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Abstract– We found that interactive services at Bing have
highly variable datacenter-side processing latencies because
their processing consists of many sequential stages, paral-
lelization across 10s-1000s of servers and aggregation of re-
sponses across the network. To improve the tail latency of
such services, we use a few building blocks: reissuing laggards
elsewhere in the cluster, new policies to return incomplete re-
sults and speeding up laggards by giving them more resources.
Combining these building blocks to reduce the overall latency
is non-trivial because for the same amount of resource (e.g.,
number of reissues), different stages improve their latency
by different amounts. We present Kwiken, a framework
that takes an end-to-end view of latency improvements and
costs. It decomposes the problem of minimizing latency over
a general processing DAG into a manageable optimization
over individual stages. Through simulations with production
traces, we show sizable gains; the 99th percentile of latency
improves by over 50% when just 0.1% of the responses are
allowed to have partial results and by over 40% for 25% of the
services when just 5% extra resources are used for reissues.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distribu-
ted Systems – Distributed applications

Keywords
Interactive services; Tail latency; Optimization; Reissues;
Partial results

1. INTRODUCTION
Modern interactive services are built from many disjoint

parts and hence, are best represented as directed acyclic
graphs. Nodes in the graph correspond to a specific function-
ality that may involve one or more servers or switches. Edges
represent input-output dependencies. For example, Fig. 1
shows a simplified DAG corresponding to the web-search
service at Bing, one of the major search engines today. In
this paper, we use the term workflow to refer to such a DAG
and stage to refer to a node in the DAG.

Analyzing production traces from hundreds of user-facing
services at Bing reveals that the end-to-end response latency
is quite variable. Despite significant developer effort, we
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Figure 1: A simplified version of the workflow used for
web-search at Bing.

found over 30% of the examined services have 95th (and 99th)
percentile of latency 3X (and 5X) their median latency.

Delivering low and predictable latency is valuable: several
studies show that slow and unpredictable responses degrade
user experience and hence lead to lower revenue [8, 9, 22].
Further, these services represent sizable investments in terms
of cluster hardware and software, so any improvements would
be a competitive advantage.

We believe that the increase in variability is because mod-
ern datacenter services have workflows that are long and
highly parallel. In contrast, a typical web service workflow
has a length of two (a web-server and a database) and a width
of one. As we show in §2, the median workflow in production
at Bing has 15 stages and 10% of the stages process the query
in parallel on 1000s of servers. Significant delays at any of
these servers manifest as end-to-end delays. To see why, as a
rule of thumb, the 99th percentile of an n-way parallel stage
depends on the 99.99th percentile of the individual server
latencies for n = 100 (or 99.999th for n = 1000).

While standard techniques exist to reduce the latency
tail [10], applying them to reduce end-to-end latency is diffi-
cult for various reasons. First, different stages benefit differ-
ently from different techniques. For example, request reissues
work best for stages with low mean and high variance of la-
tency. Second, end-to-end effects of local actions depend on
topology of the workflow; reducing latency of stages usually
off the critical path does not improve end-to-end latency.
Finally, many techniques have overhead, such as increased
resource usage when reissuing a request. For these reasons,
latency reduction techniques today are applied at the level
of individual stages, without clear understanding of their
total cost and the achieved latency reduction. Therefore,
without an end-to-end approach, the gains achieved by such
techniques are limited.

In this paper, we present a holistic framework that consid-
ers the latency distribution in each stage, the cost of applying
individual techniques and the workflow structure to deter-
mine how to use each technique in each stage to minimize
end-to-end latency. To appreciate the challenge, consider
splitting the reissue budget between two stages, 1 and 2, in
a serial workflow. Fig. 2a shows how the variance of the
latency of these two stages (Var1 and Var2, respectively)
varies with the fraction of the total budget allocated to Stage



1 (on x-axis). Since both stages have similar variance when
receiving zero budget, one may expect to divide the budget
evenly. However, Stage 1’s variance decreases quickly with
reissue budget and the marginal improvement with addi-
tional budget is small. As marked in the figure, assigning the
budget roughly 1:3 among the stages leads to the smallest
variance of end-to-end latency (Sum Var). Comparing Sum
Var with the 99th percentile latency in Fig. 2b shows that
the sum of variances of the stages is well correlated with the
99th percentile, a fact that we will prove and use extensively.

Kwiken formulates the overall latency reduction problem as
a layered optimization relying on the fact that query latencies
across stages are only minimally correlated. The first layer
consists of per-stage variance models that estimate how the
latency variance in individual stages changes as a function
of budget allocated to that stage; these models may also
incorporate other intra-stage optimizations where there are
different ways of using budget within a stage. The workflow
layer integrates the per-stage models into a single global
objective function designed such that its minimization is well-
correlated to minimizing higher percentiles of the end-to-end
latency. The objective function also has a simple separable
structure that allows us to develop efficient gradient-like
methods for its minimization.

Further, we present two new latency reduction techniques:
a new timeout policy tp trade off partial answers for latency
and catching-up for laggard queries. The basic ideas behind
these strategies are quite simple. First, many workflows
can still provide a useful end-to-end answer even when in-
dividual stages return partial answers. So, at stages that
are many-way parallel, Kwiken provides an early termination
method that improves query latency given a constraint on
the amount of acceptable loss on answer quality. Second,
Kwiken preferentially treats laggard queries at later stages
in their workflow, either by giving them a higher service
rate (more threads), being more aggressive about reissuing
them or by giving them access to a higher priority queue
in network switches. Kwiken incorporates these techniques
into the optimization framework to minimize the end-to-end
latency while keeping the total additional cost low.

While in this paper we apply Kwiken in the context of
request reissues and partial execution inside Bing, our solution
applies more generally, for example to the network latency
reduction techniques described in [23]. It also applies to
most applications where work is distributed among disjoint
components and dependencies can be structured as a DAG.
This includes modern web services (e.g., Facebook [20] or
Google [10]) and page loading in web browsers [24] and mobile
phone applications [21].

We evaluate our framework with 45 production workflows
at Bing. By appropriately apportioning reissue budget, Kwiken
improves the 99th percentile of latency by an average of 29%
with just 5% extra resources. This is over half the gains
possible from reissuing every request (budget=100%). At
stages that are many-way parallel, we show that Kwiken can
improve the 99th percentile latency by about 50% when
partial answers are allowed for just 0.1% of the queries.
We, further, show that reissues and partial answers provide
complementary benefits; allowing partial answers for 0.1%
queries lets a reissue budget of 1% provide more gains than
could be achieved by increasing the reissue budget to 10%.
We also demonstrate robustness of parameter choices.

In summary, we make the following contributions:
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Figure 2: Impact of splitting the budget between two
stages in a serial workflow on the variance of individual
stages (Var1 and Var2), and the variance (Sum Var) and
99th percentile of the end-to-end latency (metrics are
normalized)
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Figure 3: Timeline diagram of the processing involved
for the workflow in Fig. 1.

• Workflow characterization. We describe low-
latency execution workflows at a large search engine,
analyze in detail the structure of the workflow DAGs
and report on the causes for high variability.
• New strategies. We provide novel policies for bound-

ing quality loss incurred due to partial answers and for
catching-up on laggards.
• Optimization framework. We present a holistic

optimization framework that casts each stage as a
variance-response curve to apportion overall budget ap-
propriately across stages. We evaluate the framework
on real-world workflows and demonstrate significant
reductions in their end-to-end latencies, especially in
the higher percentiles i.e., tail latencies.

2. WORKFLOWS IN PRODUCTION
We analyze workflows from production at Bing to under-

stand their structural and behavioral characteristics and to
identify causes for slow responses.

2.1 Background
The workflow of an end-to-end service is a collection of

stages with input-output dependencies; for example, respond-
ing to a user search on Bing involves accessing a spell checker
stage and then in parallel, a web-search stage that looks up
documents in an index and similar video- and image-search
stages. Architecting datacenter services in this way allows
easy reuse of common functionality encapsulated in stages,
akin to the layering argument in the network stack.

Workflows can be hierarchical; i.e., complex stages may
internally be architected as workflows themselves. For exam-
ple, the web-search stage at Bing consists of multiple tiers
which correspond to indexes of different sizes and freshness.
Each tier has a document-lookup stage consisting of tens of
thousands of servers that each return the best document for
the phrase among their sliver of the index. These documents
are aggregated at rack and at tier level and the most relevant
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Figure 4: Estimating the variability in latency: (a) CDF
of 99th percentile to median latency and (b) mean vs.
standard deviation of latency, for stages and workflows.

results are passed along. This stage is followed by a snippet
generation stage that extracts a two sentence snippet for each
of the documents that make it to the final answer. Fig. 3
shows a timelapse of the processing involved in this workflow;
every search at Bing passes through this workflow. While
this is one of the most complex workflows at Bing, it is still
represented as a single stage at the highest level workflow.

The observed causes for high and variable latency include
slow servers, network anomalies, complex queries, congestion
due to improper load balance or unpredictable events, and
software artifacts such as buffering. The sheer number of
components involved ensures that each request has a non-
trivial likelihood of encountering an anomaly.

2.2 Workflow characteristics
We characterize most of the workflows and their latencies

at Bing. We use request latencies from 64 distinct workflows
over a period of 30 days during Dec 2012. We only report
results for workflows and stages that were accessed at least
100 times each day, the 25th and 75th percentile number of
requests per stage per day are 635 and 71428 respectively. In
all, we report results from thousands of stages and hundreds
of thousands of servers.

2.2.1 Properties of latency distributions

Latencies of stages and workflows have long tail. To
understand variation of latency in workflows and in individ-
ual stages, Fig. 4a plots a CDF of the ratio of the latency
of the 99th percentile request to that of the median request
across the stages and workflows in our dataset. We see that
stages have high latency variability; roughly 10% have 99th

percentile 10X larger than their median. When the stages
are composed into workflows, the variability increases on the
low end because more workflows can have high variability
stages but decreases the variability on the high end. Fig. 4b
shows on a log scale the mean latency in a stage and workflow
compared to the standard deviation. We see that the larger
the mean latency in a stage the larger is the variability (stan-
dard deviation). However, stages with similar mean latency
still have substantial differences in variability.

Stages benefit differently from reissues. Fig. 5 illus-
trates how reissuing requests impacts the latency for a subset
of the stages from production. It shows the normalized vari-
ance in latency for these stages when a particular fraction of
the slowest queries are reissued. Clearly, more reissues lead
to lower variance. However, notice that stages respond to
reissues differently. In some stages, 10% reissues significantly
reduce variance, whereas in other stages even 50% reissues
do not achieve similar gains. This is because the reduction in

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

no
rm

al
iz

ed
 la

te
nc

y 
va

ria
nc

e

fraction of reissues

discRF

Sum of varNorm

Figure 5: For a subset of stages in production, this plot
shows normalized latency variance of the stage as a func-
tion of fraction of requests that are reissued.
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Figure 6: A few characteristics of the analyzed workflows

variance at a stage depends on its latency distribution: stages
with low mean and high variance benefit a lot from reissues
but the benefits decrease as the mean increases. Hence, giv-
ing every stage the same fraction of reissues may not be a
good strategy to reduce latency of the workflow.

Latencies in individual stages are uncorrelated. We
ran a benchmark against the most frequent workflow, where
we executed two concurrent requests with same parameters
and specified they should not use any cached results. These
requests executed the same set of stages with identical in-
put parameters and thus allowed us to study correlation of
latencies in individual stages. We used 100 different input
parameters and executed a total of 10000 request pairs. For
each of the 380 stages in this workflow, we compute the Pear-
son correlation coefficient (PCC). About 90% of the stages
have PCC below 0.1 and only 1% of stages have PCC above
0.5. Hence, we treat the latency of the first request and of
the reissue as independent random variables.

Latencies across stages are mostly uncorrelated. To
understand correlation of latencies across stages, we compute
the PCC of latencies of all stage pairs in one of the major
workflows with tens of thousands of stage pairs. We find that
about 90% of stage pairs have PCC below 0.1. However 9%
of stage pairs have PCC above 0.5. This is perhaps because
some of the stages run back-to-back on the same server when
processing a request; if the server is slow for some reason, all
the stages will be slow. However, in such cases, the reissued
request is very likely to be sent to a different server. Hence, in
spite of this mild correlation we treat the inherent processing
latency across stages to be independent.

2.2.2 Properties of execution DAGs
As the “all stages” line in Fig. 6 indicates, most workflows

have a lot of stages, with a median value of 14 and 90th

percentile of 81. About 20% of the workflows have stage
sequences of length 10 or more (not shown). However, the
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Figure 8: Heatmap showing how the latency varies across
machines and time (for queries to the workflow in Fig 1).

max in-degree across stages is proportional to the number of
stages in the workflow (not shown). That is, most workflows
are parallel.

Stages that have a very small latency and rarely occur
on the critical path for the query can be set aside. We say
that critical path for a query is the sequence of dependent
stages in the workflow that finished the last for that query.
Since queries can have different critical paths, we consider
the most frequently occurring critical paths that account for
90% of the queries. Along each critical path, we consider
the smallest subset of stages that together account for over
90% of the query’s latency and call these the effective stages.
Fig. 6 plots the number of effective stages across workflows.
We see that the number of effective stages in a workflow
is sizable but much smaller than the number of all stages;
median is 4 and 90th percentile is 18. The figure also plots
the average number of effective stages on these critical paths
of workflows; median is 2.2. Finally, we plot a distribution
of the in-degree of these effective stages on the critical paths;
median is 2 and 90th is 9. Hence, we see that production
workflows even when counting only the effective stages are
long and many way parallel.

We point out that stages with high in-degree, that ag-
gregate responses from many other stages, are a significant
source of variability. Whenever one of the input stages is
slow, the output would be slow. In fact P (maxnXi > s) ∼
nP (Xi > s) when s is in the tail. We see two types of
such fan-in, only one of which (at the stage level) has been
accounted for above. Several stages internally aggregate the
responses from many servers, for example, the web-search
stage above aggregates responses from 100s-1000s of servers
that each retrieve documents matching the query from their
shard of the index.

2.3 Causes for latencies on the tail
When responses take longer than typical, we want to

understand the causes for the high latency. Here, we focus

Parameter
Value Percentiles

50th 90th 99th

at server, network load due
to request-response traffic

895pps,
.62Mbps

2242pps,
1.84Mbps

2730pps,
2.3Mbps

Lag to retransmit 67.2ms 113.3ms 168.7ms
Packet loss prob. of req-
response traffic

.00443

To compare: packet loss
prob. of map-reduce

.0004336

Fraction of losses recovered
by RTO

.987

Table 1: Network Characteristics

on the web-search workflow (see Fig. 1). For each of the
5% slowest queries, we assign blame to a stage when its
contribution to that query’s latency is more than µ + 2σ,
where µ, σ are the mean and stdev of its contribution over all
queries. If a stage takes too long for a query, it is timed-out.
In such cases, the blame is still assigned to the stage, citing
timeout as the reason. Fig. 7 depicts, for each stage of the
workflow, its average contribution to latency along with the
fraction of delayed responses for which it has timed-out or is
blamed (includes timeouts). Since more than one stage can
be blamed for a delayed response, the blame fractions add
up to more than one.

We see that the document lookup and the network transfer
stages receive the most blame (50.7% and 33.5% each). In
particular, these stages take so long for some queries that
the scheduler times them out in 18.7% and 20.3% of cases
respectively. Network transfer receives blame for many more
outliers than would be expected given its typical contribution
to latency (just 12.1%). We also see that though the start-
up/ wrap-up stage contributes sizable average latency, it is
highly predictable and rarely leads to outliers. Further, the
servers are provisioned such that the time spent waiting in
queues for processing at both the doc lookup and the snippet
generation stages is quite small.

Why would stages take longer than typical? To examine
the doc lookup stage further, we correlate the query latency
with wall-clock time and the identity of the machine in
the doc lookup tier that was the last to respond. Fig. 8
plots the average query latency per machine per second
of wall time. The darkness of a point reflects the average
latency on log scale. We see evidence of flaky machines in
the doc lookup tier (dark vertical lines); queries correlated
with these machines consistently result in higher latencies.
We conjecture that this is due to hardware trouble at the
server. We also see evidence for time-dependent events, i.e.,
periods when groups of machines slow down. Some are
rolling upgrades through the cluster (horizontal sloping dark
line), others (not shown) are congestion epochs at shared
components such as switches. We also found cases when only
machines containing a specific part of the index slowed down,
likely due to trouble in parsing some documents in that part
of the index.

To examine the network transfer stage further, we correlate
the latency of the network transfer stage with packet-level
events and the lag introduced in the network stack at either
end. We collected several hours of packet traces in produc-
tion beds for the network transfer stage in the web-search
workflow (Fig. 1). To compare, we also collect packet traces
from production map-reduce clusters that use the same server
and switch hardware but carry traffic that is dominated by
large flows. The results of this analysis is shown in Table 1.



We see that the request-response traffic has 10X higher loss
rate than in the map-reduce cluster. Further the losses are
bursty, coefficient of variation σ

µ
is 2.4536. The increased

loss rate is likely due to the scatter-gather pattern, i.e., re-
sponses collide on the link from switch to aggregator. Most
of the losses are recovered only by a retransmission time-
out (over 98%) because there are not enough acks for TCP’s
fast retransmission due to the small size of the responses.
Surprisingly, the RTO for these TCP connections was quite
large, in spite of RTO min being set to 20ms; we are still
investigating the cause. We conclude that TCP’s inability
to recover from burst losses for small messages is the reason
behind the network contributing so many outliers.

2.4 Takeaways
Our analysis shows the following:

• Workflow DAGs are large and very complex, with signif-
icant sequences of stages and high degree of parallelism,
which increases latency variance.
• Different stages have widely different properties of

mean, variance, and variance as a function of the
amount of requests reissued at that stage.
• Latencies of different stages are uncorrelated, except

when running on the same machine; latency of reissues
is uncorrelated with latency of the first request.

The first two observations demonstrate the complexity of
the problem; heuristics that do not consider properties of the
latency distributions and of the DAG, cannot perform very
well. The third observation points in the direction of our
solution; it allows us to decompose the optimization problem
on a complex workflow to a problem over individual stages.

3. KEY IDEAS IN Kwiken
The goal of Kwiken is to improve the latency of request-

response workflows, especially on the higher percentiles. We
pick the variance of latency as the metric to minimize because
doing so will speed-up all of the tail requests; in that sense,
it is more robust than minimizing a particular quantile1.

Our framework optimizes the workflow latency at both the
stage and workflow levels. At the stage/local level, it selects
a policy that minimizes the variance of the stage latency. At
the workflow/global level, it combines these local policies
to minimize the end-to-end latency. We employ three core
per-stage techniques for latency reduction – reissue laggards
at replicas, skip laggards to return timely albeit incomplete
answers and catch-up, which involves speeding up requests
based on their overall progress in the workflow.

Using latency reduction techniques incurs cost – such as
using more resources to serve reissued requests – so we have to
reason about apportioning a shared global cost budget across
stages to minimize the end-to-end latency. For example,
reissues have higher impact in stages with high variance.
Similarly, speeding up stages that lie on the critical path
of the workflow is more helpful than those that lie off the
critical path. Also, as shown in Fig. 5, variance of some
stages reduces quickly even with a few reissues, while other
stages require more reissues to achieve the same benefits.

1Delaying responses such that all queries finish with the
slowest has a variance of 0, but is not useful. An implicit
requirement in addition to minimizing variance, which Kwiken
satisfies, is for the mean to not increase.

Finally, the cost of reissuing the same amount of requests
could be orders of magnitude higher in stages that are many-
way parallel, a factor that has to be incorporated into the
overall optimization.

To reason about how local changes impact overall latency,
our basic idea is to decompose the variance of the workflow’s
latency into the variance of individual stages’ latency. If the
random variable Ls denotes the latency at stage s, then the
latency of workflow w is given by

Lw(L1, . . . , LN ) = max
p

∑
s∈p

Ls, (1)

where p stands for a path, namely an acyclic sequence of
stages through the workflow (from input to output). Ideally,
we would use the variance of Lw as our objective function,
and minimize it through allocating budget across stages.
Unfortunately, however, the variance of Lw does not have a
closed form as a function of the individual stages’ statistics
(e.g., their first or second moments). Instead, we resort to
minimizing an upper bound of that variance. Recall from §2.2
that the different Ls can be roughly treated as independent
random variables. Using this approximation together with
(1) leads to the following decomposition:

Var(Lw) ≤
∑
s∈w

Var(Ls), (2)

where Var(·) denotes the variance of a random variable; see
appendix for proof. The bound is always tight for sequential
workflows, as stage variances add up. It can also be shown
that (2) is the best general bound for parallel workflows;
details omitted here.

Using Chebyshev’s inequality, (2) immediately implies that

Pr(|Lw −ELw| > δ) ≤ (
∑

s Var(Ls))2

δ2
. The bound indicates

that minimizing the sum of variances is closely related to
minimizing the probability of large latency deviations, or
latency percentiles. Better concentration bounds (e.g., Bern-
stein [7]) can also be obtained; we omit details for brevity.
We emphasize that we do not claim tightness of the bounds,
but rather use them as a theoretical insight for motivat-
ing sum of variances minimization. As we elaborate below,
the decomposition to sum of variances leads to a tractable
optimization problem, unlike other approaches for solving it.

Alongside the latency goal, we need to take into account the
overall cost from applying local changes. Here, we describe
the framework using reissues. Formally, let rs be the fraction
of requests that are reissued at stage s and let cs be the
(average) normalized resource cost per request at stage s, i.e.,∑

s cs = 1. Then the overall cost from reissues is C(r) =∑
s csrs, and the problem of apportioning resources becomes:

minimize
∑
s

Var
(
Ls(rs)

)
subject to

∑
s

csrs ≤ B, (3)

where B represents the overall budget constraint for the
workflow2 and Ls(rs) is the latency of stage s under a policy
that reissues all laggards after a timeout which is chosen such
that only an rs fraction of requests are reissued. Since {cs}
are normalized, B can be viewed as the fraction of additional

2Considerations on how to choose the budget for each work-
flow, which we assume as given by an exogenous policy, are
outside the scope of this paper.
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Figure 9: This plot shows the results of a random search
in the reissue budget space (circles) and using SumVar on
the same workflow (line with crosses). It illustrates that
as sum of variances (x-axis, normalized) decreases, so
does the 99th percentile of latency (y-axis, normalized).

resources used for latency reduction. The formulation in
(3) can be generalized to accommodate multiple speedup
techniques (see §4.4). This optimization problem is the basis
for our algorithm.

We alternatively used a weighted version of the cost func-
tion,

∑
s wsVar

(
Ls(rs)

)
, where the weights ws can be chosen

to incorporate global considerations. For example, we can
set ws based on (i) total number of paths crossing stage s, or
(ii) mean latency of s. However, our evaluation showed no
significant advantages compared to the unweighted version.

We solve (3) by first constructing per-stage models (or
variance-response curves), denoted Vs(rs) that estimate
Var(Ls(rs)) for each stage s. Due to the complexity of these
curves (see Fig. 5), we represent them as empirical functions,
and optimize (3) using an iterative approach based on gra-
dient descent; see details in §4. Due to the non-convexity
of (3), our algorithm has no performance guarantees. How-
ever, in practice, our algorithm already achieves adequate
precision when the number of iterations is O(N), where N
is the number of stages in the workflow.

So far, we have considered “local” improvements, where
latency reduction policy inside each stage is independent of
the rest of the workflow. Our catch-up policies use the exe-
cution state of the entire request to make speed-up decisions.
These are described in more detail in §4.3.

Finally, as described earlier, burst losses in the network
are responsible for a significant fraction of high latencies. We
recommend lowering RTO min to 10ms and using a burst-
avoidance technique such as ICTCP [26] at the application
level. While not a perfect solution, it addresses the current
problem and is applicable today.

4. DESIGN OF Kwiken
Here we provide details on applying our framework to the

different techniques – reissues, incompleteness, and catch-up.

4.1 Adaptive Reissues

4.1.1 Per-stage reissue policies
Request reissue is a standard technique to reduce the

latency tail in distributed systems at the cost of increasing
resource utilization [10]. Reissuing a part of the workflow
(i.e., reissuing the work at one or more servers corresponding
to a stage) elsewhere in the cluster is feasible since services
are often replicated and can improve latency by using the
response that finishes first.

A typical use of reissues is to start a second copy of the
request at time Ts, if there is no response before Ts, and use
the first response that returns [10]. Given fs, the latency
distribution of stage s, and rs, the target fraction of requests
to reissue, the corresponding timeout Ts is equivalent to the
(1 − rs) quantile of fs. E.g., to reissue 5% of requests, we
set Ts to the 95th percentile of fs. We can thus obtain the
variance-response function Vs(rs) for different values of rs,
by computing the corresponding Ts, and then performing
an offline simulation using the latencies from past queries
at this stage. We use standard interpolation techniques to
compute the convex-hull, V̄s(rs), to preclude discretization
effects. Note that we can compute the variance-response
function Vs(rs) for different reissue policies and pick the best
one for each rs (e.g., launching two reissues instead of just
one after a timeout or reissuing certain fraction of requests
right away, i.e., timeout of zero). With V̄s(rs), we note that
our framework abstracts away the specifics of the per-stage
latency improvements from the the end-to-end optimization.
Further, V̄s(rs) needs to be computed only once per stage.

4.1.2 Apportioning budget across stages
Equipped with per-stage reissue policies captured in V̄s(rs),

we apportion budget across stages by solving (3) with V̄s(rs)
replacing Var

(
Ls(rs)

)
for every s.

Kwiken uses a greedy algorithm, SumVar, to solve (3) which
is inspired by gradient descent. SumVar starts from an empty
allocation (rs = 0 for every stage)3. In each iteration, SumVar

increases rs′ of one stage s′ by a small amount wherein the
stage s′ is chosen so that the decrease in (3) is maximal.
More formally, SumVar assigns resources of cost δ > 0 per
iteration (δ can be viewed as the step-size of the algorithm).
For each stage s, δ additional resources implies an increase in
rs by δ/cs (since csrs = resource cost) which reduces variance
by the amount (V̄s(rs)−V̄s(rs+δ/cs)). Hence, SumVar assigns
δ resources to stage s′ ∈ argmaxs(V̄s(rs)− V̄s(rs+δ/cs)); ties
are broken arbitrarily. Returning to the example in Fig. 2,
SumVar would allocate budget to Stage 1 in the early steps,
since its variance decreases rapidly even with a small budget.
As the variance of Stage 1 flattens out, subsequent steps
would allocate budget to Stage 2. The algorithm converges
to an allocation of 1:3 when all budget has been allocated
thereby minimizing the sum of the variances of the stages,
and in turn the 99th latency percentile.

We demonstrate our algorithm on a production workflow
with 28 stages and significant sequential and parallel compo-
nents. First, we generate 1000 random reissue allocation and
for each, plot the achieved sum of variances and 99th per-
centile of end-to-end latency (circles in Fig. 9). Notice that
as sum of variances decreases, so does the latency percentile.
This illustrates that the intuition behind our approach is
correct; even in complex workflows, sum of variances is a
good metric to minimize in order to improve tail latencies.
Second, we plot the progress of our algorithm on the same
workflow (line with crosses in Fig. 9, from right to left). It
shows that the gradient descent approach can achieve lower
latency than a random search.

Our experiments show that it suffices to divide the budget
into γN chunks of equal size, where γ ∈ [2, 4] and N is the
number of stages. Consequently, the number of iterations
is linear in the number of stages. Each iteration requires

3In our experiments, we tried other initial allocations, but
they did not improve performance.
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(n)

utility
loss (r)

Latency Reduction
latency distribution (% over baseline)

95th 99th
Normal

10000
.001 25.33% 29.22%

mean=1, sd=10 .01 44.29% 47.67%
LogNormal

10000
.001 90.34% 93.83%

meanlog=1, sdlog=2 .01 98.22% 98.96%
LogNormal

1000
.001 59.93% 64.71%

meanlog=1, sdlog=2 .01 93.30% 96.12%

Web 1000s
.001 4.1% 4.0%
.01 43.1% 77.7%

Image 100s
.001 0% 0%
.01 42.6% 81.2%

Video 100s
.001 0% 0%
.01 31.2% 51.3%

Table 2: Given utility loss rate (r), the improvement in
latency from stopping when the first dn(1−r)e responders
finish.
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O(logN) for recomputing a single gradient component and
inserting it into a heap structure. Consequently, the overall
complexity of our algorithm is O(N logN). Importantly, it
is independent of the topology of the DAG.

4.2 Trading off Completeness for Latency
In many situations, partial answers are useful both to the

user and to subsequent stages in the workflow. An example is
a workflow which picks the best results from many responders.
Similar to the web-search stage shown in Fig. 1, the image-,
video- and ad- search stages at Bing consist of many servers
that in parallel compute the best matching images, videos,
and ads for a search phrase. In each, an aggregator picks
the best few responses overall. Not waiting until the last
server responds will speed up the workflow while returning
an incomplete response.

How to measure the usefulness of an incomplete answer?
Some stages have explicit indicators; e.g., each returned
document in the web-search workflow has a relevance score.
For such stages, we say that the answer has utility 1 if
it contains the highest ranked document and 0 otherwise
(alternatively, we can give weights to each of the top ten
results). For other stages, we let utility be the fraction of
components that have responded4. We define the utility loss
of a set of queries as the average loss of utility across all the
queries. So, if 1 out of 1000 queries loses the top ranked
document, the utility loss incurred is 0.1%.

Discussions with practitioners at Bing reveal that enor-
mous developer time goes into increasing answer relevance
by a few percentage points. While imprecise answers are ac-
ceptable elsewhere (e.g., in approximate data analytics), we
conclude that request-response workflows can only afford a

4If responders are equally likely to yield the most relevant
result, these measures yield the same expected loss.

small amount of utility loss to improve latency. Hence Kwiken

works within a strict utility loss rate of .001 (or 0.1%).
Our goal is to minimize response latency given a constraint

on utility loss. To be able to use (in)completeness as a
tool in our optimization framework, we treat utility loss as
a “resource” with budget constraint (average quality loss)
and decide how to apportion that resource across stages
and across queries within a stage so as to minimize overall
latency variance. We emphasize that this formulation is
consistent with Bing; both reduction in latency and higher
quality answers improve user satisfaction and can be used
interchangeably in optimization.

4.2.1 Using incompleteness within a stage
The basic setup here is of a single stage, with a constraint

on the maximal (expected) quality loss rate, denoted r. Con-
sider a simple strategy: Let each query run until dn(1− r)e
of its n responders return their answer. Then if the best doc-
ument’s location is uniform across responders, the expected
utility loss is r. To appreciate why it reduces latency, con-
sider a stage with n responders whose latencies are X1 . . . Xn,
this strategy lowers query latency to the dn(1− r)e’th largest
value in X1, . . . Xn as opposed to the maximum Xi.

Table 2 shows the latency reductions for a few synthetic
distributions and for the web, image, and video search stages
where we replay the execution traces from tens of thousands
of production queries at Bing. First, we note that even
small amounts of incompleteness yield disproportionately
large benefits. For a normal distribution with mean 1 and
stdev 10, we see that the 95th percentile latency reduces by
about 25% if only 0.1% of the responses are allowed to be
incomplete. This is because the slowest responder(s) can
be much slower than the others. Second, all other things
equal, latency gains are higher when the underlying latency
distribution has more variance, or the degree of parallelism
within the stage is large. LogNormal, a particularly skewed
distribution, has 3.5X larger gains than Normal but only
2.2X larger when the number of parallel responders drops to
103. However, we find that the gains are considerably smaller
for our empirical distributions. Partly, this is because these
distributions have bounded tails, since the user or the system
times-out queries after some time.

To understand why the simple strategy above does not help
in practice, Fig. 10 (a) plots the progress of example queries
from the web-search stage. Each line corresponds to a query
and shows the fraction of responders vs. elapsed time since
the query began. We see significant variety in progress– some
queries have consistently quick or slow responders (vertical
lines on the left and right), others have a long tail (slopy top,
some unfinished at the right edge of graph) and still others
have a few quick responders but many slow ones (steps). To
decide which queries to terminate early (subject to overall
quality constraint), one has to therefore take into account
both the progress (in terms of responders that finished) and
the elapsed time of the individual query. For example, there
are no substantial latency gains from early termination of
queries with consistently quick responders, as even waiting
for the last responder may not impact tail latency. On the
other hand, a slow query may be worth terminating even
before the bulk of responders complete.

Building up on the above intuition, Kwiken employs dy-
namic control based on the progress of the query. Specifically,
Kwiken terminates a query when either of these two condi-



tions hold: i) the query has been running for Td time after
p fraction of its components have responded, ii) the query
runs for longer than some cut-off time Tc. The former check
allows Kwiken to terminate a query based on its progress,
but not terminate too early. The latter check ensures that
the slowest queries will terminate at a fixed time regard-
less of however many responders are pending at that time.
Fig. 10 (b) visually depicts when queries will terminate for
the various strategies.

Kwiken chooses these three parameters empirically based
on earlier execution traces. For a given r, Kwiken parameter
sweeps across the (Tc, Td, p) vectors that meet the quality
constraint with equality, and computes the variance of stage
latency. Then, Kwiken picks the triplet with the smallest
variance. Repeating this procedure for different values of r
yields the variance-response curve V (r) (cf. §3). Note that
the approach for obtaining V (r) is data driven. In particular,
the choice of parameters will vary if the service software is
rewritten or the cluster hardware changes. From analyzing
data over an extended period of time, we see that parameter
choices are stable over periods of hours to days (we show
results with disjoint test and training sets in §5.3).

4.2.2 Composing incompleteness across stages
Any stage that aggregates responses from parallel com-

ponents benefits from trading off completeness for latency.
When a workflow has multiple such stages, we want to ap-
portion utility loss budget across them so as to minimize
the end-to-end latency. The approach is similar in large
part to the case of reissues – the variance-response curves
computed for each stage help split the overall optimization
to the stage-level.

Unlike reissue cost, which adds up in terms of compute
and other resources, utility loss is harder to compose, espe-
cially in general DAGs where partial results are still useful.
Modeling such scenarios fully is beyond the scope of this
paper. Nevertheless, we show two common scenarios below,
where the budget constraint can be written as a weighted
sum over the loss rates at individual stages. First, con-
sider a sequential workflow with N stages where an answer
is useful only if every stage executes completely. If ri is
the loss budget of stage i, the overall utility loss is given
by r1 + (1 − r1)r2 + · · · +

(∏N−1
s=1 (1 − rs)

)
rN . which is

upper bounded by
∑
i ri. Hence, the budget constraint is∑

i ri ≤ B, i.e., the “cost” of loss cs is one at all stages.
Second, consider stages that are independent in the sense
that the usefulness of a stage’s answer does not depend
on any other stage (e.g., images and videos returned for a

query). Here, the overall utility loss can be written as
∑
rsus∑
us

where us is the relative contribution from each stage’s answer.
Then, the budget constraint is given by

∑
s csrs ≤ B, where

cs = us∑
s′ us′

.

4.3 Catch-up
The framework described so far reduces workflow latency

by making local decisions in each stage. Instead, the main
idea behind catch-up is to speed-up a request based on its
progress in the workflow as a whole. For example, when
some of the initial stages are slow, we can reissue a request
more aggressively in the subsequent stages. In this paper, we
consider the following techniques for catch-up: (1) allocate
more threads to process the request; given multi-threaded
implementation of many stages at Bing, we find that allocating

more threads to a request reduces its latency. (2) Use high-
priority network packets on network switches for lagging
requests to protect them from burst losses. And (3), reissue
requests more aggressively based on the total time spent in
the workflow – we call this global reissues to distinguish it
from local reissues (discussed in §4.1), where the reissue is
based on time spent within a stage.

Each of these techniques uses extra resources and could
affect other requests if not constrained. To ensure catch-up
does not overload the system, Kwiken works within a catch-
up budget per workflow. Given per-stage budget, Kwiken

estimates a threshold execution latency, Tz, and speeds the
parts of a query that remain after Tz using the techniques
above. Since the decisions of a catch-up policy depend on re-
quest execution in previous stages, allocating catchup budget
across stages cannot be formulated as a separable optimiza-
tion problem, unlike the case of local techniques (§4.1.2).
We therefore use simple rules of thumb. For example, for
global reissues, we allocate catch-up budget proportionally
to the budget allocation for local reissues. Intuitively, a stage
that benefits from local reissues, can also speed-up lagging
requests. We evaluate the catch-up policies in §5.4.

4.4 Putting it all together
To conclude, we briefly highlight how to combine different

techniques into a unified optimization framework. Using
superscripts for the technique type, let k = 1, . . . ,K be the
collection of techniques, then our optimization framework
(3) extends as follows to multiple dimensions:

minimize
∑
s

Var
(
Ls(r

1
s , . . . , r

K
s )
)

subject to
∑
s

cksr
k
s ≤ Bk, k = 1, . . . ,K. (4)

As before, Var
(
Ls(r

1
s , . . . , r

K
s )
)

are the per-stage models,
i.e., variance-response curves. These models abstract away
the internal optimization given (r1

s , . . . , r
K
s ). Greedy gradient-

like algorithms (such as SumVar) can be extended to solve
(4), however, the extension is not straightforward. The main
complexity in (4) is hidden in the computation of the variance-
response curves – as opposed to a scan over one dimension in
(3), variance-response curves in (4) requires a scan over the
k-dimensional space, (r1

s , . . . , r
K
s ). In practice, we note that

the optimization often decouples into simpler problems. For
example, assume K = 2 with reissues and partial responses
as the two techniques for reducing latency. Partial responses
are mostly useful in many-way parallel services which have
a high cost for reissues. Hence, we can use the utility loss
budget only for the services with high fan-out and the reissue
budget for the rest of the services. Finding a general low
complexity algorithm to solve (4) is left to future work.

5. EVALUATION
In this section, we evaluate the individual techniques in

Kwiken by comparing them to other benchmarks (§5.2 - §5.4),
followed by using all Kwiken techniques together (§5.5). Using
execution traces and workflows from Bing, we show that:

• With a reissue budget of just 5%, Kwiken reduces the
99th percentile of latency by an average of 29% across
workflows. This is over half the gains possible from
reissuing every request (i.e., budget=100%). Kwiken’s
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Figure 11: Reduction in latency achieved by using per-
stage reissues in Kwiken

apportioning of budget across stages is key to achieving
these gains.
• In stages that aggregate responses from many respon-

ders, Kwiken improves the 99th percentile of latency by
more than 50% with a utility loss of at most 0.1%.
• Using simple catch-up techniques, Kwiken improves the

99th percentile latency by up to 44% by using just 6.3%
more threads and prioritizing 1.5% network traffic.
• By combining reissues with utility trade-off we see that

Kwiken can do much better than when using either
technique by itself; for example, a reissue budget of
1% combined with a utility loss of 0.1% achieves lower
latency than just using reissues of up to 10% and just
trading off utility loss of up to 1%.
• Kwiken’s data-driven parameter choices are stable.

5.1 Methodology
Traces from production: To evaluate Kwiken, we ex-
tract the following data from production traces for the 45
most frequently accessed workflows at Bing: workflow DAGs,
request latencies at each stage as well as the end-to-end
latency, the cost of reissues at each stage and the usefulness
of responses (e.g., ranks of documents) when available. To
properly measure latencies on the tail, we collected data for
at least 10, 000 requests for each workflow and stage. The
datasets span several days during Oct-Dec 2012. We ignore
requests served from cache at any stage in their workflow;
such requests account for a sizable fraction of all requests
but do not represent the tail.

We conducted operator interviews to estimate the cost
of reissue at each stage. Our estimates are based on the
resources expended per request. For stages that process the
request in a single thread, we use the mean latency in that
stage as an approximation to the amount of computation
and other resources used by the request. For more complex
stages, we use the sum of all the time spent across parallel
servers to execute this stage. Kwiken only relies on the relative
costs across stages when apportioning budget.

Simulator: We built a trace-driven simulator, that mimics
the workflow controller used in production at Bing, to test

the various techniques in Kwiken. The latency of a request
at each stage and that of its reissue (when needed) are
sampled independently from the distribution of all request
latencies at that stage. We verified that this is reasonable:
controlled experiments on a subset of workflows where we
issued the same request twice back-to-back showed very small
correlation; also, the time spent by a request in different
stages in its workflow had small correlation (see §2.2).

Estimating Policy Parameters: The parameters of the
Kwiken policies (such as per-stage reissue timeouts) are
trained based on traces from prior executions. While we
estimate the parameters on a training data set, we report
performance of all polices on a test data set collected at a
different period of time. In all cases, both training and test
data sets contain traces from several thousands to tens of
thousands of queries.

5.2 Reissues
We first evaluate the effect of using per-stage reissues

within Kwiken’s framework. Fig. 11a plots Kwiken’s improve-
ments on the end-to-end latency due to reissues, using the
SumVar algorithm described in §4.1. The x-axis depicts the
fraction of additional resources provided to reissues and the
y-axis shows the fractional reduction at the 99th percentile.
The solid line shows the mean improvement over the 45 most
frequent workflows at Bing; the dashed lines represent the
spread containing the top 25% and bottom 75% of workflows
and the dotted lines show the improvements for the top 10%
and bottom 90% of workflows (sorted with respect to per-
centage improvement). The circles on the right edge depict
latency improvements with a budget of 100%.

We see that Kwiken improves 99th percentile of latency by
about 29%, on average, given a reissue budget of 5%. This is
almost half the gain that would be achieved if all requests at
all stages were reissued, i.e., a budget of 100%. This indicates
that Kwiken ekes out most of the possible gains, i.e., identifies
laggards and tries to replace them with faster reissues, with
just a small amount of budget. Most workflows see gains but
some see a lot more than the others; the top 10% of workflows
improve by 55% while the top 75% of workflows see at least
10% improvement each. The variation is because different
workflows have different amounts of inherent variance.

Fig. 11b plots the average gains at several other latency
percentiles. As before, we see that small budgets lead to
sizable gains and the marginal increase from additional bud-
get is small. This is because some stages with high variance
and low cost can be reissued at substantial fraction (e.g.,
50%), yet consume only a fraction of total budget. It is
interesting though that just a small amount of budget (say
3%) leads to some gains at the median. Observe that higher
percentiles exhibit larger improvements, which is consistent
with theory (cf. §3). We note that Kwiken scales efficiently to
large workflows. Computing per-stage models takes about
2 seconds per stage and is parallelizable. Running SumVar

takes less than one second for most of the workflows.

Comparing SumVar to other benchmarks: First, we
compare against the current reissue strategy used in Bing.
The actual reissue timeout values used in Bing are very con-
servative – additional cost is only 0.2% – and reduce 99th

percentile of latency only by 3%. The timeouts are so con-
servative because without an end-to-end framework such as
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Figure 12: Latency reductions achieved by Kwiken and
variants when trading off completeness for latency.

Kwiken, it is hard to reason about how much of the overall
capacity should be used for reissues at each stage.

Second, we compared with several straw man policies.
One policy would assign each stage the same reissue fraction
ri = r. However such policy has clear shortcomings; for
example, if a single stage has high cost ci it will absorb
most of the budget. If that stage has low variance, then the
resulting end to end improvement will be negligible. Other
policies like allocating equal budget to each stage exhibit
similar drawbacks.

Finally, lacking an optimal algorithm (recall that even (3)
has a non-convex objective), we compare with two brute-
force approaches. For a subset of nine smaller workflows
and budgets from 1% to 10%, we pick the best timeouts
out of 10, 000 random budget allocations. Compared to
training Kwiken on the same data, this algorithm was about
4 orders of magnitude slower. Hence, we did not attempt
it on larger workflows. Here, Kwiken’s results were better
on average by 2%; in 95% of the cases (i.e., {workflow,
budget} pairs), Kwiken’s latency reduction was at least 94%
of that achieved by this method. The second approach uses
gradient-descent to directly minimize the 99th percentile of
the end-to-end latency using a simulator (i. e., avoiding the
sum of variances approximation). This method was equally
slow and performed no better. Hence, we conclude that
Kwiken’s method to apportion budget across stages is not
only useful but also perhaps nearly as effective as an ideal
(impractical) method.

We also evaluated two weighted forms of Kwiken that more
directly consider the structure of the workflow (§3): weighting
each stage by its average latency and by its likelihood to
occur on a critical path. While both performed well, they
were not much better than the unweighted form for the
examined workflows.

5.3 Trading off Completeness for Latency
Next, we evaluate the improvements in latency when using

Kwiken to return partial answers. Fig. 12a plots the improve-
ment due to trading off completeness for latency for different
values of utility loss. Recall that our target is to be complete
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Figure 13: Latency improvements from using different
catch-up techniques.

enough that the best result is returned for over 99.9% of the
queries, i.e., a utility loss of 0.1%. With that budget, we see
that Kwiken improves the 99th (95th) percentile by around
50% (25%). The plotted values are averages over the web,
image and video stages. Recall that these stages issue many
requests in parallel and aggregate the responses (see Fig. 1).

Fig. 12b compares the performance of Kwiken with a few
benchmarks for utility loss budget of 0.1%: wait-for-fraction
terminates a query when b fraction of its responders return,
fixed-timeout terminates queries at Tcutoff, and time-then-
fraction terminates queries when both these conditions hold:
a constant T ′ time has elapsed and at least α fraction of
responders finish.

We see that Kwiken performs significantly better. Wait-for-
fraction spends significant part of budget on queries which get
the required fraction relatively fast, hence slower queries that
lie on the tail do not improve enough. Fixed-timeout is better
since it allows slower queries to terminate when many more of
their responders are pending but it does not help at all with
the quick queries– no change below the 90th percentile. Even
among the slower queries, it does not distinguish between
queries that have many more pending responders and hence
a larger probability of losing utility versus those that have
only a few pending responders. Time-then-fraction is better
for exactly this reason; it never terminates queries unless a
minimal fraction of responders are done. However, Kwiken

does even better; by waiting for extra time after a fraction
of responders are done it provides gains for both the quicker
queries and variable amounts of waiting for the slower queries.
Also, it beats time-then-fraction on the slowest queries by
stopping at a fixed time.

5.4 Catch-up
Here, we estimate the gains from the three types of catch-

up mechanisms discussed earlier. Fig. 13a shows the gains
of using multi-threaded execution and network prioritization
on the web-search workflow (Fig. 1), relative to the baseline
where no latency reduction techniques are used. We note
that the speedup due to multi-threading is not linear with
the number of threads due to synchronization costs and using
3 threads yields roughly a 2X speed up. We see that speeding
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Figure 14: A detailed example to illustrate how Kwiken works

up both stages offers much more gains than speeding up just
one of the stages; the 99th percentile latency improves by up
to 44% with only small increases in additional load – about
6.3% more threads needed and about 1.5% of the network
load moves into higher priority queues.

Next, we evaluate the usefulness of using global reissues
on workflows. Using a total reissue budget of 3%, Fig. 13b
plots the marginal improvements (relative to using the entire
budget for local reissues) from assigning 1

30
th (x-axis) vs.

assigning 1
6
th of the budget to global reissues (y-axis), for

the 45 workflows we analyze. The average reduction in
99th percentile latency is about 3% in both cases, though,
assigning 1

6
of budget leads to higher improvements in some

cases. Overall, 37 out of the 45 workflows see gains in latency.
We end by noting that this experiment only shows one way
to assign global reissues; better allocation techniques may
yield larger gains.

5.5 Putting it all together
To illustrate the advantage of using multiple latency reduc-

tion techniques in the Kwiken framework together, we analyze
in detail its application to a major workflow in Bing that has
150 stages. A simplified version of the workflow with only
the ten highest-variance stages is shown in Fig. 14a. In three
of the stages, we use utility loss to improve latency and use
reissues on all stages.

We compare Kwiken with other alternatives in Fig. 14b;
on left, we fix utility loss budget at 0.1% and vary reissues,
on right, we vary utility loss and fix reissues at 3%. We
see complementary advantage from using reissues and utility
loss together. In the left graph, using Kwiken with reissues
only at 10% performs worse than using both reissues at 1%
and 0.1% utility loss. Also, using both together is about
20% better than using just utility loss. Graph on the right
shows that, with reissue budget at 3%, increasing utility
loss has very little improvements beyond .1%. We observe
that the larger the reissue budget, the larger the amount of
utility loss that can be gainfully used (not shown). Further,
how we use the budget also matters; consider K for reissues;
wait-for-fraction on the left. For the same amount of utility
loss, Kwiken achieves much greater latency reduction.

So what does Kwiken do to get these gains? Fig. 14c shows
for each of the ten stages, the latency variance (as a fraction
of all variance in the workflow) and the amount of allocated
budget (in log scale). We see that the budget needs to be
apportioned to many different stages and not simply based
on their variance, but also based on the variance-response
curves and the per-stage cost of request reissue. Without
Kwiken, it would be hard to reach the correct assignment.
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Figure 15: For 45 workflows, this figure compares the
99th percentile latency improvement and budget values
of the training and test datasets.

5.6 Robustness of parameter choices
Recall that Kwiken chooses its parameters based on traces

from prior execution. A concern here is that due to temporal
variations in our system, the chosen parameters might not
yield the gains that are expected from our optimization or
may violate resource budgets.

To understand the stability of the parameter choices over
time, we compare the improvements for 99th percentile la-
tency and the budget values obtained for the “training”
dataset, to those obtained for the “test” datasets. The test
datasets were collected from the same production cluster on
three different days within the same week. Fig. 15 shows that
the latency improvements on the test datasets are within
a few percentage points off that on the training datasets.
The utility loss on the test dataset is slightly larger but
predictably so, which allows us to explicitly account for it
by training with a tighter budget. In all, we conclude that
Kwiken’s parameter choices are stable. Also, reallocating
budget is fast and can be done periodically whenever the
parameters change.

6. RELATED WORK
Improving latency of datacenter networks has attracted

much recent interest from both academia and industry. Most
work in this area [2, 3, 17, 25, 29] focuses on developing
transport protocols to ensure network flows meet specified
deadlines. Approaches like Chronos [18] modify end-hosts to
reduce operating system overheads. Kwiken is complementary
to these mechanisms, which reduce the latency of individ-
ual stages, because it focuses on the end-to-end latency of
distributed applications.

Some recent work [4, 13, 28] reduces the job latency in
(MapReduce-like) batch processing frameworks [11] by adap-
tively reissuing tasks or changing resource allocations. Other
prior work [19] explores how to (statically) schedule jobs,



that are modeled as a DAG of tasks to minimize completion
time. Neither of these apply directly to the context of Kwiken
which targets large interactive workflows that finish within a
few hundreds of milliseconds and may involve over thousands
of servers. Static scheduling is relatively easy here and there
is too little time to monitor detailed aspects at runtime (e.g.,
task progress) which was possible in the batch case.

Some recent work concludes that latency variability in
cloud environments arises from contention with co-located
services [1] and provides workload placement strategies to
avoid interference [27].

Some of the techniques used by Kwiken have been explored
earlier. Reissuing requests has been used in many distributed
systems [10, 12] and networking [5, 14, 23] scenarios. Kwiken’s
contribution lies in strategically apportioning reissues across
the stages of a workflow to reduce end-to-end latency whereas
earlier approaches consider each stage independently. Par-
tial execution has been used in AI [30] and programming
languages [6, 16]. The proposed policies, however, do not
translate to the distributed services domain. Closer to us
is Zeta [15], which devises an application-specific scheduler
that runs beside the query to estimate expected utility and
to choose when to terminate. In contrast, Kwiken relies only
on opaque indicators of utility and hence the timeout policies
are more generally applicable.

7. CONCLUSION
In this paper, we propose and evaluate Kwiken, a framework

for optimizing end-to-end latency in computational workflows.
Kwiken takes a holistic approach by considering end-to-end
costs and benefits of applying various latency reduction tech-
niques and decomposes the complex optimization problem
into a much simpler optimization over individual stages. We
also propose novel policies that trade off utility loss and
latency reduction. Overall, using detailed simulations based
on traces from our production systems, we show that using
Kwiken, the 99th percentile of latency improves by over 75%
when just 0.1% of the responses are allowed to have partial
results and 3% extra resources are used for reissues.
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APPENDIX
Proof of (2). For each random variable Ls we introduce
a new independent random variable L′s which has the same
distribution as Ls. Let L = (L1, . . . , LN ) and L(s) =
(L1, . . . , Ls−1, L

′
s, Ls+1, . . . , LN ). Then, using the Efron-

Stein inequality [7], we have Var(Lw(L)) ≤ 1
2

∑
s E
[
(Lw(L)−

Lw(L(s)))2
]
≤ 1

2

∑
sE
[
(Ls − L′s)2

]
=
∑
s Var(Ls).
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