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Abstract

We propose a programming model where effects are treated in a
disciplined way, and where the potential side-effects of a function
are apparent in its type signature. The type and effect of expressions
can also be inferred automatically, and we describe a polymorphic
type inference system based on Hindley-Milner style inference.
A novel feature is that we support polymorphic effects through
row-polymorphism using duplicate labels. Moreover, we show that
our effects are not just syntactic labels but have a deep semantic
connection to the program. For example, if an expression can be
typed without an exn effect, then it will never throw an unhandled
exception. Similar to Haskell’s runST we show how we can safely
encapsulate stateful operations. Through the state effect, we can
also safely combine state with let- polymorphism without needing
either imperative type variables or a syntactic value restriction.
Finally,our system is implemented fully in a new language called
Koka' and has been used successfully on various small to medium-
sized sample programs ranging from a Markdown processor to a
tier-splitted chat application.

1. Introduction

We propose a programming model where effects are a part of the
type signature of a function. Currently, types only tell us something
about the input and output value of a function but say nothing
about all other behaviors; for example, if the function writes to
the console or can throw an exception. In our system, the squaring
function:

function sqr(z : int) {z * z }
will get the type:

sqr : int — total int

signifying that sqr has no side effect at all and behaves as a total
function from integers to integers. If we add a print statement
though:

function sqr(z : int) { print(z); z xz }

the (inferred) type indicates that sqr has an input-output (i0) effect:
sqr : int — 10 int

Note that there was no need to change the original function nor to
promote the expression x*z into the io effect. One of our goals is to
make effects convenient for the programmer, so we automatically
combine effects. In particular, this makes it convenient for the pro-
grammer to use precise effects without having to insert coercions.

! Koka means ‘effect’ or ‘effective’ in Japanese.

For example, we can split Haskell’s state monad into three separate
effects (read, allocate, and write), while automatically combining
these effects when required.

There have been many proposals for effects systems in the past
[7, 18, 30, 36, 22, 2, 19, 32, 27]. However, many such systems
suffer from being syntactical in nature (i.e. effects are just labels),
or by being quite restricted, for example being monomorphic or
applied to a very specific set of effects. Some of the more general
systems suffer from having complicated effect types, especially in a
polymorphic setting that generally requires sub- effect constraints.

This paper has been long in the works and brings together many
pieces of the effect puzzle: ranging from effect types as rows with
duplicate labels, the semantics of effect types, and practical expe-
rience with effect inference. In particular, we make the following
contributions:

e We describe a novel effect system based on row polymorphism
which allows duplicated effects. It turns out that this is essential
to provide natural types to effect elimination forms, like catch-
ing exceptions.

The effect types are not just syntactic labels but they have a deep
semantic connection to the program (Section 7). For example,
we can prove that if an expression that can be typed without an
exn effect, then it will never throws an unhandled exception; or
if an expressions can be typed without a div effect, then it will
always terminate.

e The interaction between polymorphism and mutable state is
fraught with danger. We show that by modeling state as an ef-
fect we can safely combine mutability with let-polymorphism
without needing either imperative type variables, nor a syntac-
tic value restriction.

Moreover, we can safely encapsulate local state operations and
we prove that such encapsulation is sound where no references
or stateful behavior can escape the encapsulation scope.

The interaction between divergence and higher-order mutable
state is also tricky. Again, we show how explicit heap effects
allow us to safely infer whether stateful operations may diverge.

Having to keep track of effects manually would be a large bur-
den: we describe a sound and complete type inference system
that automatically infers the principal effect and type of any ex-
pression, and automatically promotes effects when necessary.
(Section 4).

We have an extensive experience with the type system within
the Koka language. The Koka language fully implements the
effect types as described in this paper and we have used it
successfully in various small to medium sized code examples
ranging from a fully compliant Markdown text processor to a
tier-splitted chat application.



2. Overview

Types tell us about the behavior of functions. For example, if
suppose we have the type of a function foo in ML:

foo : int — int

we know that foo is well defined on inputs of type int and returns
values of type int. But that that is only part of the story, the type
tells us nothing about all other behaviors of foo. For example, we
do not know if this is truly a function in the mathematical sense,
returning the same result for same inputs. Or if it accesses the file
system perhaps, or throws exceptions, or never returns a result at
all. Even ‘pure’ functional languages like Haskell do not fare much
better at this. Suppose the Haskell function foo has type:

foo 1 Int — Int

Even though we know now there is no arbitrary side-effect, we
still do not know whether this function will terminate or raise
exceptions. Due to laziness, we do not even know if the result
itself, when demanded, will raise an exception or diverge; i.e.
even a simple transformation like z * 0 to O is not possible under
Haskell’s notion of purity. In essence, in both ML and Haskell the
types are not precise enough to describe many aspects of the static
behavior of a program. In the Haskell case, the real type is more
like (Int, — Int, ), while the type signature of the ML program
should really include that any kind of side-effect might happen.

We have been doing it wrong all this time! We believe it is es-
sential for types to include potential behaviors like divergence, ex-
ceptions, or stateful- ness. Being able to reason about these aspects
is crucial in many domains, including safe parallel execution, opti-
mization, query embedding, tier- splitting, etc.

2.1. Effect types

To address the previous problems, we took a fresh look at pro-
gramming with side-effects, and developed a new language called
Koka [15]. Like ML, Koka has a strict semantics where arguments
are evaluated before calling a function. This implies that an expres-
sion with type int can really be modeled semantically as an integer
(and not as a delayed computation that can potentially diverge or
raise an exception).

As a consequence, the only point where side effects can oc-
cur is during function application. We write function types as
(t1,...,7n) — € T to denote that a function takes arguments of
type 71 to T,, and returns a value of type T with a potential side
effect e. As apparent from the type, functions need to be fully ap-
plied and are not curried. This is to make it immediately apparent
where side effects can occur. For example, in a curried language
like ML, an expression like f « y can have side effects at different
points depending on the arity of the function f. In our system this
is immediately apparent, as one writes either f(z, y) or (f(z))(y)-

2.2. Basic effects

The effects in our system are extensible, but the basic effects
defined in Koka are total, exn, div, ndet, alloc{h), read(h),
write(h), and 70. Of course total is not really an effect but signi-
fies the absence of any effect and is assigned to pure mathematical
functions. When a function can raise an exception, it will get the
exn effect. Potential divergence or non-termination is signified by
the div effect. Currently, Koka uses a simple termination analysis
based on inductive data types to assign this effect to recursive func-
tions. Non-deterministic functions get the ndet effect. The effects
alloc(h), read(h) and write(h) are used for stateful functions over

a heap h. Finally 7o is used for functions that do any input/output
operations.
Here are some type signatures of common functions in Koka:

random : () — ndet double

print  : string — 40 ()

error : Va. string — exn a

(:=) : Ya. (ref (h, a), a) — write(h) ()

Note that we use angled brackets to denote type application as usual
in languages like C# or Scala. We also use angled brackets to denote
a row of effects. For example, the program:

function sqr( z : int) {error("hi”); sqr(z); zxz }
will get the type

sqr : int — (exn, div) int

where we combined the two basic effects exn and div into a
row of effects (exn, div). The combination of the exception and
divergence effect corresponds exactly to Haskell’s notion of purity,
and we call this effect pure. Other useful type aliases include:

alias total = ()

alias pure = (exn, div)
alias st(h) = (alloc(h), read(h), write(h))
aliasio = (st(ioheap), pure, ndet)

This hierarchy is clearly inspired by Haskell’s standard monads and
we use this as a starting point for more refined effects which we
hope to explore in Koka. For example, blocking, client/server side
effects, reversable operations, etc.

2.3. Polymorphic effects

Often, the effect of a function is determined by the effects of
functions passed to it. For example, the map function which maps
a function over all elements of a list will have the type:

map : VYapBu. (list{a), B— u B) — u list(B)

where the effect of the map function itself is completely deter-
mined by the effect of its argument. In this case, a simple and obvi-
ous type is assigned to map, but one can quickly create more com-
plex examples where the type may not be obvious at first. Consider
the following program:

function foo(f, ) { f(); 9(); error(”hi") }

Clearly, the effect of foo is a combination of the effects of f and
g, and the ezn effect. One possible design choice is to have a U
operation on effect types, and write the type of foo as:

Vpapz. ()= w1 (), )= p2 () = (k1 U pz U ezn) ()

Unfortunately, this quickly gets us in trouble during type inference:
unification can lead to constraints of the form pq U po ~ 3 U pig
which cannot be solved uniquely and must become part of the type
language. Another design choice is to introduce subtyping over
effects and write the type of foo as:

Vpipeps. (p < ps, p2 < ps, (exn) < ps) =
(O=p10, 0= p20)— ps()

This is the choice made in an earlier version of Koka described as a
technical report [32]. However, in our experience with that system
in practice we felt the constraints often became quite complex and
the combination of polymorphism with subtyping can make type
inference undecidable.

The approach we advocate in this paper and which is adopted
by Koka is the use of row-polymorphism on effects. Row polymor-
phism is well understood and used for many inference systems for
record calculi [6, 14, 26, 29, 28, 17]. We use the notation (I | p)
to extend an effect row p with an effect constant /. Rows can now



have two forms, either a closed effect (ezn, div), or an open effect
ending in an effect variable (exzn, div | u). Using an open effect,
our system infers the following type for foo:

foo : V. (() = (exn | ) (), () = (exn | ) () = (ezn | p) ()

The reader may worry at this point that the row polymorphic type
is more restrictive than the earlier type using subtype constraints:
indeed, the row polymorphic type requires that each function ar-
gument now has the same effect (ezn | ). However, in a calling
context foo(f, g) our system ensures that we always infer a poly-
morphic open effect for each expression f and g. For example,
f:0 — (ezn|p1) Qandg : () — (div|p2) (). This al-
lows the types (ezn | u1) and (div | p2) to unify into a common
type (exn, div | pus) such that they can be applied to foo, resulting
in an inferred effect (exn, div | us) for foo(f, g).

2.4. Duplicate effects

Our effect rows differ in an important way from the usual ap-
proaches in that effect labels can be duplicated, i.e. (exn, exn) #
(ezn) (1). This was first described by Leijen [14] where this was
used to enable scoped labels in record types. Enabling duplicate la-
bels is crucial for our approach. First of all, it enables principal uni-
fication without needing extra constraints and secondly, it enables
us to give precise types to effect elimination forms (like catching
exceptions).

In particular, during unification we may end up with constraints
of the form (exn | u) ~ (exn). With regular row-polymorphism,
such constraint can have multiple solutions, namely p = () or
u = (exn). This was first observed by Wand [37] in the context of
records. Usually, this problem is fixed by either introducing lacks
constraints [6] or polymorphic presence and absence flags on each
label [25] (as used by Lindley and Cheney [17] for an effect system
in the context of database queries). With rows allowing duplicate
labels, we avoid additional machinery since in our case y = () is
the only solution to the above constraint (due to (1)).

Moreover, duplicate labels make it easy to give types to effect
elimination forms. For example, catching effects removes the exn
effect:

catch : VYau. (() = (ezn | u) a, exception — pa) = p«

Here we assume that catch takes two functions, the action and the
exception handler that takes as an argument the thrown exception.
Here, the exn effect of the action is discarded in the final effect
w since all exceptions are handled by the handler. But of course,
the handler can itself throw an exception and have an ezn effect
itself. In that case p will unify with a type of the form (ezn|u’)
giving action the effect (exn|exn|u’) where exn occurs duplicated,
which gives us exactly the right behavior. Note that with lacks
constraints we would not be able to type this example because
there would be a exn ¢ pu constraint. We can type this example
using flags but the type would arguably be more complex with a
polymorphic presence/absence flag on the exn label in the result
effect, something like:

catch : Vypap. (() — (exne| u) a, exception — (exn,| u) a)

= (ean,| 1) o

There is one situation where an approach with flags is more ex-
pressive though: with flags one can state specifically that a certain
effect must be absent. This is used for example in the effect system
by Lindley and Cheney [17] to enforce that database queries never
have the wild effect (io). In our setting we can only enforce absence
of an effect by explicitly listing a closed row of the allowed effects
which is less modular. In our current experience this has not yet
proven to be a problem in practice though.

2.5. Heap effects

One of the most useful side-effects is of course mutable state.
Here is an example where we give a linear version of the fibonacci
function using imperative updates:

function fib( n : int)

valz = ref(0)
valy = ref(1)
repeat(n) {

Here z and y are bound to freshly allocated references of type
ref (h,int). The operator (!) dereferences a reference while the
operator (:=) is used for assignment to references.

Due to the reading and writing of z and y of type ref (h, int),
the effect inferred for the body of the function is st(h) for some
heap h. As such, a valid type for fib would be:

fib : Yh.int — st(h) int

However, we can of course consider the function fib to be total: for
any input, it always returns the same output since the heap h can-
not be modified or observed from outside this function. In partic-
ular, we can safely remove the effect st(h) whenever the function
is polymorphic in the heap h and where h is not among the free
type variables of argument types or result type. This notion corre-
sponds directly to the use of the higher-ranked runST function in
Haskell [24] (which we will call just run):

run : Ypa. (Vh. () = (st(h) | p) @) > pa

Koka will automatically insert a run wrapper at generalization
points if it can be applied, and infers a total type for the above
fibonacci function:

fib : int — total int

Again, using row polymorphism is quite natural to express in the
type of run where the st(h) effect can be dismissed.

One complex example from a type inference perspective where
we applied Koka, is the Garsia-Wachs algorithm as described by
Filliatre [5]. The given algorithm was originally written in ML and
uses updateable references in the leaf nodes of the trees to achieve
efficiency comparable to the reference C implementation. However,
Filliatre remarks that these side effects are local and not observable
to any caller. We implemented Filliatre’s algorithm in Koka and our
system correctly inferred that the state effect can be discarded and
assigned a pure effect to the Garsia-Wachs algorithm [15].

2.6. Heap safety

Combining polymorphism and imperative state is fraught with dif-
ficulty and requires great care. In particular, lez-polymorphism may
lead to unsoundness if references can be given a polymorphic type.
A classical example from ML is:

let 7 = ref []in (r = [true], !r + 1)

Here, we let bind 7 to a reference with type Ve ref (list(c«)). The
problem is that this type can instantiate later to both a reference
to an integer list and a boolean list. Intuitively, the problem is
that the first binding of r generalized over type variables that
are actually free in the heap. The ML language considered many
solutions to prevent this from happening, ranging from imperative



type variables [33] to the current syntactic value restriction, where
only value expressions can be generalized.

In our system, no such tricks are necessary. Using the effect
types, we restrict generalization to expressions that are total, and
we reject the ML example since we will not generalize over the
type of r since it has an alloc(h) effect. We prove in Section 6.1
that our approach is semantically sound. In contrast to the value
restriction, we can still generalize over any expression that is not
stateful regardless of its syntactic form.

The addition of run adds further requirements where we must
ensure that encapsulated stateful computations truly behave like a
pure function and do not ‘leak’ the state. For example, it would be
unsound to let a reference escape its encapsulation:

run( function(){ ref (1) })

or to encapsulate a computation where its effects can still be ob-
served:

function wrong() {

val r = ref(1)
function foo() { run( function(){ r :=!r+1})} (looks pure)
foo()

Ir  (expecting 1 but getting 2)

We prove in Section 6.2 that well-typed terms never exhibit such
behavior. To our knowledge we are the first to prove this formally
for a strict language in combination with exceptions and diver-
gence. A similar result is by Launchbury and Sabry [13] where
they prove heap safety of the Haskell’s ST monad in the context of
a lazy store with lazy evaluation.

2.7. Divergence

Koka uses a simple termination checker (based on [1]) to assign
the divergence effect to potentially non-terminating functions. To
do this safely, Koka has three kinds of data types, inductive, co-
inductive, and arbitrary recursive data types. In particular, we re-
strict (co)inductive data types such that the type itself cannot occur
in a negative position. Any function that matches on an arbitrary
recursive data type is assumed to be potentially divergent since one
can encode the Y combinator using such data type and write a non-
terminating function that is not syntactically recursive.

Recursively defined functions should of course include the di-
vergence effect in general. However, if the termination checker
finds that each recursive call decreases the size of an inductive data
type (or is productive for a co- inductive data type), then we do
not assign the divergent effect. The current analysis is quite limited
and syntactically fragile but seems to work well enough in prac-
tice (Section 2.8). For our purpose, we prefer a predictable analysis
with clear rules.

However, in combination with higher-order mutable state, we
can still define functions that are not syntactically recursive, but
fail to terminate. Consider the following program:

function diverge()

val r := ref(id)
furfciti(}n foo() { (!r)() }

foo()
}

In this function, we first create a reference r initialized with the
identify function. Next we define a local function foo which calls
the function in r. Then we assign foo itself to r and call foo,

which will now never terminate even though there is no syntactic
recursion.

But how can we infer in general that diverge must include the
div effect? It turns out that in essence reading from the heap may
result in divergence. A conservative approach would be to assign
the div effect to the type of read (!). For simplicity, this is what we
will do in the formal development.

But in Koka we use a more sophisticated approach. In order
to cause divergence, we actually need a higher-order heap where
we read a function from the heap which accesses the heap itself.
Fortunately, our effect system makes this behavior already apparent
in the inferred types! — in our example, the effect of foo contains
read(h), which is being stored in a reference in the same heap of
type ref (h, () — read(h) ()). Note how the heap parameter A is
itself present in the type of the values that this reference stores.

The trick is now that we generate a type constraint hdiv(h, T, €)
for every heap read that keeps track of heap type h, the type of
the value that was read 7 and the current effect e. The constraint
hdiv(h, T, €) expresses that if h € ftv(7) then the effect e must
include divergence. In particular, this constraint is fine-grained
enough that any reading of a non-function type, or non-stateful
functions will never cause divergence (and we can dismiss the con-
straint) The drawback is that if 7 is polymorphic at generalization
time, we need to keep the constraint around (as we cannot decide
at that point whether 2 will ever be in ftv(7)), which in turn means
we need to use a system of qualified types [11]. Currently this is
not fully implemented yet in Koka, and if at generalization time we
cannot guarantee 7 will never contain a reference to the heap h, we
conservatively assume that the function may diverge.

2.8. Koka in practice

When designing a new type system it is always a question how
well it will work in practice: does it infer the types you expect?
Do the types become too complicated? Is the termination checker
strong enough? etc. We have implemented the effect inference and
various extensions in the Koka language which is freely available
on the web. The Koka system currently has a JavaScript backend
and can generate code that runs on NodeJS or inside a web page.
We have written many small to medium sized samples to see how
well the system works in practice.

2.8.1. Markdown

One application is a fully compliant Markdown text processor. This
program consists of three phases where it first parser block ele-
ments, performs block analysis, collecting link definitions, num-
bering sections etc, and finally renders the inline elements in each
block. The program passes the full Markdown test suite. Remark-
ably, almost all functions are inferred to be total, and only a hand-
ful of driver functions perform side effects, like reading input files.
For efficiency though, many internal functions use local state. For
example, when rendering all inline elements in a block, we use a
local mutable string builder (of type builder(h)) to build the result
string in constant time (actual Koka code):

function formatInline( ctz : inlineCtz, txt : string) : string {

formatAcc(ctz, builder(), txt)

function formatAcc( ctz : inlineCtz, acc : builder(h),
txt : string ) : st(h) string

if (txt =="") return acc.string
val (s, next) = matchRules(ctz.grammar, ctz, tzt, id)
formatAcc(ctx, acc.append(s), trt.substri(next))

}



Note how formatAcc is stateful due to the calls to the append and
string methods of the string builder acc, but the outer function
formatInline is inferred to be total since Koka can automatically
apply the run function and encapsulate the state: indeed it is not
observable if we use a mutable string builder internally or not.
This pattern also occurs for example in the block analysis phase
where we use a mutable hashmap to build the dictionary of link
definitions.

As an aside, it turns out that on NodeJS, our Markdown program
is about 30% faster than the fastest JavaScript Markdown processor
at this time (marked), and about 6 times faster than the most widely
used one (showdown). Using pure functional programs seems not
only good for programmers, but also for JavaScript interpreters!

2.8.2. Safe tier-splitting

Most of the HTML5 DOM and the Node API’s are available in
Koka which allows us to write more substantial programs and
evaluate the effect inference system in practice. We use two new
effects for most external functions: the effect dom for functions
that may have any side effect through a DOM call, and the effect
blocking for calls in NodeJS that may block (like readFileSync
for example).

On the web, many programs are split in a server and client
part communicating with each other using some data encoding like
JSON. It is advantageous to write both the client and server part
as one program. In particular, the client and server part can share
one common type definition for the data they exchange ensuring
that they are always in sync and enabling automatic decoding
and encoding of that data (depending on language support). Also,
their interaction will be more apparent they can share common
functionality, like date parsing, ensuring that both parts behave
similarly.

Safely splitting a program into a server and client part is difficult
though. For example, the client code may call a library function
that itself calls a function that can only be run on the server (like
writing to a log file), or the other way around. Moreover, if the
client and server part both access a shared global variable (or both
call a library function that uses an internal global variable) then we
cannot split this code anymore.

The Koka effect types tackle both problems though and enable
safe tier splitting. In particular, our main tier splitting function has
the following (simplified) type signature:

function tiersplit(
serverPart : () — server (
(a— server ()) — server (8— server ()) ),
clientPart : (8— client ()) — client (a— client ())
) 2o ()
where the server and client effects are defined as:

alias server = io
alias client = (dom, div)

The tiersplit function takes a server and client function and sets
up a socket connection. On the server it will call the server part
function which can initialize. Now, both the client and server part
can be called for each fresh connection where tiersplit supplies a
send function that takes a message of type « for client messages,
and (3 for server messages. Both the client and server part return a
fresh ‘connection’ function that handles incoming messages from
the server or client respectively. Note how this type guarantees that
messages sent to the client, and messages handled by the client, are
both of type «, while for the server messages they will be 3.
Furthermore, because the effect types for server and client are
closed, the client and server part will only be able to call functions
available for the client or server respectively. For example, if the
client tries to call print it will get the console effect which will
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Figure 1. Syntax of types and kinds. An extra restriction is that
effect constants cannot be type variables, i.e. o is illegal.

not unify with the client effect, statically rejecting the program.
Similarly for the server part if it tries to call functions with the
dom effect (like alert). However, any function with a total or pure
effect, like length or map, can be called by both the server and
client part and they can share common functionality.

Finally, the Koka effect system also prevents accidental sharing
of global state by the client and server part. Both the client and
server can use state that is contained in their handler. In that case
the st(h) effect will be inferred, and discarded because h will
generalize. However, if either function tries to access a shared
variable in an outer scope, then the h will not generalize (because
the variable will have type ref (h, a) and therefore h is not free in
the environment), in which case the inferred st(h) effect cannot
be removed. Again, this will lead to a unification failure and the
program will be statically rejected.?

3. The type system

In this section we are going to give a formal definition of our
polymorphic effect system for a small core-calculus that captures
the essence of Koka. We call this \*. Figure 1 defines the syntax
of types. The well-formedness of types 7 is guaranteed by a simple
kind system. We put the kind « of a type 7 in superscript, as 7.
‘We have the usual kind * and —, but also kinds for effect rows

zActually, in the real implementation, both ¢0 and dom include the st
effect but each with a different heap constant, namely ioheap and hdom
respectively; still causing a unification error at some point since these will
not unify with each other.



(EQ-REFL) E=¢€
€1 = €2 €2 = €3
(EQ-TRANS) B —
€1 = €3
(EQ HEAD) l1 = l2 €1 = €2
(liler) =(l2]e2)
(EQ-SWAP) h #b

([{l2]e)) = (2[(l]e€))

(EQ-LAB)  ¢(T1, ..y Tn) = (71, ..., Th)

Figure 2. Effect equivalence.

(e), effect constants (k), and heaps (h). Often the kind of a type is
immediately apparent or not relevant, and most of the time we will
not denote the kind to reduce clutter, and just write plain types 7.
For clarity, we are using « for regular type variables, u for effect
type variables, and & for heap type variables.

Effect types are defined as a row of effect labels /. Such effect
row is either empty (), a polymorphic effect variable p, or an
extension of an effect row € with an effect constant [, written as
(I|e). The effect constants can be anything that is interesting to
our language. For our purposes we will restrict the constants to
exceptions (exn), divergence (div), and heap operations (st). It is
no problem to generalize this to the more fine-grained hierarchy
of Koka but this simplifies the presentation and proofs. The kind
system ensures that an effect is always either a closed effect of the
form (l1, ..., ln), or an open effect of the form (l1, ..., 1 | u).

Figure 2 defines an equality relation = between effect types.
In particular, the equations encode that we consider effects equiv-
alent regardless of the order of the effect constants. In contrast to
many record calculi, for example [6, 28, 25], effect rows do al-
low duplicate labels where an effect (ezn, ezn) is allowed (and not
equal to the effect (ezn)). The definition of effect equality is es-
sentially the same as for scoped labels [14] where we ignore the
type components. Note that (EQ-LAB) defines equality over the ef-
fect constants where the type arguments are not taken into account.
Most constants have no arguments and thus compare directly (as
¢ = ). The only exception in our system is the state effect where

st{h1) = st({hz) for any hi and hs.

Using effect equality, we define the notation [ € ¢ as:

lce iff e=(l|€) forsome e

3.1. Type rules

Figure 3 defines the formal type rules of our effect system. The
rules are defined over a small expression calculus:

e = T (variables)
| p (primitives)
| erex (application)
| Az.e (function)
| z<+e1; e (sequence)
| letz = erines (let binding)
| catche; e (catch exceptions)
| rune (isolate)
p == ()| fix|throw | new | (1) | (:=)

This expression syntax is meant as a surface syntax, but when we
discuss the semantics of the calculus, we will refine and extend
the syntax further (see Figure 7). We use the bind (or sequence)
expression x <— e1; ez for a monomorphic binding of a variable x
to an expression e;. This is just syntactic sugar for the application

I'(z) =0

(VAR) Pkz:0]e
(LAM) Dz:mbke:m|e
'k Xz.e:mi — a2 |e
(APP) F'ei:me —eT|e Ther:im]e
Pkelex:7le
Fker:o|() Tyx:ok ex:7]e
(LET) Phletzx =erines:7|e
Fke:7|() a¢gftv()
(GEN) TFe:Var|(
(NST) Pke:Va.7le
Fke:[a:=T7]7]e¢
(RUN) TEe:7|(st(&)|e) &¢fv(l,T,¢€)
Pk rune:7le
Fkei:7|(exn|ey ThFer:()—er]|e
(caTcH) ' catchey ea: 7 | €
(aLLoc) T b ref 7 — (st(h)|€) ref(h,T) | €
(Reap) T F (1) cref(h, ) — (st(h),div]|e) T|¢€
(write) T F (:=) :(ref(h,7),7) — (st(h)|e) ()| €
(tirow) T F throw : () — (exn|e) 7€
(unimy T E () (0 e
(FIX) T+ fiz (1= (div | €) 72)

— (11— (dw | e) T2))
— (11 = (div | €) 72) | €

Figure 3. General type rules with effects.

(Az. e2) e1. We write e1; ez as a shorthand for the expression
T < e1; ex where x ¢ fv(eg). We have added run and catch as
special expressions since this simplifies the presentation as where
we can give direct type rules for them. Also, we simplified both
catch and throw by limiting the \textit{exception} type to just the
unit type (()).

The type rules are stated under a type environment I" which
maps variables to types. An environment can be extended using a
comma. If IV isequal to T,z : o thenI'(z) = o and T (y) = T'(y)
for any y # x. A type rule of the form I" - e : o | € states that
under an environment I" the expression e has type o with an effect e.

Most of the type rules in Figure 3 are quite standard. The rule
(VAR) derives the type of a variable. The derived effect is any
arbitrary effect e. We may have expected to derive only the total
effect () since the evaluation of a variable has no effect at all (in
our strict setting). However, there is no rule that lets us upgrade the
final effect and instead we get to pick the final effect right away.
Another way to look at this is that since the variable evaluation has
no effect, we are free to assume any arbitrary effect.

The (LaM) rule is similar: the evaluation of a lambda expression
is a value and has no effect and we can assume any arbitrary
effect e. Interestingly, the effect derived for the body of the lambda
expression, €2, shifts from the derivation on to the derived function
type 71 — €2 T2: indeed, calling this function and evaluating the
body causes the effect e2. The (app) is also standard, and derives
an effect € requiring that its premises derive the same effect as the
function effect.

Instantiation ((INST)) is standard and instantiates a type scheme.
The generalization rule (GEN) has an interesting twist: it requires



I'(z) = Va. 7

(VAR)s Pk z:fa—=T77 e
Fkser:m | () a¢fv(l)
T,z:Va.mibs ea:m2|e
(LET)s

Phsletz = erinex:72|€

Figure 4. Changed rules for the syntax directed system; Rule (INST)
and (GEN) are removed, and all other rules are equivalent to the
declarative system (Figure 3)

the derived effect to be total () . It turns out this is required to
ensure a sound semantics as we show in Section 5. Indeed, this is
essentially the equivalent of the value restriction in ML [16]. Of
course, in ML effects are not inferred by the type system and the
value restriction syntactically restricts the expression over which
one can generalize. In our setting we can directly express that we
only generalize over total expressions. As we see in Section 6.1, we
can give a direct semantic interpretation of why this restriction is
necessary since without it, we cannot prove subject reduction. The
rule (LET) binds expressions with a polymorphic type scheme o and
just like (GEN) requires that the bound expression has no effect. It
turns out that is still sound to allow more effects at generalization
and let bindings. In particular, we can allow ezn, div. However, for
the formal development we will only consider the empty effect for
now.

All other rules are just type rules for the primitive constants.
Note that all the effects for the primitive constants are open and
can be freely chosen (just as in the (vARr) rule). This is important
as it allows us to always assume more effects than induced by the
operation.

4. Type inference

As a first step toward type inference, we first present in a syntax
directed version of our declarative type rules in Figure 4. For this
system, the syntax tree completely determines the derivation tree.
Effectively, we removed the (INsT) and (GEN) rules, and always
apply instantiation in the (vaRr) rule, and always generalize at let-
bindings. This technique is entirely standard [10, 20, 11] and we
can show that the syntax directed system is sound and complete
with respect to the declarative rules:

Theorem 1. (Soundness of the syntax directed rules)
WhenT' -, e: 7| ethenwealsohave I' - e : 7 | €.

Theorem 2. (Completeness of the syntax directed rules)
WhenT'F e : 0 | ethen we alsohave I' - e : 7 | € where o can
be instantiated to 7.

Both proofs are by straightforward induction using standard tech-
niques as described for example by Jones [11].

4.1. The type inference algorithm

Starting from the syntax directed rules, we can now give a the
type inference algorithm for our effect system which is shown in
Figure 5. Following Jones [11] we present the algorithm as natural
inference rules of the form 6I" I e : 7 | e where 6 is a substitution,
I" the environment, and e, 7, and €, the expression, its type, and its
effect respectively. The rules can be read as an attribute grammar
where 0, 7, and e are synthesised, and I" and e inherited. An
advantage is that this highlights the correspondence between the
syntax directed rules and the inference algorithm.

The algorithm uses unification written as 71 ~ 72 : 6 which
unifies 71 and 75 with a most general substitution 6 such that

I(z) = Va.7
(VAR); —
STk z:[a— BT | n
(LAM): O, z:ab; e: T2 | e
! Ol ;i Az.e:0a — e2 T2 |
(91F Fi e . T1 |€1 92(91F) FZ’ €2 . T2 |€2
92 T1 ~ (’7’2 — €2 a) : 93 939261 ~ 9362 : 94
APP);
( )1 04936‘291F }_i €1 €2 9403& | 940362
91F|‘¢61:’7’1|61 61N<>:02
o = gen(0201T, 027m1)
93(9201F,$ . 0) |—7; €2 . T | €
LET);
(LET); 030201 F; let z = ey inex:7T|e€
Ol e:T|e e~ (st(&)|p) :02
0:€ € TypeVar 02€ ¢ ftv(0201T, 027, 0211)
(RUN); 0201 F; rune: 027 | G2
(91F Fiel:71 |€1 02(91F) Fi ea: T |€2
9261 ~ (ea:n | €2> : 95
0319 ~ () — O3¢e2 030211 : 04
(CATCH);

040302011 - catchey ez : 040572 | 0403¢2

Figure 5. Type and effect inference algorithm. Any type variables
a, i, €, and @ are considered fresh.

(UNI-VAR) ar~a
(UNI-VARL) ] - g- e
ak ~ 7k a7
ad ftV(T)
(UNI-VARR) T ~ak a7
Vi € l.n. 0i—1..017 ~ 0;—1...01t; :0;
K = (I{h . Kln) — K
(UNI-CON) (Tt T )~ R (AT ) 1 On.0h
e2~1|es: 01 tl(er) ¢ dom(6)
( : Or€1 ~ Orez : 02
UNI-EFF
<l | €1> ~ €3 9201
(EFF-HEAD) =0 I~1:0
< ’ ‘ €> ~ ] ‘ e: 0
L #U ex~l]e:0
(EFF-SWAP) (I'|e)y~1](l]e)y:6
’
) fresh p

p | p = (U )]

Figure 6. Unification: 7 ~ 7’ : 0 unifies two types and returns a
substitution 6. It uses effect unification € ~ [ | € : § which takes
an effect € and effect primitive [ as input, and returns effect tail ¢
and a substition 6.



011 = O72. %The unification algorithm is standard and effects are
unified using standard row unificiation allowing for duplicate label
as described by Leijen [14]. The gen function generalizes a type
with respect to an environment and is defined as:

gen(D, 7) = V(ftv(r) — ftv(1")). 7

We can prove that the inference algorithm is sound and complete
with respect to the syntax directed rules (and by Theorem 1 and 2
also sound and complete to the declarative rules):

Theorem 3. (Soundness)
IfOT &, e: 7 | € then there exists a 6’ such that 0T 5 e : 7' | ¢
where ' = 7’ and §’e = €.

Theorem 4. (Completeness)
If0:T ks e: 71 | €1 then @2 F; e : 72 | €2 and there exists a
substitution 6 such that 01 ~ 005, 71 = 015 and €1 = fes.

Since the inference algorithm is basically just algorithm W [4] to-
gether with extra unifications for effect types, the proofs of sound-
ness and completeness are entirely standard. The main extended
lemma is for the soundness, completeness, and termination of the
unification algorithm which now also unifies effect types.

The unification algorithm is shown in Figure 6. The algorithm
is an almost literal adaption of the unification algorithm for records
with scoped labels as described by Leijen [14], and the proofs of
soundness, completeness, and termination carry over directly.

The first four rules are the standard Robinson unification rules
with a slight modification to return only kind-preserving substitu-
tions [6, 12]. The rule (UNI-EFF) unifies effect rows. The operation
tl(e) is defined as:

t|(<l17"'7ln ‘U)) K
t({l, .. ) =)

As described in detail in [14], the check tl(e1) ¢ dom(#)1 is subtle
but necessary to guarantee termination of row unification. The
final three rules unify an effect with a specific head. In particular,
€~ 1| € : 0 states that for a given effect row €, we match it with a
given effect constant [, and return an effect tail ¢’ and substitution
6 such that 0 = (61| O¢’). Each rule basically corresponds to the
equivalence rules on effect rows (Figure 2).

5. Semantics of effects

In this section we are going to define a precise semantics for our
language, and show that well-typed programs cannot go ‘wrong’.
In contrast to our earlier soundness and completeness result for the
type inference algorithm, the soundness proof of the type system
in Hindley-Milner does not carry over easily in our setting: indeed,
we are going to model many complex effects which is fraught with
danger.

First, we strengthen our expression syntax by separating out
value expressions v, as shown in Figure 7. We also define basic
values b as values that cannot contain expressions themselves.
Moreover, we added a few new expressions, namely heap bindings
(hpp.e), a partially applied catch (catche), a partially applied
assignments (v :=), and general constants (c). Also, we denote
heap variables using 7. An expression hp (r1 — v1),..., (r, —
Un). e binds 1 to 7y, in v, ..., v, and e. By convention, we always
require 71 to r,, to be distinct, and consider heaps ¢ equal modulo
alpha-renaming.

The surface language will never expose the heap binding con-
struct hp . e directly to the user but during evaluation the reduc-
tions on heap operations will create heaps and use them. In order to
give a type to such expression, we need an extra type rule for heap
bindings, given in Figure 8. Note how each heap value is typed un-
der an enviroment that contains types for all bindings (much like a

e = v (value)
el e (application)
letz = e1ines (let binding)
hpp.e (heap binding)
rune (isolate)
v o= Az.e (function)
catche (partial catch)
b (basic value (contains no €))
b =z (variable)
c (constant)
fix (fixpoint)
throw (throw an exception)
catch (catch exceptions)
r (reference variable)
ref (new reference)
O (dereference)
(:=) (assign)
| (r:=) (partial assign)

w = b|throww (basic value or exception)
a == v|throwv|hpp.v|hpp.throw v (answers)
@ == (r1 = v1)..{r, > v,) (heap bindings)

Figure 7. Full expression syntax

Yiri mv) €. Tp, b v | ()
Tg, ke | (st(h) o

(HEAP) 'k hpp.e: 7| (st(h)]e)

(EXTEND) A
LEe:7|(l]e)

(CONST) e

I'kc:ole

Figure 8. Extra type rules for heap expressions and constants. We
write @, for the conversion of a heap ¢ to a type environment: if ¢
equals (11— V1, ..., Tn > Vg ) then @, = r1 : ref (b, T1), ooy Tn
ref (h, 7,) for some 71 to 7.

recursive let binding). Moreover, a heap binding induces the state-
ful effect st(h). The (EXTEND) rule states that we can always as-
sume a worse effect; this rule is not part of the inference rules but
we need it to show subject reduction of stateful computations. The
same figure also defines the type rule for constants where we as-
sume a function typeof(c) that returns a closed type scheme for
each constant.

Finally, we note that for all value expression, we can assume
any effect type, including the empty effect:

Lemma 1. (Value typing)
If a value is well-typed, ' - v : 7 | e thenalsoI' - v : 7 | ().

5.1. Reductions

We can now consider primitive reductions for the various expres-
sions as shown in Figure 9. The first four reductions are standard for
the lambda calculus. To abstract away from a particular set of con-
stants, we assume a function ¢ which takes a constant and a closed
value to a closed value. Following [38] we assume J-typability for
each constant: If typeof (¢) = Va&. 11 — €72, with § = [@ — 7] and



(aLLoc) refo hp (r — v).7r

©) cv — d(c,v)  ifd(c,v) is def.
B (Az.e)wv — [z —v]e
(LET) letz = vine — [z — v]e
(FIX) fix v — v (Az. (fixv) z)
(THROW) X [throw v] — throwov if X #]]
(CATCHT) catch (throwv)e — ew
(CATCHV) catchwve — v

—
(READ)  hpo(r — v). R[lr] — hpo(r — v). R[v]
(WRITE)  hpo(r — v1). R[r := va] — hpp(r — v2). R[()]
(MERGE) hpp1.hppa. e — hppipa.e
(LIFT) Rlhp o. €] — hpo.Rle] if R #]]
(RUNL)  runfhpeo.]Az.e  — Az.run([hpp.]e)
(RUNC)  runfhpy.]catche — catch (run([hpy.]e))
(RUNH)  run[hpo.]w — w iffrv(w) 7 dom(y)

Evaluation contexts:

X o= []|XelvX|letz = Xine
R == []|Re|vR|letz = Rine|catchRe
E == []|Ee|vE]|letz = Eine|catchFe|hpy. E|runE

Figure 9. Reduction rules and evaluation contexts.

-+ v: 0711 | (), then §(c,v) is defined, and - F (¢, v) : 672 | fe.
The reductions 8 and (LET) substitute the bound variable x with the
evaluated value v in the body e. The (Fix) reduction is the fixpoint
combinator and introduces recursion.

The next three rules deal with exceptions. In particular, the
rule (THROW) progates exceptions under a context X. Since X
does not include catch e ez, hp . e or run e, this will propagate
the exception to the nearest exception handler or state block. The
(catcHT) reduction catches exceptions and passes them on to the
handler. If the handler raises an exception itself, that exception will
then propagate to its nearest enclosing exception hander. In contrast
to ML [38] we are not concerned with more complex exception
types and assume here that exceptions are always of the unit type.

Following Wright and Felleisen [38] the next five rules model
heap reductions. Allocation creates a heap, while (!) and (:=) read
and write from the a heap. Through the R context, these always
operate on the nearest enclosing heap since R does not contain
hp ¢. e or run e expressions. The rules (LIFT) and (MERGE) let us
lift heaps out of expressions to ensure that all references can be
bound in the nearest enclosing heap.

The final three rules deal with state isolation through run. We
write [hp .| to denote an optional heap binding (so we really
define six rules for state isolation). The first two rules (RUNL) and
(RUNC) push a run operation down into a lambda-expression or
partial catch expression.

The final rule (RUNH) captures the essence of state isolation
and reduces to a new value (or exception) discarding the heap .
The side condition frv(w) 7 dom() is necessary to ensure well-
formedness where a reference should not ‘escape’ its binding.
Using the reduction rules, we can now define an evaluation func-
tion. Using the evaluation context E defined in Figure 9, we define

Ele] — E[¢] iff e— ¢

The evaluation context ensures strict semantics where only the
leftmost- outermost reduction is applicable in an expression. We
define the relation +—» as the reflexive and transtive closure of

——. We can show that —» is a function even though we need
a simple diamond theorem since the order in which (LIFT) and
(MERGE) reductions happen is not fixed [38].

The final results, or answers a, that expressions evaluate to, are
either values v, exceptions throw v, heap bound values hp . v or
heap bound exceptions hp . throw v (as defined in Figure 7).

6. Semantic soundness

We will now show that well-typed programs cannot go ‘wrong’.
Our proof closely follows the subject reduction proofs of Wright
and Felleisen [38]. Most proofs are very similar except for the
cases involving state isolation through run, and exception handling
through catch where the exn effect can be discarded. Our main
theorem is:

Theorem 5. (Semantic soundness)
If -+ e:7|ectheneithere ffore —» awhere -+ a: 7 |e

where we use the notation e {} for a never ending reduction. The
proof of this theorem consists of showing two main lemmas:

e Show that reduction in the operational semantics preserves
well-typing (called subject reduction).

e Show that faulty expressions are not typable.

If programs are closed and well-typed, we know from subject
reduction that we can only reduce to well-typed terms, which can
be either faulty, an answer, or an expression containing a further
redex. Since faulty expressions are not typable it must be that
evaluation either produces a well-typed answer or diverges. The
above points are proven in the remainder of this section.

6.1. Subject reduction

The subject reduction theorem states that a well-typed term remains
well-typed under reduction:

Lemma 2. (Subject reduction)
IfT'F e1:7|ecander —reathen'F ez : 7 | e

To show that this holds, we need to establish various lemmas. Two
particularly important lemmas are the substitution and extension
lemmas:

Lemma 3. (Substitution)
IfT,z:Va.7F e: 7' | ewherez & dom(T'),T'F v : 7| (), and
afftv(l),thenT F [z — v]e: 7' | e

Lemma 4. (Extension)
IfTF e:7|eandforall z € fv(e) we have I'(z) = I'(z), then
I"'kFe:T|e

The proofs of these lemmas from [38] carry over directly to our
system. However, to show subject reduction, we require an extra
lemma to reason about state effects.

Lemma 5. (Stateful effects)
IfTF e:7|(st(h)|e)and T+ Rle] : 7' | € then st(h) € €.

The above lemma essentially states that a stateful effect cannot be
discarded in an R context. Later we will generalize this lemma to
arbitrary contexts and effects but for subject reduction this lemma
is strong enough.

Proof. (Lemma 5) We proceed by induction on the structure of R:
Case R = [|: By definition st(h) € (st(h) |€).

Case R = R'ex: Wehave I' = (R'[e]) ez : 7' | € and by (app)
we have I' = R'[e] : 72 — €/ 7' | €. By induction, st(h) € €.
Case R = v R’: Similar to previous case.

Case R =letz = R'inez: By (LET) wehave ' R'[e] : 71 | ()
but that contradicts our assumption.



Case R = catch R’ e2: By (catcH) we have T' = catch R'[e] es :
7' | € where ' = R'[e] : 7' | {exn|€'). By induction st(h) €
(exn | €') which implies that st(h) € €.

Now we are ready to prove the subject reduction theorem:

Proof. (Lemma 2) We prove this by induction on the reduction

rules of —. We will not repeat all cases here and refer to [38], but

instead concentrate on the interesting cases, especially with regard

to state isolation.

Case letz vine — [z~ wv]e: From (LET) we have

'k wv:7 | ()and T,z : gen(I',7') - e : 7 | e. By defini-

tion, gen(T', 7') = Va. 7’ where &@ ¢ ftv(T") and by Lemma 3 we

have ' [z — v]e: T |e.

Case R[hp ¢. e]—>hp ¢. R[e]: This is case is proven by induction

over the structure of R:

case R = []: Does not apply due to the side condition on —.
case R = R'e’: Then ' = R'lhpyp.e]e’ : 7 | € and by

(app) we have T' = R'[hp . €] To— > €1 | € (1) and

I' = ¢ : 7 | €(2). By the induction hypothesis and (1), we
have I' = hpp. R'[e] : T2 — €7 | €. Then by (HEAP) we know
g, Fv:7m | 0 @andD,5, - Rle] : 2 —eT | € @)

where p = (r1 = v1,...,7n = v,). Since 11, ..., 7, & fu(e’) we
can use (2) and 4 to conclude T, = ¢’ : 7 | € (5). Using (aPP)
with (4) and (5), we have ', = R'[e] €’ : T | € where we can use
(HEAP) With (3) to conclude T' - hp . R'le] €’ : 7 | €.

case R = v R’: Similar to the previous case.

case R = letz R'in¢’: If this is well-typed, then by rule
(LeT) we must have T' -+ R’[hpp. e] : 7' | (). However, due to 5
and (HEAP), we have st(h) € () which is a contradiction. Note that
this case is essential, as it prevents generalization of stateful ref-
erences. For ML, this is also the tricky proof case that only works
if one defines special ‘imperative type variables’ [38] or the value
restriction. In our case the effect system ensures safety.
Case run ([hpp.]Az. e) — Az.run([hpp.] e): By rule (RUN)
and (HEAP) we have that ' = Az.e : 7 | (st(h)|e) where
h & ftv(T, ,€) (1). Applying (Lam) gives ',z : 71 - e : 72 | €2
with 7 = 71— €2 2. Using (EXTEND) we can also derive I', x : 71
e : 72 | (st(h)]|e2). Due to (1) and h & 71, we can apply (RUN)
and (HEAP) again to infer I,z : 71 b+ run ([hpy.]e) : 72 | €2 and
finally (LAM) again to conclude I' = Az. (run ([hpp.]e)) : 7 | e
Case run ([hp ¢. ] catch e) — catch (run ([hp ¢.] €)): Similar to
the previous case.
Case run ([hp ¢.] w) — w with frv(w) ftdom(p) (1): By rule
(RUN) and (HEAP) we have that I, @, F w : 7 | (st(h)]|e€)
where h ¢ ftv(I', 7, ¢€) (2). By (1) it must also be that T" - w :
7 | (st(h)|€) (3) (this follows directly if there was no heap bind-
ing hp . ). We proceed over the structure of w:

case w throw v: Then by (3) we have I' F throwv :
7 | {st(h)|e), butalso I' - throwwv : 7 | € since we can choose
the result effect freely in (THROW).

case w = 7: By (var) and (3), we have T' = 7 : ref (W', 7'} | (st(h)
where h # h' satisfying (2). Since the result effect is free in (VAR),
we can also derive T' - 7 : ref (h/,7') | €

case w = (r :=): As the previous case.

case w = z: By (vAR) and (3), we have I' - z : 7 | (st(h) | €) but
in (vAR) the result effect is free, so we can alsoderive ' - = : 7 | €.
case other: Similarly.

6.2. Faulty expressions

The main purpose of type checking is of course to guarantee that
certain bad expressions cannot occur. Apart from the usual errors,
like adding a number to a string, we particularly would like to avoid
state errors. There are two aspects to this. One of them is notorious
where polymorphic types in combination with state can be unsound
(which is not the case in our system because of Lemma 2). But in

addition, we would like to show that in our system it is not possible
to read or write to locations outside the local heap (encapsulated by
run), nor is it possible to let local references escape. To make this
precise, the faulty expressions are defined as:

e Undefined: c v where d(c, v) is not defined.
e Escaping read: run (hp ¢. R[!r]) where r ¢ dom().
e Escaping write: run (hp . R[r := v]) where r ¢ dom(y).

e Escaping reference: run (hp . w) where frv(w) N dom(p) #
.

e Not a function: v e where v is not a constant or lambda expres-
sion.

e Not a reference: !v or v := e where v is not a reference.
e Not an exception: throw v where v is not the unit value.

Lemma 6. (Faulty expresion are untypable)
If an expression e is faulty, it cannot be typed, i.e. there exists no
I',7,andesuchthat ' e: 7 | e.

Proof. (Lemma 6) Each faulty expression is handled separately.
We show here the interesting cases for escaping reads, writes, and
references:

Case run (hp . R[!r]) with r ¢ dom(¢) (1): To be typed in a
context I' we apply (RUN) and (HEAP) and need to show I', o,
Rllr] : 7 | (st(h)|€) (2), where h & ftv(I", 7, €) (3). For R|[!r]
to be well-typed, we also need ', @, F!r : 7/ | (st{h')|€') (4)
where I, 5, + 7 : ref (B, 7') | (st(h') | €') (5). From Lemma 5,
(4), and (2), it must be that A’ = h (6). But since 7 & dom () (1),
it follows by (5) and (6), that T = 7 : ref (h, ") | (st(h)|€'). But
that means h € ftv(T") contradicting (3).

Case run (hpp. R[(r :=)]) with r ¢ dom(y): Similar to the
previous case.

Case run (hp ¢. w) where frv(w) Ndom(y) # @ (1) To be typed
in a context I" we need to show by (HEAP) and (RUN) that I", ,
w7 | (st(h)|e) where h & ftv(T', 7, €) (2). If w = throw v then
by (THROW) the type of v is () and thus v is the unit constant. But
frv(()) = & contradicting our assumption. Otherwise, w = b and
cannot contain an arbitrary e. Since frv(w) # @ (1), it must be that
w is either one of 7 or (r :=) with r € dom(yp). To be well-typed,
5, b r:ref(h,7') | € must hold. However, the possible types
forr and (r :=) are ref (h,7') and 7" — st(h) () and in both cases
h € ftv(7) which contradicts (2).

7. Effectful semantics

Up till now, we have used the effect types to good effect and showed
that our system is semantically sound, even though state and poly-
morphic types are notoriously tricky to combine. Moreover, we
showed that local state isolation through run is sound and statically
prevents references from escaping. In essence, this is a combina-
tion of the semantics of Core ML by Wright and Felleisen [38]
and the proof of heap safety of the state-monad by Launchbury and
Sabry [13] (even though our formalization is quite different).

But the true power of the effect system is really to enable more
reasoning about the behavior of a program at a higher level. In
particular, the absence of certain effects determines the absence of
certain answers. For example, if the exception effect is not inferred,
then evaluating the program will never produce an answer of the
form throw v or hp . throw v! It would not be entirely correct to
say that such program never throws an exception: indeed, a local
catch block can handle such exceptions. The right answer is that if
such program throws an exception, then it is guaranteed by the type



that all of those exceptions are handled. We can state the exception
property formally as:

Theorem 6. (Exceptions)
IfT" F e : 7 | ¢ where exn ¢ e then either e f}, e—» v or
e—» hpp. v.

Proof. By contradiction over the result terms:

Case e —» throw v: By subject reduction (Lemma 2), it must be
I' - throww : 7 | €. Using the type rule for throw with (app), it
must be the case that € = (ezn | €') contradicting our assumption.
Case e —» hp ¢. throw v: Similar to the previous case.

Similarly to the exception case, we can state such theorem over
heap effects too. In particular, if the st(h) effect is absent, then
evaluation will not produce an answer that contains a heap, i.e.
hp p.w. Again, it would not be right to say that the program
itself never performs any stateful operations. The correct way is
to say, that if the program performs any stateful computation, it
is guaranteed by the type that such behavior is truly encapsulated
inside a run construct and its stateful behavior is not observable
from outside. Formally, we can state this as:

Theorem 7. (State)
Iff T - e : 7 | e where st(h) ¢ e then either e f}, e—» v or
e +—» throw v.

Proof. Again by contradiction over the result terms:

Case e —» hp . v: By subject reduction (Lemma 2), it must
be ' F hpp.v : 7 | e Using (HEAP), it must be the case that
€ = (st(h)| €'} contradicting our assumption.

Case e —» hp . throw v: Similar to the previous case.

Our most powerful theorem is about the divergence effect; in partic-
ular, if the divergent effect is absent, then evaluation is guaranteed
to terminate!

Theorem 8. (Divergence)
IfT'+ e: 7| ewhere div ¢ e then e—» a.

The proof of this lemma is more complicated as we cannot use
subject reduction to show this by contradiction. Instead, we need to
do this proof using induction over logical relations [8].

In our case, we say that if - - e : 7 | ¢ then e is in the
set R(7|€), “the reduceable terms of type 7 with effect €”, if
div ¢ € and (1) when 7 is a non-arrow type, if e halts, and (2)
when 7 = 71 — €2 To, if € halts and if for all e; € R(71 | €), we
have that ee; € R(72 | €2).

The proof of Theorem 8 is a standard result [8] and is a corollary
from the following two main lemmas:

Lemma 7. (R is preserved by reduction) Iff - + e :
e € R(T|¢€),and e — €', then also €' € R(7 |€).

T | e

Lemma 8. (A well-typed term is in R)If - = e : 7 | eand div ¢ e,
then e € R(e| 7).

Proof. (Lemma 7) This is shown by induction over the type 7. For
atomic types, this holds by definition. For arrow types, 71 — €2 T2
we must show for a given e; € R(71 |€) thatif eer € R(m2 | e€2),
then also €' e1 € R(72|€2) (and the other direction). By (app),
it must be e2 = € (1). We can now proceed over the structure of
reductions on e e;:

Case (!) e;: In this case, since (READ) has a div effect, we have
by (1) that div € e contradicting our assumption. Note that if
we would have cheated and not include div in the type, we would
have gotten a reduction to some v which we could not show to be
strongly normalizing, and thus if it is an element of R (72 | €2).
Case fix €1: As the previous case.

Case (\z. e2) e1: In this case, we can reduce to e’ e1, and by the
induction hypothesis €’ e; € R(7 | e2) since 72 is smaller.

Proof. (Lemma 8) This is proven over the structure of the type
derivation. However, as usual, we need to strengthen our induction
hypothesis to include the environment. We extend R over environ-
ments to be a set of substitutions:

R(IT) ={0]dom((I") =dom(O)AV(z: 7 €T).0z € R(7|()}

where we assume a monomorphic environment for simplicity but
we can extend this easily to a (first-order) polymorphic setting. Our
strengthened lemma we use for our proof is:

ifTke:7|endeRI)Adiv ¢ ethenfe € R(7|¢€)

The induction is standard, and we show only some sample cases:
Case (F1x): Since the result effect is free, we can choose any € such
that div ¢ e. Indeed, just an occurrence of fix is ok — only an ap-
plication may diverge.

Case (app): By the induction hypothesis and (app) we have
fer € R(m2 — e7|¢€) and fea € R(72]€). By definition of
R(m2 — €7 |€), fe1 ez € R(72|€) and therefore O(e1 e2) €
R(72 | €). Note that the induction hypothesis ensures that div ¢ e
and therefore we cannot apply a potentially divergent function (like
fix or (1)).

Case other: Standard, except that for effect elimination rules, we
need to show that div is not eliminated.

8. Related work

A main contribution of this paper is showing that our notion of
mutable state is sound, in particular the combination of mutable
state and polymorphic let- bindings is tricky as shown by Tofte [33]
for the ML language. Later, variants of the ML value restriction are
studied by Leroy [16].

Safe state encapsulation using a lazy state monad was first
proven formally by Launchbury and Sabry [13]. Their formaliza-
tion is quite different though from ours and applies to a lazy store
in a monadic setting. In particular, in their formalization there is no
separate heap binding, but heaps are always bound at the outer run.
We tried this, but it proved difficult in our setting; for example, it is
hard to state the stateful lemma since answers would never contain
an explicit heap. Very similar to our state encapsulation is region in-
ference [34]. Our run operation essentially delimits a heap region.
Regions live at the value level though, and we can for example not
access references in several regions at once.

Independently of our work, Lindley and Cheney [17] also used
row polymorphism for effect types. Their approach is based on
presence/absence flags [25] to give effect types to database op-
erations in the context of the Links web programming language.
The main effects of the database operations are wild, tame, and
hear, for arbitrary effects including divergence, pure queries, and
asynchronous messages respectively. They report on practical expe-
rience exposing effect types to the programmer and discuss various
syntax forms to easily denote effect types.

The problems with arbitrary effects have been widely recog-
nized, and there is a large body of work studying how to delimit
the scope of effects. There have been many effect typing disciplines
proposed. Early work is by Gifford and Lucassen [7, 18] which was
later extended by Talpin [31] and others [30, 22]. These systems are
closely related since they describe polymorphic effect systems and
use type constraints to give principal types. The system described
by Nielson et al. [22] also requires the effects to form a complete
lattice with meets and joins.

Java contains a simple effect system where each method is la-
beled with the exceptions it might raise [9]. A system for find-
ing uncaught exceptions was developed for ML by Pessaux et
al. [23]. A more powerful system for tracking effects was devel-
oped by Benton [2] who also studies the semantics of such effect
systems [3]. Recent work on effects in Scala [27] shows how even



a restricted form of polymorphic effect types can be used to track
effects for many programs in practice.

Tolmach [35] describes an effect analysis for ML in terms of
effect monads, namely Total, Partial, Divergent and ST. This
is system is not polymorphic though and meant more for internal
compiler analysis. In the context proof systems there has been
work to show absence of observable side effects for object-oriented
programming languages, for example by Naumann [21].

Marino et al. recently produced a generic type-and-effect sys-
tem [19]. This system uses privilege checking to describe analytical
effect systems, and they provide a soundness proof for their type
system. For example, an effect system could use try-catch state-
ments to grant the canThrow privilege inside try blocks. throw
statements are then only permitted when this privilege is present.
Their system is very general and can express many properties but
has no semantics on its own. For example, it would be sound for the
effect system to have “+” grant the can Throw privilege to its argu-
ments, and one has to do an additional proof to show that the effects
in these systems actually correspond to an intended meaning.

Wadler and Thiemann showed the close relation between effect
systems and monads [36] and showed how any effect system can be
translated to a monadic version. For our particular system though
a monadic translation is quite involved due to polymorphic effects;
essentially we need dependently typed operations and we leave a
proper monadic semantics for future work.
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