
Scalable Near Real-Time Failure Localization of Data
Center Networks

Herodotos Herodotou
Microsoft Research

herohero@microsoft.com

Bolin Ding
Microsoft Research

bolin.ding@microsoft.com

Shobana Balakrishnan
Microsoft Research

shobanab@microsoft.com
Geoff Outhred

Microsoft
geoffo@microsoft.com

Percy Fitter
Microsoft

percyf@microsoft.com

ABSTRACT
Large-scale data center networks are complex—comprising
several thousand network devices and several hundred thou-
sand links—and form the critical infrastructure upon which
all higher-level services depend on. Despite the built-in re-
dundancy in data center networks, performance issues and
device or link failures in the network can lead to user-perceived
service interruptions. Therefore, determining and localiz-
ing user-impacting availability and performance issues in the
network in near real time is crucial. Traditionally, both pas-
sive and active monitoring approaches have been used for
failure localization. However, data from passive monitoring
is often too noisy and does not effectively capture silent or
gray failures, whereas active monitoring is potent in detect-
ing faults but limited in its ability to isolate the exact fault
location depending on its scale and granularity.

Our key idea is to use statistical data mining techniques
on large-scale active monitoring data to determine a ranked
list of suspect causes, which we refine with passive monitor-
ing signals. In particular, we compute a failure probability
for devices and links in near real time using data from active
monitoring, and look for statistically significant increases in
the failure probability. We also correlate the probabilistic
output with other failure signals from passive monitoring
to increase the confidence of the probabilistic analysis. We
have implemented our approach in the Windows Azure pro-
duction environment and have validated its effectiveness in
terms of localization accuracy, precision, and time to local-
ization using known network incidents over the past three
months. The correlated ranked list of devices and links is
surfaced as a report that is used by network operators to in-
vestigate current issues and identify probable root causes.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations—Network management; Network monitoring

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD’14, August 24–27, 2014, New York, NY, USA.
Copyright 2014 ACM 978-1-4503-2956-9/14/08 ...$15.00.
http://dx.doi.org/10.1145/2623330.2623365.

General Terms
Algorithms; Management

Keywords
Failure localization; Data center networks

1. INTRODUCTION
Communications in data centers today are based on large-

scale complex networks that concurrently support a variety
of distinct services (e.g., search, email, cloud storage and
compute). As an example, the Windows Azure network
consists of over 7 thousand network devices (e.g., routers)
and over 220 thousand links, which connect together all the
servers in all Windows Azure data centers worldwide. All
Windows Azure Services [14] depend on a healthy network
for providing highly-available and scalable offerings. De-
spite the built-in redundancy in data center networks, per-
formance issues or failures in the network can lead to user-
perceived service interruptions. Therefore, determining and
localizing user-impacting availability and performance issues
in the network in near real time is crucial.

Localizing network faults is done by knowledgeable net-
work operations teams who work with associated on-call en-
gineers to resolve problems in real time with the help of
monitoring data. Such an approach can be time consuming,
tedious, and is further exacerbated by monitoring noise and
the increasing size of the network. As the scale of the net-
work grows, automated fault localization becomes increas-
ingly important since it can reduce mean-time-to-recovery
and service disruption.

Network monitoring is at the heart of failure localiza-
tion and is divided into two categories: passive and active
monitoring. The passive approach typically involves polling
the network devices periodically to collect various teleme-
try data about their health and the traffic that passes by.
The system will then analyze the local telemetry data and
raise availability and performance alerts at the level of indi-
vidual devices and links when it detects any abnormalities
[4, 5, 13]. While these alerts are often useful in localizing
failures, they are also noisy and not a direct signal for user-
perceived failures1, which turns troubleshooting a particular

1User-perceived network failures refer to network failures
that have a direct effect on user traffic, where users are pri-
marily the services running on top of the network.

Figure 1: Failure localization approach: The successful,
failed, and delayed ping data are overlaid on top of the net-
work topology, and a statistical data mining approach is
used to triangulate (i.e., localize) issues in the network.

network issue into a time-consuming process that could take
anywhere from minutes, to hours, to even days to resolve.

The active approach relies on the capability to inject test
traffic into the network and to monitor the flow of that traf-
fic. In particular, data centers typically run a ping service
that generates large amounts of pings between pairs of end
hosts in the network and acts as a proxy for user-perceived
network availability and latency [15, 16]. In this setting,
ping failures provide a strong signal that there is indeed an
issue in the underlying network and, more specifically, that
there is an issue somewhere along the path from the source
to the destination of the ping. However, pings do not pin-
point the exact device or link that has caused the pings to
fail since actual network routes are typically unknown.

Even though a single ping failure cannot help in iden-
tifying the culprit, the conjecture is that the combination
of ping data between multiple sources and destinations will
allow us to triangulate the location of an existing issue. Fig-
ure 1 provides a simple visual representation of the proposed
approach, which uses statistical data mining techniques to
localize user-perceived network failures based on ping data.
Specifically, we (i) introduce a probabilistic model for de-
scribing the ping routes and failures, (ii) formulate the fail-
ure localization problem as a fitting problem to compute
failure probabilities for devices and links in near real time,
and (iii) detect statistically significant increases in the com-
puted failure probabilities.

Our algorithm produces a short ranked list of devices and
links that best explain the observed ping data. Finally, we
correlate this list with passive monitoring signals, such as de-
vice and link alerts, in order to increase the confidence of the
probabilistic analysis. The correlated ranked list of devices
and links forms a starting point for investigating current is-
sues in the network and can drastically reduce the time it
takes for network operators to identify probable root causes
and resolve network issues. Our experimental evaluation on
real network incidents validates both the effectiveness and
efficiency of our approach to localize network failures. In
summary, our key contribution is the novel and successful
application of statistical data mining techniques to local-
ize user-impacting availability and performance issues in a
worldwide data center network in near real time.

The rest of the paper is organized as follows. Section 2
presents background information for data center networks.
Section 3 provides an overview of our approach, while the

Figure 2: Common network topologies for data centers.

details are described in Section 4. The implementation and
deployment details are discussed in Section 5 and the exper-
imental evaluation is presented in Section 6. Finally, Section
7 discusses related work and Section 8 concludes the paper.

2. DATA CENTER NETWORKS BASICS
Data centers hosting Internet-scale services comprise of

servers, direct attached storage, and networking infrastruc-
ture. Over the recent years, data center networks have been
on the path to commoditization [1]. For example, [7] demon-
strates the performance and scale that can be achieved from
a network built using low-cost Ethernet switches arranged
into a Clos topology that provides multiple paths between
servers. The overall network consists of a densely connected
mesh network within each data center as well as a core net-
work spanning the geographies. With mega-scale data cen-
ters, the size of the network within each data center can be
large connecting over 50-100 thousand servers.

Given the types of workloads that run in these data cen-
ters, the authors in [3] present the need to treat the data
center as one massive warehouse-scale computer and make
the appropriate design, operation, and cost tradeoffs that
best support the workloads. In this paper, we have only
looked at a single aspect—namely the operational aspects
of the network—but from a holistic perspective of end-to-
end user-perceived network performance and at the scale of
these large data center networks.

2.1 Network Topology
Modern data center networks use hierarchical architec-

tures reaching from a layer of servers in racks at the bottom
to a layer of core routers at the top [1, 7]. We consider two
common architectures within data centers, shown in Figure
2. In both cases, there are typically 20 to 40 servers per
rack, each singly connected to a Top of Rack (ToR) switch.
The data center backbone in the first topology consists of a
layer of Aggregation switches (AS), whereas in the second
topology it consists of two layers, namely the Cluster Spines
(CSPs) and the Data Center Spines (DSPs). Here, each ToR
is connected to a layer of CSPs, which in turn is connected
to a layer of DSPs forming two bipartite graphs. The ASs
and DSPs are then connected to the core of the network via
Access Routers (ARs) and Border Leafs (BLs), respectively.
Finally, ARs and BLs are connected to Core Routers (CRs).

The core network connects all data centers together form-
ing an asymmetric wide-area network. It consists of core
routers in the data centers as well as intermediate forward-
ing devices between the data centers. Figure 1 shows the
core network between multiple data centers and forwarding
stations. For this paper, we only consider the network topol-

Figure 3: Example network topology. The dotted green arrows show the
three possible paths between v1 and v10. The dashed red edge (v6, v7)
represents a faulty link.

Table 1: Example ping data that lists ping suc-
cesses and failures between pairs of vertices in the
graph.

Source Destination Ping Ping
Vertex Vertex Successes Failures

v1 v9 45 5
v1 v10 38 2
v2 v8 46 0
v2 v9 34 6
v2 v10 37 3

ogy that is within the control of Microsoft and, therefore, do
not consider peering devices or other ISP networks that con-
nect with the core network. However, the approach can be
extended beyond the Microsoft network provided we have
an accurate characterization of the topology.

2.2 Routing Protocols
Large-scale data center networks typically employ multi-

path routing, which involves using multiple alternative paths
through the network in order to improve fault tolerance,
bandwidth, and security. In this work, we consider Equal-
Cost MultiPath (ECMP) routing used within data centers
and Border Gateway Protocol (BGP) used in the core net-
work between data centers. Routers within data centers use
ECMP routing to spread the traffic along multiple paths
by making per-hop decisions based on routing metric cal-
culations. For routing paths, we assume that all shortest
paths are equally likely and have the same cost metric, which
closely resembles the ECMP protocol.

BGP is the routing protocol that determines the routes
taken in the core network. BGP is responsible for setting up
Multiprotocol Label Switching (MPLS) that directs traffic
from one network node to the next based on short path labels
rather than long network addresses. These network paths
are termed Label-Switched Paths (LSPs). For this work, we
assume that all shortest paths across the core are equally
likely and do not take into account the LSP information
available in the core network. We plan to refine the routes
in the core with this information in the future.

2.3 Network Monitoring
In passive monitoring, devices are polled periodically us-

ing various technologies (e.g., SNMP, NetFlow, RMON) and
information is collected to assess network performance and
status. Unfortunately, passive monitoring is known to be
noisy as the generated alerts are largely threshold based and,
in some cases, it suffers from a lack of signal when a device
is actually faulty (silent failures) [6]. Hence, we leverage
these signals to only increase the confidence and improve
the pinpointing of the localization from our statistical anal-
ysis performed on active monitoring signals.

Our main active monitoring signal comes from the ping
service, which runs on servers in most racks in all data cen-
ters. This service sends pings every minute to other ran-
domly selected end hosts within the cluster, across clusters,
and across data centers. Pings can fail or be delayed due
to performance issues in the network or hard failures. A
significant number of failed or delayed pings is an indication
that there may be an issue in the physical network along

the path(s) of the pings. Since the ping service runs on the
same servers as the other data center services, it is a good
proxy for user-perceived network availability and latency.

Another active monitoring tool is traceroute, which is used
for displaying the path and measuring transit delays of pack-
ets across a network. A traceroute is significantly costlier
than a ping since the entire history of the route is recorded.
Hence, generating traceroutes to cover large-scale data cen-
ter networks is prohibitively expensive and are primarily
used for targeted testing [9].

3. APPROACH OVERVIEW
Our localization approach uses statistical data mining tech-

niques on ping data to identify the links or devices that
are responsible for ping failures (or significant ping delays),
which typically translate into user-perceived network inter-
ruptions. This section will describe the problem formulation
and provide an overview of our approach that will guide the
description of our solution in Section 4.

Problem Formulation: There are two main inputs to
our problem. The first input is the network topology, which
we represent using a graph G = (V,E). The vertices V in the
graph correspond to network devices, whereas edges E cor-
respond to network links. The graph contains the links and
devices for all compute and storage clusters within each data
center, as well as the links and devices that form the global
backbone network connecting all data centers together. Fig-
ure 3 shows a simple graph with 10 vertices and 12 edges
that we will use as a running example.

The second input is the ping data, which specifies how
many pings succeeded and how many failed (or had high
latency) between multiple source and destination vertices.
High latency of a ping typically arises for two reasons: (a)
some network device had to re-try sending the ping multiple
times before succeeding or (b) the ping took a longer path
than usual. In either case, significant high latency indicates
an underlying issue with the network that we want to cap-
ture and localize. In our case, we consider ping latency to be
significant if it belongs in the 95th percentile of the latency
distribution. Table 1 shows a small example of ping data.

Our goal is to analyze the ping data overlaid on top of the
topology in order to generate a short ranked list of edges and
vertices associated with failure scores, whose potential fail-
ure would best explain the observed ping data. This list is
then combined with alerts from link- and device-level teleme-
try data to further help network operators pinpoint a fault.

Solution Phases: The proposed failure localization ap-
proach works in 4 phases, each addressing 1 major challenge.

1. Probabilistic Routing: The exact ping routes through
the network are unknown. Therefore, we model the
underlying network protocol typically used within the
data centers and then compute the most likely ping
routes and their probabilities (Section 4.1).

2. Probabilistic Failure Modeling: Network failures are
often partial. For example, a faulty link may be drop-
ping only a small fraction of its traffic. For this reason,
we model failures using a probabilistic model and for-
mulate a corresponding data fitting problem. We solve
this problem and generate a ranked list of edges and
vertices associated with failure scores (Section 4.2).

3. Deviation Detection: There exists background noise
in both the input data and the generated failure scores.
To overcome this challenge, the key idea is to first look
at the failure scores over time in order to establish a
score baseline. We then use statistical hypothesis test-
ing to detect significant deviations from this baseline,
filtering out the noise (Section 4.3).

4. Correlation Analysis: In certain cases, some devices
or links can be indistinguishable from each other, like
in the case where multiple physical links are connecting
two devices. By intersecting our probabilistic results
with the current network alerts produced from passive
monitoring, we can pinpoint the specific link or device
causing the issue (Section 4.4)

4. FAILURE LOCALIZATION

4.1 Probabilistic Routing
Multipath routing (e.g., ECMP), which is prevalent in al-

most all large networks, implies that the network route of
any given ping (or packet in general) is determined by the
routers using local per-hop decisions and is, therefore, un-
known (recall Section 2.2). Instead, only the ping source
and destination devices are known.

Given a source vertex vs and a destination vertex vd in
the network graph, the goal of probabilistic routing is to
compute the most likely ping routes along with their prob-
abilities. The computation is based on the following two
principles that govern multipath routing:

• Only shortest paths (in terms of number of hops) be-
tween vs and vd are valid routes.

• All next hops from a single vertex are equally probable.

Consider a ping from v1 to v10 in the example network graph
in Figure 3. There are three possible routes indicated by
the three dotted green arrows, each requiring a total of four
hops. All pings from v1 must first go through v3. At v3,
there are two equally-likely options: v5 and v6. Pings that
are routed to v5 will then traverse v7 before reaching the
final destination v10. On the other hand, pings that reach
v6 will be routed to either v7 or v8 with equal probability
before reaching v10. In summary, the three routes and the
corresponding probabilities are:

Pr[v1→v3→v5→v7→v10] = 0.50

Pr[v1→v3→v6→v7→v10] = 0.25

Pr[v1→v3→v6→v8→v10] = 0.25

Table 2: List of notations.

Notation Explanation

vi Vertex i in the network graph
e = (vi, vj) Edge e connecting vertices vi and vj
vi→vj Ping from vertex vi to vj
Pi,j(e) The probability that a vi→ vj ping

will pass through edge e
Ni,j The total number of pings from vi

to vj
Fi,j The number of failed pings from vi

to vj
Xe Failure score for edge e

We use the Floyd-Warshall algorithm to compute the short-
est distances from all vertices to all other vertices in the
graph with worse case complexity of O(|V|3). We then build
the routes of each ping opportunistically based on the short-
est distances and compute the route probabilities based on
the number of forwarding edges of each vertex in each route.

We use the computed routes and probabilities to also cal-
culate the probability Ps,d(e) that a given vs → vd ping
will pass through a particular edge e. Consider a v1→ v10
ping and edge e = (v7, v10) in the example graph in Fig-
ure 3. This edge is part of two different routes, namely
v1 → v3 → v5 → v7 → v10 and v1 → v3 → v6 → v7 → v10,
with route probabilities 0.5 and 0.25, respectively. The ping
will pass through edge e if it takes one of the two aforemen-
tioned routes. Therefore, the probability that the ping will
pass through edge e equals the sum of the two route prob-
abilities, i.e., P1,10(e) = 0.5 + 0.25 = 0.75. To simplify the
discussion, we present the model in terms of network edges.
A similar analysis applies to vertices.

4.2 Probabilistic Failure Modeling
Network devices and links that are experiencing a failure

often drop only a fraction of their overall traffic, depending
on the nature of the failure. In particular, issues caused dur-
ing maintenance or by device malfunctions are fairly com-
mon and typically cause small performance degradation or
a small packet loss rate (less than 5%). On the other hand,
catastrophic events like fiber cuts and complete hardware
failures are fairly rare. We have seen only 5 such events out
of the 73 real network incidents discussed in Section 6.

In order to address the challenge of partial failures, we em-
ploy a probabilistic failure model that assigns a failure prob-
ability value to each vertex and edge based on the observed
ping data. We will start the discussion using a simple ex-
ample before we formalize our model. Consider the network
graph shown in Figure 3. Suppose edge e = (v6, v7) is experi-
encing an issue and is dropping some packets. Further, sup-
pose the total number of pings from v1 to v10 is N1,10 = 50.
Based on the probabilistic routing discussed in Section 4.1,
we calculate the probability that any ping will go through
the problematic edge e. Specifically, P1,10(e) = 0.25. Fi-
nally, assume that this edge is dropping 20% of its traffic.
In other words, the probability that any ping going through
e will fail is Xe = 0.2. Therefore, out of the 50 pings, 25%
of them will go through the problematic edge, out of which
20% will fail. Multiplying the 3 numbers together will give
us the expected number of ping failures, F1,10 = 5. Table 2
summarizes the notation used in this section.

Figure 4: Distribution of failure scores for the top-100 edges
for three different least squares formulations.

Equation 1 provides the basic unit of our model:

Fi,j = Ni,j · Pi,j(e) ·Xe (1)

The number of failed pings Fi,j and total pings Ni,j between
vertices vi and vj are observed. The probability Pi,j(e) that
a vi→ vj ping will go through a particular edge e is com-
puted by the routing model. Finally, Xe, the failure score
of edge e, is the unknown value we need to compute. This
model assumes there is at most one failed edge (or vertex)
on the paths from vi to vj , which is common in practice.
However, concurrent failures on independent network paths
are captured by the model. The fact that we have a long list
of pings between multiple sources and destinations results in
the creation of an overdetermined system of equations that
can be numerically solved.

Consequently, we need to solve a data fitting problem by
computing the failure score Xe for each edge e that best fits
the observed data. There are several well-known techniques
for solving such problems and we have chosen to use the
method of Least Squares because it produces a linear unbi-
ased estimator and it is computationally efficient to solve.

Least squares formulation: The best fit in the least-
squares sense minimizes the sum of squared residuals; a
residual being the difference between the observed value and
the fitted value provided by the model. The model from
Equation 1 results in the following formulation:

Ye =
∑

(∀vi,vj∈V)

(
Fi,j −Ni,j · Pi,j(e) ·Xe

)2
(2)

Solving the above least squares problem yields the equation:

Xe =

∑
(∀vi,vj∈V)

(
Fi,j ·Ni,j · Pi,j(e)

)
∑

(∀vi,vj∈V)

(
N2
i,j · P 2

i,j(e)
) (3)

The main drawback of this solution is that it typically as-
signs a wide range of failure scores to multiple edges during
a network issue. In layman’s terms, it is spreading the blame
around, increasing the size of the output list that a network
operator would have to investigate. Figure 4 shows the dis-
tribution of failure scores for the top-100 edges computed by
three different least squares solutions during a real network
incident. The solution from Equation 3 assigns a failure
score higher than 0.5 to 25% of the edges. This behavior is
partly due to the presence of the N2

i,j term in the denomi-
nator; the failure score is thus very sensitive to the number
of total pings between each pair of vertices, which can vary
between tens to hundreds of pings every 5 minutes.

Solving for Fi,j/Ni,j rather than Fi,j in the original model
(Equation 1) results in a second formulation and solution:

Ye =
∑

(∀vi,vj∈V)

(Fi,j
Ni,j

− Pi,j(e) ·Xe
)2

(4)

Xe =

∑
(∀vi,vj∈V)

(
Fi,j
Ni,j
· Pi,j(e)

)
∑

(∀vi,vj∈V)

(
P 2
i,j(e)

) (5)

The solution in Equation 5 has the desired property of high
contrast in the distribution of failure scores, as can be seen in
Figure 4. Only 4 edges get a failure score over 0.5. However,
this solution completely ignores the presence of successful
pings between two vertices when there are no failed pings,
i.e., Ni,j is ignored when Fi,j = 0.

The above observation has lead to our final formulation
and solution:

Ye =
∑

(∀vi,vj∈V)

(Fi,j√
Ni,j

−
√
Ni,j · Pi,j(e) ·Xe

)2
(6)

Xe =

∑
(∀vi,vj∈V)

(
Fi,j · Pi,j(e)

)
∑

(∀vi,vj∈V)

(
Ni,j · P 2

i,j(e)
) (7)

Figure 4 shows that the solution from Equation 7 offers a
similar contrast in failure scores as Equation 5, while the
presence of Ni,j in the denominator ensures the use of suc-
cessful pings in the calculations. We use Equation 7 to com-
pute the failure scores for all edges and vertices that are part
of a possible route of any failed ping, and produce a ranked
list of edges and vertices based on that score.

4.3 Deviation Detection
The presence of background noise in large-scale network

monitoring systems is common [6]. In our case, there exists
background noise in both the input ping data as well as the
generated failure scores.

Noise in the ping data typically appears in the form of false
ping failures or delays, even though the underlying network
is not experiencing any issues. In some cases, inflated ping
latency measurements are caused by increased load on the
servers running the ping service. In other cases, pings might
get dropped by a router—even though regular applications
do not exhibit any packet loss—due to the combination of
two factors: (a) traffic saturation at a link and (b) pings
having the lowest priority in network traffic.

Noise in the generated failure scores is primarily attributed
to the unknown nature of network routes. Since the routes
for failed pings are unknown and computed using probabili-
ties, any edge or vertex across alternative routes can poten-
tially have a non-zero failure score.

Background noise typically manifests as low failure scores
for healthy edges and vertices. A simple solution would be to
introduce a threshold for filtering out the low scores. Apart
from the obvious drawback of introducing an ad-hoc thresh-
old value, we would risk filtering out low failure scores that
resulted from true partial failures. By definition, partial fail-
ures cause low packet drop rates and naturally lead to low
failure scores. By simply looking at the value of a failure
score, we cannot distinguish these two cases.

Statistical hypothesis testing: The key idea behind
our solution is to look at failure scores over time in order

Figure 5: Detection of a spike and a gradual increase in a
time sequence of failure scores.

to establish a score baseline for each edge and vertex, and
then use statistical hypothesis testing to determine whether
a current failure score is significantly different than its his-
torical values. This approach allows us to filter out the false
positives due to noise and only output edges and vertices
with statistically significant failure scores.

Given a time sequence of failure scores S = {s0, s1, ..., sn}
for a particular edge (or vertex), we use a series of Stu-
dent’s t-tests to determine whether the addition of the latest
score s0 introduces a statistically significant change in the
sequence of scores. In particular, we are interested in de-
tecting two different score patterns over time, namely spikes
and gradual increases, seen in Figure 5. Spikes are detected
using one-sample Student’s t-tests while gradual increases
using two-sample Student’s t-tests.

The one-sample Student’s t-test is used to determine whether
the latest score s0 is likely to belong in the distribution of
historical scores Sh = {s1, ..., sn}, which forms the null hy-
pothesis. Let nh, µh, and σ2

h be the size, mean, and vari-
ance of Sh, respectively. According to the t-test, the null
hypothesis is rejected (i.e., the score is deemed significantly
different) when

s0 > θ · µh + tα,nh−1 ·

√
σ2
h

nh
(8)

where θ is a scaling parameter and ta,nh−1 is the t value
obtained from the t-distribution table using significance level
α = 99% and degree of freedom equal to (nh−1). Currently,
we use a dynamic scaling parameter θ = 1/

√
µh, which is

set based on empirical evidence.
In the two-sample Student’s t-test, we divide the set of

scores S into two independent sets, the current set Sc =
{s0, ..., sc} and the historical set Sh = {sh, ..., sn}. Locations
c and h in the sequence are configurable and control the size
and gap between the two sets.

Let nc, µc, and σ2
c be the size, mean, and variance of Sc,

respectively. Similarly, nh, µh, and σ2
h are the size, mean,

and variance of Sh. The null hypothesis is that µc ≤ θ ·
µh, for some scaling parameter θ. We use θ = 1/

√
µh as

discussed above. We account for the presence of θ in the
null hypothesis by revising µc = µc/θ and σ2

c = σ2
c/θ

2.
According to the t-test, we compute the t-statistic T as:

T =
µc − µh√
σ2
c
nc

+
σ2
h
nh

(9)

The degree of freedom df is computed using:

df =

(
σ2
c
nc

+
σ2
h
nh

)2
(
σ2c
nc

)2

nc−1
+

(
σ2
h
nh

)2

nh−1

(10)

Finally, the null hypothesis is rejected (and the latest score
is deemed significantly different) when

T > tα,df (11)

where tα,df is the t value obtained from the t-distribution
table using significance level α = 99%.

Both the one-sample and two-sample Student’s t-tests are
invoked each time a new failure score is computed. If any of
the t-tests determines the score to be significant, the corre-
sponding edge (or vertex) is added in the final ranked list.

4.4 Correlation Analysis
The algorithms discussed so far generate a ranked list of

links and devices suspected to have caused ping failures.
However, it is possible for a small set of links or devices to
share the same failure score due to network redundancy and
multipath routing. As an example, consider the case were
three physical links are connecting two network devices for
redundancy purposes. Multipath routing (and our proba-
bilistic routing) postulates that all traffic between the two
devices will be equally divided among the three links. There-
fore, the probability that a failed ping will go through any
of the three links is the same, which in turn implies that the
three links will have the same failure score.

We address this issue by taking advantage of the availabil-
ity and performance alerts produced by passive monitoring
(recall Section 2.3). In particular, we perform a left outer
join between our ranked list L and the set of device- and
link-level network alerts A that are triggered during the time
period of the analysis. This join retains all devices and links
in L while appending the alerting information from A to the
matching records. We do not remove the records in L that
do not match A in order to capture the cases were a device
or link is dropping packets without issuing any alerts. (We
discuss such cases in the experimental evaluation in Section
6.) Instead, devices and links with alerting information are
pushed to the top of the list since there is more evidence
that they may be responsible for the observed ping failures.

5. DEPLOYMENT
We have implemented the fault localization approach dis-

cussed in Section 4 and incorporated it into the Windows
Azure network monitoring infrastructure. Figure 6 shows
the relevant components of the monitoring system:

• The Data Store holds the network topology infor-
mation, the ping data, as well as local telemetry data
collected from devices and other components of the
network.

• The Ping Service is a distributed service that runs
on all compute clusters of the data centers and is re-
sponsible for collecting and sending the ping data to
the Data Store.

• Multiple Device Data Collectors are continuously
collecting, aggregating, and sending local telemetry
data to the Data Store.

• The Analysis Worker streams the topology, ping,
and telemetry data, performs the fault localization anal-
ysis, and streams the results back to the Data Store.

Figure 6: System architecture.

• The Web UI provides a web-based interface used by
network operators to consume the results of the fault
localization analysis in a user-friendly report.

The Ping Service and Device Data Collectors are continu-
ously collecting large amounts of data that need to be ana-
lyzed. In particular, there are about 400 thousand pings and
several hundreds to thousands of network events being gen-
erated every 15 minutes by the existing framework. In order
to produce results in near real time, we process the data in-
crementally. Every five minutes, the Analysis Worker will
(a) get the latest topology information from the Data Store
and build the network graph, (b) stream in the ping and
telemetry data from the last 15 minutes, (c) run the fault
localization analysis presented in Section 4, and (d) stream
out the ranked list of suspect links and devices, whose fail-
ures best explain the observed data.

6. EXPERIMENTAL EVALUATION
In this section, we evaluate the effectiveness and efficiency

of our approach to correctly localize issues in the entire Win-
dows Azure network. The experimental evaluation is based
on 73 real network incidents that were investigated by the
Windows Azure network operations team during a period
of three months. After sifting through large amounts of
data and reports compiled primarily by network operators,
we identified the (most likely) root cause for each incident.
Root causes are divided into the following 10 categories:

• Device Issue: A network device experienced an issue
such as hardware failure or misconfiguration.

• Fiber Cut: The fiber cable connecting two or more
devices was damaged or cut.

• Maintenance: Devices and links were going through
planned maintenance, which may have affected their
performance or availability.

• Transient Failure: A device or link experienced a
short failure and then recovered.

• DNS Issue: The Domain Name System (DNS) that
translates domain names to IP addresses experienced
an issue like incorrect name resolution.

• BGP Issue: The Border Gateway Protocol (BGP)
that makes routing decisions based on paths experi-
enced an issue like BGP sessions going down.

• Software: A software component like a Software Load
Balancer had failed or operated incorrectly.

• False Alarm: There was no clear evidence that a real
network issue had occurred and the network appeared
to be healthy during the investigation.

Figure 7: Derivation of localization accuracy classifications.

• DDoS Attack: A Distributed Denial-of-Service at-
tack (DDoS attach) caused performance or availability
issues to the network.

• Peering Issue: The issue was localized to outside the
Windows Azure network.

Table 3 lists the total count of incidents for each root cause.
For the purpose of our evaluation, we define a real phys-

ical network issue (PNI) to be any issue experienced by a
network device or link that resulted in dropped traffic and,
therefore, has affected higher-level users. For example, a
fiber cut or a device failure is considered a real physical
network issue; these are the type of issues our algorithm is
trying to localize. On the other hand, issues with DNS or
software issues are not considered physical issues, and thus
our algorithm should exclude them from localization.

6.1 Localization Accuracy
In this section, we evaluate the ability of our approach to

accurately localize real physical network issues (PNIs) and
to correctly exclude non-physical network issues. Unfortu-
nately, in many cases, we do not have the ground truth of
whether a network incident was caused by a real PNI or
not. One option would be to consider the final ruling of
the network operator as the ground truth. However, issues
such as transient failures can, by definition, cause loss of
traffic at the time of the incident but for the network to
appear healthy by the time the operator investigates the in-
cident. Hence, to evaluate the localization accuracy of our
approach, we combine two sources of truth: (a) the exper-
tise of the network operator in marking an issue as a real
PNI or not, and (b) traffic data showing whether there was
a significant loss of traffic near the location and around the
time of the investigated incident.

When the two sources of truth are in agreement, local-
ization accuracy is easily established. First, suppose the
operator marked the incident as a real PNI and there was
significant loss of traffic at the time of the incident. Us-
ing conventional terminology from binary classification, we
declare the result of our localization approach to be true
positive (TP) when our approach correctly identifies and lo-
calizes the issue and false negative (FN) when it failed to
identify the issue. On the other hand, suppose the oper-
ator marked the incident as not a PNI and there was no
observable loss of traffic. In this case, the localization re-
sult is considered true negative (TN) if the algorithm did

Table 3: Localization accuracy per root cause.

Root Cause TP TN FP FN LP LN NA Total

Device Issue 4 – – – – 4 1 9
Fiber Cut 3 – – – – – 1 4
Maintenance 5 5 – – – – – 10
Transient Failure 3 – – – 11 – – 14
DNS Issue – 10 – – – – – 10
BGP Issue – 5 – – – – – 5
Software – 7 – – – – – 7
False Alarm – 10 – – – – – 10
DDoS Attack – – 2 – – – – 2
Peering Issue – – – – – – 2 2

Total 15 37 2 0 11 4 4 73

not produce any devices or links in the topology near the
investigated incident; otherwise, it is a false positive (FP).

When the two sources of truth are in disagreement (i.e.,
the operator believes there is a real PNI but there is no sig-
nificant loss of traffic, or the operator believes there is no
PNI but there is loss of traffic), we define two new localiza-
tion accuracy classifications. The localization result is con-
sidered a likely positive (LP) when the algorithm identifies
an issue and either the operator has marked it as a real PNI
or there was significant loss of traffic. Conversely, the result
is considered a likely negative (LN) when the algorithm does
not identify an issue and either the operator has marked it as
a non-issue or there was no substantial loss of traffic. Finally,
if the issue is not located within the network graph, then we
classify it as not applicable (NA). For example, peering links
that connect Windows Azure to the outside world are not
part of our topology. Figure 7 summarizes the derivation of
our localization accuracy classifications.

Table 3 lists the localization accuracy of our approach for
each root cause for the 73 incidents. Overall, our approach
was able to correctly identify and localize 15 real physical
network issues (TPs) while correctly excluding 37 non-issues
(TNs). The root causes for the TPs were device issues, fiber
cuts, issues during planned maintenance, and transient fail-
ures. All DNS, BGP, and software issues as well as all false
alarms and some maintenance issues were correctly classi-
fied as TNs. There were only 2 cases of FPs where our
algorithm incorrectly output devices and links as suspects
of causing failures; both incidents were likely the result of
DDoS attacks. There were no cases of FNs.

There were also 15 incidents where the network operator
and the traffic data were in disagreement. In particular,
there were 11 cases of transient failures where the operator
did not find a physical network issue even though there was
significant loss of traffic observed for a short period of time
(typically 5-10 minutes). In fact, in all cases there was ad-
ditional evidence in the form of device- and link-level alerts
suggesting there was indeed a physical network issue. We
classify these cases as likely positives (LPs) even though we
believe they are probably TPs. The remaining 4 cases are
classified as likely negatives (LNs) and are attributed to de-
vice misconfigurations that did not affect traffic (and by ex-
tension, did not cause any user-perceived failures). Finally,
there were 4 incidents that occurred outside the Windows
Azure network and are thus classified as NA.

In the absence of our algorithm, the network operators
must rely on their expertise as well as device- and link-level

Figure 8: Localization accuracy of our approach compared
to the conventional approach based on network alerts.

alerts from passive monitoring in order to localize network
issues. Figure 8 compares the localization accuracy of the
approach based on network alerts (we call this the conven-
tional approach) and our approach. We observe that the
conventional approach yields a large number of false posi-
tives; 20 compared to just 2 from our approach. It is fairly
common for BGP, DNS, or software issues to cause device-
and link-level alerts even though the actual devices and links
are healthy and the traffic is not affected. In comparison,
our approach is able to correctly determine that the issue is
not related to physical devices or links.

Furthermore, the conventional approach suffered from 5
false negatives. There were 5 network incidents caused by
a device (or link) malfunction but that device (or link) had
no alerts associated with it (i.e., they were silent failures).
We have seen this happen during device hardware failures,
device misconfiguration, or planned maintenance. However,
since the problematic device was causing traffic loss (and by
extension ping failures or delays), our approach was able to
detect and localize it correctly.

6.2 Localization Precision
While Section 6.1 demonstrated the ability of our ap-

proach to accurately localize network failures, it does not
give any indication of how precise the localization is. In this
section, we evaluate the precision of our approach using two
metrics: one based on the size of the ranked list L of devices
and links produced by the algorithm, and another based on
the placement (i.e., rank) of the problematic device or link
that caused the network issue in L.

The first metric is termed localization precision and is in-
spired by a similar metric defined in [9]. The localization
precision for a given network incident is defined as the ratio
of the number of suspect devices and links after localization
(i.e., the size of list L) to that before localization. In other
words, it is the fraction of devices and links that are likely to
explain a particular network issue using our algorithm out
of all the devices and links that can potentially cause that
issue. We call the latter set the potential set P.

The size of P depends on the scope of the investigation,
which typically starts with some higher-level performance or
availability alert for some part of the network. For example,
suppose there is an availability alert for a particular cluster.
Any ToR switch or CSP and their links could be potentially
causing the issue. Table 4 lists the number of potential de-
vices and links that might need to be checked for the 15 TP

Figure 9: Localization precision of our approach compared
to the conventional approach based on network alerts.

incidents. Of course, using domain knowledge and expertise,
an operator will only check a subset of P; but the estimate
underscores the challenge faced by operators today.

Figure 9 shows the cumulative distribution functions (CDFs)
of the localization precision of our approach and the conven-
tional approach2. We observe that our approach localizes
network issues to less than 2% for more than 50% of the
failures and to less than 5% for more than 80% of the fail-
ures. On the contrary, only 33% of the failures are localized
to less than 5% using the conventional approach. Table 4
further supports the poor localization precision of the con-
ventional method as the number of distinct devices or links
associated with network alerts is often much larger (up to an
order of magnitude larger) than the total size of our ranked
list L. We conclude that our approach is able to localize
the true issue very precisely from a large set of possible root
causes for a given failure.

The second metric for evaluating the algorithm’s precision
is the diagnostic rank, which is the number of network de-
vices or links deemed more likely culprits than the device or
link that actually failed [11]. Assuming operators investigate
failures in the order listed by our algorithm, the diagnostic
rank reflects the overhead of identifying and resolving the
issues. Table 4 lists the average diagnostic rank computed
during the duration of each incident. On average, the op-
erator will have to check less than 5 devices or links (and
almost always less than 10) before identifying the real cul-
prit, compared to 6–305 for conventional diagnosis. Hence,
our approach can significantly reduce diagnosis time.

6.3 Efficiency
In this section, we evaluate the efficiency of our approach

in terms of how quickly a particular network issue is local-
ized. As discussed in Section 5, our algorithm is running
continuously in real time and generates a ranked list of de-
vices and links every 5 minutes (assuming it has identified
a network issue). We compare the time the ranked list con-
tained the problematic device or link for the first time with
the starting time of the incident. Note that in most cases
the exact starting time of an incident is not known, so we
are using the starting time recorded in the incident report.
Figure 10 shows the CDF of the time to localize real network
incidents in Windows Azure. We observe that 50% of the

2The localization precision for the conventional approach
is based on the number of distinct devices and links with
network alerts within the scope of the investigation.

Figure 10: Time to localize real network incidents.

incidents are localized within 12 minutes while the longest
time to localize is 23 minutes. Typically, the time to localize
depends on the severity of the incident; the higher the ping
failure rate, the shorter the time to localize since the sta-
tistical hypothesis testing will quickly detect the deviation
in the failure score. For example, the incident that took 23
minutes to localize had a ping failure rate between 1-2%.

It is interesting to note that in 3 incidents the device or
link causing the issue was localized by our algorithm well
before the starting time recorded by the operator—and pre-
sumably, before the time the operator started the investi-
gation. Therefore, there is potential for our approach to be
used in a more proactive way for localizing user-perceived
failures. We plan to investigate this approach in the near
future. Overall, our localization approach can identify and
localize real physical network issues in a very short time
period, significantly improving the ability of the operations
team to localize and resolve network incidents.

7. RELATED WORK
In network tomography, link-level properties like link loss

and packet latency are inferred using statistical approaches
from end-to-end measurements [5]. In particular, BAD-
ABING [12] and Tulip [10] measure per-path characteris-
tics to identify problems that impact network performance.
These methods, along with some commercial products as
well, use active testing (e.g., traceroute) to pinpoint faulty
links. However, they have only been applied to smaller net-
works since applying an active testing technique that will
sufficiently cover a worldwide network is prohibitively ex-
pensive. Our approach, on the other hand, does not require
any controlled testing infrastructure and relies only on ping
data, which is typically available as a connectivity signal in
data center networks.

There exists a large body of work on detecting and lo-
calizing performance problems across network and services.
Sherlock [2] captures the dependencies between various com-
ponents of the IT infrastructure (e.g., DNS service, load bal-
ancers, network components) and tries to localize failures to
a small number of components. Similarly, Shrink [8] and
SCORE [9] have their own dependency model, which they
use to find the most likely root causes of faults in wide-area
networks. In contrast, our approach localizes failures on the
underlying physical network, both within and across data
centers, and as such, can complement the aforementioned
tools. Furthermore, we have shown that our approach is

Table 4: Statistics for a sample of real network issues in Windows Azure. The device abbreviations are given in Figure 2.

Investigation Root Cause # Potentially # Devs/Links # Devs/Links Average
Scope (Device/Link) Failed with Network in our Diagnostic

Devs/Links Alerts Ranked List Rank

Core Network Fiber Cut (CR–CR Link) 79 6 10 9.3
Core Network Fiber Cut (CR–CR Link) 262 – 12 10.5
Core Network Fiber Cut (CR–CR Link) 868 85 5 1.0
Core Network Transient (CR–CR Link) 452 72 5 3.0
Datacenter Device Issue (DSP) 1178 132 24 3.0
Datacenter Device Issue (CR) 951 6 9 3.0
Datacenter Device Issue (CR) 453 – 3 2.0
Datacenter Maintenance (CR–CR Link) 845 62 39 9.7
Datacenter Maintenance (AR) 584 6 147 3.0
Datacenter Maintenance (CR) 891 8 8 3.4
Datacenter Transient (BL–DSP Link) 951 98 95 5.2
Multiple Clusters Maintenance (CR–BL Link) 9173 228 29 3.0
Cluster Device Issue (ToR) 1052 305 20 2.8
Cluster Maintenance (CSP–ToR Link) 3364 287 8 6.7
Cluster Transient (CSP) 1306 – 28 1.5

scalable, can produce results in near real time, and can han-
dle densely connected topologies in addition to loosely con-
nected ones such as wide-area networks.

8. CONCLUSIONS
In this paper, we described a novel and successful applica-

tion of statistical data mining techniques for localizing user-
impacting availability and performance issues in a worldwide
data center network in near real time. A unique aspect of our
work is that it is agnostic to the routing intricacies and for-
warding aspects of the network and is, therefore, a scalable
solution. We have deployed our solution on the Windows
Azure network monitoring infrastructure with a special fo-
cus on producing a high confidence, real-time signal that can
be used by operations teams to detect and localize physical
network issues. Our experimental evaluation on real network
incidents has validated both the efficiency and effectiveness
of our approach.

9. ACKNOWLEDGMENTS
We would like to thank the Windows Azure Network teams

that collaborated with us, especially Albert Greenberg for
introducing us to this problem as well as Monika Machado
and Tina Stewart for providing operational support.

10. REFERENCES
[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable,

Commodity Data Center Network Architecture. In Proc. of
the ACM SIGCOMM Conf. on Data Communication,
pages 63–74. ACM, 2008.

[2] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A.
Maltz, and M. Zhang. Towards Highly Reliable Enterprise
Network Services via Inference of Multi-level Dependencies.
In Proc. of the ACM SIGCOMM Conf. on Data
Communication, pages 13–24. ACM, 2007.

[3] L. A. Barroso and U. Hölzle. The Datacenter as a
Computer: An Introduction to the Design of
Warehouse-scale Machines. Synthesis Lectures on
Computer Architecture, 4(1):1–108, 2009.

[4] Y. Bejerano and R. Rastogi. Robust Monitoring of Link
Delays and Faults in IP Networks. IEEE/ACM
Transactions on Networking, 14(5):1092–1103, 2006.

[5] N. Duffield. Network Tomography of Binary Network
Performance Characteristics. IEEE Transactions on
Information Theory, 52(12):5373–5388, 2006.

[6] P. Gill, N. Jain, and N. Nagappan. Understanding Network
Failures in Data Centers: Measurement, Analysis, and
Implications. In Proc. of the ACM SIGCOMM Conf. on
Data Communication, pages 350–361. ACM, 2011.

[7] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta.
VL2: A Scalable and Flexible Data Center Network. In
Proc. of the ACM SIGCOMM Conf. on Data
Communication, pages 51–62. ACM, 2009.

[8] S. Kandula, D. Katabi, and J.-P. Vasseur. Shrink: A Tool
for Failure Diagnosis in IP Networks. In Proc. of the ACM
SIGCOMM Workshop on Mining Network Data, pages
173–178. ACM, 2005.

[9] R. R. Kompella, J. Yates, A. Greenberg, and A. C.
Snoeren. IP Fault Localization Via Risk Modeling. In Proc.
of the 2nd Symp. on Networked Systems Design &
Implementation (NSDI), pages 57–70. USENIX, 2005.

[10] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson.
User-level Internet Path Diagnosis. In Proc. of the 19th
ACM Symp. on Operating Systems Principles (SOSP),
pages 106–119. ACM, 2003.

[11] R. Niranjan Mysore. Automated Scalable Management of
Data Center Networks. PhD thesis, University of
California, San Diego, 2013.
http://escholarship.org/uc/item/7mb1w3rv.

[12] J. Sommers, P. Barford, N. Duffield, and A. Ron.
Improving Accuracy in End-to-End Packet Loss
Measurement. In Proc. of the ACM SIGCOMM Conf. on
Data Communication, pages 157–168. ACM, 2005.

[13] H. H. Song, L. Qiu, and Y. Zhang. NetQuest: A Flexible
Framework for Large-scale Network Measurement. ACM
SIGMETRICS Performance Evaluation Review,
34(1):121–132, 2006.

[14] Windows Azure Services, 2014.
http://www.windowsazure.com/en-us/services/.

[15] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown.
Automatic Test Packet Generation. In Proc. of the 8th Intl
Conf. on Emerging Networking Experiments and
Technologies (CoNext), pages 241–252. ACM, 2012.

[16] Y. Zhao, Y. Chen, and D. Bindel. Towards Unbiased
End-to-end Network Diagnosis. In Proc. of the ACM
SIGCOMM Conf. on Data Communication, pages 219–230.
ACM, 2006.

