
FLARE: Fast Layout for Augmented Reality Applications
Ran Gal∗

Microsoft Research
Lior Shapira†

Microsoft Research
Eyal Ofek‡

Microsoft Research
Pushmeet Kohli§

Microsoft Research

Figure 1: Designing an immersive augmented reality (AR) application such as a dynamic racing game is difficult. In our framework (a) declarative
rules are used to define application elements and the rules governing them (b) in real-time we analyze an environment to extract scene geometry
and horizontal and vertical planes (c) our move-making algorithm targets the application to the room (d) an additional result of our system in a
different room with a longer track.

ABSTRACT

Creating a layout for an augmented reality (AR) application which
embeds virtual objects in a physical environment is difficult as it
must adapt to any physical space. We propose a rule-based frame-
work for generating object layouts for AR applications. Under
our framework, the developer of an AR application specifies a set
of rules (constraints) which enforce self-consistency (rules regard-
ing the inter-relationships of application components) and scene-
consistency (application components are consistent with the phys-
ical environment they are placed in). When a user enters a new
environment, we create, in real-time, a layout for the application,
which is consistent with the defined constraints (as much as possi-
ble). We find the optimal configurations for each object by solving
a constraint-satisfaction problem. Our stochastic move making al-
gorithm is domain-aware, and allows us to efficiently converge to
a solution for most rule-sets. In the paper we demonstrate several
augmented reality applications that automatically adapt to different
rooms and changing circumstances in each room.

Index Terms: F.4.1 [Mathematical Logic]: Logic and Con-
straint Programming—; G.3 [Probability and Statistics]: Markov
Processes—;

1 INTRODUCTION

Augmented reality is a growing trend on mobile platforms, as well
as on emerging wearable computing platforms. Yet, AR systems
have struggled to make the transition from laboratory to the real
world. A particular hindrance to the successful deployment of AR
systems is the complex and variant nature of reality. AR appli-
cations must work in any environment the user finds herself in.
Therefore, the layout of the different elements comprising the AR

∗e-mail: rgal@microsoft.com
†e-mail:liors@microsoft.com
‡e-mail:eyalofek@microsoft.com
§e-mail:pkohli@microsoft.com

application must be consistent with the environment. Simple ap-
plications might consist of planar information overlaid on reality,
or virtual objects hanging in free space in front of a user. How-
ever, creating an application which truly integrates with the envi-
ronment, embedding virtual objects among real physical objects is
much more complex.

Several issues make this task challenging: First, the layout of vir-
tual objects must be consistent with the placement of other virtual
objects, as well as with the geometry of the physical environment
they are placed in. For example, an application might require that
two elements be placed within two feet of each other, but also that
both be placed on an elevated horizontal surface. Second, a user
might deploy several applications in the same environment, all of
which must be laid out successfully without interfering with each
other. Finally, several users might be collaborating using an AR ap-
plication in a shared environment, further complicating the layout
of the application elements.

In this paper we describe FLARE (Fast Layout for Augmented
Reality), an application development system that enables targeting
of AR applications to a variety of environments. In this system
the layout of an AR application is designed using declarative rules,
describing the desired mapping of the application elements to an
environment. Each element has a state defined by a set of proper-
ties (e.g. position, scale, color). The declarative rules refer to these
properties and to environment properties, and have a cost function
associated with them. Mapping an application to an environment
consists of finding an optimal (or close to optimal) state for all ele-
ments, such that the overall cost of the rules is minimized. Targeting
several applications to a single environment, or sharing an applica-
tion between multiple users is translated in our system to additional
rules constraining the system.

We capture the user’s environment using a Kinect camera (RGB
and depth streams), and process it using Kinect Fusion [25] to ex-
tract dense scene geometry. We detect planar surfaces in the room
and label them as vertical (e.g. walls, cabinets), horizontal (e.g.
floor, table) or other. Planar features are common in indoor scenes
and are useful to many applications. Adding additional detectors
(e.g. object detection, recognizing previously visited rooms) could
enable more complex rules and applications. FLARE performs a
real-time mapping of the application to the user’s current environ-



ment, by applying the rules to the application elements, and the ge-
ometric information extracted from the scene. Finding the optimal
layout under a complex set of rules is difficult, and requires the so-
lution of a weighted constraint-satisfaction problem. A commonly
used approach is to explore the solution space by local search, i.e.,
start from an initial solution and proceed by making a series of
changes (moves) which lead to solutions having lower cost. The
algorithm is said to converge when no lower energy solution can be
found. Our algorithm proposes a new method for generating moves
with higher acceptance probability. We demonstrate its efficacy in
reducing the number of moves required.

To summarize, our contributions are (1) FLARE, a general
framework for designing the layout of an AR application (2) a
quick-converging algorithm for finding an optimal layout. The rest
of the paper is organized as follows, in section 2 we discuss related
work. In section 3 we provide a formalization for the layout design
problem and describe our declarative framework. In section 4 we
describe our method for generating compact mathematical descrip-
tions of design rules and our algorithm for computing the optimal
layout. In section 5 we demonstrate our framework in action, de-
tailing several synthetic rule-sets and some AR applications. We
conclude in section 6 by listing some observations regarding our
framework and discussing directions for future work.

2 RELATED WORK

Mapping AR to the real world Augmented reality [2, 6], in
general, should work in a large range of environments. Mobile
AR application such as [19, 31] use the location of the user and
the orientation of the mobile device to add a 2D overlay over the
user’s view. For location-specific apps, the geometry of a site can
be computed in advance, for example archaeological sites [1], Mu-
seums [23], manufacturing floor [26], projection mapping [12].
In recent years many augmented reality apps and games, were de-
signed for a simple planar world on which the augmented content
resides. The world plane is attached to a known pattern, found on
a magazine ad or a packaging of a product [19, 15]. Recent works
[25, 14] used the recovered 3D geometry of the scene to demon-
strate some physical simulation examples.

Layout Synthesis The availability of 3D models of physical
spaces has inspired a large amount of work on generating layouts.
In [34, 24] a set of rules and spatial relationships for optimal fur-
niture positioning are established from examples and expert-based
design guidelines. These rules are then enforced as constraints to
generate furniture layout in a new room. [34] employed a simu-
lated annealing method which is effective but takes several minutes,
while [24] sample a density function using the Metropolis-Hastings
algorithm implemented on a GPU. They evaluate a large number of
assignments and achieve interactive rates (requiring a strong GPU).
Both papers work with a small number of objects in relatively small
rooms and in static scenarios. [10] showed how arrangements of 3D
objects can be found using a data-driven example based approach.
[33] populate a scene with a variable number of objects (open uni-
verse). They present a probabilistic inference algorithm extending
simulated annealing with local steps, however the computation cost
is high and the procedure takes upwards of 30 minutes.

Constraint Satisfaction for Design The problem of rule
based design generation has a long history. Design and layout syn-
thesis consist of rules referencing a set of objects. An assignment to
each object can be measured by how well the rules are met, whether
they are satisfied or violated. As an example of an early work in this
space, the Ultraviolet [4] system used a constraint satisfaction algo-
rithm framework for interactive graphics. The constraints for user
interface layout usually form a non-cyclic graph, are hierarchical in
nature and container based and are therefore less complex.

Constraint satisfaction problems (CSP) [22] are fundamental in
Artificial Intelligence and Operations Research. A variant of the

problem, weighted CSP defines a cost function assigned to each
constraint, and the objective is to minimize the overall cost. A large
majority of CSP algorithms [18] use a search paradigm over a lim-
ited set of possible object assignments. More recently, [21] per-
formed Pattern Colorizations by solving a CSP. These approaches
are relatively rigid, and do not offer interactive performance. In
contrast, our method for computing consistent layouts can adapt to
the problem at hand and is inspired from move making algorithms
that have been used for image labeling problems.

Discrete Optimization for Image Labeling In computer vi-
sion, many tasks such as segmentation of an image can be formu-
lated as image labeling problems where each variable (pixel) needs
to be assigned the label which leads to the most probable (or lowest
cost/energy) joint labeling of the image. The models for these prob-
lems are usually specified as factor-graphs in which the factor nodes
represent the energy potential functions that operate on the vari-
ables [17]. In most vision models, the energy function is composed
of unary and binary terms and the interactions between objects are
generally limited to variables in a 4 or 8 neighborhood grid. The
sparse grid-like structure of the object interactions and the limited
number of labels allows for fast solution of image labeling prob-
lems using techniques such as graph-cuts [5, 11, 20, 28, 32], belief-
propagation [27], tree message-passing [30, 16], and dynamic pro-
gramming [29].

In our case, rules can be defined over multiple variables, and
create complex factor graphs which these approaches do not handle
well. Further, each object typically has a large space of possible
configurations, which increases the complexity in multi-object in-
teractions. Furthermore, in all but the simplest scenarios the factor
graph contains cycles that makes the problem NP-hard even if the
label space for each object is small. Our method deals with complex
factors by generating compact encodings of higher order relations.

3 LAYOUT DESIGN FOR AR APPLICATIONS

In the FLARE framework a designer specifies the layout of his ap-
plication by defining application elements and rules which apply to
them. First the elements are defined, each identified by a unique
name and belonging to a predefined class. The class of an element
defines its properties which are similar in nature to member vari-
ables in object-oriented languages. Each property is strongly typed,
can be initialized and can be limited to a range of values (discrete
or continuous) or even a single fixed value. Most of the elements
(objects) in our implementation are of type Object3D (unless oth-
erwise noted in the application description). This type is detailed in
table 1.

Table 1: Definition of Object3D class
Object3D Properties
Type (enum) Attach to a certain type of surface (ver-

tical or horizontal), or float anywhere in
the room

Position (Vector3) Position relative to selected surface
Facing (float) Rotation relative to selected surface
Scale (float) Uniform scale multiplier
For example, one instance of class Object3D might be con-

strained to be positioned on horizontal surfaces and allowed to scale
from ×1 to ×2, while a second instance is constrained to vertical
surfaces and its facing is limited to a 30o arc. Additionally, our sys-
tem defines the environment itself as an element, the properties of
which are detailed in table 2.

A global coordinate system is defined for the current environ-
ment, which serves to transform between the different local frames.
We detect an up vector for the environment using a gyroscope or in-
ference (from the detected floor plane). The Camera is positioned
in the global coordinate system, and its projection parameters are
preset (field of view, and near and far planes). The Floor plane is



Table 2: Definition of Environment properties
Environment Properties
Camera Positioning and projection information

for the camera/user.
Floor Local frame for the floor of the current

environment
Ceiling Local frame for the ceiling plane

detected in the plane detection and classification stage. Its coordi-
nate system is set such that the X axis points towards the camera and
Z axis is the up vector. Similarly, local frames for other horizon-
tal surfaces are defined such that the Z axis is the surface normal,
while the X axis points towards the camera. Therefore, application
elements with a fixed 0 facing, will always face the camera. Vertical
surfaces are set such that the X axis point towards the up vector.

Rules are written using algebraic notation, a library of predefined
routines and comparison and boolean operators. A rule can refer-
ence the properties of any of the elements defined, as well as the
environment. For example, a rule might require that the distance
between two elements is more than 1 meter. Another rule might
stipulate that one element be positioned between 20 and 40 cen-
timeters higher than another. We define a natural cost function on
comparison operators, for example

cost(a < b) =
{

0 a < b
(a−b)2 a≥ b

Library routines define their own costs. For example dis-
tinct(a,b) returns 0 if there is no collision between objects a and
b, otherwise it returns 1. Finally, each rule has a weight associ-
ated with it (default 1). For boolean operators, cost(OR(a,b)) =
min(cost(a),cost(b)), cost(AND(a,b)) = cost(a)+ cost(b).

For practical purposes we’ve exposed our rule-based framework
as both an API, and as a scripting language. For examples and for
a complete listing of our supported operators and library routine,
please see the supplemental material.

We call the space of all possible assignments to the application
elements, the layout solution space. We define a cost function

cost(s) := ∑
i

wi · ri(ŝi) (1)

where wi is an optional weight specified by the application de-
signer (default 1), ri : (Oi ⊆ O)→ R is a rule operating on a subset
of the elements (O), s ∈ S is a specific solution (S is the solution
space), and ŝi is a slice of the solution containing only the objects in
Oi. Typically each rule applies only to a small subset of the objects.
An optimal layout for an AR application is one which minimizes
the overall cost of its rules. In the next section we discuss several
approaches to finding an optimal or approximate layout for an AR
application.

4 TARGETING AN AR APPLICATION

Given an application design in our rule-based framework, we want
to be able to target the application to any environment in which the
user might find herself. Targeting the application means finding
an optimal layout for the application, the global minimum of the
layout solution space. Finding the optimal layout or even a good
one is difficult: Rule cost functions may be non-convex, rules might
be unsatisfiable, for example if they conflict with the environment
or with themselves, therefore we cannot know the lower bound on
the cost and it is difficult to specify a stopping criteria. Finally, the
high-dimensional nature of the space and the assumed sparsity of
feasible solutions reduce the effectiveness of stochastic sampling.

Similar to [24, 34] we focus on a discretized version of the so-
lution space. An analysis of the environment (detailed in section 5)

reveals horizontal and vertical surfaces on which we place most ap-
plication elements. Each surface is defined by its plane equation
and a surface boundary (represented as a poly-line). We generate
a finite set of positions for each surface. Other properties such as
scale and facing are uniformly sampled at a preset quantization (de-
fault 32 bit).

Still, given N objects in the design and k possible assignments
per object, the size of the solution space kN makes performing an
exhaustive search prohibitively expensive. Previous methods have
attempted to sample from the underlying probability distribution
function, using Metropolis-Hastings [13] algorithm coupled with
concepts from simulated annealing. These methods require a pro-
hibitively large number of samples (and of course evaluations of
the cost function), therefore requiring a long run time or reliance
on massively parallel GPU implementations [24]. In many applica-
tions performance is an issue, and in some platforms such as mobile
devices, computation is costly.

A simple method to find a low-cost solution under the function
defined in equation 1 is to explore the solution space by local search
i.e. start from an initial solution and proceed by making a series of
changes which lead to solutions having lower energy. At each step,
this move-making [5, 20, 29] algorithm explores the neighboring
solutions and chooses the move which leads to a solution having
the lowest energy. The algorithm is said to converge when no lower
energy solution can be found. An example of this approach is the
Iterated Conditional Modes (ICM) algorithm [3] that at each it-
eration optimizes the value of a single variable keeping all other
variables fixed. However, this approach is highly inefficient due to
the large label space of each variable.

We perform a random walk algorithm (algorithm 1), in each it-
eration we select a new value for one of the objects and evaluate
the cost function. We accept the new configuration with probabil-
ity α . This probability stems from the Metropolis-Hastings accep-
tance probability and is dependent upon whether the new configu-
ration improves upon the previous one, and the temperature of the
system. Over the iterations we cool the system, in effect making
smaller moves until the system converges (see figure 2 for an il-
lustration). We refer the reader to [24] for details on the sampling
procedure.

Algorithm 1 Random Walk
minSolution← RandomAssignment()
currentSolution← minSolution
minCost← Evaluate(minSolution)
for i← 1,niters do

for all O ∈ Ob jects do
pO← nextProposal
currentSolution← p0
cost← Evaluate(currentSolution)
if accept(cost,minCost, temperature) then

minSolution← currentSolution
minCost← cost

end if
end for
U pdateTemperature()

end for

4.1 Locally Satisfiable Proposals

Generating proposals for a move-making algorithm is key to its per-
formance. In [24, 34], a large number of proposals were required to
converge to an acceptable solution, requiring a massively-parallel
implementation to achieve interactive performance. In targeting an
AR application to an environment, we might be required to opti-
mize a large set of constraints over a large set of objects with mul-
tiple properties. Furthermore, not all devices have a GPU or can
waste computing power. We alleviate this problem by guiding the
mechanism through which new proposals are generated.



0

2000

4000

6000

8000

10000

12000

14000

0 50000 100000 150000 200000

Domino - 40 Tiles

Simulated Annealing
(CPU)

Random Walk + LSP

Random Walk + LSP
(Greedy)

0

100

200

300

400

500

600

700

800

900

1000

1 10 100 1000 10000 100000

Circle - 9 Objects around Center

Simulated Annealing
(CPU)
Random Walk + LSP

Random Walk + LSP
(Greedy)

40

50

60

70

80

90

100

110

120

130

140

0 20000 40000 60000 80000 100000 120000

Laplacian - 10 objects

Simulated Annealing (CPU)

Random Walk + LSP

Random Walk + LSP
(Greedy)

(a) (b) (c)
Figure 3: Experimental results comparing the performance of LSP with that of standard sampling parallel tempering (or random walk). In all
three graphs, the x axis is number of candidate evaluations (log-scale in (b)) and y axis is the solution cost.

Figure 2: Example of Random Walk: We attempt to arrange 9 objects
in a fixed radius circle around a single object, such that the angular
distance between each two objects is at least 40 degrees. The overall
cost of the layout drops as the number of evaluations grows.

For many types of rules, assignments that satisfy these rules can
be found efficiently. In other words, these rules are locally satisfi-
able. In simple terms, given an assignment to some of the objects
referenced by r we can generate good proposals for the rest, with-
out resorting to blind sampling in the layout solution space. Our
approach could be seen as performing Gibbs sampling [7], taking
advantage of a known partial probability function, to sample from
the whole solution space.

Within our framework, rules built using a subset of library func-
tions and operators are defined as locally satisfiable. For example
given a rule dist(a,b)< 5, and the position of a, an optimal position
for b would be within a sphere of radius 5 around a. Combined with
a typical preference of objects for horizontal or vertical surfaces,
we are able to sample proposals for the position of b efficiently. A
locally satisfiable proposal (LSP) is a proposal for an application
element o which was proposed by a locally satisfiable rule r. In
practice, when generating pO (see algorithm 1), nextProposal is
defined as in algorithm 2.

Algorithm 2 Generating a Single Proposal
function NEXTPROPOSAL(o)

p← rand(0,1)
if (p < 0.5)&&(∃r : O ∈ r)&&(locallySatis f iable(r)) then

return LSP(o,r)
else

return GenerateProposal(o)
end if

end function

where LSP(O,r) generates a locally-satisfiable proposal for o
given the current state of application elements. In some cases
a locally-satisfiable proposal might over-constrain our sampling,
for example in rule-sets where a least-squares solution is optimal.
Therefore we only generate an LSP 50% of the time. If no locally
satisfiable rule exists for O, GenerateProposal(O) proposes a stan-
dard move.

A variant on the LSP algorithm is a greedy LSP generation. In

this variant generating an LSP for object o (via rule r) prompts se-
lecting object o′ for the next iteration, such that o′ is also refer-
enced in r. The reasoning behind this is to traverse the graph of
constraints, fixing objects as we go. We have found that in practice
this heuristic often accelerates convergence (figure 3(a)). We apply
this variant within the LSP procedure 20% of the time.

Following are examples of locally satisfiable rules

1. dist(a,b) == 4 is locally satisfiable as given a we generate
proposals for b on the circle centered around a with radius 4

2. collinear(x1, ..xn) is locally satisfiable given assignments to
two of the objects. As we can sample the rest of the objects
on the line defined between them.

3. withinFrustum(a) requires a to be in the camera frustum.
This is locally satisfiable as generate proposals only from a
slice of the 3D space.

4. A constraint on the material properties of two objects,
complementary(a,b), is locally satisfiable as given the color
of a, the color of b is easy to calculate.

Using LSP reduces, in most cases, the number of proposals re-
quired to achieve a good layout.

4.2 Experimental Evaluation

In order to demonstrate this we created three distinct rule-sets. We
targeted each rule-set to different rooms multiple times. We mea-
sure the performance and quality of a layout optimization algorithm
by counting rule evaluations. Previous papers have counted the
number of samples the algorithm performs for all objects in all it-
erations. However, this measure favors algorithms which perform
an exhaustive search over limited combinations of values. For each
rule-set we plot the cost of the solution vs. number of evaluations,
comparing our approach to a parallel tempering algorithm we sim-
ulated on the CPU. In all three designs, the rules are geometric,
and each object in the design can be assigned position on a surface,
facing (rotation on the surface) and scale. For each rule-set we ran
each algorithm 30 times (in different rooms) and plot the median of
the results. The three rule-sets are

Domino - Forty tiles arranged in a curve i.e. each tile ti has
the following rules applied (i) 2 < dist(ti, ti+1) < 5 (ii) 〈ti+1 −
ti, ti+1. f acing〉 ≤ 0.97 (iii) 〈ti+1. f acing, ti. f acing〉 ≤ 0.9. A sample
layout can be seen in figure 4(a).

Circle - Nine objects arranged in a circle (with non-fixed ra-
dius) around a central object. The minimal angle between any two
objects is at least 25o (example in figure 4(b)). The experiment re-
sults are in figure 3(b). All rules in this design are ternary, and the
rules enforcing a minimal angle between all objects create a high
inter-dependency between object values.



Figure 4: Visualization of the three qualitative evaluation scenarios:
(a) A set of domino tiles set on a curve. Each domino tile is within a
set distance from the next, faces in the same direction and approx-
imates a straight line (b) A set of objects arranged in a fixed radius
circle around a center object (c) Ten objects such that each one at-
tempts to approximate the average position of both its neighbors, and
minimize the distance to them.

Laplacian Cycle - We arrange ten objects t1..t10 such that ti =
(ti−1 + ti+1)/2 and d(ti, ti+1) >C. Since the rules wrap around t10
the cost can never be 0 and the best possible solution is a least-
squares oval structure (example in figure 4(c)).

Results are shown in figure 3, showing the benefits of using LSP.
Note that in the Domino scenario (a) we show how effective our
greedy LSP generation. In (b) we use a log scale on the number of
iterations. In (c), the o‘ptimal solution is a least-squares one, and
therefore there is little benefit in using LSP, and still we produce
comparable results.

Figure 5: AR applications using FLARE: (a) A race track dynamically
generated for a room by placing constrained key points (b) A physics-
base game where a cannon shoots at bricks made of castles (c) A
media-library app where virtual screens on the walls show clips, and
billboards highlight selections from the user’s collection.

5 USING FLARE

In order to test FLARE, we captured multiple rooms using Kinect
Fusion [25] and produced a triangular mesh for each. Each room
was processed to detect planar surfaces using Hough Transform [8].
We classified each plane into horizontal, vertical and other surfaces
(using an estimated up vector) and found the concave contour of
each [9]. Given an application design rule-set and an environment
(including camera position), we target the application to the envi-
ronment using our move-making algorithm with LSP. The results
shown in this section (and in the accompanying video) were gen-
erated in real-time (see running times in table 3) and rendered in a
Unity3D environment.

5.1 Auxiliary Rules

In some situations, the application rule-set is sufficient for target-
ing an application to an environment. However, often there is need

for auxiliary rules (constraints) in which case our system automat-
ically adds them and optimizes them alongside the designer speci-
fied rules.

• Collision Detection: For each pair of object (oi,o j) we add
a constraint distinct(oi,o j) whose cost is 0 if there is no col-
lision between the objects bounding boxes, and 1 otherwise.
This potentially adds n(n−1)/2 rules. However, as we sam-
ple positions discretely, we are able to efficiently rule out col-
lisions in most cases.

• Persistence: If an application was previously targeted to an
environment we would prefer to retain a similar layout. We
add constraints for each object to keep its previous values.
For example o == oprev with a linearly increasing cost func-
tion. Persistence is also useful if a real dynamic object in the
room (such as a person walking) forces a retargeting of an
application.

• Multiple apps: Different application rule-sets by design are
not aware of each other. If a user targets two or more applica-
tion to a room we are able to constrain each app to a different
section of the room, or simply avoid collisions between the
different application elements.

• Collaboration: If two or more users in an environment wish
to collaborate on an AR application, we can constrain the ap-
plication, taking into consideration the multiple camera (user)
positions.

Table 3: Running times for the various applications.
App Name # of Objects Time in Seconds (worst case)
Domino 20 2.74
Circle 10 0.8
Laplacian Cycle 10 1.63
Race Track 16 2.31
Media Library 6 1.6
Angry Cannon 4 0.8

5.2 Sample Applications
We developed several AR applications which contain application
logic and graphical assets. These applicatiosn are targeted in real-
time into pre-scanned rooms in order to demonstrate the usability
of our system:

Angry cannon is a physics-based puzzle game in which a user
aims a cannon C at brick castles and bomb pillars b1, ...bn, attempt-
ing to knock them down. The castles and pillars are place around
the room, within range of the cannon, using existing room features
as obstacles. The game objects and their properties are the cannon
(position, facing), brick castles (position, facing, number of bricks)
and bomb pillars (position, facing, height). The rules are

1. dist(C,bi)> 4
2. horizontal(C)

3. horizontal(bi)

4. collision(C)

5. collision(bi)

AR Racing is a racing game where the race track is dynamically
created for each new room the player visits. Given a desired track
length, we create a set of keypoint objects (whose only property is
position) K = {k1, ...kn}. The rules for each object ki are

1. dist(ki,ki+1) ∈ [0.5,1]
2. lineO f Sight(ki,ki+1)

3. collision(ki,K/ki)

4. horizontal(ki)

5. collision(ki)



where kn+1 ≡ k1 and distances are specified in feet. As the tracks
grow longer, the keypoints must select different horizontal surfaces
in order to preserve the minimal distance, creating complex tracks,
taking advantage of the geometry. In order to render the looped
track we pass a spline through the keypoints, and on it we place the
racing cars.

The Media Library application lets a user browse his collec-
tion of videos, in any environment. A selection of movies from
a database is divided into categories, and displayed on several tile
poster objects p1, ...pn. Each poster has position and facing. Ad-
ditionally we place two video screens V1,V2, meant to hang on the
room walls, whose position and scale can change. The rules in this
application are

1. horizontal(pi)

2. vertical(Bi)

3. inFOV (pi)

4. inFOV (Vi)

5. inner(pi. f acing,eye)≤−0.8
6. collision(pi)

7. collision(Bi)

8. scale(Vi) = maximumscale

The hanged screens are set to a maximum size by the last rule.
The maximal size is set to be bigger than the room, which leads the
screens to be of the largest size that can still fit on the wall. The cost
of this rule’s cost will be minimized but may never reach zero cost.
Sample results for all three applications can be seen in figure 5 and
the accompanying video.

6 DISCUSSION AND FUTURE WORK

We presented FLARE, a rule-based design framework for AR ap-
plications, that allows a designer to define objects with layout prop-
erties as application components, and a set of rules which help tar-
get the application to any environment. The environment is rep-
resented by a set of features is extracted from recovered geometry
and the color video taken at the scene. The richness of the rules is
partially dependent on the features extracted from the scene. We
used planar features for our examples as they are common in in-
door scenes and were sufficient to generate all the examples in the
paper. Other environments, such as natural scenes, may require
other features. We also introduced the concept of locally satisfiable
proposals and demonstrated that their use dramatically reduces the
number of evaluations required for finding a rule-consistent layout.
In cases where LSP fails, our algorithm degrades to a random sam-
pling approach.

All the examples shown in this paper were generated automati-
cally, from the geometry reconstruction, to the plane extraction and
targeting the different apps to the environment. However, the map-
ping is not without limitations. It is possible to assign a set of rules
that will not be satisfied in a given environment. For example, we
might wish for an object to be positioned on an elevated horizontal
surface above the floor, which may not exist in a given room. In
this case the optimal cost function for the design cannot be 0 and
the system will approach that minimum (e.g. place the object on
the floor). In designs where the optimal solution would be a least-
squares solution, our locally-satisfiable proposals do not provide a
benefit and our algorithm degrades to random sampling.

As future work, we intend to develop a GPU based implemen-
tation of our method that would be similar to parallel tempering,
and adapt it to other design problems. We have a strong belief that
immersive augmented reality will see a surge in research over the
next few years and hope our system can serve as a basis for other
mapping algorithms.

REFERENCES

[1] Architip. Website, 2013. http://architip.mobi.

[2] R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. Macintyre. Re-
cent advances in augmented reality. IEEE Computer Graphics and Applications,
21(6):34–47, Nov. 2001.

[3] J. Besag. On the statistical analysis of dirty pictures. Journal of the Royal Sta-
tistical Society. Series B (Methodological), pages 259–302, 1986.

[4] A. Borning and B. Freeman-Benson. Ultraviolet: A constraint satisfaction algo-
rithm for interactive graphics. Constraints, 3(1):9–32, 1998.

[5] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via
graph cuts. PAMI 2001, 2001.

[6] J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. Ivkovic.
Augmented reality technologies, systems and applications. Multimedia Tools
and Applications, 51(1):341–377, Jan. 2011.

[7] G. Casella and E. I. George. Explaining the gibbs sampler. The American Statis-
tician, 46(3):167–174, 1992.

[8] R. O. Duda and P. E. Hart. Use of the hough transformation to detect lines and
curves in pictures. Communications of the ACM, 15(1):11–15, 1972.

[9] H. Edelsbrunner, D. G. Kirkpatrick, and R. Seidel. On the shape of a set of points
in the plane. IEEE Transactions on Information Theory, 29:551–558, 1983.

[10] M. Fisher, D. Ritchie, M. Savva, T. Funkhouser, and P. Hanrahan. Example-
based synthesis of 3d object arrangements. In SIGGRAPH Asia, 2012.

[11] S. Gould, F. Amat, and D. Koller. Alphabet soup: A framework for approximate
energy minimization. In CVPR 2009, pages 903–910, 2009.

[12] R. Grasset, J.-D. Gascuel, and D. Schmalstieg. Interactive mediated reality. In
ISMAR 2003, 2003.

[13] W. K. Hastings. Monte carlo sampling methods using markov chains and their
applications. Biometrika, 57(1):97–109, 1970.

[14] B. R. Jones, H. Benko, E. Ofek, and A. D. Wilson. Illumiroom: Peripheral
projected illusions for interactive experiences. In CHI 2013, 2013.

[15] Junayo. Website, 2013. http://www.junaio.com.
[16] V. Kolmogorov. Convergent tree-reweighted message passing for energy mini-

mization. IEEE Trans. Pattern Anal. Mach. Intell., 28(10):1568–1583, Oct. 2006.
[17] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger. Factor graphs and the sum-

product algorithm. IEEE Transactions on Information Theory, 2001.
[18] V. Kumar. Algorithms for constraint satisfaction problems: A survey. AI MAG-

AZINE, 13(1):32–44, 1992.
[19] Layar. Website, 2013. http://www.layar.com.
[20] V. S. Lempitsky, C. Rother, S. Roth, and A. Blake. Fusion moves for markov

random field optimization. PAMI, 2010.
[21] S. Lin, D. Ritchie, M. Fisher, and P. Hanrahan. Probabilistic color-by-numbers:

Suggesting pattern colorizations using factor graphs. In ACM SIGGRAPH, 2013.
[22] A. K. Mackworth. Consistency in networks of relations. Artificial Intelligence,

8(1):99 – 118, 1977.
[23] P. S. Margriet Schavemaker, Hein Wils and E. Pondaag. Augmented reality and

the museum experience. In Museums and the Web 2011, 2011.
[24] P. Merrell, E. Schkufza, Z. Li, M. Agrawala, and V. Koltun. Interactive furniture

layout using interior design guidelines. In SIGGRAPH 2011, Aug. 2011.
[25] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison,

P. Kohli, J. Shotton, S. Hodges, and A. W. Fitzgibbon. Kinectfusion: Real-time
dense surface mapping and tracking. In ISMAR, pages 127–136, 2011.

[26] S. K. Ong and A. Y. C. N. (Eds.), editors. Virtual and Augmented Reality Appli-
cations in Manufacturing. 2004.

[27] J. Pearl. Reverend bayes on inference engines: A distributed hierarchical ap-
proach. In AAAI, pages 133–136, 1982.

[28] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A. Agarwala,
M. F. Tappen, and C. Rother. A comparative study of energy minimization meth-
ods for markov random fields. In ECCV 2006, 2006.

[29] V. Vineet, J. Warrell, and P. H. S. Torr. A tiered move-making algorithm for
general non-submodular pairwise energies. CoRR, abs/1403.6275, 2014.

[30] M. J. Wainwright, T. Jaakkola, and A. S. Willsky. Map estimation via agree-
ment on trees: message-passing and linear programming. IEEE Transactions on
Information Theory, 51(11):3697–3717, 2005.

[31] Wikitude. Website, 2013. http://www.wikitude.com.
[32] O. J. Woodford, P. H. S. Torr, I. D. Reid, and A. W. Fitzgibbon. Global stereo

reconstruction under second order smoothness priors. In CVPR, 2008.
[33] Y.-T. Yeh, L. Yang, M. Watson, N. D. Goodman, and P. Hanrahan. Synthesizing

open worlds with constraints using locally annealed reversible jump mcmc. ACM
Trans. Graphics, 31(4):1–11, July 2012.

[34] L.-F. Yu, S.-K. Yeung, C.-K. Tang, D. Terzopoulos, T. F. Chan, and S. J. Osher.
Make it home: automatic optimization of furniture arrangement. In SIGGRAPH
2011, Aug. 2011.


