
Lockr: Social Access Control for Web 2.0

Amin Tootoonchian†,Kiran K. Gollu†,Stefan Saroiu†,Yashar Ganjali†,Alec Wolman‡

†Department of Computer Science ‡Microsoft Research
University of Toronto Redmond, WA 98052

Toronto, ON M5S 2E4
{amin,kkgollu,stefan,yganjali}@cs.toronto.edu alecw@microsoft.com

ABSTRACT

Sharing personal content online is surprisingly hard despite the re-
cent emergence of a huge number of content sharing systems and
sites. These systems suffer from several drawbacks: they each have
a different way of providing access control which cannot be used
with other systems; moving to a new system is a lengthy process
and requires registration and invitation of all one’s friends to the
new system; and the rules for access control are complicated and
become more so as our networks of online friends grow.

In this paper, we present Lockr – an access control scheme based
on social relationships that makes sharing personal content easy.
Lockr separates social networking information from the content
sharing mechanisms, thereby eliminating the need for users to main-
tain many site-specific copies of their social networks. We de-
scribe Lockr’s design, security properties, and limitations. We also
present how we integrated Lockr with two popular systems for shar-
ing content online – BitTorrent and Flickr.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems

General Terms

Design, Security

Keywords

BitTorrent, Lockr, Web, access control, online social networks

1. INTRODUCTION
Today, sharing personal content is surprisingly difficult. Current

systems suffer from a number of drawbacks. They are cumbersome
to use, they impose artificial limits on the size of shared content
(e.g., pictures and video), and they make it difficult to restrict con-
tent only to a specific set of users. For those Web sites that do
provide access control, they typically require all the participants to
be registered with the site in question. This imposes the burden that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOSN’08, August 18, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-60558-182-8/08/08 ...$5.00.

users must register with many sites, and maintain separate and po-
tentially inconsistent copies of their social networks for each site.

Despite all these problems, content sharing Web sites and ser-
vices remain very popular. These content sharing sites account for
half of the top 10 most visited Web sites today [1]. Together these
sites attract millions of visitors every year serving petabytes of per-
sonal content. These sites’ popularity have amplified their short-
comings – today’s Web users need to register, create, and maintain
dozens of copies of social networks on dozens of sites just to share
their personal content.

This paper’s contributions are two-fold: we present the design of
Lockr – an access control scheme that makes sharing personal con-
tent easy and we describe how we integrated Lockr with BitTorrent
and Flickr, two popular systems for sharing content online. Lockr
is based on a simple insight – we must decouple content delivery
and sharing from managing social networking information. Our
scheme lets people manage their social networks themselves in one
place (e.g., through their personal address books) while letting Web
sites and Internet systems be in charge of content delivery only. For
this, we introduce two new concepts – social attestations and social
access control lists (ACLs). At a high-level, a social attestation is a
small piece of meta-data issued by one person to another encapsu-
lating a social relationship. The recipient can use this attestation to
prove the social relationship to any online site or to any other user.
People exchange these attestations once while reusing them to gain
access to their friends’ personal content scattered across different
sites and systems. Unlike a capability, an attestation does not in-
clude access rights. Instead, access rights are specified in the social
ACL by describing what social relationships a person must have to
gain access to the data.

To illustrate how Lockr works, consider a simple example of a
person wanting to restrict access to their family photos on Flickr.
The owner creates a social ACL indicating that access to the photos
is restricted to family-only. Family members must present their so-
cial attestations to Flickr issued by the photos’ owner before gain-
ing access. To allow access, Flickr must verify that the attestations
were issued by the original owner and that “family member” is the
social relationship encapsulated by the attestation. Note that the
family members’ social attestations can be reused by any online
site without requiring users to register.

Lockr allows users to express access control policies based on
social relationships. This eliminates the need to manage many
site-specific social networks online. Users need to manage a sin-
gle social network that can be stored in an address book on their
own machines. To create an access control policy, users do not
have to enumerate all members of a social group. Instead, they
can list what social relationships others must have to gain access to
personal content. We exclude access rights, application semantics,

and object names from attestations unlike other recently proposed
capability-based schemes [4, 5]. In this way, attestations can be
re-used across different Web sites and Internet systems. This usage
model conforms with the familiar model with which users already
manage contacts in their address books making Lockr intuitive and
easy-to-use.

Lockr is incrementally deployable – any online site can support it
without coordinating with other sites. The real benefit from Lockr,
however, is gained when a large number of sites deploy and support
it, as users will not need to define and manage their networks for
such sites. As our second contribution in this paper, we show how
one can implement Lockr on a content sharing site without any
support from that site. As an example, we show how one can use
Lockr on the popular photo sharing site Flickr, using a browser
plug-in. Clearly, this is not the long-term solution we envision, but
is a simple way to show the advantages of Lockr. We also present
an implementation of Lockr in Azureus, a popular BitTorrent client,
providing access control for the content shared in a peer-to-peer
(P2P) system.

2. REQUIREMENTS FOR ACCESS

CONTROL ON PERSONAL CONTENT
Because personal content is usually of a private nature, people

need to restrict who can access it. While some delivery systems
today provide access control, these schemes do not fit the needs
of personal content. We believe that an access control scheme for
sharing personal content online should have the following proper-
ties.

1. Provide a simple and flexible way of defining access control

rules. The growth of our online social networks will make it more
and more difficult to manage who has access to which online con-
tent. An ideal access control scheme must be intuitive and simple
to use, matching the way in which people manage their social net-
works both online and offline.

2. Eliminate the management issues associated with using many

content sharing sites. The volume of personal content created and
shared online has immensely grown, and will continue to grow. De-
pending on the type of content, users might prefer using different
types of services. An ideal access control scheme must be able to
work with all types of content regardless of where they are stored.
Users should not have to manage many copies of their social net-
works and they should not have to convince their friends and fami-
lies to register on many different sites.

Our proposed access control scheme captures these properties
using two simple observations.

1. We must use social relationships to describe access control

policies. Our observation is that it is very intuitive for people to use
their social relationships to define access control policies for their
personal content. For example, people want to share family pictures
with family members only, they want to share pictures from work
with work colleagues, and they want to share their wedding videos
with all the guests to their wedding. In contrast, today’s sharing
systems provide access control mechanisms based on identities and
groups that vary from one content sharing service to another. While
access control policies based on identities and groups are adequate
for operating systems or databases, we believe they are very diffi-
cult to manage over different online content sharing systems. Peo-
ple are more comfortable restricting access to their pictures to their
“family” or “work colleagues”. It is more intuitive, and one doesn’t
need to enumerate people’s identities for every piece of data to pro-

tect. With Lockr, people can use social relationships (in addition to
identities) to define access control policies for personal content.

2. We must separate social networks from content delivery and

sharing. A social access control scheme should be compatible
with any Internet system for delivering personal content. Internet
systems must decouple their social networking information from
their content delivery and sharing functionality. With Lockr, peo-
ple manage one single copy of their social network stored either
on their own desktops or on a third-party site, whichever is more
convenient.

Separating social networks from content delivery and sharing
opens a new realm of possibilities for constructing applications that
have yet to emerge on the Internet. For example, today’s firewall
policies filter incoming traffic based on IP addresses, port numbers,
or protocol types. Instead, firewalls could implement filtering poli-
cies based on social relationships. A personal firewall could allow
incoming traffic from others based on their social relationship to
the firewall’s owner and not based on their IP addresses. Similarly,
organizations could implement policies allowing traffic from their
employees only and without relying on IP addresses. As another
example, a person’s e-mail reader can share locally archived e-
mails with this person’s family or friends. The e-mail reader could
also implement a spam classification scheme based on the social re-
lationships between senders and receivers, similar to a system like
RE: [3].

3. DESIGN
To provide the requirements described previously, Lockr intro-

duces two new concepts – social attestations and social access con-
trol lists (ACLs). In this section, we start by describing how people
create a personal identity in Lockr. We then present the concept of
social attestations, and how they are issued and exchanged. We de-
scribe social ACLs and how they are enforced. Finally, we discuss
the issues raised by revoking these attestations.

3.1 Personal Identities and Address Books
In Lockr, a personal identity is a pair of a public key and a

private key. People communicate their public keys with their so-
cial networks in the same way they share their names, addresses
and phone numbers – using business cards, e-mail signatures, let-
ters, phone calls, or any out-of-band mechanisms. Public keys are
stored in address books, next to a person’s other contact informa-
tion. While public keys can be revealed to anyone, their exchange
must be done securely. An adversary can impersonate a victim once
the victim’s friends record an incorrect public key in their address
books. However, these keys are exchanged only by people forming
social relationships and not between unknown strangers. This al-
lows people to find convenient ways to exchange their public keys
securely, such as secure e-mail or over their cell-phones’ Bluetooth
interfaces.

3.2 Social Attestations
A social attestation is a piece of data that certifies a social re-

lationship. An attestation has six fields: an issuer, a recipient, a
social relationship between two parties, an expiration date, a rela-
tionship key, and a digital signature. The meaning of an attestation
is that an issuer tells a recipient that two parties form a relationship.
Two parties could share more than one attestation since two people
can have more than one relationship (e.g., two people can be both
friends and co-workers). In the simplest case (and we believe the
most common), an attestation certifies a social relationship between
the issuer and the recipient. For example, when a person issues

<attestation>
 <issuer>Issuer’s public key</issuer>
 <recipient>Recipient’s public key</recipient>
 <relationship>
 <type>Relationship type (e.g., family, friend)</type>
 <firstParty>First party’s public key</firstParty>
 <secondParty>Second party’s public key</secondParty>
 </relationship>
 <expDate>Expiration Date</expDate>
 <relKey>Key specific to encapsulated relationship</relKey>
 <signature>Attestation’s signature</signature>
</attestation>

Figure 1: The XML-based format of an attestation. An attesta-

tion has an issuer, a recipient, a social relationship between two

parties, an expiration date, a relationship key, and a digital sig-

nature. The identities of the issuer, the recipient, and the two

parties are represented with public keys. All attestations issued

by the same issuer and encapsulating the same relationship must

have the same relationship key.

social attestations to a family member, the attestation certifies the
relationship "family" between the issuer and the recipient. While
it is common for the issuer and the recipient to be the two parties
forming the relationship, the relationship can be between any two
parties in the most general case. Attestations also have an expira-
tion date or they can be set to never expire. Finally, attestations are
signed to prevent anyone from tampering with them.

The relationship key is a shared key among all parties with the
same relationship with the attestation’s issuer. Its role is to protect
attestations from being revealed to third parties. Whenever the at-
testation is transmitted to another party, it is first encrypted with the
relationship key. This prevents malicious third parties from having
access the social information encapsulated in attestations even if
they were to intercept their transfers illegitimately. We will de-
scribe how relationship keys are used in Section 3.3.1.

There are many convenient ways in which attestations can be
transmitted to a recipient, such as e-mail or over cell-phones’ Blue-
tooth interfaces. Attestations can also be exchanged over a variety
of different application protocols, such as HTTP or chat protocols.
Since the issuer and the recipient have each others’ public keys in
their address books, the attestation is encrypted with the recipient’s
public key before being sent. This allows an issuer to transmit an
attestation over insecure channels; even if a malicious party inter-
cepts the attestation, the attacker cannot decrypt the information.
The issuer also signs the attestation to ensure that its integrity is
not compromised by a man-in-the-middle attack. Figure 2 presents
the protocol for issuing attestations. Currently, we do not require
the recipient to acknowledge receiving the attestation, although this
could be added by a higher-level protocol.

3.3 Social Access Control Lists
In traditional ACLs, a list of identities specifies who is allowed

access. A social ACL does not rely only on identities to specify
access control. Instead, social ACLs can also allow access to oth-
ers based on their social relationships. A social ACL contains the
owner’s public key, the public keys of all people who can access
the object (like in traditional ACLs), and a social relationship. To
access an object, people must either have their public key listed in
the social ACL, or they must present an attestation issued to them
by the owner certifying the relationship listed in the ACL. Social
ACLs are signed to guarantee their integrity and authenticity. We
also use XML to format social ACLs (see Figure 3).

Since not all social relationships are symmetric, the ordering in
which public keys are listed in attestations and in social ACLs is

Alice: Generate the attestation
Alice: Sign attestation with Alice’s private key
Alice: Encrypt signed attestation with Bob’s public key
Alice: Send encrypted attestation to Bob
Bob: Decrypt received attestation with Bob’s private key
Bob: Check Alice’s signature of the attestation
Bob: Store attestation

Figure 2: The protocol for issuing an attestation between Alice

and Bob. The issuer and the recipient of an attestation know each

other; they have each others’ public keys in their address books

before issuing the attestation. In this way, Alice can encrypt the

attestation with Bob’s public key, and Bob can verify Alice’s sig-

nature.

<acl>
 <owner>Owner’s public key</owner>
 <access>
 <user>User’s public key</user>
 …….
 <user>User’s public key</user>
 <relationship>
 <type>Relationship type (e.g., family, friend)</type>
 <firstParty>First party’s public key</firstParty>
 (or <secondParty>Second party’s public key</secondParty>)
 </relationship>
</access>
</acl>

Figure 3: The XML-based format of a social ACL. A social ACL

has an object’s owner, an explicit list of users who can access

the content, and a social relationship that users must show to ac-

cess the content. Either a “firstParty” or a “secondParty” XML

attribute can be listed in the social relationship.

important. Using the terminology listed in Figures 1 and 3, Lockr
grants access to an attestation if both the relationship type and
the ordering of the identities (i.e., “firstParty” and “secondParty”)
match between the attestation and the ACL rule. However, as a con-
vention, we always list the issuer’s public key before the recipient’s
key if the relationship is between the issuer and the recipient. If the
relationships involves the recipient and a third party, we list the re-
cipient key before the other party’s key. In this way, we can avoid
the unfortunate case when an attestation is rejected by an ACL be-
cause identities are listed in the reverse order although the social
relationship is symmetric.

3.3.1 Enforcing access control with social ACLs

When requesting an object protected by a social ACL, the ACL
enforcer returns the ACL (or the access rules found in the ACL at
the minimum). Based on the ACL, the person seeking access deter-
mines which attestation to use to obtain access. When the ACL lists
a conjunctive relationship, a person might have to send more than
one attestation to obtain access. In this case, the attestations are
concatenated in one single message. To access an object, a person
must either have their public key listed in the ACL or an attestation
certifying the social relationship listed in the ACL.

In the first case, the person must prove that they hold the private
key corresponding to the public key listed in the ACL. For this, an
ACL enforcer can issue a challenge (i.e., a nonce) encrypted with
the person’s public key. Access is granted only if the challenge is
resolved. A session key is also setup to encrypt all subsequent com-
munication. Note that no social attestations are exchanged. Fig-
ure 4 presents this protocol.

In the second case, the person must present a social attestation
to access the object. Before transmitting the attestation, the person

person seeking
access

person enforcing
ACL

A B

PA

PA(nonce, sessKey)

sessKey(nonce)

req.

ACL

Figure 4: Checking the identity of a person seeking access. The

ACL enforcer checks that the person’s public key appears in the

ACL’s explicit list of users with access to the object. The nonce

exchange checks that the person has the private key correspond-

ing to the public key sent earlier.

seeking access encrypts it with the attestation’s relationship key. In
this way, only parties holding the same relationship key can decrypt
this attestation. This ensures the privacy of attestations; without
these relationship keys, users might be uncomfortable transmitting
their attestation and, therefore, revealing their social relationships
to others. A consequence of using relationship keys is that only
parties with the same social relationship can decrypt attestations.
In many scenarios, this limitation is convenient; for example, users
can enforce that only their family members have access to family
photos. However, in other scenarios, this can be too restrictive;
for example, users might want Flickr to enforce their social ACLs
restricting access to family members only. In these cases, object’s
owners can choose to share their attestation’s relationship key with
Flickr.

When sending an attestation, a person encrypts it with the re-
lationship key. The party enforcing the ACL must also hold the
relationship key to decrypt the attestation. To prove the identity
of the attestation’s sender, a challenge is issued. If the sender re-
solves the challenge, access is granted. Session keys are also setup
to encrypt all subsequent communication. Figure 5 illustrates this
protocol.

3.4 Attestation Revocation
We believe that people are often not concerned with revoking at-

testations that have not expired. Our attestations are used primarily
for sharing content online; in many cases people will not bother re-
stricting access to others just because their relationships changed.
For example, when people share photos with their co-workers, they
might not be concerned knowing their ACLs might allow access to
former co-workers. The nature of the content does not warrant the
need for revoking these attestations.

Nevertheless, there are scenarios when people would like to re-
voke certain attestations. We address these scenarios in three ways.
First, attestations can be set to expire. Any system enforcing social
ACLs will verify whether an attestation is still valid before granting
access. Second, we augment ACLs with exclusion lists. The role
of the exclusion list is to enumerate the people who cannot access
the content even if they hold the appropriate attestation. For exam-
ple, if Alice wants to share content with all her friends except Eve,
Alice must add Eve’s public key to the social ACL’s exclusion list.
Finally, a different way to restrict access is to reissue new attesta-
tions. The new attestation must have a new relationship key; in this
way, Eve cannot access the content nor intercept and decrypt these
attestations.

4. SECURITY PROPERTIES
The main assumption behind Lockr’s security properties is that

people exchange their public keys along with their contact informa-

person seeking
access

person enforcing
ACL

A B

relKey(attest.)

PA(nonce, sessKey)

sessKey(nonce)

req.

ACL

Figure 5: Checking the attestation of a person seeking access.

The attestation is encrypted with the attestation’s relationship key

before sending it. The nonce exchange checks that the person

seeking access has the private key corresponding to the public

key of the attestation’s recipient.

tion in a secure manner. If the public key of an individual listed in a
personal address book is replaced with an attacker’s public key, the
attacker can impersonate this individual. Based on this assumption,
Lockr guarantees the following security properties:

1. Integrity of attestations. Since attestations are signed with
the issuer’s private key, only the issuer can modify an attestation.
This ensures that no attacker (including an attestation’s recipient)
can modify the attestation’s content or forge an attestation.

2. Non-transferability of attestations. Even if attestations are
passed to others, enforcing access control requires the authentica-
tion of the attestation’s holder as its recipient. This is done through
a challenge that only the party holding the private key of the attes-
tation’s recipient can solve. This also guarantees that access rights
cannot be delegated (unlike with typical capabilities) – no one other
than the issuer can grant access to the content. We believe that it is
an appropriate choice for personal content sharing, since it enables
the content owner to retain full control over the content.

3. Privacy. The attestations’ relationship key ensures that attes-
tations can be revealed only to other key holders. If a relationship
key is lost, stolen, or disclosed publicly by one of its holders (per-
haps maliciously), then the privacy of all attestations sharing this
key is compromised. However, having the attestation’s relationship
key or even having a copy of the attestation is not enough to gain
access. The person seeking access must also hold the attestation
recipient’s private key. We believe that mounting this attack is dif-
ficult in practice since an attacker must also track down the set of
susceptible attestations once the relationship key has been compro-
mised.

4. Resilience to man-in-the-middle attacks. In our protocols,
the person seeking access must authenticate, whereas the person
enforcing the ACL does not. Moreover, once an attestation is trans-
mitted, all communication is encrypted with a session key. This
limits the damage of a man-in-the-middle attack to disrupting or
serving corrupted content.

4.1 Attacks
Because attestations are encrypted with the relationship key when

enforcing ACLs, an attacker must have access to this key to deci-
pher the attestation. If any recipients of this attestation decide to
make the relationship key public or to share it with an attacker, the
privacy of all other recipients of this attestation can be compro-
mised. Since the recipients of an attestation have a social relation-
ship with the issuer, we believe that “social pressure” will act as a
deterrent to these types of privacy attacks. In practice, this attack is
analogous to one of a person’s friends trying to learn the identities
of the other friends of this person.

Another possibility is that an attestation’s recipient decides to
sell the attestation for monetary reward. Since the attestation is not

Figure 6: The LockrCenter interface for issuing and requesting

attestations.

forgeable, the recipient must also sell their private key along with
the attestation. In this case the attacker can use all the recipient’s
attestations. This raises the cost that a recipient incurs by selling an
attestation – the recipient relinquishes control over all their attes-
tations, even the ones they will receive in the future. Note that the
security of Lockr does not rely on the relationship key not being
compromised. By compromising a relationship key, an adversay
can only learn about the identities of parties involved in a relation,
but the adversary cannot get access to the protected content.

5. APPLICATIONS
Lockr fits the needs of sharing personal content online. We

believe that its simplicity and portability will motivate its adop-
tion by Internet systems that deliver and share personal content.
In this section, we describe how we added Lockr to two well-
known Internet systems – BitTorrent and Flickr. First, we im-
plemented LockrCenter – an attestation manager that allows peo-
ple to issue and receive attestations. We integrated LockrCenter
with Facebook to target a large user population (i.e., the Facebook
users) that already shares personal content. Second, we extended
Azureus, a popular BitTorrent client, to support our social access
control scheme. Finally, we implemented Lockr for Flickr – a
Firefox extension that allows users to control access to their content
hosted on Flickr. We only describe our applications briefly due to
lack of space.

5.1 LockrCenter: An Attestation Manager
An attestation manager has two roles – to allow people to ex-

change attestations, and to allow a user’s applications to retrieve at-
testations to gain access to protected content. The attestation man-
ager can be implemented in many different ways, such as a stan-
dalone desktop application, an extension to an address book or an
e-mail client, or even as an application running on a person’s mo-
bile phone. Based on their preferences, people can use any of such
attestation managers in the same way as people use many different
e-mail clients or calendars.

We implemented LockrCenter as a Facebook application that al-
lows users to issue and to request attestations. LockrCenter stores
a user’s private key, public key, and the set of all received attesta-
tions in the user’s Facebook account. LockrCenter also allows any
applications running on behalf of the user to retrieve the stored at-
testations. With LockrCenter, a person can issue an attestation to
another by entering a Facebook userid or an e-mail address. If the

acl: <acl>….</acl>

signature: {info, announce, owner, ACL, creation-date, created-by}owner

info: meta-info about files in the torrent (file size, piece hashes, etc.)

announce: tracker announce URL

announce-list: list of backup trackers

creation-date: torrent creation date

comment: torrent owner’s comments

created-by: name and version of program used

Social Torrent

Figure 7: Social Torrent. A social torrent contains two additional

key-value pairs: an ACL and a digital signature.

other party is not using LockrCenter, an invitation e-mail to install
LockrCenter is sent. Figure 6 illustrates LockrCenter’s interface.

5.2 Integrating Lockr with BitTorrent
We integrated Lockr with BitTorrent by modifying a recent ver-

sion of the popular BitTorrent client application Azureus (version
3.0.3.5). We tested our implementation on both Windows and Linux.
At a high-level, we made two modifications to this Java-based client.
First, we added social ACLs. Second, we added an attestation ex-
change and verification step during the formation of BitTorrent con-
nections between peers.

5.2.1 Social Torrents

We modified Azureus’s torrent creation module to support the
creation of social torrents. A torrent file is simply a list of key-value
pairs that describes the content served and the tracker coordinating
the peers distributing the content. We added two key-value pairs to
a torrent: a social ACL and a digital signature. We described the
social ACL earlier in Section 3 (see Figure 3). The digital signature
prevents a malicious party from tampering with the social torrent
file (e.g., removing the social ACLs). Figure 7 illustrates the new
fields added to a social torrent.

5.2.2 Social Handshake

With Azureus, two peers perform two handshakes before ex-
changing data – a generic BitTorrent handshake and an Azureus-
specific handshake. Our social handshake occurs immediately after
these handshakes but before the data exchange. Peers engage in a
social handshake only if they detect that their parties are running
our modified version of Azureus. This is done through a special
bit in a reserved field used by BitTorrent to extend its functionality.
In this way, social Azureus is still backwards compatible – it can
serve both social and regular torrents.

To implement the new handshake, we added three new messages
to the Azureus messaging protocol [2] corresponding to the identity
and attestation verification steps described in Section 3. If any of
these checks fail, the connection between the peers is terminated
immediately. The data exchange begins only after each peer proves
its access to the content to the other.

5.3 Integrating Lockr with Flickr
We developed a Firefox extension (i.e., a browser plug-in) to add

our access control scheme to Flickr. At a high-level, the plug-in
performs two tasks. First, when a user uploads an image to Flickr,
the plug-in extends the upload interface to add a social ACL. If the
user chooses to restrict access to the image, the plug-in uploads
a dummy place-holder image in addition to the original image to
Flickr. Access to the dummy image is made unrestricted. In con-

(a) (b) (c)

Figure 8: Lockr for Flickr. In part (a), a user creates a social

ACL. In part (b), a user views the protected image with the ap-

propriate attestation. In part (c), a user without the appropriate

attestation sees a dummy image.

trast, access to the original image is restricted with a social ACL;
we use a private server to manage and enforce access. The second
task performed by the plug-in is using the attestations to obtain ac-
cess to the protected content. When a user visits a page with Flickr
photos, the plug-in queries the private server for social ACLs. Once
the private server responds with the social ACLs, the plug-in sends
back the attestation satisfying the ACL. Finally the private server
replies with the secret URL of the real image stored on Flickr if
the attestation provided is correct and the plug-in replaces the fake
images with the real ones.

The plug-in performs this entire process in a manner transparent
to the users. Figure 8 illustrates Lockr for Flickr’s interface. Fig-
ure 8a shows the interface of uploading a picture to Flickr. The
user can make the content “private”, “public”, or protected with
“social relationships”. The first two options are part of the default
Flickr behavior, whereas our plug-in adds the last option. Figure 8b
shows the original image when viewed by a user with appropriate
attestations, while Figure 8c shows a generic image corresponding
to a visit made by a user without the appropriate attestations (or
without having the plug-in installed).

Despite lacking server support, our implementation of Lockr for
Flickr is secure. No user can obtain access to photos protected with
a social ACL unless having an appropriate attestation. Although
all access to protected content is mediated by our own server, our
server performs the same social ACL enforcement steps as any of
the Flickr servers would perform in a Lockr implementation with
server support from Flickr. By enforcing the social ACL, our server
acts just an extension to the flickr.com domain.

Our plug-in is a short-term solution for adding our access control
scheme to Flickr to demonstrate its practicality and ease-of-use.
A much simpler and elegant implementation is one where Flickr
offers server-side support for social ACLs and verification of social
attestations.

6. RELATED WORK
Lockr’s social attestations and social ACLs are inspired from a

number of pre-existing mechanisms that all attempt to provide au-
thentication and access control in large-scale networked systems.
In this section, we briefly present some of this previous work and
we examine how Lockr relates to these systems.

PGP [7] On the surface, Locker’s trust model appears similar to
the one used by PGP – there is no centralized public-key infrastruc-
ture. However, there are two key differences between Lockr and
PGP. First, PGP uses a vetting scheme in which people sign each
other’s public keys. To verify a person’s signature in PGP, people

must find a chain of trust linking the person to themselves. Over
time, PGP creates a “Web of trust” in which people accumulate
each other’s signatures once verified. Instead, Lockr is centered
on pre-existing social relationships and not on a single trust/no-
trust relationship. In Lockr, people only certify a direct relationship
with others. Some of these relationships might be very close (e.g.,
family), others could be distant (e.g., employees of a large organi-
zation). Unlike in PGP, these social relationships already exist in
real-life, but they have yet to be captured digitally. Second, PGP’s
trust relationship is transitive. However, since social relationships
are diverse and complex in real-life, we have decided not to attempt
to combine them to create transitive relationships.

OpenID [6] is a decentralized single sign-on system. Using
OpenID-enabled web sites, the users do not need to remember mul-
tiple usernames across different Web sites. Instead, a user needs to
be registered on a Web site with an OpenID “identity provider”.
Since OpenID is decentralized, any Web site can employ OpenID
software as a way for users to sign in. A user’s OpenID remains
the same even when the user moves to a different provider. This
simplifies access control as OpenID identifiers can be used glob-
ally. There are two important differences between OpenID and
Lockr. First, in Lockr users do not need to trust third-party iden-
tity providers; instead, Lockr relies on social trust between people.
One implication of this difference is that attestations are social net-
working scoped, whereas OpenID identifiers are global. Second,
users rely on passwords to authenticate in OpenID making them
vulnerable to phishing attacks [8]; instead, Lockr uses public key-
based authentication in which users are challenged every time they
authenticate or request access.

7. CONCLUSIONS
This paper presents Lockr – an access control scheme that makes

sharing personal content easy. Lockr relies on two simple observa-
tions: (1) social relationships are a natural way to describe access
control policies for personal content; and (2) people’s social net-
working information must be separated from content delivery and
sharing. We described the design of Lockr, its security properties,
and limitations. We also presented an implementation of Lockr in
the context of two popular systems for sharing content online –
BitTorrent and Flickr.

8. REFERENCES
[1] Alexa. Alexa, The Web Information Company, 2008.

http://www.alexa.com.
[2] Azureus Messaging Protocol. Azureus Extended Messaging

Protocol, 2008. http://www.azureuswiki.com/
index.php/Azureus_messaging_protocol.

[3] Scott Garriss, Michael Kaminsky, Michael J. Freedman, Brad
Karp, David Mazieres, and Haifeng Yu. Re: Reliable email. In
Proceedings of the 3rd Symposium on Networked Systems
Design and Implementation (NSDI), San Jose, CA, May 2006.

[4] Roxana Geambasu, Magdalena Balazinska, Steven D.
Gribble, and Henry M. Levy. Homeviews: Peer-to-peer
middleware for personal data sharing applications. In Proc. of
SIGMOD International Conference on Management of Data,
Beijing, China, June 2007.

[5] Peter J. Keleher, Neil Spring, and Bobby Bhattacharjee.
Chit-based access control. Technical Report CS-TR-4878,
University of Maryland at College Park, 2007.

[6] OpenID. OpenID, 2008. http://openid.net/.
[7] Bruce Schneier. Applied Cryptography: Protocols,

Algorithms, and Source Code in C. Wiley; 2nd edition, 1995.
[8] Marco Slot. Beginner’s guide to openid phishing.

http://openid.marcoslot.net/.

