
Physically Independent Stream Merging
Badrish Chandramouli#, David Maier*, Jonathan Goldstein$

#Microsoft Research, Redmond, Washington, USA
*Portland State University, Portland, Oregon, USA

$Microsoft Corporation, Redmond, Washington, USA
badrishc@microsoft.com, maier@cs.pdx.edu, jongold@microsoft.com

Abstract—Several desired capabilities in a data stream
management system (DSMS), such as query-plan switching and
high availability, can be considerably simplified using a facility to
merge equivalent data streams. One can logically view a data
stream as a temporal table of events, each associated with a
lifetime (time interval) over which the event contributes to
output. In many applications, the “same” logical stream may
present itself physically in multiple physical forms, for example,
due to disorder arising during transmission or from combining
multiple sources; and modifications or deletions of earlier events.
Merging such streams correctly is challenging when the streams
may differ physically in timing, order, and composition. This
paper introduces a new stream operator called Logical Merge
(LMerge) that takes multiple logically consistent streams as input
and outputs a single stream that is compatible with all the inputs.
LMerge can handle the dynamic attachment and detachment of
input streams. We present a range of algorithms for LMerge that
can exploit compile-time stream properties for efficiency.
Experiments with StreamInsight, a commercial DSMS, show that
LMerge is sometimes orders-of-magnitude more efficient than
enforcing determinism on inputs, and that there is benefit to
using specialized algorithms when stream variability is limited.
We also show that LMerge and its extensions can provide
performance benefits in several real-world applications.

I. INTRODUCTION
A data stream management system (DSMS) [6, 11, 12, 13,

22, 23, 25] supports long-running continuous queries (CQs) in
real time over streams of incoming data. We encounter many
scenarios where we need to combine multiple copies of a data
stream into a single output stream, for reliability, availability,
and performance This problem has a trivial solution if all the
input streams present the same elements in exactly the same
order – just keep a count on each input, and let the output
follow the stream with the largest count. In real DSMSs,
however, the problem is not so simple:

1) Disorder: Data streams from a source can get disordered
arbitrarily during transmission to a destination where a CQ
executes. Consider a scenario where CQs monitor
measurement data collected from distributed machines located
in geographically dispersed data-centers. Network congestion
and other delays can cause data to arrive out-of-order at a
destination. If we have multiple destinations for the same data,
the degree and nature of disorder can be different at each
location. Further, when we gather data from multiple sources
(e.g., machines in the data-center example) into a single
stream using a Union operator, the result can be disordered
even if each input stream arrives in order.

One could buffer incoming tuples in order to eliminate
disorder, but doing so can introduce significant query latency
and incur high memory overhead. A CQ often contains data-
reducing operators, such as aggregation and sampling, and
memory needs are minimized if we can move stream elements
through the query to such operators without ordering them [7].

2) Revisions: Some scenarios require later stream elements
that can modify or cancel earlier elements [10]. Streaming
sources often have to contend with noise or data entry errors;
for example, commercial stock ticker feeds issue revision
tuples to amend previously issued tuples. Sources of data may
also wish to completely modify earlier events to replace an
earlier value, for e.g., with a more accurate value when
performing online aggregation [24]. In addition to revisions at
data sources, the DSMS engine may itself, for performance
and latency reasons, let stream elements flow out of order, and
allow operators to provide early answers with possible later
revisions [10, 22]. Progress markers (such as heartbeats [6],
punctuation [1, 2], and CTIs [22]) are used to constrain future
elements and avoid arbitrary disorder.

Continuing our data-center example, suppose we are
interested in tracking successful OS process executions on
each machine. Here, we model each process as an event, with
a lifetime corresponding to the process lifetime. When a
process starts executing, we do not know its precise end-time
a priori. The source may not wish to incur the latency of
waiting for the process to end before sending the event, and
therefore may issue an initial event with the process-start time
(as an insert [4, 12, 22], I-stream [13], or positive tuple [11]).
It may subsequently revise that event to provide the process-
end time or cancel the event if the process is aborted (with a
revision [4, 10, 22], D-stream [13], or negative tuple [11]).
Further, consider a CQ that produces a running aggregate of
successful process counts. A conservative aggregate operator
may wait for a process event to end (or “finalize”) before
updating the count. An aggressive operator may instead
reduce latency and memory usage by emitting an updated
count as soon as it sees a process start event, and adjusting the
result when the process event is later revised or canceled.

3) Processing Variations and Non-Determinism: As in
databases, CQs are usually expressed declaratively [23] and
can have many physical plans. For example, a temporal join of
three streams A, B, and C can be processed using two-way
joins as 𝐴 ⋈ (𝐵 ⋈ 𝐶), 𝐵 ⋈ (𝐴 ⋈ 𝐶), etc. or using one three-
way join operator. Further, the same operator may use
different algorithms – e.g., an aggregate operator may be
aggressive or conservative as discussed earlier. A DSMS

operator may, under different run-time conditions, produce
different physical presentations for the same underlying
logical stream. For example, a multi-input operator such as
join, union, or set-difference can produce a different sequence
of output elements in two identical copies of a CQ, due to
differences in the relative arrival of input events. In summary,
output (and intermediate) streams from equivalent plans,
while semantically identical, can physically look quite
different.

A. Logical and Physical Streams
The above characteristics of real-world streams imply that

copies of logically identical streams may look quite different
at run time. In order to formalize the concept of “identical
streams” in the presence of issues as described above,
researchers have proposed separating the notions of physical
and logical streams [4, 5, 11, 21, 22]. In general, a logical
stream can be viewed as a temporal database (TDB) that
consists of a set of events, each associated with a lifetime
(interval in application time) and a payload. The lifetime
indicates a period of time over which the event contributes to
output. A physical stream, on the other hand, is a sequence of
stream elements that can be reconstituted into a TDB instance.
Such a distinction between physical and logical streams is
observed (either implicitly or explicitly) in many DSMSs,
both in academia [4, 5, 6, 7, 10, 11] and industry [22, 25].

Physically divergent streams can be logically equivalent
(i.e., have the same TDB), as the following example
demonstrates.

Example 1 (Logical/Physical Streams): Consider one
possible model of physical streams, with three types of stream
elements:
• a(value, start, end), that adds a new event with value as

payload and duration from start to end;
• m(value, start, newEnd), that modifies an existing event

with a given value and start to have a new end time; and
• f(time), that finalizes (freezes from further modifications)

every event whose current end is earlier than time.
Table 1 (left) shows two physical streams (Phy1 and Phy2),
that are different in terms of ordering, event finalization, and
lifetime changes. The rows of this table represent increasing
instants of system time. These physical streams logically
correspond to the same TDB shown in Table 1 (right). Note
that prefixes of the two physical streams are not always
logically equivalent, but are compatible, i.e., they can still
become equivalent in the future.

TABLE I
PHYSICAL AND LOGICAL STREAMS

B. Logical Merge
Multiple scenarios (see Section II) require combining

equivalent logical streams, either temporarily or indefinitely.
However, merging multiple streams cleanly – with no loss or
duplication of events – is challenging when the streams can
differ physically in timing, order, and composition. This paper
introduces the Logical Merge (LMerge) operator that provides
logically equivalent output over physically diverse input
streams. Some key issues are:

1) Disorder and Revisions: The presence of disorder and
revisions means that the final content of a stream event may
be arrived at differently in two streams (e.g., streams Phy1
and Phy2 in Example 1), making the design of correct LMerge
algorithms challenging. Note that simply choosing one of the
input streams to follow can prevent the timely output of events
that another input stream has already produced, and cause
correctness issues if the chosen input fails, or incur memory
overhead (discussed below).

2) Punctuation: LMerge algorithms must be careful when
propagating progress markers (punctuation), so that they can
stay consistent with future updates on the input streams. We
use Example 1 to illustrate that this problem is non-trivial.
Assume that our LMerge operator has chosen to propagate
elements a(A, 6, 7) and a(B, 8, 15) from Phy2 to its output.
When it then sees f(11) from stream Phy1, this element cannot
immediately be propagated to the output because: (1) it would
“freeze” payload A to have lifetime of [6, 7) which cannot
later be adjusted to end at 12; (2) it would freeze all end times
earlier than 11, which would prevent later adjustment of the
end time of payload B down to 10.

3) Memory: We want to minimize the state that LMerge
maintains for correct operation. For example, simply forcing
the output to follow one arbitrary stream can result in
significant buffering of events from other input streams to
LMerge, if the chosen input lags behind the others (to handle
the case where the chosen stream detaches or fails). Even if
we follow the “fastest” input stream, the possibility of
disorder and revisions (even if not actually present in the
stream) exacerbates memory overhead, as we need to track
what has been output from the different inputs. Further,
buffering events per input without sharing can waste
significant memory.

4) Failures: Individual input streams can detach or re-
attach to LMerge during runtime, e.g., due to machine failures
or query plan migration from one virtual machine to another
in a Cloud setting. The addition and removal of streams must
be carried out carefully to avoid repeating past elements or
omitting elements by advancing the output too soon. Consider
an input stream that detaches and then re-attaches because its
query instance fails and restarts. The new stream might miss
some events present on the other inputs, or re-produce prior
events because it reprocesses some data. LMerge must deal
with such gaps and duplications. Interestingly, the trivial
counting merge outlined earlier for simple streams does not
work correctly when failures exist.

5) Stream Properties: A fully general LMerge—that can
handle unconstrained inputs—can be demanding of memory

Phy1 Phy2
 a(A, 6, 7)
 a(B, 8, 15)

a(B, 8, ∞) m(A,6,12)
a(A, 6, 12)
m(B, 8, 10) m(B, 8, 10)

f(11)
f(∞) f(∞)

Two Physical Streams

Payload Interval
A [6, 12)
B [8, 10)

Equivalent Logical
TDB

and CPU. We want to take advantage of enforced or deduced
stream properties, to allow optimized LMerge algorithms. For
example, a data source may guarantee that it produces events
in order. If a stream with non-decreasing timestamps passes
through an aggregate operator (e.g., counting OS processes),
we can infer that the output has strictly increasing timestamps.
If the aggregation is grouped (e.g., performed for each
machine ID), we can infer that the combination (payload,
timestamp) is unique in the output stream. The static inference
of such properties can significantly reduce the complexity and
overhead of LMerge.

6) Stream Chattiness: LMerge needs to select policies that
balance responsiveness of output against “chattiness” – the
need to issue additional output elements to modify previous
elements. We provide an example of this last point.

Example 2 (Stream Chattiness): Recall the element
types introduced in Example 1. Table 2 below shows two
input streams, In1 and In2, and three alternative output
streams. As before, the rows of this table represent increasing
instants of system time. Out1 is the most aggressive,
propagating every change from the inputs as it is seen. Out2 is
more conservative, delaying elements until it knows they are
final. It thus produces fewer elements than Out1, but produces
them later, in general. Out3 is between the two. It outputs the
first element it sees with a given payload and start, but saves
any modifications until they are known to be final.

TABLE II

EXAMPLE INPUT AND OUTPUT STREAMS
In1 In2 Out1 Out2 Out3

a(A, 6, 10) a(A, 6, 10) a(A, 6, 10)
 a(A, 6, 12) m(A, 6, 12)
 a(B, 7, 14) a(B, 7, 14) a(B, 7, 14)

m(A, 6, 15) m(A, 6, 15)
 m(A, 6, 15)
 f(16) f(16) a(A, 6, 15)

a(B, 7, 14)
f(16)

m(A, 6, 15)
f(16)

C. Contributions
This work makes the following contributions.

• We characterize LMerge in a way that applies to many
DSMSs, dealing with variations in stream semantics and
representation. We formalize the requirements for
LMerge output to correctly track its inputs, and propose
alternative output policies that meet those requirements
(Sec. III).

• We present efficient algorithms for LMerge under
different assumptions on input stream properties, and
discuss how such properties may be derived from query
plans (Sec. IV). We also discuss policy choices for
LMerge, handling missing elements, and for attaching
and detaching streams (Sec. V).

• We implemented our LMerge algorithms in Microsoft
StreamInsight [22], a commercial DSMS, and report their
performance relative to different stream characteristics.
We further show that a more general LMerge algorithm
can have orders-of-magnitude better memory, latency,

and throughput features than the strategy of enforcing
input stream properties and using a more specialized
algorithm (Sec. VI).

• We discuss several applications where LMerge as a
building block adds significant value – high availability,
fast availability with dynamic plan selection, and query
jumpstart or cutover. Experiments show that LMerge can
provide significant benefits to such applications, by
reducing stream-rate variability and increasing throughput
(Secs. II and VI).

• We propose a general scheme for “fast-forwarding”
slower CQ plans under LMerge using feedback signals,
and show that such feedback signals can improve
performance by several factors over regular LMerge
(Secs. II, V, and VI).

II. APPLICATIONS OF LOGICAL MERGE
The LMerge operator is fully composable with existing

operators, and does not require modifications to the DSMS,
except if feedback is employed. LMerge opens up convenient
solutions to several important stream problems, and enables
seamless adaptive CQ processing. Unlike a database, DSMS
CQs can last for days or weeks. Tasks such as recovery, re-
optimization, and load balancing are easier if individual
queries are short lived: re-run a failed query from scratch, re-
plan it between executions, launch new queries on a less-
loaded node. However, providing these capabilities on queries
while they continue to execute is harder.

1) High Availability: Consider providing high availability
(HA) for a continuous stream query that involves a window of,
say, 24-hour duration. Simply restarting such a query on
failure requires a day for it to “spin-up” and start delivering
correct answers. Avoiding such an outage means having
redundant copies of the query running and being able to pull
results from whichever one or ones have not failed (and to
connect up a new copy of the query once it has spun up). We
can achieve resilience against n-1 simultaneous failures by
instantiating n copies of a query on different machines,
feeding into an LMerge operator located at the consumer.
LMerge provides a steady stream of output events as long as
at least one copy of the query is active. As LMerge is a
composable operator, we can also achieve resiliency on a
query-fragment level by deploying a hierarchy of LMerge
operators – one for each replicated query fragment.

2) Fast Availability: There is also a need for “fast
availability” for queries – obtaining output results as soon as
possible. Using LMerge to combine (1) identical copies of a
query running on machines with independent processor or
network resources; or (2) different but semantically identical
plans that respond differently to shifts in data distributions,
allows answers to be reported from whichever copy is
performing better at a given instant. Interestingly, if we need
to run multiple copies anyway for HA, we may choose to run
different plans to also get fast availability.

In Section VI, we show how LMerge can smoothly switch
between streams that experience temporary congestion (due to
network or CPU contention) in order to maintain nearly steady

throughput. Section VI also demonstrates how LMerge can
“smooth out” variability in stream rate, which may arise
because of load fluctuations, scheduling differences, and
queuing delays.

3) Plan Fast-Forward: When LMerge is used to combine
plans, one plan might lag behind the rest during periods when
it is suboptimal or when the machine it runs on suffers
resource contention. The work such a plan performs is mostly
wasted. It is beneficial if such work can be avoided and that
plan can catch up with the rest. In Section V-D, we introduce
feedback signals, and show how LMerge can leverage such
signals to “fast-forward” slower plans and avoid unnecessary
work. Section 6 shows that such a technique can provide
several times better throughput than running a single plan or
performing LMerge without feedback.

4) Query Jumpstart: Another use of LMerge is to aid the
process of “jumpstarting” query execution (e.g., in Cloud
settings). Stream queries often hold long-lived elements as
part of their internal state. In our process-monitoring example,
a join or aggregate operator might hold elements for all active
processes, including ones that have been running for days or
weeks. If we spin up such a query using only current events in
the real-time stream, it may take an extended period for the
query to rebuild its state (or even be impossible). We may
instead wish to “seed” query state using, for example,
checkpoint information stored on disk or provided by a
running copy of the query. LMerge can be used to seamlessly
merge such state with real-time streams in order to get the
query operational sooner.

5) Query Cutover: LMerge is also useful in “cutting over”
from one query instance to a newly instantiated one with a
possibly different plan, without the user or application being
explicitly aware of such a switch. This capability can aid
dynamic query optimization [14] and is particularly attractive
in Cloud-based scenarios where one may wish to move
executing queries based on current workload conditions.

III. THEORY OF LOGICAL MERGE

A. Stream Basics
We view a stream as a representation of a (potentially

unbounded) temporal database (TDB) that is presented
incrementally. The TDB may take different forms in different
stream systems. One example is a sequence of snapshots of a
relational table, a second is a collection of 〈tuple, timestamp〉
pairs. For the algorithms and implementations we present here,
the TDB is a multiset of events, each of which consists of
relational tuple 𝑝 (which we term the payload), along with an
associated validity interval denoted by a validity start time 𝑉𝑠
and a validity end time 𝑉𝑒, which define a half-open interval
[𝑉𝑠,𝑉𝑒) . 𝑉𝑒 is permitted to be +∞ . One can think of 𝑉𝑠 as
representing the event’s timestamp, while the validity interval
is the period of time over which the event is active and
contributes to output.

A stream is a potentially unbounded sequence of elements
(some of which may resemble TDB events). While the kinds
of events and their ordering constraints can vary between
stream systems, we assume that any finite prefix of a stream

can be reconstituted into a TDB instance [5]. Let 𝑆 = 𝑒1, 𝑒2, …
be a stream, with 𝑆[𝑖] being the prefix 𝑒1, … , 𝑒𝑖 . We posit a
reconstitution function 𝑡𝑑𝑏(𝑆, 𝑖) that produces the TDB
instance corresponding to 𝑆[𝑖]0F

1.
It would be useful to have a version 𝑡𝑑𝑏(𝑆) of the

reconstitution function that interprets the whole of 𝑆 . One
approach to defining 𝑡𝑑𝑏(𝑆) is as the limit of
𝑡𝑑𝑏(𝑆, 1), 𝑡𝑑𝑏(𝑆, 2), …. If 𝑆 behaves well – say it satisfies the
monotonicity property 𝑡𝑑𝑏(𝑆, 𝑖) ⊆ 𝑡𝑑𝑏(𝑆, 𝑖 + 1) – then this
limit is well defined. But there can be pathological cases
where 𝑆 does not converge to a particular TDB instance. For
example, if 𝑆 can contain a stream element that cancels a
previous stream element (in the sense of removing it from the
TDB rather than curtailing its lifetime), then a stream such as
 e, cancel(e), e, cancel(e), e, cancel(e), e, cancel(e), …
has no definite limit. For specific cases we consider later,
𝑡𝑑𝑏(𝑆) will be guaranteed to exist, though sometimes via
stream properties that are weaker than monotonicity.

In most DSMSs, there are multiple stream instances that
represent the same TDB. For example, if each stream element
carries an explicit timestamp, then it can happen that
𝑡𝑑𝑏(𝑆, 𝑖) = 𝑡𝑑𝑏(𝑈, 𝑖) even though 𝑆[𝑖] and 𝑈[𝑖] are distinct
prefixes, because of different orderings. If 𝑡𝑑𝑏() removes
duplicates, then it is possible that 𝑡𝑑𝑏(𝑆, 𝑖) = 𝑡𝑑𝑏(𝑈, 𝑗) for
𝑖 ≠ 𝑗 . We say that prefixes 𝑆[𝑖] and 𝑈[𝑗] are equivalent if
𝑡𝑑𝑏(𝑆, 𝑖) = 𝑡𝑑𝑏(𝑈, 𝑗), written 𝑆[𝑖] ≡ 𝑈[𝑗] . Streams 𝑆 and 𝑈
are equivalent, written 𝑆 ≡ 𝑈, if 𝑡𝑑𝑏(𝑆) and 𝑡𝑑𝑏(𝑈) are well
defined and equal. There can be many streams that represent
the same TDB, just as there can be many physical structures
that represent a given logical table in a relational database.
The range of possible descriptions of the same TDB in a given
stream system depends both on what kinds of elements are
permitted in a stream and on the constraints (or lack thereof)
on the order of elements. For example, there can be stream
elements that serve to “adjust” a previously seen event, such
as by altering its lifetime or updating data values in it. As an
example of an ordering constraint, most stream systems
support some form of punctuations that limit stream elements
that can appear later.

Example 3 (Open and close elements): Consider a simple
stream representation in which there are two kinds of stream
elements, open(𝑝,𝑉𝑠) and close(𝑝,𝑉𝑒), where open() indicates
the start time of an event with payload 𝑝 and close() indicates
the end of the event with payload 𝑝. (We assume here that
there can only be one event with payload 𝑝 active at a time.)
Open and close elements correspond to I-Streams and D-
Streams in Oracle CEP [25] and STREAM [13], or positive
and negative tuples in Nile [11]. The following stream
prefixes are equivalent, each representing the TDB:

p Vs Ve
A 1 4
B 2 5
 C 3 ∞

S[5]: open(A, 1), open(B, 2), open(C, 3),
close(A, 4), close(B, 5)

1 In some DSMSs, events are assumed to arrive in batches [17], so it may
only make sense to apply 𝑡𝑑𝑏() to selected prefixes of 𝑆.

U[5]: open(A, 1), close(A, 4), open(B, 2),
close(B, 5), open(C, 3)

W[6]: open(B, 2), close(B, 6), open(A, 1),
open(C, 3), close(A, 4), close(B, 5)

Note that close(B, 5) in stream prefix W[6] serves to
revise the previous close(B, 6).

B. Definition of Logical Merge
If input streams never fail, the definition of Logical Merge

is straightforward. It takes a set of equivalent input streams
𝐼1, … , 𝐼𝑛 and produces an equivalent output stream 𝑂. That is,
𝐼1 ≡ ⋯ ≡ 𝐼𝑛 ≡ 𝑂. In practice, however, input streams can fail
(or detach), so different inputs will not be equivalent. We
adopt the weaker notion of mutual consistency for input
streams, which intuitively means there is some complete
“reference stream” of which each input represents a segment.
We want to express this condition in terms of stream prefixes,
since that is all we have to work with at any finite point in
time. Formally, stream prefixes {𝐼1[𝑘1], … , 𝐼𝑛[𝑘𝑛]} are
mutually consistent if there exist finite sequences 𝐸𝑖 and 𝐹𝑖 ,
1 ≤ 𝑖 ≤ 𝑛 such that 𝐸1: 𝐼1[𝑘1]:𝐹1 ≡ ⋯ ≡ 𝐸𝑖: 𝐼𝑖[𝑘𝑖]:𝐹𝑖 ≡ ⋯ ≡
𝐸𝑛: 𝐼𝑛[𝑘𝑛]:𝐹𝑛. Here, 𝐴:𝐵 denotes the concatenation of 𝐴 with
𝐵 . We say {𝐼1, … , 𝐼𝑛} are mutually consistent if all finite
prefixes of them are mutually consistent. Stream 𝑂 represents
the Logical Merge (LMerge) of mutually consistent streams
{𝐼1, … , 𝐼𝑛} if {𝐼1, , … , 𝐼𝑛,𝑂} are mutually consistent without
extending 𝑂, and that 𝑂 is minimal. In other words, there is no
other mutually consistent 𝑂′ with 𝑡𝑑𝑏(𝑂′) ⊂ 𝑡𝑑𝑏(𝑂) . For
simplicity in the sequel, we assume that all inputs start at the
same point (the 𝐸𝑖’s are empty). While this assumption will
not necessarily hold in practice, we can treat an input stream
that starts late as having a consistent prefix that was skipped
over.

The LMerge definition above is abstract – in terms of
mutual consistency of entire streams, not prefixes. However,
while we usually wish to propagate inputs to the output
eagerly, we need to also ensure that, at any given point in time,
the output is able to follow future additions to the inputs. Thus,
we need to ensure that the output can “track” any additional
elements that show up on the inputs. We say that output-
stream prefix 𝑂[𝑗] is compatible with input-stream prefix 𝐼[𝑘]
if, for any extension 𝐼[𝑘]:𝐸 of the input prefix, there exists an
extension 𝑂[𝑗]:𝐹 of the output sequence that is equivalent to
it. Stream prefix 𝑂[𝑗] is compatible with the mutually
consistent set of input stream prefixes 𝑰 = {𝐼1[𝑘1], … , 𝐼𝑛[𝑘𝑛]}
if for any set of extensions 𝐸1, … ,𝐸𝑛 that makes
𝐼1[𝑘1]:𝐸1, … , 𝐼𝑛[𝑘𝑛]:𝐸𝑛 equivalent, there is an extension
𝑂[𝑗]:𝐹 of the output sequence that is equivalent to them all.

The specific criteria for guaranteeing compatibility between
inputs and the output of LMerge depends on the kinds of
stream elements allowed and any stream properties guaranteed
on the inputs (or enforced on the output). We will assume that
the kinds of elements and the properties are the same for all
inputs and the output, though one could obviously relax this
constraint.

C. Stream Properties and LMerge

We are interested in properties that a given stream S might
satisfy in terms of element sequences it allows and the state of
its TDB. Such properties will affect how the TDB can evolve,
and may lead to simpler or less space-intensive methods for
LMerge. Examples:
• Stream elements are ordered on some time attribute. In

Example 3, S[5] has this property, but neither U[5] nor
W[6] does. With this property, once time has advanced to
point 𝑡, we know we have seen all payloads with 𝑉𝑠 ≤ 𝑡.
Further, no event in the TDB with a finite 𝑉𝑒 can get
shorter.

• There can be at most one close() element for any open()
element. S[5] and U[5] satisfy this condition, but not
W[6]. With this condition, we know that once we see a
close() element, the corresponding TDB event will be
present forever.

• The pair 〈𝑝,𝑉𝑠〉 is a key for every instance of the TDB.
Such a property might arise if 𝑝 consisted of a sensor id
and a reading, where no sensor reports more than once
per time period. Such a constraint can simplify matching
up corresponding events across inputs to an LMerge
operator.

While such properties might be stipulated by input sources,
they usually arise through compile-time analysis of query
plans. For example, the last condition above holds on the
output of any aggregate operator, since the subset of 𝑝
corresponding to the grouping attributes are in fact a key at
any point in time. The formulation of input-output
compatibility for a given situation depends on what properties
hold, as the following examples show.

Example 4 (Stream Properties and Compatibility):
Consider streams with open() and close() elements and the
property that each open () has at most one corresponding
close () . Then output 𝑂[𝑗] is compatible with input 𝐼[𝑘] if
𝑂[𝑗] ⊆ 𝐼[𝑘]. In that case, there exists an extension 𝐹 such that
𝑂[𝑗]:𝐹 ≡ 𝐼[𝑘]. So, 𝑂[𝑗]: (𝐹:𝐸) ≡ 𝐼[𝑘]:𝐸 for any extension 𝐸
of the input. Furthermore, the condition 𝑂[𝑗] ⊆ 𝐼[𝑘] is
necessary for compatibility. Suppose 𝑂[𝑗] contains
open(𝑝,𝑉𝑠) ∉ 𝐼[𝑘]. Then, there is no way to extend 𝑂[𝑗] to be
equivalent with 𝐼[𝑘]:∅. So, all the open events in 𝑂[𝑗] must
be in 𝐼[𝑘]. If 𝑂[𝑗] contains close(𝑝,𝑉𝑒) ∉ 𝐼[𝑘], then there is
no way to extend 𝑂[𝑗] to be equivalent with 𝐼[𝑘]:close(𝑝,𝑉𝑒 +
1), since 𝑂[𝑗] already contains a close element for 𝑝. In the
case of a set of mutually consistent inputs
𝑰 = {𝐼1[𝑘1], … , 𝐼𝑛[𝑘𝑛]} , 𝑂[𝑗] is compatible with 𝑰 exactly
when 𝑂[𝑗] ⊆ (∪ 𝑰).

Example 5 (Compatibility for StreamInsight): This
example corresponds to StreamInsight, for which we
implemented the detailed algorithms defined in Section 4.
StreamInsight has three kinds of elements:
• insert(𝑝,𝑉𝑠,𝑉𝑒): Adds an event to the TDB with payload 𝑝

whose lifetime is the interval [𝑉𝑠,𝑉𝑒). 𝑉𝑒 can be +∞.
• adjust(𝑝,𝑉𝑠,𝑉𝑜𝑙𝑑 ,𝑉𝑒): Change the event 〈𝑝,𝑉𝑠,𝑉𝑜𝑙𝑑〉 to be

〈𝑝,𝑉𝑠,𝑉𝑒〉 . If 𝑉𝑒 = 𝑉𝑠 , the event 〈𝑝,𝑉𝑠,𝑉𝑜𝑙𝑑〉 is removed.
For example, the sequence of elements: insert(A, 6,
20), adjust(A, 6, 20, 30), adjust(A, 6, 30, 25) is
equivalent to the single element: insert(A, 6, 25).

• stable(𝑉𝑐): A statement that the portion of the TDB before
time 𝑉𝑐 is stable: There can be no future insert(𝑝,𝑉𝑠,𝑉𝑒)
element with 𝑉𝑠 < 𝑉𝑐, nor can there be an adjust element
with 𝑉𝑜𝑙𝑑 < 𝑉𝑐 or 𝑉𝑒 < 𝑉𝑐.

The TDB model for StreamInsight is a collection of events
of the form 〈𝑝,𝑉𝑠,𝑉𝑒〉.

For our prototypes of LMerge, we consider the following
range of restrictions that can improve performance if they
hold. In Section 4, we present algorithms for each point in this
spectrum, and discuss how stream properties can be derived
and used to choose an appropriate algorithm.

R0. There are only insert () and stable () elements with
strictly increasing 𝑉𝑠 times. Hence, the stream has
deterministic order with no duplicate events.

R1. The input steams consist only of insert() and stable()
elements, 𝑉𝑠 is non-decreasing, and the order among elements
with equal 𝑉𝑠 is deterministic.

R2. Same as R1, except order for elements with the same 𝑉𝑠
can differ across inputs. Further, for any stream prefix 𝑆[𝑖],
〈𝑝,𝑉𝑠〉 forms a key for 𝑡𝑑𝑏(𝑆, 𝑖).

R3. All kinds of elements are permitted and there is no
constraint on time order, except as imposed by stable ()
elements. As with R2, for any stream prefix 𝑆[𝑖], 〈𝑝,𝑉𝑠〉 forms
a key for 𝑡𝑑𝑏(𝑆, 𝑖).

We will use R4 to signify the “no additional restrictions”
case where all three kinds of elements are permitted, elements
need not be in timestamp order, and the TDB is a multi-set
(hence there can be more than one event with the same
payload and lifetime).

In order to understand the correctness of our algorithm for
the R3 case, we find it useful to think of a stable(𝑉𝑐) element
as “freezing” certain parts of the TDB. A TDB event 〈𝑝,𝑉𝑠,𝑉𝑐〉
is half frozen (HF) if 𝑉𝑠 < 𝑉𝑐 ≤ 𝑉𝑒 and fully frozen (FF) if
𝑉𝑒 < 𝑉𝑐 . If 〈𝑝,𝑉𝑠,𝑉𝑒〉 is half frozen, we know there will be
some event 〈𝑝,𝑉𝑠,𝑉〉 in the TDB henceforth. If 〈𝑝,𝑉𝑠,𝑉𝑒〉 is
fully frozen, no future adjust() event can alter it, and so it will
be in all future version of the TDB. Any TDB event that is
neither half frozen nor fully frozen is unfrozen (UF).

D. Correctness for the R3 Case
Before presenting the precise conditions for input-output

compatibility for R3, we provide examples of possible outputs
for given inputs to LMerge. Both input and output streams are
described by their TDBs; our discussion is applicable to any
input stream that reconstitutes to a given input TDB, and
allows the output of any stream that reconstitutes to a given
output TDB. For each of the TDBs below, last is the latest
value 𝑉 such that a stable(𝑉) element has been seen. The
annotation to the right of each event indicates its “freeze”
status.

I1 (last:14)
p Vs Ve
A 2 16 HF
B 3 10 FF
C 4 18 HF
D 15 20 UF

I2 (last:11)
p Vs Ve
A 2 12 HF
B 3 10 FF
C 4 18 HF
E 17 21 UF

O1 (last:11)
p Vs Ve
A 2 ∞ HF
B 3 10 FF
C 4 ∞ HF

O2 (last:14)
p Vs Ve
A 2 16 HF
B 3 10 FF
C 4 18 HF
D 15 20 UF
E 17 21 UF

O3 (last:13)
p Vs Ve
A 2 12 FF
C 4 18 HF
D 15 20 UF

Consider the LMerge of streams corresponding to I1 and
I2.

O1 is compatible with I1 and I2. It has a TDB that might
result from a conservative tracking policy that outputs only
information that must be in the output eventually. O1 will only
require adjustments to end times.

O2 represents a more aggressive policy, but it is still
compatible with I1 and I2. It contains events corresponding
to all input events seen, even if those events are unfrozen. O2
may have to issue later elements to completely remove some
events.

O3 is not compatible with I1 and I2 for two reasons. First,
although <A, 2, 12> matches an event in I2, it contradicts
the contents of I1, from which we can tell the end time will be
no less than 14. As this event is fully frozen in O3, there is no
subsequent stream element that can correct it. Second, O3
lacks the event <B, 3, 10>, which is fully frozen in the input
streams but cannot be added to O3 given its stable point.

We now describe (and justify) the exact conditions for
compatibility in the R3 case.

Assume {𝐼1, … , 𝐼𝑛} are mutually consistent input streams
and 𝑂 is the output stream. Suppose at some instant we have
seen prefixes {𝐼1[𝑘1], … , 𝐼𝑛[𝑘𝑛]} of the input streams and
emitted prefix 𝑂[𝑗] on the output stream. Let TDB𝑚 =
𝑡𝑑𝑏(𝐼𝑚, 𝑘𝑚) and TDB𝑂 = 𝑡𝑑𝑏(𝑂, 𝑗). Assume that stable(𝐿𝑚)
was the most recent stable() event on 𝐼𝑚, and stable(𝐿) was
the most recent stable event on 𝑂 . We must have the
following conditions.

C1. 𝐿 is no greater than the maximum of the 𝐿𝑚. (If it were,
then it is possible for an event to appear in one of the inputs
and be fully frozen there without being able to add it to 𝑂.)

The other two conditions concern what events may be in
TDB𝑂 (Condition C2) and what events must be in TDB𝑂
(Condition C3) for given combination of 𝑝 and 𝑉𝑠.

C2. TDB𝑂 may contain at most one event for a given 𝑝 and
𝑉𝑠.
• If that event is UF, there is no constraint on it (as it can be

completely removed).
• If TDB𝑂 contains 〈𝑝,𝑉𝑠,𝑉𝑒〉 that is HF, then there must be

some TDB𝑚 containing 〈𝑝,𝑉𝑠,𝑉𝑚〉 where either the event
is HF and 𝐿𝑚 ≤ 𝐿 (so the output event can be adjusted to
match any changes in TDB𝑚) or the event is FF and
𝐿 ≤ 𝑉𝑚 (so it is still possible to adjust TDB𝑂 to match
TDB𝑚).

• If TDB𝑂 contains 〈𝑝,𝑉𝑠,𝑉𝑒〉 that is FF, then there must be
some TDB𝑚 containing 〈𝑝,𝑉𝑠,𝑉𝑒〉 that is FF (so we know
that event is definitely in the output).

C3. TDB𝑂 must have an event for 𝑝 and 𝑉𝑠 in either of two
cases:

1) There is an event 〈𝑝,𝑉𝑠,𝑉𝑒〉 in some TDB𝑚 that is FF and
either
• 𝐿 ≤ 𝑉𝑠 (in this case, the event can still be added to TDB𝑂),

or
• 𝑉𝑠 < 𝐿 ≤ 𝑉𝑒 and TDB𝑂 has 〈𝑝,𝑉𝑠,𝑉𝑂〉 that is HF (note that

since 𝐿 ≤ 𝑉𝑒, this event can be adjusted to 〈𝑝,𝑉𝑠,𝑉𝑒〉), or
• 𝑉𝑒 < 𝐿 and TDB𝑂 contains 〈𝑝,𝑉𝑠,𝑉𝑒〉.

2) No input contains a FF event for 𝑝 and 𝑉𝑠 , but one or
more inputs contain a HF event of the form 〈𝑝,𝑉𝑠, _〉. Let 𝐼𝑚 be
the input with such an event with the largest 𝐿𝑚. Then either:
• 𝐿 ≤ 𝑉𝑠 (in which case an appropriate event can still be

added to TDB𝑂), or
• 𝑉𝑠 < 𝐿 ≤ 𝐿𝑚 and TDB𝑂 has 〈𝑝,𝑉𝑠,𝑉𝑂〉 that is HF (which

can be adjusted to match future changes to the event in
the input).

(Note that an UF event 〈𝑝,𝑉𝑠,𝑉𝑒〉 in any input places no
constraint on TDB𝑂.)

These conditions are simplified if 𝐿 tracks the largest 𝐿𝑚.
In that case, the requirement is that TDB𝑂 and TDB𝑚 have the
same set of FF events, and that their sets of HF events match
on 𝑝 and 𝑉𝑠.

Compatibility in the R3 case leaves room for a wide range
of policies on how loosely or tightly the output of LMerge
tracks the input. A very liberal policy would be to allow
arbitrary unfrozen events in the output, even if there is no
support among the inputs for such an event. This policy is
likely unwise, since such events would almost surely be
adjusted, unless there were a robust model for predicting
future inputs. A more reasonable policy is to allow only half
frozen and fully frozen events in the output where each event
has support in the TDB of one of the inputs. That support
might take the form of an exactly matching event, or, for half-
frozen events in the output TDB, a half-frozen event in some
input TDB with the same payload and valid start values. A
conservative policy might only allow an element in the output
if it is supported by a fully frozen event in one of the input
TDBs. These different policies tend to trade latency for
“chattiness” of the output: how many adjust() elements might
need to be issued to bring the output into line with
adjustments on the input. A second aspect of output policy is
when to issue a stable () element on the output. Our
experience is that we want to keep the output at the maximum
stable point of all the inputs to minimize the memory
requirements of LMerge, though there might be cases where
lagging a bit behind the maximum would avoid some adjust()
elements in the output.

Compatibility in the R4 case, where there can be multiple
events with the same 𝑝 and 𝑉𝑠 , has more complicated
conformance conditions. If 𝐿, the maximum stable point of the
output 𝑂, tracks the maximum 𝐿𝑚 , then TDB𝑂 must contain
all the FF events from TDB𝑚 , and an equal number of HF
events, for that 𝑝 and 𝑉𝑠.

IV. ALGORITHMS FOR LOGICAL MERGE
In this section, we provide algorithms for different variants

of LMerge optimized for specific stream properties described
in Section III-C. Section IV-F shows how we may use stream

properties to decide which algorithm to use, given a CQ and
input streams.

A. LMerge Algorithm for Case R0
We start with case R0, where input streams have elements

with strictly increasing Vs values, hence no duplicate
timestamps. In this case, it turns out that we need only two
pieces of information: the maximum Vs (MaxVs) and the
maximum stable() timestamp (MaxStable) seen across all
input streams. Refer to Algorithm R0. When we see the
insertion of element e on stream s, we can discard the element
if it does not increase MaxVs, and output it otherwise (Lines 3-
5). Note that s is simply the identifier (for e.g., an integer) of a
specific input stream. Similarly, a stable() element is output if
it increases MaxStable (Lines 9-11). Note that in the R0 case,
stable() elements are in a sense redundant, since the stable
point advances with each new insert(), though a system might
include them to signal progress in the presence of lulls.

B. LMerge Algorithm for Case R1
The next algorithm considers case R1, an insert-only case

with non-decreasing Vs. Here, we may have duplicate Vs
timestamps, but such elements are presented in deterministic
order (e.g., sorted on a field in the payload). This condition
holds in scenarios such as Top-k aggregation, where elements
with the same Vs are presented in rank order. Here, all we
need to maintain (in addition to MaxStable and MaxVs) is an
array with one counter for each input stream, which counts the
number of elements on that stream with Vs = MaxVs. Refer to
Algorithm R1. On an insert element that increases MaxVs, we
reset this array to zeros (Lines 5-7). If the insert on stream s
increases the counter for s beyond the old maximum counter
value across all streams, the insert is sent as output (Lines 8-
10). A stable() element is handled as before.

Algorithm R0: Logical Merge for Case R0
 1 MaxStable = MaxVs = −∞;
 2 Insert(element e, stream s)
 3 if (e.Vs > MaxVs)
 4 MaxVs = e.Vs;
 5 OutputInsert(e);
 6 Adjust(element e, stream s)
 7 Error(“Not supported”);
 8 Stable(timestamp t, stream s)
 9 if (t > MaxStable)
10 MaxStable = t;
11 OutputStable(t);

C. LMerge Algorithm for Case R2
Next in complexity is case R2, a non-decreasing, insert-

only case where we may have duplicate Vs values, and
elements with the same Vs may be presented in different
orders by different streams. We assume that (Vs, Payload) is a
key in any prefix of the TDB. (The relaxation to handle
duplicates is straightforward and omitted.) Refer to Algorithm
2. Our algorithm uses a hash table in addition to MaxStable
and MaxVs. The hash table indexes (using Payload as key) all
elements with Vs = MaxVs. When we receive an insert
element, we check the hash table – if the corresponding
payload exists, we are done. Otherwise, we update the hash
table and output the element (Lines 8-10). An element that
increases Vs beyond MaxVs clears the hash table (Lines 5-7) so
that it can track elements with the new MaxVs.

D. LMerge Algorithm for Case R3
We now tackle case R3, where inserts, adjusts, and stable

elements may be presented in any order, and (Vs, Payload) is
a key in the TDB for any stream prefix. See Algorithm R3; we
propose a new index structure called in2t (for index-2-tier)
depicted in Figure 1 (left). The top tier of in2t is a red-black-
tree keyed by (Vs, Payload), where each node consists of an
event and points to a second tier index implemented as a hash
table. The hash table contains, for each input stream s, the
current Ve value for that stream indexed by key s. An
additional hash table entry with special key ∞ is also
maintained for the output.

On an insert() element in stream s, we lookup in2t for a node
with the same (Vs, Payload). If such a node does not exist
(Lines 5-10), we add the node and produce output. In the hash
table, we add an entry for stream s as well as for the output.
An exception is when Vs is less than MaxStable (Line 6),
which indicates that the corresponding entry previously
existed and has been removed from in2t. Otherwise (Line 12),
we simply add an entry to the hash table and return. An
adjust() element is handled similarly (Lines 14-16), except
that output is not produced as a result of an adjust.

Finally, consider the processing of a stable() element e. We
only need to handle stable() elements that increase
MaxStable. We first find nodes that are going to become half
frozen in in2t; i.e., nodes whose Vs is less than e’s timestamp.
For each such node, we check if there is a mismatch between
the output and the input, where a compatibility violation is
going to occur as a result of outputting e. There are three cases
of compatibility violations:

• There is no input event for (Vs, Payload) in stream s, but
there is an output event (due to some other input stream).

• The currently output event will become fully frozen due
to e, but the corresponding input is not fully frozen.

• The input event will become fully frozen, but the current
output is not fully frozen.

In all cases, we adjust the output so that it matches the input
(Lines 24-27). This choice – of correcting output only to avoid
irrecoverable divergence between output and input –
represents one out of several policies discussed in Section 5.1.
Finally, if the input becomes fully frozen, we delete the
corresponding node from in2t (Lines 28-29), update
MaxStable, and output a stable() element (Lines 30-31).

Algorithm R1: Logical Merge for Case R1
 1 MaxStable = MaxVs = −∞;
 2 SameVsCount[1 ... #inputs] = 0;
 3 Insert(element e, stream s)
 4 if (e.Vs < MaxVs) return;
 5 if (e.Vs > MaxVs)
 6 SameVsCount[1 ... #inputs] = 0;
 7 MaxVs = e.Vs;
 8 if (MAX(SameVsCount) == SameVsCount[s])
 9 OutputInsert(e);
10 SameVsCount[s]++;
11 Adjust(element e, stream s)
12 Error(“Not supported”);
13 Stable(timestamp t, stream s)
14 if (t > MaxStable)
15 MaxStable = t;
16 OutputStable(t);

Algorithm R2: Logical Merge for Case R2
 1 MaxStable = MaxVs = −∞;
 2 hash = new Hashtable();
 3 Insert(element e, stream s)
 4 if (e.Vs < MaxVs) return;
 5 if (e.Vs > MaxVs)
 6 hash.Clear();
 7 MaxVs = e.Vs;
 8 if (!hash.Contains(e))
 9 hash.Add(e);
10 OutputInsert(e);
11 Adjust(element e, stream s)
12 Error(“Not supported”);
13 Stable(timestamp t, stream s)
14 if (t > MaxStable)
15 MaxStable = t;
16 OutputStable(t);

Algorithm R3: Logical Merge for Case R3
 1 MaxStable = −∞;
 2 index = new in2t();
 3 Insert(element e, stream s)
 4 node f = index.SameVsPayload(e);
 5 if (!exists(f))
 6 if (e.Vs < MaxStable) return;
 7 f = index.AddNode(e);
 8 OutputInsert(e);
 9 f.AddHashEntry(∞, e.Ve); // hash entry for o/p
10 f.AddHashEntry(s, e.Ve); // hash entry for i/p
11 Adjust(element e, stream s)
12 node f = index.SameVsPayload(e);
13 if (!exists(f)) return;
14 f.UpdateHashEntry(s, e.Ve);
15 Stable(timestamp t, stream s)
16 if (t <= MaxStable) return;
17 iterator it = index.FindHalfFrozen(t);
18 while (node f = it.Next())
19 InVe = f.GetHashEntry(s);
20 if (!exists(InVe)) InVe = f.GetEvent().Vs;
21 OutVe = f.GetHashEntry(∞);
22 if (InVe != OutVe and
23 (InVe < t or OutVe < t))
24 OutputAdjust(f.GetEvent(), Ve: InVe);
25 f.UpdateHashEntry(∞, InVe);
26 if (InVe < t) // fully frozen
27 index.DeleteNode(f);
28 MaxStable = t;
29 OutputStable(t);

2

1

E. LMerge Algorithm for Case R4
The main challenge with case R4 is that many elements in a
stream can have the same (Vs, Payload), with different Ve
values. Further, there could be duplicates in the stream.
Hence, we propose a new index structure – shown in Figure 1
(right) – called in3t (for index-3-tier), where we replace the
single Ve value in each entry of the lower-level hashtable of
in2t with a small index (red-black-tree) on Ve, where each Ve
is associated with its count (to handle duplicates). See
Algorithm R4; during insert and adjust, the output is updated
lazily as before. When processing a stable() element, we
ensure future compatibility before producing a stable()
element as output. The invariants we maintain are more
subtle:

• (Lines 9-11) The output TDB contains no more events for
a particular (Vs, Payload) than the maximum number of
events in any input TDB, for that (Vs, Payload). While
not necessary, this condition helps limit output chattiness.

• (Lines 20-22) When an incoming stable() element has a
timestamp greater than some Vs (i.e., that Vs becomes
half frozen), we ensure that, for each (Vs, Payload) that is
getting half frozen, there are exactly as many output
elements with a value of (Vs, Payload) as there are in the
input. This invariant needs to be met before we can
propagate the stable() element, in order to guarantee
future convergence. The method AdjustOutputCount()
determines the exact procedure for meeting this invariant;
briefly, it involves producing new output elements or
“canceling” prior output elements for that (Vs, Payload)
combination. We discuss this method below.

• (Lines 23-26) For a particular (Vs, Payload), if some Ve
becomes fully frozen as a result of an incoming stable()
element, we need to ensure that our output TDB contains
the same number of events with that (Vs, Payload, Ve),
before propagating the stable() element. The
AdjustOutput() method achieves this invariant; briefly,
it involves adjusting the Ve of events output earlier with
the same (Vs, Payload). We discuss this method below.

When the stable() timestamp moves beyond the largest Ve,
for a particular (Vs, Payload), the corresponding node can be
deleted from the top tier of in3t (Lines 27-28).

Adjusting Output to Meet Invariants The method
AdjustOutputCount() ensures that, when a particular Vs gets

half frozen, there are exactly as many output elements with a
value of (Vs, Payload) as there are in the input. There are two
possibilities. If there are more output events with the given
value of (Vs, Payload), we delete output elements until the
counts are identical. If there are more input events, we output
new insert() elements for (Vs, Payload) with Ve values that
have been seen on the input stream that is getting half frozen.
During this process, we may also choose to update existing
output Ve values so that the input and output streams match
exactly for that (Vs, Payload) combination. This may be
useful if we expect half frozen elements to rarely get updated
in the future.
 When an element with a particular (Vs, Payload, Ve)
combination would become fully frozen due to a stable()
element, the AdjustOutput() method ensures that we have
the same count of output elements for that (Vs, Payload, Ve)
combination as we have in the corresponding half frozen input
(if the element is an output element that is not half frozen in
the input, it can be deleted). Assuming that the total count
invariant for half frozen elements was met earlier, and that
input streams are logically identical, we are guaranteed to find
existing output elements with the same (Vs, Payload)
combination that we can adjust to achieve the above. Thus,
depending on whether the output count for (Vs, Payload, Ve)
is smaller or larger that the input count, AdjustOutput() has
to either (1) change the Ve of existing output elements with a
larger Ve to the current Ve value; or (2) expand the current Ve
value to a larger value, either ∞ or a Ve present in the input
for that (Vs, Payload) combination.

Key: (Ve)

in2t

Fig 1: Data structures for cases R3 (in2t) and R4 (in3t) of LMerge

Red-Black
Tree

Key: (Vs, P)

StreamId Ve
0 100
… …
∞ 100

Event

Hash Table

in3t
Red-Black

Tree

Key: (Vs, P)

Event Hash
Table

StreamId Root
0

Count

Algorithm R4: Logical Merge for Case R4
 1 MaxStable = −∞;
 2 index = new in3t();
 3 Insert(element e, stream s)
 4 node f = index.SameVsPayload(e);
 5 if (!exists(f))
 6 if (e.Vs < MaxStable) return;
 7 f = index.AddNode(e);
 8 f.IncrementCount(s, e.Ve);
 9 if ((e.Vs>=MaxStable) and (f.GetCount(s)>f.GetCount(∞)))
10 OutputInsert(e);
11 f.IncrementCount(∞, e.Ve);
12 Adjust(element e, stream s)
13 node f = index.SameVsPayload(e);
14 if (!exists(f)) return;
15 f.IncrementCount(s, e.Ve); f.DecrementCount(s, e.Vold);
16 Stable(timestamp t, stream s)
17 if (t <= MaxStable) return;
18 iterator it = index.FindHalfFrozen(t);
19 while (node f = it.Next())
20 if (f.Vs >= MaxStable) // element getting half frozen
21 // ensure #o/p events=#i/p events for that (Vs, P)
22 AdjustOutputCount(f);
23 iterator itIn = f.FindAllVe(s);
24 iterator itOut = f.FindAllVe(∞);
25 // Make o/p reflect i/p for all FF (Ve < t) nodes
26 AdjustOutput(f, t, itIn, itOut);
27 if (f.GetMaxVe(s) < t) // Done processing that (Vs, P)
28 index.Delete(f);
29 MaxStable = t;
30 OutputStable(t);

F. Space and Runtime Complexity of LMerge
We analyze the complexity of the LMerge algorithms on the
basis of runtime stream properties that characterize the nature
of input streams to LMerge. These properties can be measured
as statistics during runtime, although some may be determined
statically based on operators in the plan. Let s denote the
number of input streams to LMerge. Consider the set of events
that are “alive”, i.e., not fully frozen at any given instant. Let
𝑤 denote the number of unique (Vs, Payload) values, and 𝑑
denote the number of elements with the same (Vs, Payload).
Further, let 𝑔 denote the number of events with the same Vs,
and let ℎ represent the number of distinct half-frozen (Vs,
Payload) values. Finally, let 𝑐 be the number of events that
become fully frozen due to a stable() element, and let 𝑝 denote
payload size. Based on these properties, the complexity of the
various LMerge algorithms is shown in Table IV.

TABLE IV
RUNTIME AND SPACE COMPLEXITY OF LMERGE.

Case Runtime Complexity Space
Complexity Insert Adjust Stable

R0 O(1) n/a O(1) O(1)
R1 O(𝑠) n/a O(1) O(𝑠)
R2 O(𝑠) n/a O(1) O(𝑔 ⋅ 𝑝)
R3 O(lg𝑤) O(lg𝑤) O(𝑐 ⋅ lg𝑤 + ℎ) O(𝑤(𝑝 + 𝑠))
R4 O(lg𝑤 + lg 𝑑) O(lg𝑤 + lg 𝑑) O(𝑐 ⋅ lg𝑤 + ℎ ⋅ 𝑑) O(𝑤(𝑝 + 𝑠 ⋅ 𝑑))

G. Choosing the Right LMerge Algorithm
Given a range of algorithms for LMerge, a question that

naturally arises is: How do we choose the right version of
LMerge for a given set of input streams and query plan? We
derive and reason about compile-time stream properties in
order to answer this question. We do not give a detailed
formalism of stream properties here, but we provide several
examples to illustrate how stream properties are used for this
purpose:
1) Every input stream publishes properties that indicate
whether the stream is ordered, has adjust() elements, or has
duplicate timestamps. If we are merging such input streams
directly, we can use such properties to choose an algorithm.
2) The DSMS may have special operators that enforce certain
properties. For example, many systems have a reordering or
cleansing operator that accepts disordered input, buffers it and
outputs an in-order stream. Such a stream can be annotated at
compile-time in order to choose an appropriate LMerge
algorithm.
3) Certain operators or groups of operators produce streams
with a certain property. For example, an in-order stream fed
into a windowed aggregate (e.g., count) outputs one event per
strictly increasing timestamp, leading to a choice of algorithm
R0.
4) If each input to LMerge results from an in-order stream fed
into a sliding window multi-valued aggregate such as Top-k,
we would choose algorithm R1, due to duplicate timestamps.
5) If each query under LMerge performs a grouped
aggregation (e.g., a count for every machine in a data center)

over an ordered stream, we would use algorithm R2 since the
order for elements with the same Vs is non-deterministic.
6) If each query instead performs a grouped aggregation (e.g.,
count) over a disordered stream, we would use algorithm R3.

V. DISCUSSION AND EXTENSIONS

A. LMerge Policy Choices
Under the basic requirement of LMerge maintaining

“compatible” output, we can implement various policies. For
example, Algorithm R3 (Section IV) highlights two locations
where we have such freedom to choose different policies. In
location 1, we choose to never output incoming adjust events,
instead preferring to retain the current output for every unique
Vs. We issue adjust() elements to ensure that output is
compatible with inputs, only when we process a stable()
element. This policy limits chattiness of LMerge, as the
following theorem indicates.
Theorem 1 (Non-chattiness) Algorithm R3 outputs no more
insert() or adjust() elements than the total number of insert()
elements received. Further, R3 outputs no more stable()
elements than the total number of stable() elements received.
Some alternatives here include:
• We can reflect every adjust() element at the output. This

choice makes LMerge more “chatty”, but allows listeners
to process such changes earlier if they are interested.

• Force LMerge to “follow” a particular input stream, for
example, the stream with the currently maximum stable()
timestamp (called the leading stream). This choice may
be appropriate when one stream is usually ahead of the
others. However, if the leading stream keeps changing,
this policy can incur significant overhead in re-adjusting
output. Note that even in this case, LMerge needs to track
information from other inputs in order to handle the case
where the leading stream detaches.

Another point for choosing a different policy is location 2.
When we process the first insert element for a particular Vs,
we reflect it at the output immediately. While this policy
ensures that output is maximally responsive, as before, we
may choose other variants:
• We can output an insert only if it is produced by the

leading stream, or the stream with the highest insert()
timestamp or the maximum number of unfrozen elements.

• We can avoid sending an element as output until it gets
half frozen on some input stream. This policy ensures that
we never fully remove an element that we place on the
output, at the expense of higher latency.

A hybrid choice may be to wait until some fraction of the
input streams have produced an element for each Vs, before
sending it to the output. If input streams are physically
different, this policy may reduce the probability of producing
spurious output that later needs to be fully deleted.

B. Joining and Leaving Input Streams
We need to handle joining and leaving streams. When a

stream leaves LMerge, it is simply marked as “leaving”.
Eventually, our algorithms guarantee that it will no longer be

considered during LMerge. A joining stream provides a
timestamp t such that it is guaranteed to produce the correct
TDB for every point starting from t (i.e., every event in the
TDB with Ve ≥ t). We can mark the stream as “joined” as soon
as MaxStable reaches t, since from this point forwards,
LMerge can tolerate the simultaneous failure or removal of all
the other streams.

C. Handling Missing Elements
We would like to handle the case where individual input

stream may contain missing elements. One may expect that
our goal should be that the output must contain an element as
long as some input stream reports it. However, it is easy to see
that this requirement forces LMerge to progress (issue stable()
elements) only as fast as the slowest progressing input stream.
(Consider an element that is missing from every stream other
than the slowest-progressing one.) This option is highly
undesirable in practice.

Instead, Algorithms R0, R1, and R2 output elements
missing in some stream 𝑆 as long as some other stream
delivers the missing elements to LMerge before 𝑆 delivers an
element with higher Vs. These algorithms optimistically track
only the latest Vs across all inputs (MaxVs) in order to
minimize state and achieve high performance. Algorithms R3
and R4 output an element e as long as the stream that
increases MaxStable beyond e.Vs produces element e.

D. Feedback to Signal Progress
An interesting application of LMerge is combining several

alternative, equivalent query plans that behave differently
under different conditions, such as data-value distributions or
arrival rates. Alternatively, we may be executing identical
plans on machines with varying resources such as CPU.
LMerge can select results from whichever plan is producing
output the soonest at a given point in time. Under such
conditions, much of the work of the other plans is wasted, as
LMerge ignores their outputs.

We propose a modification to LMerge, where LMerge
signals to its input plans that elements before a certain time t
are no longer of interest. This modification can allow the
slower plans to avoid sending such elements. Particular
operators may also be able to avoid performing unnecessary
computations and purge state to save memory, though they
must retain enough information to potentially produce output
after time t, if required.

We have implemented feedback signaling for LMerge (cf.
Section VI-E). Operators in the slower plan react to the
feedback signal in order to avoid work, and purge state when
possible, and propagate the signal further upstream in the plan.
This capability enables more efficient dynamic selection
among plans at run time by allowing the slower plans to “fast-
forward” in order to catch up. Note that more general
exploitation of such signals is possible, along the lines of
feedback punctuation [8].

VI. EVALUATION
We approach the evaluation of LMerge in three phases:

1) We demonstrate the behavior of LMerge over streams
generated using query fragments over disordered input.
Further, we compare the algorithm variants, some of
which are relevant only for certain stream properties hold.

2) We compare the strategy of enforcing stream properties
in order to use the simpler versions of LMerge, against
directly using a more general version of LMerge.

3) We apply LMerge for solving several real applications:
fast availability, network-congestion masking, and
dynamic plan selection with feedback signals.

A. Setup and Implementation
We use StreamInsight to implement our algorithms. We

perform our experiments on an 8-core machine with two
2.33GHz processors and 16GB main memory running
Windows Server 2008 R2. We evaluated all our proposed
LMerge variants (see Section IV for details):

1) LMR4: This operator is the most general LMerge variant
(case R4), and uses the in3t data structure.

2) LMR3+: This operator implements the in2t based
algorithm, and is the preferred algorithm for case R3.

3) LMR3-: This variant uses a simpler algorithm for case R3
of LMerge, where events from each input stream are
maintained in a separate index, with another index used
to hold output events. The output index is required: (1) to
check whether an element was previously output; (2) to
perform adjustments to prior output before propagating a
stable() element. While this algorithm is simpler to
implement, it duplicates event information across input
streams and requires multiple tree lookups at runtime.

4) LMR2: In case R2, events with the same non-decreasing
Vs may arrive in different orders at different inputs. Here,
we only need one index to maintain, for the latest Vs
across all inputs, all the events seen for that Vs.

5) LMR1: In case R1, Vs is in non-decreasing order, and
events with the same Vs are in deterministic order. We
only need to maintain (1) the latest Vs seen across all
inputs; and (2) a counter per input, which tracks the
number of events seen with this value of Vs on that input.

6) LMR0: Input streams in case R0 are in strictly increasing
order of Vs. Thus, we only need to maintain the latest Vs
and the latest stable() timestamp seen across all inputs.

We also evaluated the combination of LMerge with a Cleanse
operator (called C+LM) to enforce stream properties a priori
(see Section VI-D). Finally, we added support in
StreamInsight for feedback signals (cf. Sections II, V-D, and
VI-E).

B. Metrics and Workloads
We track: (1) Throughput, which measures the number of

events produced at the output per second; (2) Memory, which
measures the main memory used by an operator, including
elements, payloads, and index structures; and (3) Output Size,
which measures the number of adjust() elements produced.
This metric quantifies the chattiness of the stream.

Our evaluation mostly used synthetically generated
datasets. 2 We use a commercial-grade test stream generator
[26] to produce data. Each event has two fields, an integer in
the interval [0, 400] and a randomly generated 1000-byte
string. The event generator produces between 200K and 400K
elements, based on a set of supplied parameters, including:

• StableFreq: The probability that an element in the stream
is a stable() element. We ensure that at least one insert()
is generated between consecutive stable() elements. The
default value of this parameter is 1%.

• EventDuration: The lifetime of each event. By default,
lifetime is set so that, on average, around 10K elements
are “active” (contributing to output) at any point in time.

• MaxGap: The maximum application-time gap between
consecutive elements. The gap is chosen randomly from
the range [0, MaxGap]. We set MaxGap to 20 seconds.

• Disorder: The fraction of disordered elements. Disorder
is created by moving 𝑉𝑠 values back by some amount.
Disorder is generated on a best-effort basis (e.g., we
cannot have 100% disorder with StableFreq=1). The
default value is 20%.

Our generated streams have disorder but no adjust()
elements. Such elements are naturally produced during query
processing, and hence we use sub-queries over the stream-
generator output in order to generate them. A simple example
of such a sub-query is aggregate (count) followed by a
lifetime modification.

C. Investigating LMerge Behavior

2 We also tested LMerge with real stock ticker data mined from Yahoo!
Finance (with no problem). However, the synthetic data generator gave us
finer control over stream properties of interest.

We investigate the performance of the different LMerge
algorithms as we vary different stream characteristics.

1) LMerge over Ordered Streams We use an ordered
stream without adjust() elements, and thus can evaluate all the
variants of LMerge. Figure 2 shows the memory usage of
LMerge, as we increase the number of input streams. We see
that LMR0 and LMR1 have negligible memory usage. LMR2 is
slightly higher as it maintains all events with the current
highest Vs. (The lines in Figure 1 for LMR0, LMR1, and LMR2

overlap as they perform similarly.) LMR3+ incurs slightly more
memory than the simpler versions due to its generality, but the
cost is almost independent of the number of inputs, as it shares
evhent payloads across inputs. In contrast, LMR3- requires
much more memory due to duplication of data, and degrades
linearly with the number of input streams.
We compare the algorithms in terms of throughput in Figure
3. As expected, the simpler algorithms provide higher
throughput. Between LMR3- and LMR3+, we see that LMR3+
does much better than LMR3- due to the optimized data
structure and algorithm.

2) Output Size, Increasing Disorder We introduce disorder
in the input stream, and feed it into a sub-query that generates
many adjust() elements. Figure 4 compares the output of
LMerge to the output without LMerge, as we increase the
percentage of disorder. We see that when disorder increases,
the number of adjusts increases significantly at the output.
However, our specific output policy controls chattiness by
limiting the production of intermediate adjusts that may not be
present in the final TDB.
3) Throughput, Increasing Stream Lag We feed LMerge
three input streams with 20% disorder each, with StableFreq
set at 0.1%. Element lifetimes are kept at 40 seconds. We
simulate lag on two of the input streams by delaying event
generation by a fixed amount of time. Figure 5 shows
throughput as we increase lag from 0 to 5 seconds. We
observe that as lag increases, LMerge performance improves
since it can directly drop tuples from the lagging streams.
LMerge hides the lag on the slower streams by following the
“fastest” stream. Further, throughput gains are higher if more
streams are lagging, as long as at least one stream is able to
keep up with the workload (We experiment further with this
phenomenon in Section VI-E.)
4) Memory and Throughput, Varying StableFreq We
measure the effect of StableFreq on throughput and memory
of LMerge. As we increase StableFreq from 0.001% to 1%,
we see in Figure 6 (left) that memory usage decreases as

Fig. 4 Output size, increasing disorder. Fig. 2 Memory, in-order input streams. Fig. 3 Throughput, in-order streams.

Fig. 5 Throughput, increasing stream lag.

expected, due to more frequent cleanup. On the other hand,
the throughput for LMR3+ and LMR4 decreases as shown in
Figure 6 (right), as we need to perform more frequent
compatibility checks. Note that the throughput for simpler
schemes is not affected since they have significantly simpler
algorithms for stable() elements.
D. Enforcing Stream Properties

Noting that the LMerge algorithms are significantly
simplified for special cases where the stream satisfies specific
properties, we investigate the possibility of enforcing these
properties before feeding streams to the simpler versions of
LMerge tailored for such properties. Timestamp ordering is
enforced by a special Cleanse operator, which accepts a
disordered stream and buffers elements until a stable()
element is received, at which point it releases (in timestamp
order) all fully frozen elements. We enforce ordering by
placing a Cleanse at each input to LMR1, which has constant
memory requirement and is very efficient; this scheme is
referred to as C+LMR1. We use an input stream with 50%
disorder, and pass it through an aggregate operator. The
output of this query fragment contains 36% adjust() elements,
with a 0.1% chance of seeing a stable() element.

1) Memory Consumption As we increase the number of
inputs to LMerge from 2 to 10, we see from Figure 7 (left)
that our optimized LMR3+ algorithm performs best, and its
memory usage is almost independent of the number of input
streams. However, the Cleanse-based solution (C+LMR1)
suffers linear degradation due to the overhead of ordering
each stream separately – the overhead is nearly 7X more than
LMR3+ for 10 inputs. We also see that LMR3- degrades linearly
with number of inputs due to no sharing of payloads across
inputs.
2) Throughput Figure 7 (right) depicts throughput as we
increase the number of input streams. Our solution (LMR3+)
outperforms the Cleanse-based solution (C+LMR1). The

relative improvement increases as we add more inputs because
C+LMR1 suffers from having to execute several Cleanse
operators (one for each input) along with an LMerge operator
(LMR1) for the final merge. As before, LMR3- does not
perform well due to its naïve data structure.
3) Latency With C+LMR1, the Cleanse operator buffers
elements and produces output only when fully frozen. Thus,
the latency of C+LMR1 will grow with event lifetimes and the
amount of potential disorder, since in order to maintain strict
ordering, it needs to hold on to an element until stable()
crosses Ve. Using LM directly, on the other hand, incurs
latency in milliseconds (120ms on average for LMR3+). Even
if event lifetimes and the amount of potential disorder are a
few seconds, the Cleanse solution will incur orders-of-
magnitude higher latency than using LM directly.

In summary, applying LMerge directly on streams with
disorder/revisions is superior (for memory, latency, and
throughput) to ordering streams and doing a simpler merge.

E. Evaluating LMerge Applications
We next report on experiments that reflect different real-world
situations where one might apply LMerge in practice.
1) Handling Bursty Data We generate four bursty streams
with 20% disorder, each having an average event rate of 5000
elements/sec (this rate does not result in CPU overload under
normal conditions). Bursty streams may exist in real
applications due to several reasons such as CPU load and
resource variations on machines, garbage collection,
scheduling vagaries, and queue buildup between operators.
We model burstiness by inserting random delays between
tuples in a stream with a small probability (between 0.3 and
0.5%). The delays are chosen from a truncated normal
distribution with mean 20 and standard deviation 5. Since
elements arrive from sources at a constant rate, such delays
result in temporary event build-up in queues, and cause
subsequent compensating spikes in throughput. Figure 8

Fig. 6 Memory and throughput, increasing StableFreq. Fig. 7 Memory and throughput, enforcing stream properties.

Fig. 10 Plan switching with fast-forward. Fig. 8 Handling bursty streams. Fig. 9 Masking network congestion.

shows one of the input streams, along with the output of
LMerge. Each stream is bursty, but LMerge smooths out the
burstiness because it chooses to follow the best input at any
given instant. Note that with many inputs to LMerge, the
probability of all inputs behaving in a bursty manner at the
same instant is greatly reduced.
2) Masking Network Congestion We use the same streams
as before, presented at a rate of 5000 elements/sec. We model
network congestion at different points in time in each of three
streams, by introducing normally distributed delays between
elements during the congested period. Network congestion
results in temporary low throughput, followed by a spike in
throughput when conditions return back to normal. Figure 9
shows the input streams as well as the output of LMerge. We
see that the output of LMerge is unaffected by such
congestion, as it is able to produce output as long as at least
one input is not lagging. Note that at around 18 seconds, two
inputs are simultaneously congested, but LMerge is unaffected
as expected. Thus, we are able to completely mask the effect
of such congestion using LMerge.
3) Dynamic Plan Switching with Fast-Forward We
investigate the advantage of using LMerge for workload-
based plan switching (see Sections II and V-D). We instantiate
two alternate plans for the same query, both of which perform
a user-defined selection function (UDF) on the data. The first
plan (UDF0) is expensive for small values of X (a payload
field), while the second plan (UDF1) is expensive for large
values of X. We feed a stream with 200K elements, where
alternating sequences (batches) of events have low and high
values of X. The batch size is varied randomly between 10K
and 30K elements. Thus, the “optimal”
plan switches 9 times during execution. We show the
performance of these queries individually (without LMerge)
in Figure 10, where UDF0 and UDF1 finish in 176 and 163
seconds respectively. We next place LMerge (LMR3+) above
the two queries. One may expect LMerge to benefit from plan
switching, but adding LMerge is not very useful because,
while it tracks the faster input at any point, the total work
performed in both queries is identical. Thus, the total
processing time for LMerge is around 163 seconds.

We then let LMerge send feedback signals as described in
Section V-D, to fast-forward the slower plan. This scheme,
called LM+Feedback, allows LMerge to follow the faster
plan, at the same time fast-forwarding the slower plan so that
it can be immediately tracked by LMerge when it becomes
optimal in the future. Overall, LM+Feedback completes
execution in around 34 seconds, and is nearly 5X faster than
LMR3+ without feedback.

VII. RELATED WORK
Stream and Temporal Models A wide range of stream

and temporal models have been proposed in research and
adopted by industry. The model of STREAM [13], one of the
early DSMSs, is adopted by Oracle CEP [25]. Aurora/Borealis
[12] was commercialized as StreamBase. The CEDR project
[4] proposed an interval-based algebra, motivated by early

research on temporal databases [21], and forms the basis of
StreamInsight [22]. NiagaraST [5] uses an interval-based
model, but does not support speculation. In Nile [11], positive
tuples begin new events while negative tuples expire older
events. In Section III, we present the theory of LMerge as a
general operator that can be used with any of these stream
models – we discuss open and close elements (that are similar
to I-streams and D-streams or positive and negative tuples) in
Example 3. Our specific algorithms and implementations in
this paper adopt the interval-based temporal model [4, 5, 21,
22], although other models can be handled with modifications.

High Availability High-availability in stream processing
systems is a well-studied topic. Most techniques for high
availability assume a primary copy of the query, and a backup
copy that takes over when the primary fails. Hwang et al. [15]
give a good overview of high availability schemes proposed
for streams. Hwang et al. [9] propose a high-availability
solution for wide-area networks that uses a duplicate-
elimination operator for insert-only disordered streams. This
algorithm can be classified as falling between R2 and R3 in
our classification. In contrast, we focus on LMerge as a
general primitive over a broad class of stream definitions,
propose a suite of algorithms for LMerge, leverage stream
properties and feedback for efficiency, and use LMerge for
many new applications beyond high availability.

Dynamic Plan Switching Yang et al. [18] present an
approach to switching between plans for a running stream
query, which follows up on earlier seminal work by Zhu et al.
[20]. Their approach involves determining a split time, where
the old plan delivers all results before that time, and the new
plan after. Such a cut-over involves a certain determinism in
streams that would be hard to meet in the presence of disorder
or element modifications. LMerge, in contrast, can cope with
both queries running at once and producing distinct physical
streams. Heinz et al. [19] use this cut-over technique to switch
among plans when input statistics change significantly. We
note that LMerge can provide a similar capability by running
the alternative plans together and using feedback signaling to
suppress work on slower plans.

Eddies [16] allows the choice of query plan to be chosen on
a fine per-tuple granularity, but does not target temporal
streams. LMerge, on the other hand, is a general operator that
allows plan switching as one of its applications. Feedback
signals sent from LMerge to fast-forward slow plans can be
viewed as a novel application of feedback punctuation [8],
which has been proposed and used in a different context.

VIII. CONCLUSIONS
We introduced the Logical Merge (LMerge) operator as a

general duplicate-eliminating Union over input streams that
are physically divergent and fallible. We defined LMerge in
such a way that it can apply to any DSMS in which a stream
(implicitly or explicitly) represents a temporal database. We
discussed how input stream properties can affect LMerge, and
presented a range of algorithms that deal with progressively
more general cases.

We implemented our LMerge variants as operators in
Microsoft StreamInsight, as well as feedback signals to reduce
work in input queries. We first evaluated the different
algorithms, over input streams that satisfied the strictest case,
and then explored the response of specific algorithms to
stream characteristics such as disorder and lag. We examined
the benefit of a general LMerge relative to explicitly enforcing
the stricter input properties that the more constrained versions
require. Here, we found that using a general LMerge can
sometimes provide orders-of-magnitude better memory and
latency features, along with higher throughput. Finally, we
showed the suitability of LMerge for applications with bursty
events and congestion, where LMerge can smooth out
variability. We also examined merging plans with different
responses to data patterns, and showed that using feedback
signals to fast-forward slower plans can significantly improve
overall throughput.

REFERENCES
[1] U. Srivastava, J. Widom: Flexible Time Management in Data Stream

Systems. PODS 2004: 263-274.
[2] P. Tucker et al.: Exploiting Punctuation Semantics in Continuous Data

Streams. IEEE TKDE 15(3): 555-568 (2003).
[3] J. Li et al.: Semantics and Evaluation Techniques for Window

Aggregates in Data Streams. SIGMOD 2005: 311-322.
[4] R. Barga et al.: Consistent Streaming Through Time: A Vision for

Event Stream Processing. CIDR 2007: 363-374.
[5] D. Maier, J. Li, P. Tucker, K. Tufte, V. Papadimos: Semantics of Data

Streams and Operators. ICDT 2005: 37-52.
[6] T. Johnson et al.: A Heartbeat Mechanism and Its Application in

Gigascope. VLDB 2005: 1079-1088.
[7] J. Li et al.: Out-of-order Processing: A New Architecture for High-

Performance Stream Systems. PVLDB 1(1):274-288 (2008).
[8] R. Fernandez-Moctezuma, K. Tufte, J. Li: Inter-Operator Feedback in

Data Stream Management Systems via Punctuation. CIDR 2009.
[9] J. Hwang, U. Cetintemel, S. Zdonik: Fast and Reliable Stream

Processing over Wide Area Networks. ICDE 2007: 604-613.
[10] E. Ryvkina et al.: Revision processing in a stream processing engine:

A high-level design. ICDE 2006: 141.
[11] M. Hammad et al.: Nile: A Query Processing Engine for Data Streams.

ICDE 2004: 851.
[12] D. Abadi et al.: The design of the Borealis stream processing engine.

CIDR 2005.
[13] B. Babcock et al.: Models and issues in data stream systems. PODS

2002: 1-16.
[14] Y. Xing, S. Zdonik, J. Hwang: Dynamic load distribution in the

Borealis stream processor. ICDE 2005: 791-802.
[15] J. Hwang et al.: High-Availability Algorithms for Distributed Stream

Processing. ICDE 2005: 779-790.
[16] S. Madden, M. Shah, J. Hellerstein, V. Raman: Continuously adaptive

continuous queries over streams. SIGMOD 2006: 49-60.
[17] I. Botan et al.: SECRET: A Model for Analysis of the Execution

Semantics of Stream Processing Systems. VLDB 2010: 232-243.
[18] Y. Yang et al.: HybMig: A Hybrid Approach to Dynamic Plan

Migration for Continuous Queries. IEEE TKDE: 398–411 (2007).
[19] C. Heinz et al.: Toward Simulation-Based Optimization in Data Stream

Management Systems. ICDE 2008: 1580-1583.
[20] Y. Zhu et al.: Dynamic Plan Migration for Continuous Queries Over

Data Streams. SIGMOD 2004: 431-442.
[21] C. Jensen, R. Snodgrass: Temporal Specialization. ICDE 1992.
[22] Microsoft StreamInsight. http://tinyurl.com/4awexam.
[23] B. Gedik et al.: SPADE: The System S Declarative Stream Processing

Engine. SIGMOD 2008: 1123-1134.
[24] J. Hellerstein, P. Haas, H. Wang: Online Aggregation. SIGMOD 1997:

171-182.
[25] Oracle CEP. http://tinyurl.com/4gjlrkh.

[26] A. Raizman et al.: An Extensible Test Framework for the Microsoft
StreamInsight Query Processor. DBTest 2010.

