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Abstract—Several desired capabilities in a data stream 
management system (DSMS), such as query-plan switching and 
high availability, can be considerably simplified using a facility to 
merge equivalent data streams. One can logically view a data 
stream as a temporal table of events, each associated with a 
lifetime (time interval) over which the event contributes to 
output. In many applications, the “same” logical stream may 
present itself physically in multiple physical forms, for example, 
due to disorder arising during transmission or from combining 
multiple sources; and modifications or deletions of earlier events. 
Merging such streams correctly is challenging when the streams 
may differ physically in timing, order, and composition. This 
paper introduces a new stream operator called Logical Merge 
(LMerge) that takes multiple logically consistent streams as input 
and outputs a single stream that is compatible with all the inputs. 
LMerge can handle the dynamic attachment and detachment of 
input streams. We present a range of algorithms for LMerge that 
can exploit compile-time stream properties for efficiency. 
Experiments with StreamInsight, a commercial DSMS, show that 
LMerge is sometimes orders-of-magnitude more efficient than 
enforcing determinism on inputs, and that there is benefit to 
using specialized algorithms when stream variability is limited. 
We also show that LMerge and its extensions can provide 
performance benefits in several real-world applications. 

I. INTRODUCTION 
A data stream management system (DSMS) [6, 11, 12, 13, 

22, 23, 25] supports long-running continuous queries (CQs) in 
real time over streams of incoming data. We encounter many 
scenarios where we need to combine multiple copies of a data 
stream into a single output stream, for reliability, availability, 
and performance This problem has a trivial solution if all the 
input streams present the same elements in exactly the same 
order – just keep a count on each input, and let the output 
follow the stream with the largest count. In real DSMSs, 
however, the problem is not so simple: 

1) Disorder: Data streams from a source can get disordered 
arbitrarily during transmission to a destination where a CQ 
executes. Consider a scenario where CQs monitor 
measurement data collected from distributed machines located 
in geographically dispersed data-centers. Network congestion 
and other delays can cause data to arrive out-of-order at a 
destination. If we have multiple destinations for the same data, 
the degree and nature of disorder can be different at each 
location. Further, when we gather data from multiple sources 
(e.g., machines in the data-center example) into a single 
stream using a Union operator, the result can be disordered 
even if each input stream arrives in order. 

One could buffer incoming tuples in order to eliminate 
disorder, but doing so can introduce significant query latency 
and incur high memory overhead. A CQ often contains data-
reducing operators, such as aggregation and sampling, and 
memory needs are minimized if we can move stream elements 
through the query to such operators without ordering them [7]. 

2) Revisions: Some scenarios require later stream elements 
that can modify or cancel earlier elements [10]. Streaming 
sources often have to contend with noise or data entry errors; 
for example, commercial stock ticker feeds issue revision 
tuples to amend previously issued tuples. Sources of data may 
also wish to completely modify earlier events to replace an 
earlier value, for e.g., with a more accurate value when 
performing online aggregation [24]. In addition to revisions at 
data sources, the DSMS engine may itself, for performance 
and latency reasons, let stream elements flow out of order, and 
allow operators to provide early answers with possible later 
revisions [10, 22]. Progress markers (such as heartbeats [6], 
punctuation [1, 2], and CTIs [22]) are used to constrain future 
elements and avoid arbitrary disorder. 

Continuing our data-center example, suppose we are 
interested in tracking successful OS process executions on 
each machine. Here, we model each process as an event, with 
a lifetime corresponding to the process lifetime. When a 
process starts executing, we do not know its precise end-time 
a priori. The source may not wish to incur the latency of 
waiting for the process to end before sending the event, and 
therefore may issue an initial event with the process-start time 
(as an insert [4, 12, 22], I-stream [13], or positive tuple [11]). 
It may subsequently revise that event to provide the process-
end time or cancel the event if the process is aborted (with a 
revision [4, 10, 22], D-stream [13], or negative tuple [11]). 
Further, consider a CQ that produces a running aggregate of 
successful process counts. A conservative aggregate operator 
may wait for a process event to end (or “finalize”) before 
updating the count. An aggressive operator may instead 
reduce latency and memory usage by emitting an updated 
count as soon as it sees a process start event, and adjusting the 
result when the process event is later revised or canceled. 

3) Processing Variations and Non-Determinism: As in 
databases, CQs are usually expressed declaratively [23] and 
can have many physical plans. For example, a temporal join of 
three streams A, B, and C can be processed using two-way 
joins as 𝐴 ⋈ (𝐵 ⋈ 𝐶), 𝐵 ⋈ (𝐴 ⋈ 𝐶), etc. or using one three-
way join operator. Further, the same operator may use 
different algorithms – e.g., an aggregate operator may be 
aggressive or conservative as discussed earlier. A DSMS 



operator may, under different run-time conditions, produce 
different physical presentations for the same underlying 
logical stream. For example, a multi-input operator such as 
join, union, or set-difference can produce a different sequence 
of output elements in two identical copies of a CQ, due to 
differences in the relative arrival of input events. In summary, 
output (and intermediate) streams from equivalent plans, 
while semantically identical, can physically look quite 
different. 

A. Logical and Physical Streams 
The above characteristics of real-world streams imply that 

copies of logically identical streams may look quite different 
at run time. In order to formalize the concept of “identical 
streams” in the presence of issues as described above, 
researchers have proposed separating the notions of physical 
and logical streams [4, 5, 11, 21, 22]. In general, a logical 
stream can be viewed as a temporal database (TDB) that 
consists of a set of events, each associated with a lifetime 
(interval in application time) and a payload. The lifetime 
indicates a period of time over which the event contributes to 
output. A physical stream, on the other hand, is a sequence of 
stream elements that can be reconstituted into a TDB instance. 
Such a distinction between physical and logical streams is 
observed (either implicitly or explicitly) in many DSMSs, 
both in academia [4, 5, 6, 7, 10, 11] and industry [22, 25]. 

Physically divergent streams can be logically equivalent 
(i.e., have the same TDB), as the following example 
demonstrates. 

Example 1 (Logical/Physical Streams):   Consider one 
possible model of physical streams, with three types of stream 
elements: 
• a(value, start, end), that adds a new event with value as 

payload and duration from start to end; 
• m(value, start, newEnd), that modifies an existing event 

with a given value and start to have a new end time; and 
• f(time), that finalizes (freezes from further modifications) 

every event whose current end is earlier than time. 
Table 1 (left) shows two physical streams (Phy1 and Phy2), 
that are different in terms of ordering, event finalization, and 
lifetime changes. The rows of this table represent increasing 
instants of system time. These physical streams logically 
correspond to the same TDB shown in Table 1 (right). Note 
that prefixes of the two physical streams are not always 
logically equivalent, but are compatible, i.e., they can still 
become equivalent in the future. 

TABLE I 
PHYSICAL AND LOGICAL STREAMS 

 

B. Logical Merge 
Multiple scenarios (see Section II) require combining 

equivalent logical streams, either temporarily or indefinitely. 
However, merging multiple streams cleanly – with no loss or 
duplication of events – is challenging when the streams can 
differ physically in timing, order, and composition. This paper 
introduces the Logical Merge (LMerge) operator that provides 
logically equivalent output over physically diverse input 
streams. Some key issues are: 

1) Disorder and Revisions: The presence of disorder and 
revisions means that the final content of a stream event may 
be arrived at differently in two streams (e.g., streams Phy1 
and Phy2 in Example 1), making the design of correct LMerge 
algorithms challenging. Note that simply choosing one of the 
input streams to follow can prevent the timely output of events 
that another input stream has already produced, and cause 
correctness issues if the chosen input fails, or incur memory 
overhead (discussed below). 

2) Punctuation: LMerge algorithms must be careful when 
propagating progress markers (punctuation), so that they can 
stay consistent with future updates on the input streams. We 
use Example 1 to illustrate that this problem is non-trivial. 
Assume that our LMerge operator has chosen to propagate 
elements a(A, 6, 7) and a(B, 8, 15) from Phy2 to its output. 
When it then sees f(11) from stream Phy1, this element cannot 
immediately be propagated to the output because: (1) it would 
“freeze” payload A to have lifetime of [6, 7) which cannot 
later be adjusted to end at 12; (2) it would freeze all end times 
earlier than 11, which would prevent later adjustment of the 
end time of payload B down to 10.  

3) Memory: We want to minimize the state that LMerge 
maintains for correct operation. For example, simply forcing 
the output to follow one arbitrary stream can result in 
significant buffering of events from other input streams to 
LMerge, if the chosen input lags behind the others (to handle 
the case where the chosen stream detaches or fails). Even if 
we follow the “fastest” input stream, the possibility of 
disorder and revisions (even if not actually present in the 
stream) exacerbates memory overhead, as we need to track 
what has been output from the different inputs. Further, 
buffering events per input without sharing can waste 
significant memory. 

4) Failures: Individual input streams can detach or re-
attach to LMerge during runtime, e.g., due to machine failures 
or query plan migration from one virtual machine to another 
in a Cloud setting. The addition and removal of streams must 
be carried out carefully to avoid repeating past elements or 
omitting elements by advancing the output too soon. Consider 
an input stream that detaches and then re-attaches because its 
query instance fails and restarts. The new stream might miss 
some events present on the other inputs, or re-produce prior 
events because it reprocesses some data. LMerge must deal 
with such gaps and duplications. Interestingly, the trivial 
counting merge outlined earlier for simple streams does not 
work correctly when failures exist. 

5) Stream Properties: A fully general LMerge—that can 
handle unconstrained inputs—can be demanding of memory 

Phy1 Phy2 
 a(A, 6, 7) 
 a(B, 8, 15) 

a(B, 8, ∞) m(A,6,12) 
a(A, 6, 12)  
m(B, 8, 10) m(B, 8, 10) 

f(11)  
f(∞) f(∞) 

Two Physical Streams 

Payload Interval 
A [6, 12) 
B [8, 10) 

Equivalent Logical 
TDB 



and CPU. We want to take advantage of enforced or deduced 
stream properties, to allow optimized LMerge algorithms. For 
example, a data source may guarantee that it produces events 
in order. If a stream with non-decreasing timestamps passes 
through an aggregate operator (e.g., counting OS processes), 
we can infer that the output has strictly increasing timestamps. 
If the aggregation is grouped (e.g., performed for each 
machine ID), we can infer that the combination (payload, 
timestamp) is unique in the output stream. The static inference 
of such properties can significantly reduce the complexity and 
overhead of LMerge. 

6) Stream Chattiness: LMerge needs to select policies that 
balance responsiveness of output against “chattiness” – the 
need to issue additional output elements to modify previous 
elements. We provide an example of this last point.  

Example 2 (Stream Chattiness):   Recall the element 
types introduced in Example 1. Table 2 below shows two 
input streams, In1 and In2, and three alternative output 
streams. As before, the rows of this table represent increasing 
instants of system time. Out1 is the most aggressive, 
propagating every change from the inputs as it is seen. Out2 is 
more conservative, delaying elements until it knows they are 
final. It thus produces fewer elements than Out1, but produces 
them later, in general. Out3 is between the two. It outputs the 
first element it sees with a given payload and start, but saves 
any modifications until they are known to be final. 

 
TABLE II 

EXAMPLE INPUT AND OUTPUT STREAMS 
In1 In2 Out1 Out2 Out3 

a(A, 6, 10)  a(A, 6, 10)  a(A, 6, 10) 
 a(A, 6, 12) m(A, 6, 12)   
 a(B, 7, 14) a(B, 7, 14)  a(B, 7, 14) 

m(A, 6, 15)  m(A, 6, 15)   
 m(A, 6, 15)    
 f(16) f(16) a(A, 6, 15) 

a(B, 7, 14) 
f(16) 

m(A, 6, 15) 
f(16) 

C. Contributions 
This work makes the following contributions. 

• We characterize LMerge in a way that applies to many 
DSMSs, dealing with variations in stream semantics and 
representation. We formalize the requirements for 
LMerge output to correctly track its inputs, and propose 
alternative output policies that meet those requirements 
(Sec. III). 

• We present efficient algorithms for LMerge under 
different assumptions on input stream properties, and 
discuss how such properties may be derived from query 
plans (Sec. IV). We also discuss policy choices for 
LMerge, handling missing elements, and for attaching 
and detaching streams (Sec. V). 

• We implemented our LMerge algorithms in Microsoft 
StreamInsight [22], a commercial DSMS, and report their 
performance relative to different stream characteristics. 
We further show that a more general LMerge algorithm 
can have orders-of-magnitude better memory, latency, 

and throughput features than the strategy of enforcing 
input stream properties and using a more specialized 
algorithm (Sec. VI). 

• We discuss several applications where LMerge as a 
building block adds significant value – high availability, 
fast availability with dynamic plan selection, and query 
jumpstart or cutover. Experiments show that LMerge can 
provide significant benefits to such applications, by 
reducing stream-rate variability and increasing throughput 
(Secs. II and VI). 

• We propose a general scheme for “fast-forwarding” 
slower CQ plans under LMerge using feedback signals, 
and show that such feedback signals can improve 
performance by several factors over regular LMerge 
(Secs. II, V, and VI). 

II. APPLICATIONS OF LOGICAL MERGE 
The LMerge operator is fully composable with existing 

operators, and does not require modifications to the DSMS, 
except if feedback is employed. LMerge opens up convenient 
solutions to several important stream problems, and enables 
seamless adaptive CQ processing. Unlike a database, DSMS 
CQs can last for days or weeks. Tasks such as recovery, re-
optimization, and load balancing are easier if individual 
queries are short lived: re-run a failed query from scratch, re-
plan it between executions, launch new queries on a less-
loaded node. However, providing these capabilities on queries 
while they continue to execute is harder. 

1) High Availability: Consider providing high availability 
(HA) for a continuous stream query that involves a window of, 
say, 24-hour duration. Simply restarting such a query on 
failure requires a day for it to “spin-up” and start delivering 
correct answers. Avoiding such an outage means having 
redundant copies of the query running and being able to pull 
results from whichever one or ones have not failed (and to 
connect up a new copy of the query once it has spun up). We 
can achieve resilience against n-1 simultaneous failures by 
instantiating n copies of a query on different machines, 
feeding into an LMerge operator located at the consumer. 
LMerge provides a steady stream of output events as long as 
at least one copy of the query is active. As LMerge is a 
composable operator, we can also achieve resiliency on a 
query-fragment level by deploying a hierarchy of LMerge 
operators – one for each replicated query fragment. 

2) Fast Availability: There is also a need for “fast 
availability” for queries – obtaining output results as soon as 
possible. Using LMerge to combine (1) identical copies of a 
query running on machines with independent processor or 
network resources; or (2) different but semantically identical 
plans that respond differently to shifts in data distributions, 
allows answers to be reported from whichever copy is 
performing better at a given instant. Interestingly, if we need 
to run multiple copies anyway for HA, we may choose to run 
different plans to also get fast availability. 

In Section VI, we show how LMerge can smoothly switch 
between streams that experience temporary congestion (due to 
network or CPU contention) in order to maintain nearly steady 



throughput. Section VI also demonstrates how LMerge can 
“smooth out” variability in stream rate, which may arise 
because of load fluctuations, scheduling differences, and 
queuing delays. 

3) Plan Fast-Forward: When LMerge is used to combine 
plans, one plan might lag behind the rest during periods when 
it is suboptimal or when the machine it runs on suffers 
resource contention. The work such a plan performs is mostly 
wasted. It is beneficial if such work can be avoided and that 
plan can catch up with the rest. In Section V-D, we introduce 
feedback signals, and show how LMerge can leverage such 
signals to “fast-forward” slower plans and avoid unnecessary 
work. Section 6 shows that such a technique can provide 
several times better throughput than running a single plan or 
performing LMerge without feedback. 

4) Query Jumpstart: Another use of LMerge is to aid the 
process of “jumpstarting” query execution (e.g., in Cloud 
settings). Stream queries often hold long-lived elements as 
part of their internal state. In our process-monitoring example, 
a join or aggregate operator might hold elements for all active 
processes, including ones that have been running for days or 
weeks. If we spin up such a query using only current events in 
the real-time stream, it may take an extended period for the 
query to rebuild its state (or even be impossible). We may 
instead wish to “seed” query state using, for example, 
checkpoint information stored on disk or provided by a 
running copy of the query. LMerge can be used to seamlessly 
merge such state with real-time streams in order to get the 
query operational sooner. 

5) Query Cutover: LMerge is also useful in “cutting over” 
from one query instance to a newly instantiated one with a 
possibly different plan, without the user or application being 
explicitly aware of such a switch. This capability can aid 
dynamic query optimization [14] and is particularly attractive 
in Cloud-based scenarios where one may wish to move 
executing queries based on current workload conditions.  

III. THEORY OF LOGICAL MERGE 

A. Stream Basics 
We view a stream as a representation of a (potentially 

unbounded) temporal database (TDB) that is presented 
incrementally. The TDB may take different forms in different 
stream systems. One example is a sequence of snapshots of a 
relational table, a second is a collection of 〈tuple, timestamp〉 
pairs. For the algorithms and implementations we present here, 
the TDB is a multiset of events, each of which consists of 
relational tuple 𝑝 (which we term the payload), along with an 
associated validity interval denoted by a validity start time 𝑉𝑠 
and a validity end time 𝑉𝑒, which define a half-open interval 
[𝑉𝑠,𝑉𝑒) . 𝑉𝑒  is permitted to be +∞ . One can think of 𝑉𝑠  as 
representing the event’s timestamp, while the validity interval 
is the period of time over which the event is active and 
contributes to output. 

A stream is a potentially unbounded sequence of elements 
(some of which may resemble TDB events). While the kinds 
of events and their ordering constraints can vary between 
stream systems, we assume that any finite prefix of a stream 

can be reconstituted into a TDB instance [5]. Let 𝑆 = 𝑒1, 𝑒2, … 
be a stream, with 𝑆[𝑖] being the prefix 𝑒1, … , 𝑒𝑖 . We posit a 
reconstitution function 𝑡𝑑𝑏(𝑆, 𝑖)  that produces the TDB 
instance corresponding to 𝑆[𝑖]0F

1. 
It would be useful to have a version 𝑡𝑑𝑏(𝑆)  of the 

reconstitution function that interprets the whole of 𝑆 . One 
approach to defining 𝑡𝑑𝑏(𝑆)  is as the limit of 
𝑡𝑑𝑏(𝑆, 1), 𝑡𝑑𝑏(𝑆, 2), …. If 𝑆 behaves well – say it satisfies the 
monotonicity property 𝑡𝑑𝑏(𝑆, 𝑖) ⊆ 𝑡𝑑𝑏(𝑆, 𝑖 + 1)  – then this 
limit is well defined. But there can be pathological cases 
where 𝑆 does not converge to a particular TDB instance. For 
example, if 𝑆  can contain a stream element that cancels a 
previous stream element (in the sense of removing it from the 
TDB rather than curtailing its lifetime), then a stream such as 
      e, cancel(e), e, cancel(e), e, cancel(e), e, cancel(e), …     
has no definite limit. For specific cases we consider later, 
𝑡𝑑𝑏(𝑆)  will be guaranteed to exist, though sometimes via 
stream properties that are weaker than monotonicity.  

In most DSMSs, there are multiple stream instances that 
represent the same TDB. For example, if each stream element 
carries an explicit timestamp, then it can happen that 
𝑡𝑑𝑏(𝑆, 𝑖) = 𝑡𝑑𝑏(𝑈, 𝑖)  even though 𝑆[𝑖]  and 𝑈[𝑖]  are distinct 
prefixes, because of different orderings. If 𝑡𝑑𝑏()  removes 
duplicates, then it is possible that 𝑡𝑑𝑏(𝑆, 𝑖) = 𝑡𝑑𝑏(𝑈, 𝑗)  for 
𝑖 ≠ 𝑗 . We say that prefixes 𝑆[𝑖]  and 𝑈[𝑗]  are equivalent if 
𝑡𝑑𝑏(𝑆, 𝑖) = 𝑡𝑑𝑏(𝑈, 𝑗), written 𝑆[𝑖] ≡ 𝑈[𝑗] . Streams 𝑆  and 𝑈 
are equivalent, written 𝑆 ≡ 𝑈, if 𝑡𝑑𝑏(𝑆) and 𝑡𝑑𝑏(𝑈) are well 
defined and equal. There can be many streams that represent 
the same TDB, just as there can be many physical structures 
that represent a given logical table in a relational database. 
The range of possible descriptions of the same TDB in a given 
stream system depends both on what kinds of elements are 
permitted in a stream and on the constraints (or lack thereof) 
on the order of elements. For example, there can be stream 
elements that serve to “adjust” a previously seen event, such 
as by altering its lifetime or updating data values in it. As an 
example of an ordering constraint, most stream systems 
support some form of punctuations that limit stream elements 
that can appear later. 

Example 3 (Open and close elements): Consider a simple 
stream representation in which there are two kinds of stream 
elements, open(𝑝,𝑉𝑠) and close(𝑝,𝑉𝑒), where open() indicates 
the start time of an event with payload 𝑝 and close() indicates 
the end of the event with payload 𝑝. (We assume here that 
there can only be one event with payload 𝑝 active at a time.) 
Open and close elements correspond to I-Streams and D-
Streams in Oracle CEP [25] and STREAM [13], or positive 
and negative tuples in Nile [11]. The following stream 
prefixes are equivalent, each representing the TDB: 

p  Vs  Ve 
A   1   4 
B   2   5 
 C   3   ∞ 

S[5]: open(A, 1), open(B, 2), open(C, 3), 
close(A, 4), close(B, 5) 

                                                 
1 In some DSMSs, events are assumed to arrive in batches [17], so it may 
only make sense to apply 𝑡𝑑𝑏() to selected prefixes of 𝑆. 



U[5]: open(A, 1), close(A, 4), open(B, 2), 
close(B, 5), open(C, 3) 

W[6]: open(B, 2), close(B, 6), open(A, 1), 
open(C, 3), close(A, 4), close(B, 5) 

Note that close(B, 5) in stream prefix W[6] serves to 
revise the previous close(B, 6). 

B. Definition of Logical Merge 
If input streams never fail, the definition of Logical Merge 

is straightforward. It takes a set of equivalent input streams 
𝐼1, … , 𝐼𝑛 and produces an equivalent output stream 𝑂. That is, 
𝐼1  ≡ ⋯ ≡ 𝐼𝑛 ≡ 𝑂. In practice, however, input streams can fail 
(or detach), so different inputs will not be equivalent. We 
adopt the weaker notion of mutual consistency for input 
streams, which intuitively means there is some complete 
“reference stream” of which each input represents a segment. 
We want to express this condition in terms of stream prefixes, 
since that is all we have to work with at any finite point in 
time. Formally, stream prefixes {𝐼1[𝑘1], … , 𝐼𝑛[𝑘𝑛]}  are 
mutually consistent if there exist finite sequences 𝐸𝑖  and 𝐹𝑖 , 
1 ≤  𝑖 ≤ 𝑛 such that 𝐸1: 𝐼1[𝑘1]:𝐹1 ≡ ⋯ ≡ 𝐸𝑖: 𝐼𝑖[𝑘𝑖]:𝐹𝑖 ≡ ⋯ ≡
𝐸𝑛: 𝐼𝑛[𝑘𝑛]:𝐹𝑛. Here, 𝐴:𝐵 denotes the concatenation of 𝐴 with 
𝐵 . We say {𝐼1, … , 𝐼𝑛}  are mutually consistent if all finite 
prefixes of them are mutually consistent. Stream 𝑂 represents 
the Logical Merge (LMerge) of mutually consistent streams 
{𝐼1, … , 𝐼𝑛}  if {𝐼1, , … , 𝐼𝑛,𝑂}  are mutually consistent without 
extending 𝑂, and that 𝑂 is minimal. In other words, there is no 
other mutually consistent 𝑂′  with 𝑡𝑑𝑏(𝑂′) ⊂ 𝑡𝑑𝑏(𝑂) . For 
simplicity in the sequel, we assume that all inputs start at the 
same point (the 𝐸𝑖’s are empty). While this assumption will 
not necessarily hold in practice, we can treat an input stream 
that starts late as having a consistent prefix that was skipped 
over. 

The LMerge definition above is abstract – in terms of 
mutual consistency of entire streams, not prefixes. However, 
while we usually wish to propagate inputs to the output 
eagerly, we need to also ensure that, at any given point in time, 
the output is able to follow future additions to the inputs. Thus, 
we need to ensure that the output can “track” any additional 
elements that show up on the inputs. We say that output-
stream prefix 𝑂[𝑗] is compatible with input-stream prefix 𝐼[𝑘] 
if, for any extension 𝐼[𝑘]:𝐸 of the input prefix, there exists an 
extension 𝑂[𝑗]:𝐹 of the output sequence that is equivalent to 
it. Stream prefix 𝑂[𝑗]  is compatible with the mutually 
consistent set of input stream prefixes 𝑰 = {𝐼1[𝑘1], … , 𝐼𝑛[𝑘𝑛]} 
if for any set of extensions 𝐸1, … ,𝐸𝑛  that makes 
𝐼1[𝑘1]:𝐸1, … , 𝐼𝑛[𝑘𝑛]:𝐸𝑛  equivalent, there is an extension 
𝑂[𝑗]:𝐹 of the output sequence that is equivalent to them all. 

The specific criteria for guaranteeing compatibility between 
inputs and the output of LMerge depends on the kinds of 
stream elements allowed and any stream properties guaranteed 
on the inputs (or enforced on the output). We will assume that 
the kinds of elements and the properties are the same for all 
inputs and the output, though one could obviously relax this 
constraint. 

C. Stream Properties and LMerge 

We are interested in properties that a given stream S might 
satisfy in terms of element sequences it allows and the state of 
its TDB. Such properties will affect how the TDB can evolve, 
and may lead to simpler or less space-intensive methods for 
LMerge. Examples: 
• Stream elements are ordered on some time attribute. In 

Example 3, S[5] has this property, but neither U[5] nor 
W[6] does. With this property, once time has advanced to 
point 𝑡, we know we have seen all payloads with 𝑉𝑠 ≤ 𝑡. 
Further, no event in the TDB with a finite 𝑉𝑒  can get 
shorter. 

• There can be at most one close() element for any open() 
element. S[5] and U[5] satisfy this condition, but not 
W[6]. With this condition, we know that once we see a 
close()  element, the corresponding TDB event will be 
present forever. 

• The pair 〈𝑝,𝑉𝑠〉 is a key for every instance of the TDB. 
Such a property might arise if 𝑝 consisted of a sensor id 
and a reading, where no sensor reports more than once 
per time period. Such a constraint can simplify matching 
up corresponding events across inputs to an LMerge 
operator. 

While such properties might be stipulated by input sources, 
they usually arise through compile-time analysis of query 
plans. For example, the last condition above holds on the 
output of any aggregate operator, since the subset of 𝑝 
corresponding to the grouping attributes are in fact a key at 
any point in time. The formulation of input-output 
compatibility for a given situation depends on what properties 
hold, as the following examples show. 

Example 4 (Stream Properties and Compatibility): 
Consider streams with open() and close() elements and the 
property that each open ()  has at most one corresponding 
close () . Then output 𝑂[𝑗]  is compatible with input 𝐼[𝑘]  if 
𝑂[𝑗] ⊆ 𝐼[𝑘]. In that case, there exists an extension 𝐹 such that 
𝑂[𝑗]:𝐹 ≡ 𝐼[𝑘]. So, 𝑂[𝑗]: (𝐹:𝐸) ≡ 𝐼[𝑘]:𝐸 for any extension 𝐸 
of the input. Furthermore, the condition 𝑂[𝑗] ⊆ 𝐼[𝑘]  is 
necessary for compatibility. Suppose 𝑂[𝑗]  contains 
open(𝑝,𝑉𝑠) ∉ 𝐼[𝑘]. Then, there is no way to extend 𝑂[𝑗] to be 
equivalent with 𝐼[𝑘]:∅. So, all the open events in 𝑂[𝑗] must 
be in 𝐼[𝑘]. If 𝑂[𝑗] contains close(𝑝,𝑉𝑒) ∉ 𝐼[𝑘], then there is 
no way to extend 𝑂[𝑗] to be equivalent with 𝐼[𝑘]:close(𝑝,𝑉𝑒 +
1), since 𝑂[𝑗] already contains a close element for 𝑝. In the 
case of a set of mutually consistent inputs 
𝑰 = {𝐼1[𝑘1], … , 𝐼𝑛[𝑘𝑛]} , 𝑂[𝑗]  is compatible with 𝑰  exactly 
when 𝑂[𝑗] ⊆ (∪ 𝑰). 

Example 5 (Compatibility for StreamInsight): This 
example corresponds to StreamInsight, for which we 
implemented the detailed algorithms defined in Section 4. 
StreamInsight has three kinds of elements: 
• insert(𝑝,𝑉𝑠,𝑉𝑒): Adds an event to the TDB with payload 𝑝 

whose lifetime is the interval [𝑉𝑠,𝑉𝑒). 𝑉𝑒 can be +∞. 
• adjust(𝑝,𝑉𝑠,𝑉𝑜𝑙𝑑 ,𝑉𝑒): Change the event 〈𝑝,𝑉𝑠,𝑉𝑜𝑙𝑑〉 to be 

〈𝑝,𝑉𝑠,𝑉𝑒〉 . If 𝑉𝑒 = 𝑉𝑠 , the event 〈𝑝,𝑉𝑠,𝑉𝑜𝑙𝑑〉  is removed. 
For example, the sequence of elements: insert(A, 6, 
20), adjust(A, 6, 20, 30), adjust(A, 6, 30, 25) is 
equivalent to the single element: insert(A, 6, 25). 



• stable(𝑉𝑐): A statement that the portion of the TDB before 
time 𝑉𝑐 is stable: There can be no future insert(𝑝,𝑉𝑠,𝑉𝑒) 
element with 𝑉𝑠 < 𝑉𝑐, nor can there be an adjust element 
with 𝑉𝑜𝑙𝑑 < 𝑉𝑐 or 𝑉𝑒 < 𝑉𝑐.  

The TDB model for StreamInsight is a collection of events 
of the form 〈𝑝,𝑉𝑠,𝑉𝑒〉. 

For our prototypes of LMerge, we consider the following 
range of restrictions that can improve performance if they 
hold. In Section 4, we present algorithms for each point in this 
spectrum, and discuss how stream properties can be derived 
and used to choose an appropriate algorithm. 

R0. There are only insert ()  and stable ()  elements with 
strictly increasing 𝑉𝑠  times. Hence, the stream has 
deterministic order with no duplicate events. 

R1. The input steams consist only of insert() and stable() 
elements, 𝑉𝑠 is non-decreasing, and the order among elements 
with equal 𝑉𝑠 is deterministic. 

R2. Same as R1, except order for elements with the same 𝑉𝑠 
can differ across inputs. Further, for any stream prefix 𝑆[𝑖], 
〈𝑝,𝑉𝑠〉 forms a key for 𝑡𝑑𝑏(𝑆, 𝑖). 

R3. All kinds of elements are permitted and there is no 
constraint on time order, except as imposed by stable () 
elements. As with R2, for any stream prefix 𝑆[𝑖], 〈𝑝,𝑉𝑠〉 forms 
a key for 𝑡𝑑𝑏(𝑆, 𝑖).  

We will use R4 to signify the “no additional restrictions” 
case where all three kinds of elements are permitted, elements 
need not be in timestamp order, and the TDB is a multi-set 
(hence there can be more than one event with the same 
payload and lifetime). 

In order to understand the correctness of our algorithm for 
the R3 case, we find it useful to think of a stable(𝑉𝑐) element 
as “freezing” certain parts of the TDB. A TDB event 〈𝑝,𝑉𝑠,𝑉𝑐〉 
is half frozen (HF) if 𝑉𝑠 < 𝑉𝑐 ≤ 𝑉𝑒  and fully frozen (FF) if 
𝑉𝑒 < 𝑉𝑐 . If 〈𝑝,𝑉𝑠,𝑉𝑒〉  is half frozen, we know there will be 
some event 〈𝑝,𝑉𝑠,𝑉〉  in the TDB henceforth. If 〈𝑝,𝑉𝑠,𝑉𝑒〉  is 
fully frozen, no future adjust() event can alter it, and so it will 
be in all future version of the TDB. Any TDB event that is 
neither half frozen nor fully frozen is unfrozen (UF). 

D. Correctness for the R3 Case 
Before presenting the precise conditions for input-output 

compatibility for R3, we provide examples of possible outputs 
for given inputs to LMerge. Both input and output streams are 
described by their TDBs; our discussion is applicable to any 
input stream that reconstitutes to a given input TDB, and 
allows the output of any stream that reconstitutes to a given 
output TDB. For each of the TDBs below, last is the latest 
value 𝑉  such that a stable(𝑉)  element has been seen. The 
annotation to the right of each event indicates its “freeze” 
status. 

I1 (last:14) 
p  Vs   Ve 
A   2   16 HF 
B   3   10 FF 
C   4   18 HF 
D       15       20  UF 

I2 (last:11) 
p  Vs   Ve 
A   2   12 HF 
B   3   10 FF 
C   4   18 HF 
E      17       21  UF 

O1 (last:11) 
p Vs  Ve 
A   2   ∞ HF 
B   3  10 FF 
C     4     ∞ HF 

O2 (last:14) 
p  Vs  Ve 
A   2  16 HF 
B   3  10 FF 
C   4  18 HF 
D   15 20 UF 
E    17  21 UF 

O3 (last:13) 
p  Vs  Ve 
A   2  12 FF 
C   4  18 HF 
D    15  20 UF 

 

Consider the LMerge of streams corresponding to I1 and 
I2. 

O1 is compatible with I1 and I2.  It has a TDB that might 
result from a conservative tracking policy that outputs only 
information that must be in the output eventually. O1 will only 
require adjustments to end times. 

O2 represents a more aggressive policy, but it is still 
compatible with I1 and I2. It contains events corresponding 
to all input events seen, even if those events are unfrozen. O2 
may have to issue later elements to completely remove some 
events. 

O3 is not compatible with I1 and I2 for two reasons. First, 
although <A, 2, 12> matches an event in I2, it contradicts 
the contents of I1, from which we can tell the end time will be 
no less than 14. As this event is fully frozen in O3, there is no 
subsequent stream element that can correct it. Second, O3 
lacks the event <B, 3, 10>, which is fully frozen in the input 
streams but cannot be added to O3 given its stable point. 

We now describe (and justify) the exact conditions for 
compatibility in the R3 case. 

Assume {𝐼1, … , 𝐼𝑛}  are mutually consistent input streams 
and 𝑂 is the output stream. Suppose at some instant we have 
seen prefixes {𝐼1[𝑘1], … , 𝐼𝑛[𝑘𝑛]}  of the input streams and 
emitted prefix 𝑂[𝑗]  on the output stream. Let TDB𝑚 =
𝑡𝑑𝑏(𝐼𝑚, 𝑘𝑚) and TDB𝑂 = 𝑡𝑑𝑏(𝑂, 𝑗). Assume that stable(𝐿𝑚) 
was the most recent stable() event on 𝐼𝑚, and stable(𝐿) was 
the most recent stable event on 𝑂 . We must have the 
following conditions. 

C1. 𝐿 is no greater than the maximum of the 𝐿𝑚. (If it were, 
then it is possible for an event to appear in one of the inputs 
and be fully frozen there without being able to add it to 𝑂.) 

The other two conditions concern what events may be in 
TDB𝑂  (Condition C2) and what events must be in TDB𝑂 
(Condition C3) for given combination of 𝑝 and 𝑉𝑠. 

C2. TDB𝑂 may contain at most one event for a given 𝑝 and 
𝑉𝑠. 
• If that event is UF, there is no constraint on it (as it can be 

completely removed). 
• If TDB𝑂 contains 〈𝑝,𝑉𝑠,𝑉𝑒〉 that is HF, then there must be 

some TDB𝑚 containing 〈𝑝,𝑉𝑠,𝑉𝑚〉 where either the event 
is HF and 𝐿𝑚 ≤ 𝐿 (so the output event can be adjusted to 
match any changes in TDB𝑚 ) or the event is FF and 
𝐿 ≤ 𝑉𝑚  (so it is still possible to adjust TDB𝑂  to match 
TDB𝑚). 

• If TDB𝑂 contains 〈𝑝,𝑉𝑠,𝑉𝑒〉 that is FF, then there must be 
some TDB𝑚 containing 〈𝑝,𝑉𝑠,𝑉𝑒〉 that is FF (so we know 
that event is definitely in the output). 

C3. TDB𝑂 must have an event for 𝑝 and 𝑉𝑠 in either of two 
cases: 



1) There is an event 〈𝑝,𝑉𝑠,𝑉𝑒〉 in some TDB𝑚 that is FF and 
either 
• 𝐿 ≤ 𝑉𝑠 (in this case, the event can still be added to TDB𝑂), 

or 
• 𝑉𝑠 < 𝐿 ≤ 𝑉𝑒 and TDB𝑂 has 〈𝑝,𝑉𝑠,𝑉𝑂〉 that is HF (note that 

since 𝐿 ≤ 𝑉𝑒, this event can be adjusted to 〈𝑝,𝑉𝑠,𝑉𝑒〉), or 
• 𝑉𝑒 < 𝐿 and TDB𝑂 contains 〈𝑝,𝑉𝑠,𝑉𝑒〉. 

2) No input contains a FF event for 𝑝 and 𝑉𝑠 , but one or 
more inputs contain a HF event of the form 〈𝑝,𝑉𝑠, _〉. Let 𝐼𝑚 be 
the input with such an event with the largest 𝐿𝑚. Then either: 
• 𝐿 ≤ 𝑉𝑠  (in which case an appropriate event can still be 

added to TDB𝑂), or 
• 𝑉𝑠 < 𝐿 ≤ 𝐿𝑚  and TDB𝑂  has 〈𝑝,𝑉𝑠,𝑉𝑂〉 that is HF (which 

can be adjusted to match future changes to the event in 
the input). 

(Note that an UF event 〈𝑝,𝑉𝑠,𝑉𝑒〉 in any input places no 
constraint on TDB𝑂.) 

These conditions are simplified if 𝐿 tracks the largest 𝐿𝑚. 
In that case, the requirement is that TDB𝑂 and TDB𝑚 have the 
same set of FF events, and that their sets of HF events match 
on 𝑝 and 𝑉𝑠. 

Compatibility in the R3 case leaves room for a wide range 
of policies on how loosely or tightly the output of LMerge 
tracks the input. A very liberal policy would be to allow 
arbitrary unfrozen events in the output, even if there is no 
support among the inputs for such an event. This policy is 
likely unwise, since such events would almost surely be 
adjusted, unless there were a robust model for predicting 
future inputs. A more reasonable policy is to allow only half 
frozen and fully frozen events in the output where each event 
has support in the TDB of one of the inputs. That support 
might take the form of an exactly matching event, or, for half-
frozen events in the output TDB, a half-frozen event in some 
input TDB with the same payload and valid start values. A 
conservative policy might only allow an element in the output 
if it is supported by a fully frozen event in one of the input 
TDBs.  These different policies tend to trade latency for 
“chattiness” of the output: how many adjust() elements might 
need to be issued to bring the output into line with 
adjustments on the input. A second aspect of output policy is 
when to issue a stable ()  element on the output. Our 
experience is that we want to keep the output at the maximum 
stable point of all the inputs to minimize the memory 
requirements of LMerge, though there might be cases where 
lagging a bit behind the maximum would avoid some adjust() 
elements in the output. 

Compatibility in the R4 case, where there can be multiple 
events with the same 𝑝  and 𝑉𝑠 , has more complicated 
conformance conditions. If 𝐿, the maximum stable point of the 
output 𝑂, tracks the maximum 𝐿𝑚 , then TDB𝑂  must contain 
all the FF events from TDB𝑚 , and an equal number of HF 
events, for that 𝑝 and 𝑉𝑠. 

IV. ALGORITHMS FOR LOGICAL MERGE 
In this section, we provide algorithms for different variants 

of LMerge optimized for specific stream properties described 
in Section III-C. Section IV-F shows how we may use stream 

properties to decide which algorithm to use, given a CQ and 
input streams. 

A. LMerge Algorithm for Case R0 
We start with case R0, where input streams have elements 

with strictly increasing Vs values, hence no duplicate 
timestamps. In this case, it turns out that we need only two 
pieces of information: the maximum Vs (MaxVs) and the 
maximum stable() timestamp (MaxStable) seen across all 
input streams. Refer to Algorithm R0. When we see the 
insertion of element e on stream s, we can discard the element 
if it does not increase MaxVs, and output it otherwise (Lines 3-
5). Note that s is simply the identifier (for e.g., an integer) of a 
specific input stream. Similarly, a stable() element is output if 
it increases MaxStable (Lines 9-11). Note that in the R0 case, 
stable() elements are in a sense redundant, since the stable 
point advances with each new insert(), though a system might 
include them to signal progress in the presence of lulls. 

 

B. LMerge Algorithm for Case R1 
The next algorithm considers case R1, an insert-only case 

with non-decreasing Vs. Here, we may have duplicate Vs 
timestamps, but such elements are presented in deterministic 
order (e.g., sorted on a field in the payload). This condition 
holds in scenarios such as Top-k aggregation, where elements 
with the same Vs are presented in rank order. Here, all we 
need to maintain (in addition to MaxStable and MaxVs) is an 
array with one counter for each input stream, which counts the 
number of elements on that stream with Vs = MaxVs. Refer to 
Algorithm R1. On an insert element that increases MaxVs, we 
reset this array to zeros (Lines 5-7). If the insert on stream s 
increases the counter for s beyond the old maximum counter 
value across all streams, the insert is sent as output (Lines 8-
10). A stable() element is handled as before. 

Algorithm R0: Logical Merge for Case R0 
 1 MaxStable = MaxVs = −∞; 
 2 Insert(element e, stream s) 
 3   if (e.Vs > MaxVs) 
 4     MaxVs = e.Vs; 
 5     OutputInsert(e); 
 6 Adjust(element e, stream s) 
 7   Error(“Not supported”); 
 8 Stable(timestamp t, stream s) 
 9   if (t > MaxStable) 
10     MaxStable = t; 
11     OutputStable(t); 



 

C. LMerge Algorithm for Case R2 
Next in complexity is case R2, a non-decreasing, insert-

only case where we may have duplicate Vs values, and 
elements with the same Vs may be presented in different 
orders by different streams. We assume that (Vs, Payload) is a 
key in any prefix of the TDB. (The relaxation to handle 
duplicates is straightforward and omitted.) Refer to Algorithm 
2. Our algorithm uses a hash table in addition to MaxStable 
and MaxVs. The hash table indexes (using Payload as key) all 
elements with Vs = MaxVs. When we receive an insert 
element, we check the hash table – if the corresponding 
payload exists, we are done. Otherwise, we update the hash 
table and output the element (Lines 8-10). An element that 
increases Vs beyond MaxVs clears the hash table (Lines 5-7) so 
that it can track elements with the new MaxVs. 

 

D. LMerge Algorithm for Case R3 
We now tackle case R3, where inserts, adjusts, and stable 

elements may be presented in any order, and (Vs, Payload) is 
a key in the TDB for any stream prefix. See Algorithm R3; we 
propose a new index structure called in2t (for index-2-tier) 
depicted in Figure 1 (left). The top tier of in2t is a red-black-
tree keyed by (Vs, Payload), where each node consists of an 
event and points to a second tier index implemented as a hash 
table. The hash table contains, for each input stream s, the 
current Ve value for that stream indexed by key s. An 
additional hash table entry with special key ∞  is also 
maintained for the output. 

On an insert() element in stream s, we lookup in2t for a node 
with the same (Vs, Payload). If such a node does not exist 
(Lines 5-10), we add the node and produce output. In the hash 
table, we add an entry for stream s as well as for the output. 
An exception is when Vs is less than MaxStable (Line 6), 
which indicates that the corresponding entry previously 
existed and has been removed from in2t. Otherwise (Line 12), 
we simply add an entry to the hash table and return. An 
adjust() element is handled similarly (Lines 14-16), except 
that output is not produced as a result of an adjust.  

Finally, consider the processing of a stable() element e. We 
only need to handle stable() elements that increase 
MaxStable. We first find nodes that are going to become half 
frozen in in2t; i.e., nodes whose Vs is less than e’s timestamp. 
For each such node, we check if there is a mismatch between 
the output and the input, where a compatibility violation is 
going to occur as a result of outputting e. There are three cases 
of compatibility violations: 

• There is no input event for (Vs, Payload) in stream s, but 
there is an output event (due to some other input stream). 

• The currently output event will become fully frozen due 
to e, but the corresponding input is not fully frozen. 

• The input event will become fully frozen, but the current 
output is not fully frozen. 

In all cases, we adjust the output so that it matches the input 
(Lines 24-27). This choice – of correcting output only to avoid 
irrecoverable divergence between output and input – 
represents one out of several policies discussed in Section 5.1. 
Finally, if the input becomes fully frozen, we delete the 
corresponding node from in2t (Lines 28-29), update 
MaxStable, and output a stable() element (Lines 30-31). 

 

Algorithm R1: Logical Merge for Case R1 
 1 MaxStable = MaxVs = −∞; 
 2 SameVsCount[1 ... #inputs] = 0; 
 3 Insert(element e, stream s) 
 4   if (e.Vs < MaxVs) return; 
 5   if (e.Vs > MaxVs) 
 6     SameVsCount[1 ... #inputs] = 0; 
 7     MaxVs = e.Vs; 
 8   if (MAX(SameVsCount) == SameVsCount[s]) 
 9     OutputInsert(e); 
10   SameVsCount[s]++; 
11 Adjust(element e, stream s) 
12   Error(“Not supported”); 
13 Stable(timestamp t, stream s) 
14   if (t > MaxStable) 
15     MaxStable = t; 
16     OutputStable(t); 

Algorithm R2: Logical Merge for Case R2 
 1 MaxStable = MaxVs = −∞; 
 2 hash = new Hashtable(); 
 3 Insert(element e, stream s) 
 4   if (e.Vs < MaxVs) return; 
 5   if (e.Vs > MaxVs) 
 6     hash.Clear(); 
 7     MaxVs = e.Vs; 
 8   if (!hash.Contains(e)) 
 9     hash.Add(e); 
10     OutputInsert(e); 
11 Adjust(element e, stream s) 
12   Error(“Not supported”); 
13 Stable(timestamp t, stream s) 
14   if (t > MaxStable) 
15     MaxStable = t; 
16     OutputStable(t); 

Algorithm R3: Logical Merge for Case R3 
 1 MaxStable = −∞; 
 2 index = new in2t(); 
 3 Insert(element e, stream s) 
 4   node f = index.SameVsPayload(e); 
 5   if (!exists(f)) 
 6     if (e.Vs < MaxStable) return; 
 7     f = index.AddNode(e); 
 8     OutputInsert(e); 
 9     f.AddHashEntry(∞, e.Ve); // hash entry for o/p 
10   f.AddHashEntry(s, e.Ve); // hash entry for i/p 
11 Adjust(element e, stream s) 
12   node f = index.SameVsPayload(e); 
13   if (!exists(f)) return; 
14   f.UpdateHashEntry(s, e.Ve); 
15 Stable(timestamp t, stream s) 
16   if (t <= MaxStable) return; 
17   iterator it = index.FindHalfFrozen(t); 
18   while (node f = it.Next()) 
19     InVe = f.GetHashEntry(s); 
20     if (!exists(InVe)) InVe = f.GetEvent().Vs; 
21     OutVe = f.GetHashEntry(∞); 
22     if (InVe != OutVe and  
23        (InVe < t or OutVe < t)) 
24       OutputAdjust(f.GetEvent(), Ve: InVe); 
25       f.UpdateHashEntry(∞, InVe); 
26     if (InVe < t) // fully frozen 
27        index.DeleteNode(f);  
28   MaxStable = t; 
29   OutputStable(t); 

2 
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E. LMerge Algorithm for Case R4 
The main challenge with case R4 is that many elements in a 
stream can have the same (Vs, Payload), with different Ve 
values. Further, there could be duplicates in the stream. 
Hence, we propose a new index structure – shown in Figure 1 
(right) – called in3t (for index-3-tier), where we replace the 
single Ve value in each entry of the lower-level hashtable of 
in2t with a small index (red-black-tree) on Ve, where each Ve 
is associated with its count (to handle duplicates). See 
Algorithm R4; during insert and adjust, the output is updated 
lazily as before. When processing a stable() element, we 
ensure future compatibility before producing a stable() 
element as output. The invariants we maintain are more 
subtle: 

• (Lines 9-11) The output TDB contains no more events for 
a particular (Vs, Payload) than the maximum number of 
events in any input TDB, for that (Vs, Payload). While 
not necessary, this condition helps limit output chattiness. 

• (Lines 20-22) When an incoming stable() element has a 
timestamp greater than some Vs (i.e., that Vs becomes 
half frozen), we ensure that, for each (Vs, Payload) that is 
getting half frozen, there are exactly as many output 
elements with a value of (Vs, Payload) as there are in the 
input. This invariant needs to be met before we can 
propagate the stable() element, in order to guarantee 
future convergence. The method AdjustOutputCount() 
determines the exact procedure for meeting this invariant; 
briefly, it involves producing new output elements or 
“canceling” prior output elements for that (Vs, Payload) 
combination. We discuss this method below. 

• (Lines 23-26) For a particular (Vs, Payload), if some Ve 
becomes fully frozen as a result of an incoming stable() 
element, we need to ensure that our output TDB contains 
the same number of events with that (Vs, Payload, Ve), 
before propagating the stable() element. The 
AdjustOutput() method achieves this invariant; briefly, 
it involves adjusting the Ve of events output earlier with 
the same (Vs, Payload). We discuss this method below. 

When the stable() timestamp moves beyond the largest Ve, 
for a particular (Vs, Payload), the corresponding node can be 
deleted from the top tier of in3t (Lines 27-28). 
 
Adjusting Output to Meet Invariants   The method 
AdjustOutputCount() ensures that, when a particular Vs gets 

half frozen, there are exactly as many output elements with a 
value of (Vs, Payload) as there are in the input. There are two 
possibilities. If there are more output events with the given 
value of (Vs, Payload), we delete output elements until the 
counts are identical. If there are more input events, we output 
new insert() elements for (Vs, Payload) with Ve values that 
have been seen on the input stream that is getting half frozen. 
During this process, we may also choose to update existing 
output Ve values so that the input and output streams match 
exactly for that (Vs, Payload) combination. This may be 
useful if we expect half frozen elements to rarely get updated 
in the future. 
   When an element with a particular (Vs, Payload, Ve) 
combination would become fully frozen due to a stable() 
element, the AdjustOutput() method ensures that we have 
the same count of output elements for that (Vs, Payload, Ve) 
combination as we have in the corresponding half frozen input 
(if the element is an output element that is not half frozen in 
the input, it can be deleted). Assuming that the total count 
invariant for half frozen elements was met earlier, and that 
input streams are logically identical, we are guaranteed to find 
existing output elements with the same (Vs, Payload) 
combination that we can adjust to achieve the above. Thus, 
depending on whether the output count for (Vs, Payload, Ve) 
is smaller or larger that the input count,  AdjustOutput() has 
to either (1) change the Ve of existing output elements with a 
larger Ve to the current Ve value; or (2) expand the current Ve 
value to a larger value, either ∞ or a Ve present in the input 
for that (Vs, Payload) combination. 
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Algorithm R4: Logical Merge for Case R4 
 1 MaxStable = −∞; 
 2 index = new in3t(); 
 3 Insert(element e, stream s) 
 4   node f = index.SameVsPayload(e); 
 5   if (!exists(f)) 
 6     if (e.Vs < MaxStable) return; 
 7     f = index.AddNode(e); 
 8   f.IncrementCount(s, e.Ve); 
 9   if ((e.Vs>=MaxStable) and (f.GetCount(s)>f.GetCount(∞))) 
10     OutputInsert(e); 
11     f.IncrementCount(∞, e.Ve); 
12 Adjust(element e, stream s) 
13   node f = index.SameVsPayload(e); 
14   if (!exists(f)) return; 
15   f.IncrementCount(s, e.Ve); f.DecrementCount(s, e.Vold); 
16 Stable(timestamp t, stream s) 
17   if (t <= MaxStable) return; 
18   iterator it = index.FindHalfFrozen(t); 
19   while (node f = it.Next()) 
20     if (f.Vs >= MaxStable) // element getting half frozen 
21        // ensure #o/p events=#i/p events for that (Vs, P) 
22        AdjustOutputCount(f); 
23     iterator itIn = f.FindAllVe(s); 
24     iterator itOut = f.FindAllVe(∞); 
25     // Make o/p reflect i/p for all FF (Ve < t) nodes 
26     AdjustOutput(f, t, itIn, itOut); 
27     if (f.GetMaxVe(s) < t) // Done processing that (Vs, P) 
28        index.Delete(f); 
29   MaxStable = t; 
30   OutputStable(t); 



F. Space and Runtime Complexity of LMerge 
We analyze the complexity of the LMerge algorithms on the 
basis of runtime stream properties that characterize the nature 
of input streams to LMerge. These properties can be measured 
as statistics during runtime, although some may be determined 
statically based on operators in the plan. Let s denote the 
number of input streams to LMerge. Consider the set of events 
that are “alive”, i.e., not fully frozen at any given instant. Let 
𝑤 denote the number of unique (Vs, Payload) values, and 𝑑 
denote the number of elements with the same (Vs, Payload). 
Further, let 𝑔 denote the number of events with the same Vs, 
and let ℎ  represent the number of distinct half-frozen (Vs, 
Payload) values. Finally, let 𝑐 be the number of events that 
become fully frozen due to a stable() element, and let 𝑝 denote 
payload size. Based on these properties, the complexity of the 
various LMerge algorithms is shown in Table IV. 

TABLE IV 
RUNTIME AND SPACE COMPLEXITY OF LMERGE. 

Case Runtime Complexity Space 
Complexity Insert Adjust Stable 

R0 O(1) n/a O(1) O(1) 
R1 O(𝑠) n/a O(1) O(𝑠) 
R2 O(𝑠) n/a O(1) O(𝑔 ⋅ 𝑝) 
R3 O(lg𝑤) O(lg𝑤) O(𝑐 ⋅ lg𝑤 + ℎ) O(𝑤(𝑝 + 𝑠)) 
R4 O(lg𝑤 + lg 𝑑) O(lg𝑤 + lg 𝑑) O(𝑐 ⋅ lg𝑤 + ℎ ⋅ 𝑑) O(𝑤(𝑝 + 𝑠 ⋅ 𝑑)) 

G. Choosing the Right LMerge Algorithm 
Given a range of algorithms for LMerge, a question that 

naturally arises is: How do we choose the right version of 
LMerge for a given set of input streams and query plan? We 
derive and reason about compile-time stream properties in 
order to answer this question. We do not give a detailed 
formalism of stream properties here, but we provide several 
examples to illustrate how stream properties are used for this 
purpose: 
1) Every input stream publishes properties that indicate 
whether the stream is ordered, has adjust() elements, or has 
duplicate timestamps. If we are merging such input streams 
directly, we can use such properties to choose an algorithm. 
2) The DSMS may have special operators that enforce certain 
properties. For example, many systems have a reordering or 
cleansing operator that accepts disordered input, buffers it and 
outputs an in-order stream. Such a stream can be annotated at 
compile-time in order to choose an appropriate LMerge 
algorithm. 
3) Certain operators or groups of operators produce streams 
with a certain property. For example, an in-order stream fed 
into a windowed aggregate (e.g., count) outputs one event per 
strictly increasing timestamp, leading to a choice of algorithm 
R0. 
4) If each input to LMerge results from an in-order stream fed 
into a sliding window multi-valued aggregate such as Top-k, 
we would choose algorithm R1, due to duplicate timestamps. 
5) If each query under LMerge performs a grouped 
aggregation (e.g., a count for every machine in a data center) 

over an ordered stream, we would use algorithm R2 since the 
order for elements with the same Vs is non-deterministic. 
6) If each query instead performs a grouped aggregation (e.g., 
count) over a disordered stream, we would use algorithm R3. 

V. DISCUSSION AND EXTENSIONS 

A. LMerge Policy Choices 
Under the basic requirement of LMerge maintaining 

“compatible” output, we can implement various policies. For 
example, Algorithm R3 (Section IV) highlights two locations 
where we have such freedom to choose different policies. In 
location 1, we choose to never output incoming adjust events, 
instead preferring to retain the current output for every unique 
Vs. We issue adjust() elements to ensure that output is 
compatible with inputs, only when we process a stable() 
element. This policy limits chattiness of LMerge, as the 
following theorem indicates. 
Theorem 1 (Non-chattiness) Algorithm R3 outputs no more 
insert() or adjust() elements than the total number of insert() 
elements received. Further, R3 outputs no more stable() 
elements than the total number of stable() elements received. 
Some alternatives here include: 
• We can reflect every adjust() element at the output. This 

choice makes LMerge more “chatty”, but allows listeners 
to process such changes earlier if they are interested. 

• Force LMerge to “follow” a particular input stream, for 
example, the stream with the currently maximum stable() 
timestamp (called the leading stream). This choice may 
be appropriate when one stream is usually ahead of the 
others. However, if the leading stream keeps changing, 
this policy can incur significant overhead in re-adjusting 
output. Note that even in this case, LMerge needs to track 
information from other inputs in order to handle the case 
where the leading stream detaches. 

Another point for choosing a different policy is location 2. 
When we process the first insert element for a particular Vs, 
we reflect it at the output immediately. While this policy 
ensures that output is maximally responsive, as before, we 
may choose other variants: 
• We can output an insert only if it is produced by the 

leading stream, or the stream with the highest insert() 
timestamp or the maximum number of unfrozen elements. 

• We can avoid sending an element as output until it gets 
half frozen on some input stream. This policy ensures that 
we never fully remove an element that we place on the 
output, at the expense of higher latency. 

A hybrid choice may be to wait until some fraction of the 
input streams have produced an element for each Vs, before 
sending it to the output. If input streams are physically 
different, this policy may reduce the probability of producing 
spurious output that later needs to be fully deleted. 

B. Joining and Leaving Input Streams 
We need to handle joining and leaving streams. When a 

stream leaves LMerge, it is simply marked as “leaving”. 
Eventually, our algorithms guarantee that it will no longer be 



considered during LMerge. A joining stream provides a 
timestamp t such that it is guaranteed to produce the correct 
TDB for every point starting from t (i.e., every event in the 
TDB with Ve ≥ t). We can mark the stream as “joined” as soon 
as MaxStable reaches t, since from this point forwards, 
LMerge can tolerate the simultaneous failure or removal of all 
the other streams. 

C. Handling Missing Elements 
We would like to handle the case where individual input 

stream may contain missing elements. One may expect that 
our goal should be that the output must contain an element as 
long as some input stream reports it. However, it is easy to see 
that this requirement forces LMerge to progress (issue stable() 
elements) only as fast as the slowest progressing input stream. 
(Consider an element that is missing from every stream other 
than the slowest-progressing one.) This option is highly 
undesirable in practice. 

Instead, Algorithms R0, R1, and R2 output elements 
missing in some stream 𝑆  as long as some other stream 
delivers the missing elements to LMerge before 𝑆 delivers an 
element with higher Vs. These algorithms optimistically track 
only the latest Vs across all inputs (MaxVs) in order to 
minimize state and achieve high performance. Algorithms R3 
and R4 output an element e as long as the stream that 
increases MaxStable beyond e.Vs produces element e. 

D. Feedback to Signal Progress 
An interesting application of LMerge is combining several 

alternative, equivalent query plans that behave differently 
under different conditions, such as data-value distributions or 
arrival rates. Alternatively, we may be executing identical 
plans on machines with varying resources such as CPU. 
LMerge can select results from whichever plan is producing 
output the soonest at a given point in time. Under such 
conditions, much of the work of the other plans is wasted, as 
LMerge ignores their outputs. 

We propose a modification to LMerge, where LMerge 
signals to its input plans that elements before a certain time t 
are no longer of interest. This modification can allow the 
slower plans to avoid sending such elements. Particular 
operators may also be able to avoid performing unnecessary 
computations and purge state to save memory, though they 
must retain enough information to potentially produce output 
after time t, if required. 

We have implemented feedback signaling for LMerge (cf. 
Section VI-E). Operators in the slower plan react to the 
feedback signal in order to avoid work, and purge state when 
possible, and propagate the signal further upstream in the plan. 
This capability enables more efficient dynamic selection 
among plans at run time by allowing the slower plans to “fast-
forward” in order to catch up. Note that more general 
exploitation of such signals is possible, along the lines of 
feedback punctuation [8]. 

VI. EVALUATION 
We approach the evaluation of LMerge in three phases: 

1) We demonstrate the behavior of LMerge over streams 
generated using query fragments over disordered input. 
Further, we compare the algorithm variants, some of 
which are relevant only for certain stream properties hold. 

2) We compare the strategy of enforcing stream properties 
in order to use the simpler versions of LMerge, against 
directly using a more general version of LMerge. 

3) We apply LMerge for solving several real applications: 
fast availability, network-congestion masking, and 
dynamic plan selection with feedback signals. 

A. Setup and Implementation 
We use StreamInsight to implement our algorithms. We 

perform our experiments on an 8-core machine with two 
2.33GHz processors and 16GB main memory running 
Windows Server 2008 R2. We evaluated all our proposed 
LMerge variants (see Section IV for details): 

1) LMR4: This operator is the most general LMerge variant 
(case R4), and uses the in3t data structure. 

2) LMR3+: This operator implements the in2t based 
algorithm, and is the preferred algorithm for case R3. 

3) LMR3-: This variant uses a simpler algorithm for case R3 
of LMerge, where events from each input stream are 
maintained in a separate index, with another index used 
to hold output events. The output index is required: (1) to 
check whether an element was previously output; (2) to 
perform adjustments to prior output before propagating a 
stable() element. While this algorithm is simpler to 
implement, it duplicates event information across input 
streams and requires multiple tree lookups at runtime. 

4) LMR2: In case R2, events with the same non-decreasing 
Vs may arrive in different orders at different inputs. Here, 
we only need one index to maintain, for the latest Vs 
across all inputs, all the events seen for that Vs. 

5) LMR1: In case R1, Vs is in non-decreasing order, and 
events with the same Vs are in deterministic order. We 
only need to maintain (1) the latest Vs seen across all 
inputs; and (2) a counter per input, which tracks the 
number of events seen with this value of Vs on that input. 

6) LMR0: Input streams in case R0 are in strictly increasing 
order of Vs. Thus, we only need to maintain the latest Vs 
and the latest stable() timestamp seen across all inputs. 

We also evaluated the combination of LMerge with a Cleanse 
operator (called C+LM) to enforce stream properties a priori 
(see Section VI-D). Finally, we added support in 
StreamInsight for feedback signals (cf. Sections II, V-D, and 
VI-E). 

B. Metrics and Workloads 
We track: (1) Throughput, which measures the number of 

events produced at the output per second; (2) Memory, which 
measures the main memory used by an operator, including 
elements, payloads, and index structures; and (3) Output Size, 
which measures the number of adjust() elements produced. 
This metric quantifies the chattiness of the stream. 



Our evaluation mostly used synthetically generated 
datasets. 2 We use a commercial-grade test stream generator 
[26] to produce data. Each event has two fields, an integer in 
the interval [0, 400] and a randomly generated 1000-byte 
string. The event generator produces between 200K and 400K 
elements, based on a set of supplied parameters, including: 

• StableFreq: The probability that an element in the stream 
is a stable() element. We ensure that at least one insert() 
is generated between consecutive stable() elements. The 
default value of this parameter is 1%. 

• EventDuration: The lifetime of each event. By default, 
lifetime is set so that, on average, around 10K elements 
are “active” (contributing to output) at any point in time. 

• MaxGap: The maximum application-time gap between 
consecutive elements. The gap is chosen randomly from 
the range [0, MaxGap]. We set MaxGap to 20 seconds. 

• Disorder: The fraction of disordered elements. Disorder 
is created by moving 𝑉𝑠  values back by some amount. 
Disorder is generated on a best-effort basis (e.g., we 
cannot have 100% disorder with StableFreq=1). The 
default value is 20%. 

Our generated streams have disorder but no adjust() 
elements. Such elements are naturally produced during query 
processing, and hence we use sub-queries over the stream-
generator output in order to generate them. A simple example 
of such a sub-query is aggregate (count) followed by a 
lifetime modification. 

C. Investigating LMerge Behavior 

                                                 
2  We also tested LMerge with real stock ticker data mined from Yahoo! 
Finance (with no problem). However, the synthetic data generator gave us 
finer control over stream properties of interest. 

We investigate the performance of the different LMerge 
algorithms as we vary different stream characteristics. 

1) LMerge over Ordered Streams   We use an ordered 
stream without adjust() elements, and thus can evaluate all the 
variants of LMerge. Figure 2 shows the memory usage of 
LMerge, as we increase the number of input streams. We see 
that LMR0 and LMR1 have negligible memory usage. LMR2 is 
slightly higher as it maintains all events with the current 
highest Vs. (The lines in Figure 1 for LMR0, LMR1, and LMR2 

overlap as they perform similarly.) LMR3+ incurs slightly more 
memory than the simpler versions due to its generality, but the 
cost is almost independent of the number of inputs, as it shares 
evhent payloads across inputs. In contrast, LMR3- requires 
much more memory due to duplication of data, and degrades 
linearly with the number of input streams. 
We compare the algorithms in terms of throughput in Figure 
3. As expected, the simpler algorithms provide higher 
throughput. Between LMR3- and LMR3+, we see that LMR3+ 
does much better than LMR3- due to the optimized data 
structure and algorithm. 

2) Output Size, Increasing Disorder   We introduce disorder 
in the input stream, and feed it into a sub-query that generates 
many adjust() elements. Figure 4 compares the output of 
LMerge to the output without LMerge, as we increase the 
percentage of disorder. We see that when disorder increases, 
the number of adjusts increases significantly at the output. 
However, our specific output policy controls chattiness by 
limiting the production of intermediate adjusts that may not be 
present in the final TDB. 
3) Throughput, Increasing Stream Lag  We feed LMerge 
three input streams with 20% disorder each, with StableFreq 
set at 0.1%. Element lifetimes are kept at 40 seconds. We 
simulate lag on two of the input streams by delaying event 
generation by a fixed amount of time. Figure 5 shows 
throughput as we increase lag from 0 to 5 seconds. We 
observe that as lag increases, LMerge performance improves 
since it can directly drop tuples from the lagging streams. 
LMerge hides the lag on the slower streams by following the 
“fastest” stream. Further, throughput gains are higher if more 
streams are lagging, as long as at least one stream is able to 
keep up with the workload (We experiment further with this 
phenomenon in Section VI-E.)  
4) Memory and Throughput, Varying StableFreq  We 
measure the effect of StableFreq on throughput and memory 
of LMerge. As we increase StableFreq from 0.001% to 1%, 
we see in Figure 6 (left) that memory usage decreases as 

Fig. 4 Output size, increasing disorder. Fig. 2 Memory, in-order input streams. Fig. 3 Throughput, in-order streams. 

Fig. 5 Throughput, increasing stream lag. 



expected, due to more frequent cleanup. On the other hand, 
the throughput for LMR3+ and LMR4 decreases as shown in 
Figure 6 (right), as we need to perform more frequent 
compatibility checks. Note that the throughput for simpler 
schemes is not affected since they have significantly simpler 
algorithms for stable() elements. 
D. Enforcing Stream Properties 

Noting that the LMerge algorithms are significantly 
simplified for special cases where the stream satisfies specific 
properties, we investigate the possibility of enforcing these 
properties before feeding streams to the simpler versions of 
LMerge tailored for such properties. Timestamp ordering is 
enforced by a special Cleanse operator, which accepts a 
disordered stream and buffers elements until a stable() 
element is received, at which point it releases (in timestamp 
order) all fully frozen elements. We enforce ordering by 
placing a Cleanse at each input to LMR1, which has constant 
memory requirement and is very efficient; this scheme is 
referred to as C+LMR1. We use an input stream with 50% 
disorder, and pass it through an aggregate operator. The 
output of this query fragment contains 36% adjust() elements, 
with a 0.1% chance of seeing a stable() element. 

1) Memory Consumption   As we increase the number of 
inputs to LMerge from 2 to 10, we see from Figure 7 (left) 
that our optimized LMR3+ algorithm performs best, and its 
memory usage is almost independent of the number of input 
streams. However, the Cleanse-based solution (C+LMR1) 
suffers linear degradation due to the overhead of ordering 
each stream separately – the overhead is nearly 7X more than 
LMR3+ for 10 inputs. We also see that LMR3- degrades linearly 
with number of inputs due to no sharing of payloads across 
inputs. 
2) Throughput   Figure 7 (right) depicts throughput as we 
increase the number of input streams. Our solution (LMR3+) 
outperforms the Cleanse-based solution (C+LMR1). The 

relative improvement increases as we add more inputs because 
C+LMR1 suffers from having to execute several Cleanse 
operators (one for each input) along with an LMerge operator 
(LMR1) for the final merge. As before, LMR3- does not 
perform well due to its naïve data structure. 
3) Latency   With C+LMR1, the Cleanse operator buffers 
elements and produces output only when fully frozen. Thus, 
the latency of C+LMR1 will grow with event lifetimes and the 
amount of potential disorder, since in order to maintain strict 
ordering, it needs to hold on to an element until stable() 
crosses Ve. Using LM directly, on the other hand, incurs 
latency in milliseconds (120ms on average for LMR3+). Even 
if event lifetimes and the amount of potential disorder are a 
few seconds, the Cleanse solution will incur orders-of-
magnitude higher latency than using LM directly. 

In summary, applying LMerge directly on streams with 
disorder/revisions is superior (for memory, latency, and 
throughput) to ordering streams and doing a simpler merge. 

E. Evaluating LMerge Applications 
We next report on experiments that reflect different real-world 
situations where one might apply LMerge in practice.  
1) Handling Bursty Data   We generate four bursty streams 
with 20% disorder, each having an average event rate of 5000 
elements/sec (this rate does not result in CPU overload under 
normal conditions). Bursty streams may exist in real 
applications due to several reasons such as CPU load and 
resource variations on machines, garbage collection, 
scheduling vagaries, and queue buildup between operators. 
We model burstiness by inserting random delays between 
tuples in a stream with a small probability (between 0.3 and 
0.5%). The delays are chosen from a truncated normal 
distribution with mean 20 and standard deviation 5. Since 
elements arrive from sources at a constant rate, such delays 
result in temporary event build-up in queues, and cause 
subsequent compensating spikes in throughput. Figure 8 

Fig. 6 Memory and throughput, increasing StableFreq. Fig. 7 Memory and throughput, enforcing stream properties. 

Fig. 10 Plan switching with fast-forward. Fig. 8 Handling bursty streams. Fig. 9 Masking network congestion. 



shows one of the input streams, along with the output of 
LMerge. Each stream is bursty, but LMerge smooths out the 
burstiness because it chooses to follow the best input at any 
given instant. Note that with many inputs to LMerge, the 
probability of all inputs behaving in a bursty manner at the 
same instant is greatly reduced. 
2) Masking Network Congestion   We use the same streams 
as before, presented at a rate of 5000 elements/sec. We model 
network congestion at different points in time in each of three 
streams, by introducing normally distributed delays between 
elements during the congested period. Network congestion 
results in temporary low throughput, followed by a spike in 
throughput when conditions return back to normal. Figure 9 
shows the input streams as well as the output of LMerge. We 
see that the output of LMerge is unaffected by such 
congestion, as it is able to produce output as long as at least 
one input is not lagging. Note that at around 18 seconds, two 
inputs are simultaneously congested, but LMerge is unaffected 
as expected. Thus, we are able to completely mask the effect 
of such congestion using LMerge. 
3) Dynamic Plan Switching with Fast-Forward   We 
investigate the advantage of using LMerge for workload-
based plan switching (see Sections II and V-D). We instantiate 
two alternate plans for the same query, both of which perform 
a user-defined selection function (UDF) on the data. The first 
plan (UDF0) is expensive for small values of X (a payload 
field), while the second plan (UDF1) is expensive for large 
values of X. We feed a stream with 200K elements, where 
alternating sequences (batches) of events have low and high 
values of X. The batch size is varied randomly between 10K 
and 30K elements. Thus, the “optimal” 
plan switches 9 times during execution. We show the 
performance of these queries individually (without LMerge) 
in Figure 10, where UDF0 and UDF1 finish in 176 and 163 
seconds respectively. We next place LMerge (LMR3+) above 
the two queries. One may expect LMerge to benefit from plan 
switching, but adding LMerge is not very useful because, 
while it tracks the faster input at any point, the total work 
performed in both queries is identical. Thus, the total 
processing time for LMerge is around 163 seconds. 

We then let LMerge send feedback signals as described in 
Section V-D, to fast-forward the slower plan. This scheme, 
called LM+Feedback, allows LMerge to follow the faster 
plan, at the same time fast-forwarding the slower plan so that 
it can be immediately tracked by LMerge when it becomes 
optimal in the future. Overall, LM+Feedback completes 
execution in around 34 seconds, and is nearly 5X faster than 
LMR3+ without feedback. 

VII. RELATED WORK 
Stream and Temporal Models  A wide range of stream 

and temporal models have been proposed in research and 
adopted by industry. The model of STREAM [13], one of the 
early DSMSs, is adopted by Oracle CEP [25]. Aurora/Borealis 
[12] was commercialized as StreamBase. The CEDR project 
[4] proposed an interval-based algebra, motivated by early 

research on temporal databases [21], and forms the basis of 
StreamInsight [22]. NiagaraST [5] uses an interval-based 
model, but does not support speculation. In Nile [11], positive 
tuples begin new events while negative tuples expire older 
events. In Section III, we present the theory of LMerge as a 
general operator that can be used with any of these stream 
models – we discuss open and close elements (that are similar 
to I-streams and D-streams or positive and negative tuples) in 
Example 3. Our specific algorithms and implementations in 
this paper adopt the interval-based temporal model [4, 5, 21, 
22], although other models can be handled with modifications. 

High Availability   High-availability in stream processing 
systems is a well-studied topic. Most techniques for high 
availability assume a primary copy of the query, and a backup 
copy that takes over when the primary fails. Hwang et al. [15] 
give a good overview of high availability schemes proposed 
for streams. Hwang et al. [9] propose a high-availability 
solution for wide-area networks that uses a duplicate-
elimination operator for insert-only disordered streams. This 
algorithm can be classified as falling between R2 and R3 in 
our classification. In contrast, we focus on LMerge as a 
general primitive over a broad class of stream definitions, 
propose a suite of algorithms for LMerge, leverage stream 
properties and feedback for efficiency, and use LMerge for 
many new applications beyond high availability. 

Dynamic Plan Switching   Yang et al. [18] present an 
approach to switching between plans for a running stream 
query, which follows up on earlier seminal work by Zhu et al. 
[20]. Their approach involves determining a split time, where 
the old plan delivers all results before that time, and the new 
plan after. Such a cut-over involves a certain determinism in 
streams that would be hard to meet in the presence of disorder 
or element modifications.  LMerge, in contrast, can cope with 
both queries running at once and producing distinct physical 
streams. Heinz et al. [19] use this cut-over technique to switch 
among plans when input statistics change significantly. We 
note that LMerge can provide a similar capability by running 
the alternative plans together and using feedback signaling to 
suppress work on slower plans. 

Eddies [16] allows the choice of query plan to be chosen on 
a fine per-tuple granularity, but does not target temporal 
streams. LMerge, on the other hand, is a general operator that 
allows plan switching as one of its applications. Feedback 
signals sent from LMerge to fast-forward slow plans can be 
viewed as a novel application of feedback punctuation [8], 
which has been proposed and used in a different context. 

VIII. CONCLUSIONS 
We introduced the Logical Merge (LMerge) operator as a 

general duplicate-eliminating Union over input streams that 
are physically divergent and fallible. We defined LMerge in 
such a way that it can apply to any DSMS in which a stream 
(implicitly or explicitly) represents a temporal database. We 
discussed how input stream properties can affect LMerge, and 
presented a range of algorithms that deal with progressively 
more general cases. 



We implemented our LMerge variants as operators in 
Microsoft StreamInsight, as well as feedback signals to reduce 
work in input queries. We first evaluated the different 
algorithms, over input streams that satisfied the strictest case, 
and then explored the response of specific algorithms to 
stream characteristics such as disorder and lag. We examined 
the benefit of a general LMerge relative to explicitly enforcing 
the stricter input properties that the more constrained versions 
require. Here, we found that using a general LMerge can 
sometimes provide orders-of-magnitude better memory and 
latency features, along with higher throughput. Finally, we 
showed the suitability of LMerge for applications with bursty 
events and congestion, where LMerge can smooth out 
variability. We also examined merging plans with different 
responses to data patterns, and showed that using feedback 
signals to fast-forward slower plans can significantly improve 
overall throughput. 
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