
tion and functionality into one centralized solution has led to
many of the privacy challenges faced by today’s OSN users.
Working from this premise, the following section explores
both Lockr’s primary benefits – enhancing privacy – and
secondary benefits of simplifying site management and ac-
celerating content delivery.

2.1 Enhancing Privacy
To offer an adequate level of privacy, OSNs must give users

a choice about where to store their social information. Users
should be able to choose a single trusted OSN provider – one
with acceptable privacy policies – yet use the applications of-
fered by any other OSN. If no OSN is adequate, users should
be able to manage their social information themselves. Oth-
erwise, they will continue to be surprised and blind-sided by
OSN privacy policies.

Lockr decouples OSN social information from functional-
ity. It treats social information as a resource managed and
exchanged by people via any mechanism they find conve-
nient, such as OSN sites, e-mail, business cards, or Bluetooth-
equipped phones. For example, we show how Facebook
could adopt Lockr; we implemented an address book as a
Facebook application to let users exchange social attesta-
tions in Facebook and in other applications.

Lockr’s decoupled architecture offers these privacy bene-
fits:

1. Improved confidentiality of OSN content. OSN
users need not reveal a full copy of their social network to
every OSN site they use. Because OSNs no longer store
copies of their users’ social networks, the chances of mis-
management or accidental disclosure of social networking
information are drastically reduced. However, Lockr lets
OSNs continue to serve content, such as photos and videos,
as well as host third-party social applications.

2. Simplified OSN site registration. Lockr users need
not register with a site to access their friends’ content. In-
stead, Lockr users must prove only that they own a digitally
signed attestation from their friend.

3. Enhanced confidentiality upon access to OSN.
Lockr’s privacy-preserving protocols let users prove the ex-
istence of a digitally signed attestation to an OSN site with-
out actually having to reveal the digital signature as part of
the verification process. This reduces the “resale” value of
the content they must share with OSN providers.

2.2 Simplifying Site Management
To share online personal content, today’s OSN users must

divide their content according to its type (e.g., photos, videos,
and Web bookmarks) and place each of these types on dif-
ferent sites. For example, they must place photographs on
Flickr, videos on YouTube, and Web bookmarks on del.icio.us.
The content management mechanisms offered by these Web
sites often require all participants to be registered with the
site in question to view their friends’ private content or to
exchange secret URLs pointing to the content’s location.
Moving content to a new system requires inviting all of one’s
friends to that system; those friends must have to register be-
fore they can use the new OSN site. In addition, an individ-
ual’s login ID may differ across the various content sharing
Web sites, further complicating the process of giving access
to a specific social group. Most OSN providers do not assist
with the process of reconciling one’s social network across
multiple content sharing sites.

In fact, OSN sites employ management mechanisms rem-
iniscent of those that operating systems and databases of-
fered in the past. Users must create an identity with each
online system and then create groups by enumerating other
identities that are allowed access to their content. Further-
more, the details differ from site to site in terms of the capa-
bilities and semantics of the provided access control mech-
anisms. This inevitably leads to confusion and errors in
specifying appropriate access control rules and in maintain-
ing copies of one’s social network. As a result, people often
compromise on privacy and choose to make all their personal
content publicly accessible simply to avoid such complica-
tions.

Lockr’s decoupling eliminates the burden on users of main-
taining several up-to-date copies of social networks, per-
forming user-id reconciliation across sites, and familiarizing
themselves with the varied access control mechanisms pro-
vided by each site. Instead, they can express the same simple
access control policy on any OSN site that stores their con-
tent. For example, to restrict access to a picture to friends
only, a user just creates a simple policy that lists the rela-
tionship name (i.e., “friend”) in the access control list. The
access control list format is specific to the attestations users
exchange with each other, and thus it remains the same on
any OSN site.

2.2.1 Improving Content Delivery Performance
OSNs require their users to upload any content they want

to share with their friends. To do so, users must convert
their content into the format supported by the OSN site,
often a format with a lower quality that minimizes stor-
age requirements. When a piece of content becomes popu-
lar, OSN sites must rely on expensive content distribution
mechanisms, such as CDNs, to handle the intense bandwidth
requirements. They do not currently use free content distri-
bution systems, such as BitTorrent or other P2P systems.
Doing so would require peers to access the centralized OSN
site to obtain their identities and social information. The

unnecessary coupling of social information and functionality
of OSN’s designs thus raises challenges in using alternative
content delivery mechanisms with higher performance.

Lockr lets OSNs use P2P systems, such as BitTorrent, to
deliver content in a social networking manner. To demon-
strate Lockr’s versatility, we incorporated Lockr in Vuze, a
popular BitTorrent client. With Lockr, Vuze supports so-
cial torrents: signed torrent files that specify the relation-
ship that a downloading peer must have with the torrent’s
owner. Lockr’s decoupling of social information and func-
tionality makes social torrents flexible; they can be adopted
easily by any online OSN to increase the speed of content
delivery. Section 4.2 will describe social torrents in depth.

3. DESIGN
We begin this section by defining Lockr’s key design con-

cepts and components: personal identities, address books,
social attestations, social ACLs, and techniques for revok-
ing attestations, such as exclusion lists. We then describe
how these components operate to satisfy Lockr’s design goals
and we demonstrate our attestation verification model in two
scenarios: an online social network one and a peer-to-peer
one.

3.1 Design Concepts and Components
Our design begins with the components that comprise

Lockr. We describe each of these below.

3.1.1 Personal Identities and Address Books
In Lockr, a personal identity is simply a public/private

keypair. Identities are generated in a decentralized man-
ner, and individuals are in control of how these identities
are shared. People can share their public keys with their
social networks in the same way they share their names,
addresses, and phone numbers, i.e., using business cards,
e-mail signatures, letters, phone calls, or any out-of-band
mechanism. They store the public keys of their friends in an
address book, next to that person’s other contact informa-
tion. Users can refer to their friends using a locally scoped
name (e.g., a nickname), which eliminates naming conflicts
or name “squatting”.

When issuing an attestation to a friend, a user retrieves
the friend’s public key from their local address book and
designates it (i.e., the friend’s identity) as the recipient of
the attestation. Thus, people must be careful to record cor-
rectly their friends’ public keys; otherwise, attestations can
be issued to non-existent or even malicious identities.

3.1.2 Social Attestations
A social attestation is a piece of data that certifies a so-

cial relationship. An attestation has six fields: an issuer, a
recipient, a social relationship, an expiration date, a rela-
tionship key (which we will define in the next section), and
a digital signature (Figure 1 depicts an attestation in XML
format). By issuing an attestation, the issuer tells a recip-
ient that they have formed a relationship. Two parties can
share more than one attestation since two people can have
more than one relationship (e.g., they can be both friends
and co-workers). Attestations also have an expiration date,
and they are signed to prevent anyone from tampering with
them.

In the common case, an attestation certifies a social rela-
tionship directly between the issuer and recipient. However,

<attestation>
 <issuer>Issuer’s public key</issuer>
 <recipient>Recipient’s public key</recipient>
 <relationship>
 <type>Relationship type (e.g., family, friend)</type>
 <firstParty>First party’s public key</firstParty>
 <secondParty>Second party’s public key</secondParty>
 </relationship>
 <expDate>Expiration Date</expDate>
 <relKey>Key specific to encapsulated relationship</relKey>
 <signature>Attestation’s signature</signature>
</attestation>

Figure 1: The XML-based format of an attestation.
An attestation has an issuer, a recipient, a social re-
lationship between two parties, an expiration date, a
relationship key, and a digital signature.

an attestation can specify a relationship between any two
parties. This is useful when a trusted third party wants
to issue an attestation describing the relationship between
two other entities. For example, it is perfectly reasonable
for a parent to issue an attestation stating that two of their
children share the “family” relationship.

3.1.3 Social Access Control Lists (ACLs)
A traditional ACL enumerates the identities of those al-

lowed access to certain objects. In contrast, a social ACL
does not rely only on identities to specify access control. In-
stead, they can also allow access to objects based on the
social relationship that an individual has with the object’s
owner. A social ACL contains the owner’s public key, the
public keys of all people who can access the object (as in
traditional ACLs), and a social relationship.

When a user requests access to an object protected by a
social ACL, the ACL enforcer first provides the ACL to the
requester. The requester then uses it to determine which
attestation it should provide to the enforcer to obtain ac-
cess. To access an object, the user must either: (1) have
their public key listed in the social ACL, or (2) present an
attestation issued to them by the owner certifying the re-
lationship listed in the ACL. We also use XML to format
social ACLs (see Figure 2).

In a social ACL, the ordering of parties specified in a re-
lationship is important because relationships are not nec-
essarily symmetric. Lockr requires the order in which the
parties appear in an attestation to match the order in which
they appear in the social ACL; otherwise, the attestation is
rejected. Finally, when setting up a social ACL on a third-
party Web site, people must also share the relationship key
corresponding to the relationship listed in the ACL. This key
lets the Web site successfully decrypt incoming attestations.

3.1.4 Techniques for Revoking Attestations
Revocation is a well-known limitation of authentication

schemes based on exchanging certificates, capabilities, or at-
testations. In the past, much work has dealt with handling
revocation in operating systems [10, 4] and distributed sys-
tems [30], and Lockr borrows techniques from this work.

We address this challenge in three ways. First, attesta-
tions let the issuer set an expiration date. Any system en-
forcing social ACLs will verify whether an attestation is still
valid before granting access. Second, we augment ACLs with
exclusion lists. An exclusion list effectively overrides valid

<ACL>
 <owner>Owner’s public key</owner>
 <access>
 <user>User’s public key</user>
 …….
 <user>User’s public key</user>
 <relationship>
 <type>Relationship type (e.g., family, friend)</type>
 <firstParty>First party’s public key</firstParty>
 (or <secondParty>Second party’s public key</secondParty>)
 </relationship>
 (<and>, <or>, <bracket> additional relationship tags)
 </access>
</ACL>

Figure 2: The XML-based format of a social ACL.
A social ACL has an object’s owner, an explicit list
of users who can access the content, and a social re-
lationship that users must show to access the con-
tent. Either a “firstParty” or a “secondParty” XML
attribute can be listed in the social relationship.

attestations: it enumerates the people who cannot access
the content even if they hold the appropriate attestation.
Finally, users can implement revocation simply by reissu-
ing attestations with new relationship keys. The downside
of this approach is the need for users to deliver those new
attestations to anyone who has previously been issued an
attestation using that relationship. Depending on the im-
portance of revocation, however, one might be willing to pay
that price.

3.2 Design Goals for Privacy
This section describes how Lockr’s components work to

achieve its main design goals. These include: (1) putting
users in control of their social information by decoupling it
from all other functionality of an OSN site, (2) preventing
OSN providers from reusing social information revealed by
users when requesting access to their friends’ content, and
(3) improving the privacy of peers participating in a P2P
online social network.

3.2.1 Decoupling Social Networking Information
from OSNs

Lockr uses social attestations to encapsulate social net-
working information. Social attestations are OSN-independ-
ent; they can be issued and exchanged from person to per-
son. There are many convenient ways to issue attestations,
such as over e-mail or over a cell-phone Bluetooth inter-
face. Lockr does not require the recipient to acknowledge
receiving the attestation, although this could be added by a
higher-level protocol.

Depending on their privacy needs, Lockr users are free
to choose where to store the Lockr address books contain-
ing their social attestations. For example, users could store
them on Facebook; Section 4 details our implementation
of Lockr’s address book as a Facebook application. Other
users could opt for a more trusted Web site provider to store
their address book, such as their employer. Users demanding
much higher levels of privacy could even choose to run their
address book on their personal computers as a standalone
application. Lockr lets users decide on the level of privacy
that makes them comfortable and store their address books
accordingly.

Let P be the attestation’s holder. P has an RSA public key (the modulus: n, and the public exponent: e), an attestation T, and
an RSA signature of the attestation Td mod n .
Let Q be the social ACL enforcer.
Step 1: P chooses 20 random positive integers (r1, r2, …, r20). For each ri, P computes ki=(ri)e mod n and sends them all to Q.
Step 2: Q chooses 20 random bits (b1, b2, …, b20) and sends them all to P.
Step 3: P computes for each i, si=ki

d(Td)b mod n and sends them all to Q. Since each ki=(ri)e mod n, then ki
d=((ri)e)d mod n = ri

mod n. This means that si=ri(Td)b mod n.
Step 4: Q verifies for each i that si

e=kiTb mod n.

Figure 3: Our witness hiding proof of knowledge protocol of an RSA signature of an attestation. Our protocol
is based on the protocol described in [21]. We used 20 integers in our implementation of Lockr, although this
number can be set arbitrarily. With this setting, the probability that a malicious P can lie to Q about having the
correct attestation is less than 1 in 1,000,000. We believe this trade-off is adequate in practice.

3.2.2 Protecting Social Information
As noted, people are reluctant to expose their sensitive

social relationships to third-party sites. When they have
no choice, they may seek assurance that these sites will not
abuse the privilege of holding this information by re-selling
it to others. We designed Lockr to make social information
non-transferable. Lockr ensures that no one can prove the
validity of an attestation other than its issuer and recipient.
Thus, when OSN providers learn about an attestation, they
cannot transfer this information to others.

Attestations are signed with traditional digital signatures [33].
To ensure non-transferability, Lockr cannot allow a recipient
to transmit a complete copy of the attestation to a third-
party Web site. If it did, the Web site could store these at-
testations for later reuse: the social information contained
in the attestation is verifiable by anyone because the at-
testations are digitally signed. Thus, Lockr must enable the
recipient to convince a third-party Web site about the attes-
tation’s validity without having to transmit the attestation’s
signature for verification.

In cryptography, such problems are typically solved with
zero-knowledge protocols [20] that provide a very strong pri-
vacy guarantee: one party can prove to another that a state-
ment is true without revealing anything beyond the veracity
of the statement. If used in Lockr, a zero-knowledge proto-
col for verifying the signature of a social attestation would
guarantee to reveal nothing to the Web site performing the
verification other than the validity of the signature. This
guarantee is very strong; the Web site would never receive
a copy of the signature and thus would never be able to
present to others any verifiable evidence it discovers about
a social relationship.

With zero-knowledge, verification is performed in rounds.
In each round, the OSN site sends a challenge to the user. If
he is an impostor (i.e., does not own a signed copy of the at-
testation), the user has a 50% chance of solving the challenge
correctly. Thus, the OSN site must repeat the challenge k
times to reduce the chance of cheating to 2−k. This rep-
etition makes the performance of zero-knowledge protocols
impractical. Unfortunately, these protocols are not paral-
lelizable; running all the rounds in parallel invalidates the
protocols’ guarantees [21].

Instead, Lockr uses a witness hiding proof of knowledge
(WHPOK) protocol. WHPOK protocols are relaxations of
zero-knowledge protocols. Because the WHPOK protocol
we chose for Lockr is parallelizable, its performance is much
more reasonable. As Section 5 will show, Lockr’s WHPOK
verification protocol performs reasonably well in practice: it

takes only a few hundred milliseconds to complete. While
WHPOK protocols meet the desired non-transferability re-
quirement [15], they provide a slightly weaker guarantee
than zero-knowledge protocols. Unlike zero-knowledge which
guarantees that the Web site will not learn any information
other than the validity of the signature, WHPOK only guar-
antees that the Web site is not able to learn how to prove a
challenge despite verifying that the user is solving the chal-
lenge correctly. Specifically, the Web site learns about per-
forming new computational tasks (the Step 4 in Figure 3).
However, cryptographers are not able to characterize how
much information is “leaked”due to WHPOK’s weaker guar-
antee.

Lockr’s attestation verification protocol is a direct imple-
mentation of the WHPOK protocol described in [21], which
converts a traditional RSA signature into a WHPOK pro-
tocol. WHPOK is relatively easy to implement because it
relies on traditional RSA for which there are well-known
cryptographic libraries available. Another alternative to en-
hancing Lockr’s privacy is by using anonymous credential
schemes [6, 8]; however, these schemes often rely on encryp-
tion schemes other than RSA making them less easy to im-
plement using off-the-shelf cryptographic libraries. Figure 3
presents Lockr’s protocol.

3.2.3 Resolving Social Deadlock
In a decentralized scenario, two peers who do not know

each other but share a common friend should be able to ver-
ify these social relationships with no loss of privacy. This
scenario is challenging because each peer wants to first ver-
ify the other’s social relationship before exchanging content.
Lockr solves this problem through the use of relationship
keys.

Lockr encrypts an attestation with its relationship key be-
fore presenting it to any other party. As its name suggests,
the relationship key is specific to a particular relationship;
no relationship key can belong to more than one relation-
ship. Its purpose is to protect the confidentiality of the
information contained in an attestation during the verifica-
tion process. The relationship key, shared by all who have
that same relationship with the issuer, must also be shared
with any entity that needs to enforce a social ACL, such as
a third party Web site that hosts the content. This ensures
that only people who have a copy of this relationship key
can decrypt the attestation.

Lockr’s use of relationship keys for privacy in a decentral-
ized scenario is inspired by hash-based constructions used
in RE: [18, 17]. However, a simple use of relationship keys

person seeking
access

person enforcing
ACL

A B

PA

PA(nonce, relKey(sessKey))

sessKey(nonce, step1)

sessKey(step2)
sessKey(step3)

sessKey(object)

Figure 4: Attestation Verification for OSN sites. The
arrows labeled step1, step2, and step3 correspond to
WHPOK protocol steps depicted in Figure 3.

leaves open a security problem in both Lockr and RE:; nei-
ther supports expiration dates. When an attestation expires,
its relationship keys must become invalid. Otherwise, a peer
could use expired attestations to compromise the privacy of
other peers.

Lockr protects against the abuse of expired attestations
by using one-way hash chains, a mechanism borrowed from
TESLA, a multicast secure source authentication scheme [29].
The relationship key for a specific relationship is in fact a
chain of keys, so that a different key is used on each day for
all attestations containing that relationship. Each day, the
recipient of an attestation must use a specific key from this
chain as the attestation’s relationship key for that day when
presenting the attestation for validation. We assume that
all participants have loosely synchronized clocks [26].

A one-way hash chain (V0, V1, . . . , VN) is a collection of
values such that each value Vi (except the last value VN)
is a one-way function of the next value Vi+1. In particular,
Vi = H(Vi+1) for 0 ≤ i < N , where H is the SHA-1 hash
function. When issuing an attestation, the issuer must in-
clude the relationship key valid on the day the attestation
expires VexpDate. This lets the recipient obtain the relation-
ship key for any specific day d that occurs earlier than the
expiration date; however, the recipient cannot learn the re-
lationship key for any day after the expiration date. We
set N (i.e., the last date when any valid attestations can be
issued) to December 31st, 2100.

3.3 Putting It All Together
Lockr’s attestation verification protocols make use of the

WHPOK protocol and relationship keys to offer its privacy
properties. Lockr can perform two kinds of attestation verifi-
cation depending on the usage scenario. In the first scenario,
an OSN site verifies the attestation. In this case, the verifi-
cation process is one-way: the person seeking access uses the
WHPOK protocol to verify the attestation. The second is a
peer-to-peer scenario. In this case, the verification process is
two-way: both peers wanting to exchange content with each
other use the WHPOK protocol to verify the attestation.

Attestation verification for OSN sites: This protocol
has three rounds. First, the person seeking access sends his
public key. The OSN site responds with a message contain-
ing a challenge (i.e., an encrypted nonce) and a session key
encrypted with the relationship key. In the next round, the
person answers with the resolved challenge and engages in

Peer A Peer B

A B

PA

PB

PB(nonceA, relKey(sessKey)

sessKey(nonceA, PA(nonceB))

sessKey(nonceB, step1A)

sessKey(step2A, step1B)
sessKey(step3A , step2B)

sessKey(step3B)

Data Exchange

Figure 5: Attestation Verification for P2P. The ar-
rows labeled step1, step2, and step3 correspond to
WHPOK protocol steps depicted in Figure 3.

the first step of the WHPOK protocol, as described in Fig-
ure 3. The last round corresponds to the final step of the
WHPOK protocol. Figure 4 illustrates the one-way attesta-
tion verification protocol.

Attestation verification for P2P: This protocol has four
rounds, and it extends the authentication scheme presented
in the one-way protocol to provide two-way authentication.
Figure 5 depicts the attestation verification protocol for P2P.

As noted previously, a user without an attestation can
access an object as long as his identity is listed in the ACL,
i.e. his public key is in the ACL. Verifying whether a user
owns a private key corresponding to a public key listed in
the ACL is a trivial task; for brevity, we omit describing this
protocol.

3.4 Security Limitations
We anticipate two main issues with Lockr’s security model.

First, the recipient of an attestation can choose to reveal the
relationship key to others or even collude with an attacker.
In such a case, Lockr’s privacy properties are compromised.
However, we believe that“social pressure”will act as a deter-
rent to these types of privacy attacks because the recipient
of an attestation does have a social relationship with the
issuer. These types of attacks are analogous to the ones
in which somebody’s friend “breaks the silence” by making
public the identities of other friends.

Another possibility is that an attestation’s recipient de-
cides to sell the attestation for monetary reward. When do-
ing so, the seller must also share the private key along with
the attestation. However, sharing the private key compro-
mises all other attestations held by the recipient. This raises
the cost incurred by the recipient for selling their attestation
– this person relinquishes control over all their attestations,
including the ones they will receive in the future using the
same private key as their identity.

4. IMPLEMENTATION
We implemented Lockr for the BitTorrent P2P file shar-

ing system and the Flickr photo sharing site; our imple-
mentation for Flickr requires neither Flickr’s cooperation

LockrCenter FacebookAPI

getKeyPair(): returns user’s OpenSSL 1024-bit RSA key-pair
getAttestations(publicKey): returns user’s attestations issued by publicKey
getAllAttestations(): returns all user’s attestations
putAttestation(): stores an attestation
verifyAttestation(attestation, acl): verifies whether the attestation is
authentic and it satisfies the given ACL rules

Table 1: The Lockr Center API for storing and re-
trieving attestations. Lockr Center uses the Face-
book’s DataStore to store a user’s private key, pub-
lic key, and the set of all received attestations in the
user’s Facebook account.

nor server-side support. Before describing these implemen-
tations, however, we discuss Lockr Center. Plug-ins for
both applications contact the Lockr Center address book
to retrieve and store social attestations. Our implementa-
tion code and executables are available for download from
www.lockr.org.

4.1 Lockr Center: An Address Book for Lockr
People use address books to store the identities of those

in their social network. Lockr’s address book has two ad-
ditional roles: (1) to allow people to exchange attestations
with each other, and (2) to allow any online application to
store and retrieve attestations on behalf of its users. Any ex-
isting address book, such as Gmail’s My Contacts or iPhone’s
Contacts, can be easily enhanced to support this functional-
ity. Users can choose their favorite address book for use with
Lockr; the choice is unimportant as long as the address book
conforms to the format of the attestations and the protocols
for accessing them. Users can even create and manage their
own address books without relying on third party providers
to provide them.

We implemented Lockr Center, an address book for Lockr,
as a Facebook application. Lockr Center stores a user’s pri-
vate key, public key, and all attestations the user has re-
ceived from others using the Facebook Data Store [14]. Any
application can use Facebook’s API to retrieve any stored
attestations after the user has logged in to Facebook. Ta-
ble 1 presents Lockr Center’s Facebook API for storing and
retrieving attestations.

As with any other Facebook application, users must first
add Lockr Center to their set of enabled Facebook applica-
tions in order to issue and receive attestations. They can
then issue attestations to any other Facebook user running
Lockr Center. Users can also invite others to install Lockr
Center by issuing Facebook notifications (only to other Face-
book users) or by sending e-mail invites. Figure 6 illustrates
the user interface to Lockr Center.

4.2 Lockr for BitTorrent
We wrote a Lockr plug-in for Vuze (v 3.0.3.5)1, the popu-

lar BitTorrent client application, and tested it on both Win-
dows and Linux. The plug-in modifies Vuze by extending
the file format for torrent files to include support for social
ACLs and by adding an attestation exchange and verifica-
tion step during the formation of BitTorrent connections
between peers.

1Vuze was formerly known as Azureus.

Figure 6: The Lockr Center address book.

4.2.1 A BitTorrent Primer
A torrent file is a collection of key-value pairs describ-

ing the information needed to begin downloading a file from
other BitTorrent peers. This information includes the file’s
meta-data as well as the IP addresses and port numbers of
one or more BitTorrent trackers. A tracker is a server that
keeps track of the active peers participating in a BitTorrent
download. By contacting a torrent’s tracker, a peer can find
other peers serving parts of the respective file. BitTorrent
trackers are not trusted because anyone can decide to be-
come a tracker, and BitTorrent provides no mechanisms to
protect against malicious trackers.

To download a file, a BitTorrent peer contacts a tracker
from the torrent file. The tracker returns a list of available
peers that can serve fragments of the content. The down-
loader then initiates TCP connections to these peers. Once
a TCP connection is established, the peers engage in an
application-level handshake to determine which fragments
each can serve the other. If both peers run the Vuze Bit-
Torrent client, this initial handshake is followed by a second
handshake to determine which Vuze options each peer sup-
ports, such as encryption or chat messaging functionality.

4.2.2 Social Torrents
A social torrent is a torrent file with two new key-value

pairs: a social ACL and a digital signature. The social ACL
has the XML format illustrated in Figure 2. The file’s owner
signs the torrent file to prevent a tracker from altering it
(although the signature does not cover the list of trackers
so that it can be modified). We modified Vuze’s torrent
creation module to support the creation of social torrents.

Because BitTorrent trackers cannot be trusted, Lockr in-
stead relies on individual peers to enforce social ACLs. Our
design choice works well for sharing content in social net-
works because peers are subject to “social pressure” that
discourages them from becoming malicious. This illustrates
another Lockr benefit: dealing with trust in social networks
is much simpler than it is in global, Internet-wide settings.

4.2.3 Social Handshake
We implemented Lockr functionality as a plug-in to Vuze

that implements an extension to the BitTorrent handshake
protocol. If both peers implement Lockr, they engage in a
social handshake using the WHPOK protocol in addition to
the BitTorrent handshake performed on connection setup.

Social Vuze Messages

LockrPubKey(): sends a peer’s public key
LockrOutgoingChallenge (): sends a nonce and a session key; the session key is encrypted with the relationship key;
everything is encrypted with the other peer’s public key
LockrIncomingChallengeOutgoingResponse(): sends another nonce and the received nonce from the other peer; the local
nonce is encrypted with the other peer’s public key; everything is encrypted with the session key
LockrWHPOKOutgoingCommitIncomingResponse (): sends the 20 positive integers of the 1st step of WHPOK and the
received nonce from the other peer; everything is encrypted with the session key
LockrWHPOKIncomingCommitOutgoingChallenge(): sends 20 positive integers of the 1st step of WHPOK of the local
peer and 20 bits of the 2nd step of WHPOK of the remote peer; everything is encrypted with the session key
LockrWHPOKOutgoingResponseIncomingChallenge(): sends the 20 integers computed in the 3rd step WHPOK of the
local peer and 20 bits of the 2nd WHPOK of the remote peer; everything is encrypted with the session key
LockrWHPOKIncomingResponse(): sends the 20 integers computed in the 3rd step of WHPOK of the local peer encrypted
with the session key

Table 2: Seven extra messages supported by Lockr for Vuze. A peer uses these messages to extend the Vuze
handshake with a social handshake. These messages have a 1:1 correspondence with the attestation verification
protocol shown in Figure 5.

This social handshake implements the two-way attestation
verification protocol using seven message types we added to
Vuze, shown in Table 2.

Once the social handshake completes successfully, peers
start the file transfer. File contents are encrypted using the
session key exchanged in the social handshake. If the social
handshake does not complete successfully (e.g., the ACL
verification fails or one of the peers does not support Lockr),
the connection is immediately terminated. Note that Lockr-
enabled peers engage in a social handshake for social torrents
only. For files with regular torrents, Lockr-enabled peers do
not exchange Lockr-specific messages. In this way, Lockr for
Vuze clients remain backward-compatible with other Vuze
clients.

4.3 Lockr for Flickr
Implementing Lockr for Flickr would normally require Flickr’s

cooperation to implement the one-way attestation verifica-
tion protocol. Absent server-side support, we decided to im-
plement a working prototype by delegating the social ACL
enforcement to a proxy server hosted at the University of
Toronto. We made this inelegant design decision to illus-
trate Lockr’s benefits when sharing photos on Flickr. Our
workaround still decouples the social network from the con-
tent sharing site – people’s photos are still stored on Flickr’s
servers.

On the client side, we implemented a Firefox plug-in writ-
ten in JavaScript for two reasons. First, it extends the inter-
face for uploading pictures to flickr.com to let users create
social ACLs. Second, the plug-in communicates with the
proxy server to perform attestation verification whenever
the user visits Flickr photos that are protected by Lockr.

4.3.1 Implementation Details
To protect a photo with Lockr, the plug-in uploads a

dummy photo to flickr.com in addition to the original photo.
The plug-in sets the permissions on the original photo to
“private”. In Flickr, this setting makes the photo accessi-
ble only through a URL that is hard to guess. Our plug-in
sends a copy of this hard-to-guess URL to our proxy, and
the proxy can return this URL to anyone who presents a
valid attestation. The dummy photo is set for public view-
ing. Without our plug-in or appropriate Lockr attestations,
visitors to flickr.com can view the dummy photo only.

Upon starting the browser, our plug-in contacts Lockr
Center to download and cache all the user’s social attes-
tations. Next, the plug-in authenticates to our proxy server
but sends no attestations. These operations persist across
the browsing session. We chose to implement these opera-
tions during startup rather than upon browsing flickr.com
because we believe users are less tolerant of delays during
the latter.

When visiting a page on flickr.com that stores the dummy
photo, our plug-in sends the required attestation to our
proxy. We do not use the WHPOK attestation verifica-
tion protocols when implementing Lockr for Flickr (a choice
we explain in the next Section). The proxy verifies the at-
testation and returns the hard-to-guess URL that indicates
where the original photo is located. The plug-in automat-
ically swaps the dummy and original photos in a manner
completely transparent to the user.

Figure 7 illustrates the plug-in’s user interface. Figure 7a
shows an ACL selection done with Lockr when a picture is
being uploaded to Flickr. Users can make the content “pri-
vate”, “public”, or protected with “social relationships”. The
first two options are part of Flickr’s default behavior; our
plug-in adds the last option. Figure 7b shows the original
image when viewed by a user with the required attestations.
Figure 7c shows a dummy image seen by a user without the
required attestations (or without an installed plug-in).

4.3.2 Implications of Our Implementation
Our implementation for Flickr deviates from Lockr’s de-

sign by not using the WHPOK protocols. Instead, it sends
attestations directly to our proxy. We made this implemen-
tation decision due to a limitation of the JavaScript envi-
ronment: the current cryptographic support in JavaScript is
incomplete and slow. One practical way to make our plug-
in perform the cryptography locally is by adding platform-
specific cryptographic libraries to it; however, we believe
that doing so will deter the adoption of our plug-in. Instead,
the plug-in delegates this computation to our proxy.

Despite the lack of server-side support, our integration of
Lockr with Flickr is secure. Photos protected by social ACLs
cannot be viewed by users without our plug-in or without
the required attestations. The security of our plug-in rests
on Flickr’s implementation of hard-to-guess URLs for pri-
vate content. However, not all Web 2.0 sites offer this op-

(a) (b) (c)

Figure 7: Lockr for Flickr. (a) A user creates a social ACL. (b) A user views the protected image with the
appropriate attestation. (c) A user without appropriate attestations sees a dummy image.

tion. Another common way to make content private is by
asking users to login before requesting access (e.g., Google
Picasa uses this mechanism). Once the user logs on, the
Web site can decide whether the user-id is allowed to access
the private content.

Even with this alternate mechanism for protecting private
content, we believe it is possible to implement Lockr in the
absence of server-side support. To do so, our proxy needs its
own user-id on the respective Web site. Lockr users would
have to designate this account’s user-id as one that has ac-
cess to their private content. In this way, our proxy can still
mediate access to private content and fetch it on behalf of
Lockr users with the required attestations.

5. EVALUATION
This section evaluates Lockr’s performance and overhead

with respect to two different and popular sharing systems,
BitTorrent and Flickr. We can effectively evaluate Lockr’s
usability only after it has been deployed more widely in the
field. Instead, we evaluate the performance of both our im-
plementations and we demonstrate that Lockr’s overhead is
negligible in practice.

In all our experiments, we ran Lockr on a laptop equipped
with an Intel Pentium M CPU and 1.5GB of RAM, a typical
configuration for today’s users. We instrumented all code to
record the time spent in different parts of Lockr’s imple-
mentation. All experiments were repeated 20 times, and we
report the average of these 20 measurements. The remain-
der of this section evaluates how long it took for Lockr to
issue an attestation as well as Lockr’s performance when
integrated with Flickr and BitTorrent.

5.1 Issuing an Attestation
Issuing an attestation requires two operations: (1) com-

puting the relationship key using a one-way hash chain, and
(2) signing the attestation. The relationship key is com-
puted by repeatedly hashing the attestation’s relationship
with SHA-1; the number of hashing operations equals the
number of days between the attestation’s expiration date
and the last date of a hash chain (currently set to December
31st, 2100). To measure worst-case performance, we issued
an attestation that was valid for one day only; for this at-

testation, we performed 33,840 repeated hashes to compute
the relationship key. Even for this worst-case, we found that
Lockr users will observe no noticeable delay when issuing
attestations: generating the relationship key took 54.48ms,
and signing the whole attestation took 3.6ms, for a total of
58.08ms.

5.2 Lockr for Flickr
We implemented Lockr for Flickr by delegating ACL en-

forcement to one of our own servers hosted at the University
of Toronto. Upon starting the browser, the Lockr plug-in
authenticated to our server and retrieved all the user’s at-
testations, caching them on the local machine for later use.
These operations were done once only, at the beginning of
each browsing session. Our experiments found this one-time
overhead to be relatively small. Authenticating to our server
using the protocol described in Figure 4 took 471.8ms on
average, and retrieving the attestations took an additional
778.3ms, for a total time of about 1.25 seconds.

Each time a user visits a flickr.com page that stores con-
tent protected by Lockr, the plug-in fetches the social ACL
and finds the corresponding attestation in the local cache.
The plug-in sends this attestation back to our server (Lockr
for Flickr does not use the WHPOK protocols) and receives a
hard-to-guess URL on flickr.com where the content is stored.
We found that the overhead of this entire chain of operations
took 104.4ms.

5.3 Lockr for BitTorrent
As described in Section 4.2.3, the implementation of the

social handshake in Lockr for BitTorrent uses seven new
message types. The social handshake is initiated by peer A
to peer B. Table 3 breaks down its performance overhead.
Note that these numbers do not include the latency for de-
livering messages because latency depends on the distance
between nodes; instead, we show the computational over-
head at each node. The social handshake added at most
a latency equivalent of four RTTs to the BitTorrent hand-
shake. As Table 3 shows, social handshake overhead was
small: Lockr added 880.25ms to the setup time of a BitTor-
rent connection between peers.

Speed
(ms)

Peer A: LockrPubKey
Peer B: LockrPubKey
Peer A: LockrOutgoingChallenge
Peer B: LockrIncomingChallengeOutgoingResponse
Peer A: LockrWHPOKOutgoingCommitIncomingResponse
Peer B: LockrWHPOKIncomingCommitOutgoingChallenge
Peer A: LockrWHPOKOutgoingResponseIncomingChallenge
Peer B: LockrWHPOKIncomingResponse

24.07
24.07
583.70
60.47
51.59
55.51
39.44
41.40

Table 3: Speed (ms) of the operations performed in
a social handshake in Lockr for BitTorrent. These
numbers include only local processing times, not net-
work latencies. Overall, Lockr’s social handshake took
880.25ms to complete.

6. RELATED WORK
Lockr’s concepts are related to previous privacy protocols

and authentication systems. This section presents work on
protocols with strong privacy properties and work that uses
social networks to bootstrap trust in online systems. It also
relates Lockr to previous authentication and access control
systems.

6.1 Privacy Properties
Lockr’s WHPOK attestation verification is a relaxation

of the more general class of zero-knowledge protocols [20].
While zero-knowledge protocols offer very strong privacy
properties, their expense makes them impractical. Although
WHPOK protocols offer less privacy protection than zero-
knowledge protocols, they provide adequate performance
while protecting the confidentiality and non-transferability
of information. For example, the Web site enforcing a social
ACL with Lockr can prove that someone presented a valid
social attestation. This differs from non-transferability; it
is impossible for the Web site to identify precisely who pre-
sented it. For a rigorous description of the differences be-
tween zero-knowledge and WHPOK, please see [15].

6.2 Using Social Networks to Bootstrap Trust
Reliable Email (RE:) [18] is a white-listing system for
email that incurs zero false positives among socially con-
nected users. It exploits Friend-of-Friend (FoF) relation-
ships among correspondents to populate white-lists. RE:
suffers from several privacy issues pointed out in [17]. In
particular, like Lockr, RE: users must discover FoF relation-
ships even when they do not trust each other. The hash-
based construction proposed to address this problem [17]
differs from Lockr’s in three ways. First, the trust model
differs. [17] assumes that both parties exchange a secret
when an attestation is issued; in contrast, Lockr lets one
person issue an attestation without requiring a secret in re-
turn. Second, although attestations in [17] include expira-
tion dates, the protocols do not support them, and adding
such support is not trivial. Finally, [17] requires parties to
exchange signed attestations, whereas Lockr uses WHPOK
protocols.

Authenticatr [31] is a system for bootstrapping authenti-
cated communication channels using social networks. Au-
thenticatr’s goal is very different from Lockr’s: it seeks to

incorporate social information from today’s online social net-
works into any online application. In this way, online appli-
cations can use online social networks to bootstrap trust.
Authenticatr’s design differs from Lockr’s, as well. It pro-
vides a middleware layer that can query several online so-
cial networks and expose this information to any application
through a social networking API.

NOYB [22] and Persona [2] are online social networks that
share one of Lockr’s goals: they put users in control of their
own social information. NOYB obfuscates a user’s sensi-
tive data by using a secret function to permute the data
of all OSN users. This permutation effectively “mixes” dif-
ferent information from different profiles randomly. Each
user possesses a part of the secret function that allows them
to reconstruct their private information. A user can effec-
tively share their secret with their friends allowing them to
view the user’s private information. On the other hand, Per-
sona uses a cryptographic mechanism to achieve the same
goal; its attribute-based encryption (ABE) lets users ap-
ply fine-grained access control policies to their data. With
ABE, users encrypt their data with encryption keys that are
relationship-specific. Persona does not provide support for
expiring relationship keys. Instead, to revoke a relationship
key, such as“friend”, Persona requires a fresh re-keying of all
remaining friends. In Persona and NOYB, OSNs store only
encrypted content. This makes it more difficult for them
to provide functionality, which requires access to raw con-
tent. Unlike Lockr, Persona and NOYB do not guarantee
the non-transferability of the social information disclosed
during access requests.

6.3 Authentication and Access Control
Capabilities [12, 25] are secure tokens that enable specific
access rights to an object or resource. Recent projects have
proposed using capabilities to manage and share personal
data online [19, 23]. There are two important differences
between capabilities and Lockr’s social attestations. First,
capabilities encapsulate a unique object identifier and access
rights; thus, the tasks that can be performed by holding a
capability are known in advance. In contrast, social attesta-
tions are application-independent: they are issued without
any prior knowledge about how they will be used. This prop-
erty makes Lockr more flexible. People can specify different
access control policies on different systems without the need
to issue new attestations.

Second, capabilities are inherently transferable, while at-
testations are restricted to the recipient only. This differ-
ence has implications with respect to delegation, viz., that
capability-based systems naturally support delegation, while
attestations do not.

SPKI/SDSI [13, 32] is a certificate-based PKI (like X.509)
with a decentralized design. In the absence of a trusted
third party, SPKI/SDSI users must provide a chain of certifi-
cates to a trusted party or group to authenticate themselves.
While Lockr uses one-hop social networking authentication,
SPKI/SDSI implementations often have complicated chain
discovery mechanisms [9] that raise deployment difficulties.
Also, some of the distinctions between Lockr and X.509 ap-
ply to SPKI/SDSI, e.g., finding a secure channel and the
lack of support for privacy.

Role-based access control [16, 5] is an approach to re-

stricting access to resources based on roles. Users are as-
signed various roles, and these roles dictate what permis-
sions users acquire. Lockr’s access control can be viewed
as a form of role-based access control because one can view
a social relationship as a way to express a role. However,
Lockr is designed to address the needs of social networks,
whereas role-based access control was developed for use in-
side organizations [16]. Further, role-based access control
systems have global namespaces and role hierarchies [5], un-
like Lockr.

PGP [34] is another decentralized authentication system
that uses a vetting scheme in which users sign each other’s
public keys. To verify a signature, a user must find a chain
of trust linking the owner to themselves. Over time, PGP
creates a “Web of trust” in which people accumulate each
other’s verified signatures.

Lockr differs from PGP in two ways. PGP’s notion of trust
is all or nothing, whereas Lockr uses social relationships that
lets people express different nuances of trust. Second, PGP’s
trust is transitive. However, since social relationships are
diverse and complex in real-life, Lockr does not combine
them to form transitive relationships.

OpenID [28] is a decentralized single sign-on system. Us-
ing OpenID-enabled Web sites, a user need not remember
multiple usernames for different Web sites. Instead, he can
register with an OpenID“identity provider”, and anyone can
be such a provider. The OpenID is a globally unique iden-
tifier tied to the user’s chosen provider.

There are two important differences between Lockr and
OpenID. First, OpenID’s namespace is global, and names
are globally unique; in contrast, Lockr’s attestations are so-
cial networking-scoped. Second, OpenID is vulnerable to
phishing attacks [36]. An attacker can attempt to phish
an OpenID provider; if successful, the attacker can use the
stolen identity on any OpenID-enabled Web site. Lockr is
not vulnerable to phishing because of its challenge-response
mechanism. Its users must use their private keys to resolve
a challenge every time they request access.

7. CONCLUSIONS
This paper presented Lockr, an access control system us-

ing social networking abstractions. Lockr was designed to
simplify content sharing on the Internet. It decouples the
management of social information from online sharing sys-
tems by letting users exchange application-independent at-
testations. This decoupling facilitates the integration of
Lockr’s access control with any online application, such as
Web 2.0 sites and P2P file sharing.

This paper described the design and implementation of
Lockr in the context of two online systems with very different
characteristics: a centralized Web 2.0 site, Flickr, and a
decentralized P2P system, BitTorrent. Our access control
uses verification protocols with attractive privacy properties
that reduce the chance of third-party sites abusing people’s
personal information, such as their social relationships.

Our implementation demonstrated that Lockr can be de-
ployed even in the absence of cooperation from Web sites.
This permits experimentation with Lockr’s access control
while we continue to share content using existing sites. Our
initial experience using Lockr on Flickr and on BitTorrent
has confirmed that Lockr simplifies management and access
control for content sharing.

Acknowledgments
We thank Charlie Rackoff for initiating us in the subtleties of
zero-knowledge protocols. Some of the initial ideas in Lockr
originated during discussions with Kiran Gollu. Geoffrey
Salmon contributed to Lockr’s codebase. Finally, we thank
Krishna Gummadi and the anonymous reviewers for their
helpful comments.

8. REFERENCES
[1] M. Aspan. How sticky is membership on facebook?

just try breaking free, 11 February 2008. New York
Times.

[2] R. Baden, A. Bender, N. Spring, B. Bhattacharjee,
and D. Starin. Persona: An online social network with
user-defined privacy. In Proc. of SIGCOMM, 2009.

[3] BBC News. Brown apologises for records loss,
November 2007. http:
//news.bbc.co.uk/1/hi/uk_politics/7104945.stm.

[4] V. Berstis. Security and protection of data in the ibm
system/38. In Proc. of the 7th Annual Symposium on
Computer Architecture (ISCA), La Baule, France,
May 1980.

[5] A. Bhora, S. Smaldone, and L. Iftode. FRAC:
Implementing role-based access control for network file
systems. In Proc. of the 6th IEEE Symposium on
Network Computing and Applications (NCA),
Baltimore, MD, July 2007.

[6] S. Brands. Rethinking Public Key Infrastructures and
Digital Certificates: Building in Privacy. The MIT
Press, 2000.

[7] S. Buchegger and A. Datta. A case for p2p
infrastructure for social networks - opportunities and
challenges. In In 6th International Conference on
Wireless On-demand Network Systems and Services
(WONS), Snowbird, UT, Feb. 2009.

[8] J. Camenisch and A. Lysyanskaya. Signature schemes
with efficient protocols. In 3rd International
Conference on Security in Communication Networks
(SCN), Amalfi, Italy, September 2002.

[9] D. Clarke. SPKI/SDSI HTTP server/certificate chain
discovery in SPKI/SDSI, September 2001. Masters
thesis, Massachusetts Institute of Technology.

[10] E. Cohen and D. Jefferson. Protection in the hydra
operating system. In Proc. of the 5th Symp. on
Operating Systems Principles (SOSP), Austin, TX,
November 1975.

[11] L. A. Cutillo, R. Molva, and T. Strufe. Privacy
preserving social networking through decentralization.
In In 6th International Conference on Wireless
On-demand Network Systems and Services (WONS),
Snowbird, UT, Feb. 2009.

[12] J. B. Dennis and E. C. V. Horn. Programming
semantics for multiprogrammed computations.
Communications of the ACM, 9:143–155, March 1966.

[13] C. M. Ellison, B. Frantz, B. Lampson, R. Rivest,
B. M. Thomas, and T. Ylonen. Spki certificate
documentation, 2001.
http://world.std.com/~cme/html/spki.html.

[14] Facebook Developers WiKi. Data Store API
Documentation, 2008.
http://wiki.developers.facebook.com/index.php/

Data_Store_API_documentation.

[15] U. Feige and A. Shamir. Witness indistinguishable and
witness hiding protocols. In Proceedings of the ACM
Symposium on Theory of Computing (STOC),
Baltimore, MD, May 1990.

[16] D. F. Ferraiolo and D. R. Kuhn. Role-based access
controls. In Proceedings of the 15th National Security
Conference, Baltimore, MD, October 1992.

[17] M. J. Freedman and A. Nicolosi. Efficient private
techniques for verifying social proximity. In Proc. of
6th Workshop on P2P Systems, Bellevue, WA, Feb
2007.

[18] S. Garriss, M. Kaminsky, M. J. Freedman, B. Karp,
D. Mazieres, and H. Yu. Re: Reliable email. In
Proceedings of the 3rd Symposium on Networked
Systems Design and Implementation (NSDI), San
Jose, CA, May 2006.

[19] R. Geambasu, M. Balazinska, S. D. Gribble, and
H. M. Levy. Homeviews: Peer-to-peer middleware for
personal data sharing applications. In Proc. of
SIGMOD Conference on Management of Data,
Beijing, China, June 2007.

[20] S. Goldwasser, S. Micali, and C. Rackoff. The
knowledge complexity of interactive proof-systems. In
Proceedings of the 17th Symposium on the Theory of
Computation, Providence, Rhode Island, May 1985.

[21] S. Goldwasser and E. Waisbard. Efficient
transformation of well known signature schemes into
designated confirmer signature schemes. Technical
Report MCS03-13, The Weizmann Institute of
Science, 2003.

[22] S. Guha, K. Tang, and P. Francis. NOYB: Privacy in
Online Social Networks. In Proceedings of the 1st
ACM Sigcomm Workshop on Online Social Networks
(WOSN), Seattle, WA, USA, August 2008.

[23] P. J. Keleher, N. Spring, and B. Bhattacharjee.
Chit-based access control. Technical Report
CS-TR-4878, University of Maryland at College Park,
2007.

[24] B. Krishnamurthy and C. Wills. On the leakage of
personally identifiable information via online social
networks. In Proceedings of the 2nd ACM Sigcomm
Workshop on Online Social Networks (WOSN),
Barcelona, Spain, August 2009.

[25] H. M. Levy. Capability-Based Computer Systems.
Butterworth-Heinemann, Newton, MA, USA, 1984.

[26] D. L. Mills. RFC 1305: Network Time Protocol
(Version 3) Specification, Implementation and
Analysis, 1992.
http://tools.ietf.org/html/rfc1305.

[27] A. Noyes. Facebook averts ftc privacy complaint, 23
February 2009. Tech Daily Dose.

[28] OpenID. OpenID, 2008. http://openid.net/.

[29] A. Perrig, R. Canetti, D. Song, and J. D. Tygar.
Efficient and secure source authentication for
multicast. In Network and Distributed System Security
Symposium (NDSS), pages 35–46, Feb. 2001.

[30] B. C. Popescu, B. Crispo, and A. S. Tanenbaum. A
certificate revocation scheme for a large-scale highly
replicated distributed system. In Proc. of the 8th
Symp. on Computers and Communications (ISCC),
Kemer, Turkey, July 2003.

[31] A. Ramachandran and N. Feamster. Authenticated
out-of-band communication over social links. In Proc.
of the 1st ACM SIGCOMM Workshop on Online
Social Networks (WOSN), Seattle, WA, August 2008.

[32] R. L. Rivest and B. Lampson. SDSI 2.0 - a simple
distributed security infrastructure, 1997.
http://groups.csail.mit.edu/cis/sdsi.html.

[33] R. L. Rivest, A. Shamir, and L. Adleman. A method
for obtaining digital signatures and public-key
cryptosystems. Communications of the ACM,
21:120–126, 1978.

[34] B. Schneier. Applied Cryptography: Protocols,
Algorithms, and Source Code in C. Wiley; 2nd edition,
1995.

[35] A. Shakimov, A. Varshavsky, L. Cox, and R. Caceres.
Privacy, cost, and availability tradeoffs in
decentralized osns. In Proceedings of the Workshop on
Online Social Networks (WOSN), Barcelona, Spain,
Aug 2009.

[36] M. Slot. Beginner’s guide to OpenID phishing.
http://openid.marcoslot.net/.

[37] B. Stone and B. Stelter. Facebook withdraws changes
in data use, 18 February 2009. New York Times.

[38] T. Ullyot. Results of the inaugural facebook site
governance vote, 23 April 2009. Facebook.

[39] J. Vascellaro. Facebook’s about-face on data, 19
February 2009. Wall Street Journal.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

