SRIKANTH KANDULA

Surviving
DDoS attacks

Srikanth Kandula is a graduate student at the MIT
Computer Science and Artificial Intelligence
Laboratory in the Networks and Mobile Systems
group. His research interests are in networked sys-
tems and security.

B kandula@MIT.EDU

CONSIDER THE FOLLOWING SCENARIO:
Alyssa Hacker subverts tens of thousands
of machines by using a worm and then
uses these zombies to mount a distributed
denial of service attack on a Web server.
Alyssa’s zombies do not launch a SYN flood
or issue dummy packets that will only con-
gest the Web server’s access link. Instead,
the zombies fetch files or query search
engine databases at the Web server. From
the Web server’s perspective, these zombie
requests look exactly like legitimate
requests, so the server ends up spending a
lot of its time serving the zombies, causing
legitimate users to be denied service.

This article is related to research published
as “Botz-4-Sale: Surviving Organized DDoS
Attacks That Mimic Flash Crowds,” Pro-
ceedings of the 2nd Symposium on Networked
Systems Design and Implementation (NSDI
’05) (Berkeley: USENIX Association, 2005).

;LOGIN: OCTOBER 2005

Such an attack, which we call CyberSlam, is discon-
certingly real. In a recent FBI case, a Massachusetts
businessman hired professionals to DDoS his com-
petitor’s Web site [1]. Like any other online business,
the competitor had a search engine back end. So the
professionals used a large botnet to flood the compe-
titor’s site with a massive number of queries, bringing
it down for almost a week. Several extortion attempts
at online gaming and gambling sites used similar at-
tacks [2].

Why CyberSlam? If you think about it, there are some
real reasons why CyberSlam attacks happen. First, we
know that many large botnets exist. Zombie machines
are typically compromised by worms, viruses, or mal-
ware, and the zombies are controlled by remote bot-
net controllers over IRC channels [3, 4, 5]. Second,
there is a great incentive to mimic the browsing pat-
terns of legitimate users. It avoids detection by stan-
dard filters and intrusion detection boxes that rou-
tinely identify and block anomalous traffic. This is
especially important for organized DDoS mafia, be-
cause for them the botnet is a reusable resource that
they would like to protect. Finally, in CyberSlam an
attacker is doing little while the server does a lot. By
sending a single HTTP packet containing a small re-
quest, the attacker can make the server reserve sock-
ets, TCP buffers, and an application process, and do
significant database processing or congest some other
server bottleneck.

So how can a system administrator deal with Cyber-
Slam attacks? Let us look at some existing tech-
niques. First, how about using passwords for authen-
tication? Passwords don't exist for most Web sites
(e.g., Google), because they are cumbersome to man-
age both for the site and for the customers. More im-

SURVIVING DDOS ATTACKS

35

36

;LOGIN: VOL. 30, NO. 5

¥ Mozilla —-ox
. File Edit View Go Bookmarks Tools Window Help

. 0,0 Q QI == <, [

Oour website is experiencing unusually high load.

D

To restrict automated access we require code verification. |

Please enter the code shown in the image below:

[_submit

6Ka2 TF

@ 2 & B [pone =

FIGURE 1: GRAPHICAL PUZZLE

portant, to check a password the server has to establish a TCP connection with
the client, reserve a socket and a server worker process, and search the password
database, so an attacker can simply DDoS the password-checking mechanism.
Second, computational puzzles make the client do some heavy computation be-
fore giving them service. But computation is typically abundant in a botnet, and
solving a puzzle for every request slows down all the normal users. So, we need
a new approach to counter CyberSlam attacks.

Here is a potential solution. Intuitively, online businesses care more about serv-
ing human users; so if the server can quickly identify the human users, it can
serve their requests selectively and drop all the others. There are easy ways of
distinguishing humans from zombies (e.g., the graphical puzzles used by Yahoo
and Hotmail). Humans can solve these puzzles easily; zombies cannot do so at
all. So when the server is overloaded, it sends a graphical puzzle, as shown in
Fig. 1, to everybody and serves only those who answer correctly.

Challenges

Are we done, then? Unfortunately, the answer is no. There are three main chal-
lenges with using graphical puzzles. First, in a typical setup, sending the graph-
ical puzzle allows an unauthenticated client to establish a TCP connection, hog
sockets, TCP buffers, and application processes, and force context-switches
from the kernel network stack up into application space, so attackers can easily
DDoS this authentication mechanism. Second, graphical puzzles have a bias
against users who cannot (disabled users) or will not (due to inconvenience)
solve the puzzle. By forcing a server to use graphical puzzles, the attacker has al-
ready won—she denies access to all such users. Third, a server has to divide its
resources between authenticating new users and serving the users it has already
authenticated. This is a tricky problem. If the server authenticates every new
user, it may run out of resources to serve users who are already authenticated,
leading to unnecessary starvation. If, on the other hand, the server authenticates

too few new arrivals, then it may not have enough users to serve and may go
idle.

Introducing Kill-Bots

We present Kill-Bots, a simple, cheap, and effective software modification to the
server’s operating system that distinguishes friend from foe. The core principle is
simple: do not allow clients to reserve any server resource until they are authen-
ticated. Kill-Bots kicks in whenever a Web site is in danger of being over-
whelmed by requests. The software asks requestors to solve a simple graphical
puzzle before granting access to server resources such as buffer space. Once a
client solves the graphical puzzle, she is given an HTTP cookie so that she can
obtain service for some time without having to solve another puzzle. Addresses
that repeatedly request access to the server without solving the puzzle are black-

;LOGIN: OCTOBER 2005

listed automatically. When the load on the Web server decreases, it stops issuing
puzzles and accepts requests from non-blacklisted addresses, so even real users
who did not solve the puzzle gain access. Finally, Kill-Bots efficiently divides
server resources by adapting the probability with which new users are authenti-
cated. A Kill-Bots server neither accepts more users than it can serve nor goes
idle by not authenticating enough new users. Fig. 2 shows how these individual
pieces fit together in Kill-Bots, and Fig. 3 shows the HTML for the puzzle.

Y

Kill-Bots

Filter Admission
Zombie IP :> Control

New Client

| J
Zombie m m

FIGURE 2: HANDLING ZOMBIES WITH KILL-BOTS

<html>
<form method = “GET” action="/validate”>

<input type = “password” name = “ANSWER">
<input type = “hidden” name = “TOKEN” value = “[|">
</form>

</html>

FIGURE 3: HTML SOURCE FOR THE PUZZLE

Unmodified
Browser L SYN Y
\ / ACKY
/ \
\\ //
\\ /
\ /SYN
Kill-Bots \/ Cookie

A
Server Kernel

FIGURE 4: KILL-BOTS MODIFIES SERVER’S TCP STACK TO SEND
TESTS TO NEW CLIENTS WITHOUT ALLOCATING A SOCKET OR
OTHER CONNECTION RESOURCES

Let us briefly look at each of the main components of Kill-Bots. The modified
network stack is shown in Fig. 4. When, the client sends a TCP SYN, Kill-Bots
responds with a SYN cookie. The SYN cookie is a standard defense mechanism
that serves two purposes. First, it filters requests from clients with spoofed IP
addresses. Second, it allows the server to continue the TCP handshake without
maintaining any state for the half-open connection. Upon receiving the SYN
cookie, the client responds with an acknowledgment completing the TCP hand-
shake. At this point, the standard network stack allocates a socket, reserves TCP
buffers, and passes the request onto an application-space process. All of this is
done for every attacker request and is quite costly. More important, these re-
sources remain allocated until the client responds with a FIN. An attacker can
simply hog resources by not sending the FIN. To avoid this, Kill-Bots ignores the
acknowledgment. Instead, it looks at the first data packet that contains the same
acknowledgment number and peeps into the HTTP header to confirm that this
is a previously authenticated client with a valid HTTP cookie. If not, the modi-
fied kernel immediately sends the graphical puzzle and a TCP FIN without cre-
ating a socket or reserving any resources, as shown in Fig. 4.

Recall the second challenge: Graphical puzzles have a bias against users who
cannot or will not answer the puzzle. So whenever an attacker forces the server
to use graphical puzzles, these users are denied access. Kill-Bots uses the follow-

SURVIVING DDOS ATTACKS

37

38

;LOGIN: VOL. 30, NO. 5

ing observation of client behavior: a human user who does not answer the
graphical puzzle will only retry a couple of times to see if he can access the serv-
er without answering; attackers, on the other hand, will have to continuously
bombard the server with requests and fetch the graphical puzzles or the attack
goes away. There is a simple difference between the human users and attackers
now; the attackers have many more unanswered puzzles than the normal users.
Kill-Bots uses a bloom filter to track the number of unanswered puzzles per IP
and drops all requests from an IP if its associated bloom counters cross a limit,
say, 32.

Recall the third challenge of dividing resources between serving authenticated
users and authenticating new users. Kill-Bots deals with this by probabilistically
authenticating new users and dropping others. The authentication probability
adapts to server conditions. Intuitively, whenever the server is lightly loaded, the
authentication probability increases so that Kill-Bots authenticates more new
users, and when the server is heavily loaded it decreases. I will defer the specific
details of the adaptation, but the tricky parts are how much can one increase the
authentication probability without overloading the server and how long it takes to
adapt to changing conditions. Note that small increments would reduce the
chance of overshooting, while large increments would react to changing condi-
tions and get you to the optimal operating condition quicker. We reconcile these
contradictory preferences by using techniques from control theory.

In experiments, a Kill-Bots-protected Web server successfully endured five times
as many hits as an unprotected Web server could tolerate. Not only did the Web
server stay online, but protected Web sites also maintained speedy response
times, even during the height of the attacks. You might wonder what would hap-
pen during a flash crowd, i.e., when the server overload is caused by a large
number of legitimate requests. Kill-Bots improves both server hit-rate and re-
sponse times by using the adaptive authentication probability mechanism to
quickly drop new users who cannot be served. This ensures that server re-
sources are not wasted on requests that are going to be dropped at a later time.

User Space
Web Server
NET
Puzzle Manager ﬁ
S
Memory igs e
Bloom Filter || Puzzle Table || Cookie Table N::;lvirk
Stack

<:>{ Request Filter]

Kernel

FIGURE 5: A MODULAR REPRESENTATION OF THE
KILL-BOTS CODE

Using Kill-Bots

From a practical standpoint, here is how you could use Kill-Bots to protect

your own Web server. Fig. 5 is a modular representation of the Web server using
Kill-Bots. Kill-Bots doesn’t require an extra server; it is a software patch to the
operating system of the server kernel. Kill-Bots needs a store of graphical puz-
zles. Generating the graphical puzzles is relatively easy, for example using the
JCAPTCHA software [6], and can done on the server itself during periods of rel-
ative inactivity or on a different dedicated machine. Also, puzzles may be pur-
chased from a trusted third party. Kill-Bots has modest overhead; it uses 10MB of
RAM to cache graphical puzzles, maintain the bloom filter that blacklists zombie

;LOGIN: OCTOBER 2005

IPs, and maintain state for each cookie. A kernel thread periodically loads fresh
graphical puzzles into memory. The per-request overhead is also quite small. On
a 2.4GHz PIV workstation, peeping into HTTP requests costs 8 microseconds of
server time, and serving a puzzle costs 31 microseconds.

Why Does Kill-Bots Matter?

Worries over distributed denial-of-service attacks are spreading. It is depressing,
yet true, that the future will see many more organized DDoS attacks. Most Web
server defenses use authentication procedures that are easily outwitted and re-
quire huge excesses in the form of replicated content, multiple CPUs, fancy
hardware, and extra bandwidth. Kill-Bots is much cheaper and can be deployed
easily; it requires no changes in users’ Web browsers and works with the very
large number of Web servers running Linux. Although Kill-Bots occasionally
misclassifies legitimate users as zombies, it allows Web sites under attack to re-
main available and so keeps the Web open for business, while barring the way to
thieves and vandals.

REFERENCES

[1] K. Poulsen, “FBI Busts Alleged DDoS Mafia,” 2004:
http://www.securityfocus.com/news/9411.

[2] J. Leyden, “East European Gangs in Online Protection Racket,” 2003:
http://www.theregister.co.uk/2003/11/12/east_european_gangs_in_online/.

[3]]. Leyden, “The Illicit trade in Compromised PCs,” 2004:
http://www.theregister.co.uk/2004/04/30/spam_biz/.

[4] E. Hellweg, “When Bot Nets Attack,” MIT Technology Review, September 2004.
[5] L. Taylor, “Botnets and Botherds”: http://sfbay-infragard.org.
[6] JCAPTCHA: http://jcaptcha.sourceforge.net/.

SURVIVING DDOS ATTACKS

39

