Modeling skin and ageing phenotypes using latent
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Abstract

We demonstrate and compare three unsupervised Bayesian latent variable models
implemented in Infer.NET [2] for biomedical data modeling of 42 skin and aging
phenotypes measured on the 12,000 female twins in the Twins UK study [7]. We
address various data modeling problems include high missingness, heterogeneous
data, and repeat observations. We compare the proposed models in terms of their
performance at predicting disease labels and symptoms from available explanatory
variables, concluding that factor analysis type models have the strongest statistical
performance in this setting. We show that such models can be combined with
regression components for improved interpretability.

This work is being performed in collaboration with the Department of Twin Research and Genetic
Epidemiology (DTR) at King’s College London. The DTR manages the largest UK adult twin
registry of around 12,000 female monozygotic and dizygotic twins, established in 1992 [7]. The
data has characteristics common to many biomedical applications, each of which we our able to
address using our modeling framework.

1. High missingness. Many variables have up to 80% missing, and the level of overlap be-
tween phenotypes varies considerably. This level of missingness motivates Bayesian meth-
ods which are able to naturally deal with missingness, rather than attempting crude impu-
tation procedures.

2. Heterogeneous data. The data contains continuous, categorical (including binary), ordi-
nal and count data. We show in simulation experiments that using appropriate likelihood
functions for each of these data types improves statistical power.

3. Multiple observations. Often the same underlying phenotype is recorded as multiple mea-
surements, and the measurements may not be consistent. Allowing the model to combine
these measurements into a single phenotype aids interpretability, improves statistical power
and helps deal with the missingness problem.

4. High dimensional. The Twins UK database contains over 6000 phenotype and exposure
variables, measured at multiple time points. Modern healthcare records are of the same
nature. For a subset of 800 individuals we have 10,000 gene expression measurements in
three different tissues, and the genotype of 600k Single Nucleotide Polymorphisms (SNPs).

Our modeling framework allows these issues to be straightforwardly and rigorously addressed, and
provides an efficient inference platform using Variational Message Passing under the Infer.NET
framework. Although the models we use all provide some form of dimensionality reduction, which
is essential for the high dimensional nature of the data, we currently only analysis around 40 phe-
notypes of particular relevance to skin and aging. Scaling these models to handle the full dataset,
including gene expression and genotype data, is ongoing research.

An attribute of the data that we have not fully explored how to model at this stage is that it is
time series data. Most individuals in the study group have made multiple visits to be medically
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Figure 1: Schematic of key processes and variables involved in skin and aging conditions. This is
not a probabilistic graphical model, but a representation of our prior knowledge of how the variables
in the dataset are related. Gray boxes denote variables we have direct measurements of in at least
some individuals, white boxes represent latent variables.

assessed, typically on a time frame of 3 to 5 years. Additionally many have answered surveys and
self-assessment forms between these visits. Healthcare data is typically of this asynchronous time
series nature. Currently we only use data from within three years of the most recent visit.

Another aspect of modeling phenotypic data is that there is an enormous amount of prior knowledge
of the relationships between variables from decades of medical research and practice. Figure shows
a schematic of the key processes involved in skin and aging, devised in collaboration with an expe-
rienced dermatologist. Although we are only using this prior knowledge in a very crude way at the
moment (separating explanatory variables and symptoms) we intend to incorporate more structure
into our models using this.

1 Models

We compare three Bayesian latent variable models. The first is a mixture model which attempts
to cluster individuals. The second is a factor analysis model extended to allow different observed
data types using various likelihood functions. The third is a combined regression and factor analysis
model aimed at providing the expressive power of the factor analysis model and the interpretability
of a regression model.



1.1 Mixture model

We assume that each individual sample was generated from one of K clusters. The variable z,; €
{0, 1} indicates whether individual n was generated from cluster k.

7 ~ Dir(«) (D
2z, ~ Discrete(7) Vne{l,...,N} 2)
3)

The factor graph of this model is shown in Figure 2(a).

Continuous variables. For continuous variables . ; each cluster has a mean my, and variance vy,
which are given normal and inverse-Gamma distributions respectively:

mdeN(mdk;O,l) VdE{l,...,DC},k‘E{1,...,K} 4)
vag ~ IG(vgx; 1,1) vde{l,...,Dke{l,...,K} 5)
Yo g ~ N(Ys g3 Mdz,, , Vdz, ) vne{l,...,N}de{l,...,D% (6)

Binary variables. For binary variables yg each cluster has a probability pj, which is given a
uniform Beta prior.

pdkaeta(pdk;Ll) Vd € {1,...,Dc}7/€€ {1,,K} 7
yb , ~ Bernoulli(pg, ) vne{l,...,N},de{1,...,D"} (8)

Categorical variables. For categorical variables y; each cluster has a probability vector pgy,
which is given a uniform Dirichlet prior.

Pdk NDiriChlet(pdk;l) Vd e {1,...,DC},]€ S {1,...,K} )
nyd ~nr Discrete(pds, ) Yne{l,...,N},de {L...,Db} (10)

1.2 Factor Analysis model

We assume each observation is generated as a linear combination of K underlying, latent factors.

Ind = Wq:Sn: + My (11)
wa. ~ Ng(0,A71) (12)

A ~ Wishart(10, 0.11) (13)
S4. ~ N (0,1) (14)
mq ~ N(md; 0, ].) (15)

The factor graph for this model is shown in Figure 2(b). The hierarchical prior on w. is a form
of Automatic Relevance Determination which helps suppress extra unnecessary features. We found
this choice of prior superior in terms of predictive performance compared to no hierarchy or having
an precision matrix for each observed dimension, which would encourage greater sparsity in an
analogous way to using a student-T prior.

Continuous variables. Continuous variables are modeled simply by adding diagonal Gaussian
noise to gnq:
Yna ~ N5 0,0%) (16)
02 ~IG(02;1,1) (17)
where IG is the inverse-Gamma distribution.

Binary variables. For binary variables we use a logistic link function o(x) = (1 4+ e~%)~! in
an analogous manner to logistic regression. We experimented with a probit link function but found
little difference in empirical performance. The logistic link may be preferred in general due to its
longer tails.

y?, ~ Bernoulli(o(gnq)) (18)

In simulation studies we found that adding an additional noise term was unnecessary since the scale
of gnq effectively models varying noise levels. This component of our framework is closely related
to [1] and [6] although we perform full Bayesian inference rather than maximum likelihood fitting.



Shared precision
matrix R
N(0,A ™)

Factor loadings Llatent factors
| ‘ w ‘
Conjugate prio

‘ \ Mean @
Mixture Gate z ) Latent factors .

parameters ~—— TN

k Auxiliary
Likelfhood ! G ) variables
fundtion _ | _ | ‘

K Noise
i parameter
@ QObservations

7

likelihood mode!|

o

D

N N

(a) Mixture model. The conjugate priors and likeli- (b) Factor analysis model. For all data types a con-

hood functions used for each data type are described in tinuous auxiliary variable is the output from the factor

the text. analysis component. A different likelihood model/link
function is used depending on the data type, as de-
scribed in the text.

Figure 2: Factor graph representation of the mixture model and factor analysis model. Circles repre-
sent random variables. A white background represents a latent variable, whereas a gray background
denotes an observed variable (or at least partially observed in this case). Solid rectangles repre-
sent plates (repetitive structures) and dashed rectangles represent gates [4], denoting an if or switch
statement as used to build a mixture distribution.

Ordinal variables. Ordered categorical (ordinal) variables are common in biomedical data, for
example, severity of a condition. Assume we have a Gaussian predictor variable g and an observed
ordinal variable y € [1,.., J]. Let the likelihood function be

P =jlg)=0o(r; —g) —o(rj-1 — g) =0(g—T1j-1) —o(g—7j) (19)

where the logistic function o(x) = 1/(1 + e~") and {r; : j = 0..J} are interval boundaries with
To = —00,Tj—1 < T4, T; = +o00. This aspect our of framework relates to the work in [5], although
we use deterministic rather than MCMC based methods.

1.3 Regression-FA model

This model attempts to combine the statistical performance of the factor analysis model with greater
interpretability. It is generally possible to split measurements into explanatory variables (for exam-
ple: age, smoking, alcohol, sun exposure) and outcomes (e.g. heart disease, melanoma, wrinkles).
It is of direct interest to known if there are (causal) interactions between these groups of variables.
To achieve this, some of the factors from the factor analysis model are set to known explanatory
variables. These are encoded as for standard regression: binary variables as {0, 1} and a categorical
variable y with C categorical is expanded into C' — 1 variables, where y. = I[y = ¢ + 1].

1.4 Two layer model.

We often have multiple variables representing a single underlying phenotype. For example, whether
an individual is undergoing Hormone Replacement Therapy (HRT) is known to effect their skin, so
this is an important explanatory variable to include in the model. However, there are four different
variables in the dataset since this question was asked on different questionnaires. We approach this
problem by instantiating a latent variable representing the “true” value of this phenotype. The repeat
observations are then given some probability conditional on the value of the latent variable. For
categorical variables these will simply be conditional probability tables, each row of which is given
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Figure 3: The factor analysis-regression model with the two layer summarization of latent exposures.
We show the Directed Acyclic Graph (DAG) of the model here rather than the full factor graph for
clarity.

a Dirichlet prior:

P(u,|y) = Discrete(u,|m) (20)
7 ~ Dirichlet(1, ..., 1) Q1)

where u,. is the r-th measurement relating to a particular phenotype, v is the true underlying binary
value, and 7y, is a probability vector. The “true” phenotype will have a Beta variational posterior,
and can be used as an output straightforwardly in the mixture model, using the logistic link function
as for observed binary variables in the factor analysis model, or even as an explanatory variable in
the regression model. All these options are supported by Infer.NET [2] using Variational Message
Passing [8].

2 Results

We present some initial results on synthetic and real data.

2.1 Synthetic data

We have validated the models and inference code on various synthetic data tasks. Due to space
limitations we cannot document all of these tests here, but give one example. Consider an ordinal
regression problem, with 5 ordinal output values, P = 20 observed explanatory variables and sample
size N. The explanatory variables and regression coefficients are drawn from independent standard
normals. The intervals 7 are set as follows: 7; = j — J/2. The likelihood function described
in Section 1.2 for ordinal data is used for both data generation and inference. Note that this is a
simple instance of the regression-FA model of Section 1.3. Given synthetic data we measure the
algorithm’s ability to infer the vector of regression coefficients, in terms of correlation with the true
value. Figure 2.1 shows the results for different sample sizes and three different models: 1. EP
Ordinal Probit Regression (uses the Expectation Propagation (EP) algorithm [3], and the probit link
function rather than logistic) 2. VMP ordinal logistic (our proposed model for this data type) 3. EP
linear (again uses the EP algorithm but with a Gaussian likelihood function). The results highlight
the value of using the appropriate likelihood function rather than just modeling all data as Gaussian.
The performance of EP and VMP on this problem seems very similar, so we use VMP as it is able
to handle the factor analysis and mixture components that we require, unlike EP.
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Figure 4: Synthetic data test.

2.2 Real data

We currently focus on a subset of around 40 variables across 3000 of the individuals with the least
missing data. We use imputation performance to assess the fit of the proposed models to this data.
For a randomly chosen 10% of individuals we treat symptoms (e.g. skin cancer, wrinkles) as miss-
ing, but leave the explanatory variables (e.g. age, smoking, sun exposure), and use the model to infer
a predictive posterior over the held out values. The likelihood of the true values under the predictive
posterior gives a measure of how well the model is fitting the data which is robust to overfitting.
Figure 2.2 shows the imputation performance (higher is better) for the three models with different
numbers of factors or mixture components. The variation shown by the box plots comes from taking
a different 10% held out set 10 times.

The mixture model shows improved performance up to around five mixture components. More
components do not seem to help, but it is encouraging to see that using our Bayesian approach
overfitting still does not occur. The factor analysis model has generally superior performance to the
mixture model, suggesting that this is a more appropriate model for this type of data. The factor
analysis again seems to perform best with five factors. We are currently investigating the rapid jump
in performance from 3 to 4 factors, since it is surprising that the second and third factors do not
seem to contribute much. This may be an initialization or message passing schedule problem. The
regression-FA model has predictive performance close to but not quite as high as the factor analysis
model. Only three factors are required by this model, fewer than for the FA model, which is to
be expected since the explanatory variables can be used directly in the regression, rather than via
factors. For example in the factor analysis model we find one factor which is effectively the age of
the individual, whereas in the regression model age is used directly. The regression-FA should have
similar expressive power to the factor analysis model, so the slight decrease in performance relative
to the factor analysis model may be attributable to being stuck in a local minimum, not using enough
factors to fill in missing explanatory variables (we used two, and plan to run experiments to find the
optimal number), or an initialization issue. Since the regression-FA model is simpler to interpret the
choice between the FA model and regression-FA is effectively one of statistical performance versus
interpretability.

Although the factor analysis model may not be as obviously interpretable as the regression model
the fitted FA model does imply a particular covariance structure for the variables. This is shown in
Figure 2.2. Although these are preliminary results it is interesting to note certain strong correlations,
such as between smoking and two out of the three skin cancer types.
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Figure 5: Predictive performance (higher is better) of the three models with different numbers of
factors/mixture components.
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Figure 6: Correlation implied by the fitted factor analysis model. Lighter gray implies higher cor-
relation. Notes on variable names: Squamous - squamous cell carcinoma is a type of skin cancer,
Derived fat - a measure of fat metabolism in blood, BURN_IN_SUN - an ordinal 1-4 variable denoting
how easily one burns in the sun, a standard measure of skin type. HRT_EVER - whether the indi-
vidual has ever or is currently undergoing Hormone Replacement Therapy. Sunbathing, HRT_EVER
and MENOPAUSAL_STATUS are derived from multiple observation as described in Section 1.4.



3 Discussion

We have described a biomedical data modeling framework we are currently constructing, with three
different latent variable models. Our Bayesian model fitting allows missingness and noise to be
naturally handled. Extending the flexibility of the Infer. NET package has allowed us to model and
integrate a wide range of data types. The deterministic algorithms used allow us to scale these
models to datasets far larger than would be feasible with MCMC methods. Infer.NET also allows us
to write down more complex models that would otherwise be complex to keep track of, for example
including the two layer model of Section 1.4 to reduce multiple observations to one underlying
“true” phenotype, with associated uncertainty. Compared to a simple GLM type model, we can
handle missingness in the explanatory variables, and confounding effects in both the explanatory
variables and the symptoms by using factor analysis components.

Various issues remain to be resolved. The time series nature of the data is currently being ignored,
which is clearly undesirable. Scaling these models to modern healthcare size datasets remains a
challenge. Fortunately message passing algorithms lend themselves naturally to parallelization, an
avenue we intend to explore in the future. If such a system were to be employed in a real world
situation, online learning would also be beneficial, so that new data could be incorporated as it
is recorded. Although this work is preliminary, the results are encouraging and we believe our
framework and its extensions should be valuable modeling tools for biomedical researchers and
potentially one day be useful at the front line of health care provision.
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