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ABSTRACT

Over the last few years, the network community has started
to rely heavily on the use of novel concepts such as frac-
tals, self-similarity, long-range dependence, power-laws. Es-
pecially evidence of fractals, self-similarity and long-range
dependence in network traffic have been widely observed.
Despite their wide use, there is still much confusion regard-
ing the identification of such phenomena in real network
traffic data. For one, the Hurst exponent can not be calcu-
lated in a definitive way, it can only be estimated. Second,
there are several different methods to estimate the Hurst ex-
ponent, but they often produce conflicting estimates. It is
not clear which of the estimators provides the most accurate
estimation. In this extended abstract, we make a first step
towards a systematic approach in estimating self-similarity
and long-range dependence. We present SELFIS, a java-
based tool that will automate the self-similarity analysis.
To our knowledge, our software tool is the first attempt to
create a stand-alone, free, open-source platform to facilitate
self-similarity analysis. We show the use of our tool and de-
scribe the methodologies that currently incorporates in real
Internet data. Finally, we present an intuitive approach to
validate the existence of long-range dependence.

1. INTRODUCTION

Real data analysis has become challenging for engineers.
Fractals, self-similarity, long-range dependence, power-laws,
time-series analysis are used more and more in data anal-
ysis. However helpful these tools may be, they have often
been a burden for practitioners. Many of the researchers
are not familiar with all the possibilities and capabilities
the statistical methodology has to offer. First, many of the
new notions are fairly complex not only in definition but
also in intuition. There is no systematic classification of
concepts which results in confusion, partial understanding
and misinterpretation of terms. Second, it is not clear yet
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how all these statistical analysis tools relate to engineering
purposes. Finally, their multidisciplinary character leads to
a lack of a comprehensive single source that could be the
reference point. As a result, researchers are forced to imple-
ment similar, if not the same analytical tools. This results in
repetition of effort, discrepancies in analyzing findings and
difficulties in reproducing and comparing results.

The question this extended abstract addresses is: How can
we estimate long-range dependence and self-similarity effi-
ciently? Our goal is to facilitate practitioners by providing
SELFIS, a software tool. We aim to provide a common
software platform that unifies the effort of multiple research
communities. The benefits will be significant:

e Leverage of expertise from different disciplines.

e Create a common point of reference that will provide
repeatable and comparable results.

e Assist in spreading fractals and long-range dependence-
analysis by making them easily accessible to and com-
putable by non-experts.

The main characteristics of SELFIS are the following: a)
It integrates three classes of functions: Self-similarity and
long-range dependence analysis; Fourier and wavelet trans-
forms; data processing and cleansing algorithms. b) It is
implemented as an independent software tool, so that users
will not need additional commercial software to employ it.
¢) Modular design allows for other researchers to contribute
their source code. SELFIS can save researchers the time that
is normally required for collecting, analyzing and program-
ming sophisticated algorithms. Our ambition is to establish
SELFIS as the de facto open-source software for time-series
analysis. SELFIS has already attracted interest from the
networking community. It will be used at ISI by John Hei-
demann’s group. Also, it will be incorporated in Javasim at
University of Illinois, Urbana-Champaign.

In addition we describe an intuitive approach to validate
long-range dependence. This methodology has been used
before [3], but has not received sufficient attention. We call
this methodology bucket shuffling. Bucket shuffling is based
on decoupling short-term from long-range correlations. This



is achieved by shuffling parts of a time-series and the exam-
ination of the sample autocorrelation function. Moreover,
we present the functionality of our tool by analyzing real
data. The data consists of measurements, conducted for
various routes inside and outside US. Specifically, we show
that packet-loss demonstrates long-range dependent behav-
ior in large time scales (1sec).

Our contributions can be summarized as follows:

e We develop a software tool, SELFIS: It is a java-based,
portable, expandable, object-oriented, freely distributed
as a service to the community. We intend to maintain
our tool up to date and integrate more functionality
from other developers.

e We present a straightforward, intuitive approach for
long-range dependence detection and validation. We
call this approach bucket shuffling.

o We show that packet-loss shows long-range dependent
behavior in large time scales.

The rest of this extended abstract is organized as follows.
Section 2 is a brief overview of self-similarity and long-
range dependence and summarizes previous findings of self-
similarity in network traffic. Section 3 presents SELFIS, our
self-similarity tool. Section 4 is a case study that presents
the functionality of SELFIS. It is divided in two parts: a)
Bucket shuffling, an intuitive approach for long-range depen-
dence detection and b) LRD as a case study in packet-loss.
Section 5 concludes the paper.

2. DEFINITIONS - BACKGROUND

A stationary process X; has long-memory or is long-range
dependent [4], if there exists a real number a € (0, 1) and a
constant ¢, > 0 such that
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where p(k) the sample correlations. The classical param-
eter that characterizes long-range dependence is the Hurst
exponent (H), where H = 1 — a/2. Long-memory occurs
when % < H < 1. Intuitively, events that are far apart are
correlated, since the correlations decay very slowly to zero.
On the contrary, short-range dependence is characterized
by quickly decaying correlations (e.g. ARMA, MARKOV
processes).

The ability of self-similarity based modeling to better fit
Internet data than traditional methods, has been well doc-
umented over the past few years. Willinger and Paxson in
[16] present the failure of the Poisson process to capture In-
ternet traffic. Furthermore, different types of network traffic
are shown to be dominated by long-range dependence phe-
nomena (5], [17], [11], [19], [1], [2]. The relevance of LRD in
network traffic is studied in [6], while in [12] a new method
based on wavelets for synthesizing LRD series is developed.

3. THE SELFIS TOOL

The SELFIS tool is developed to provide all the necessary
functionality a network practitioner needs. Our ambition

is that SELFIS will be the reference point in time-series
analysis. It is a java-based, modular, extendible, freely dis-
tributed software tool, that can automate time-series anal-
ysis. We chose to develop an independent platform instead
of relying on commercial products. Our purpose was to give
to the community a ready to use tool, without further obli-
gations of purchasing any software.

The SELFIS tool is a collection of self-similarity and long-
range dependence estimation methodologies and time-series
processing algorithms. It incorporates various long-range
dependence estimators that reveal different characteristics
of the analyzed series. Also SELFIS offers data process-
ing methodologies and transforms, such as wavelets, Fourier
transform, stationarity tests and smoothing algorithms. In
addition, SELFIS provides the possibility of synthesizing
long-range dependent time sequences, as it includes frac-
tional Gaussian noise generators. The following subsections
present analytically the capabilities SELFIS has to offer.

3.1 Long-Range Dependence Detection
SELFIS implements an intuitive approach for the detection
and validation of long-range dependence, Bucket Shuffling.
Bucket shuffling is based on decoupling short-range form
long-range correlations in a series to infer the existence of
long-range dependence. This is achieved through shuffling
and the examination of the autocorrelation function, Specif-
ically, the time series is divided in buckets of length b. Then
two levels of shuffling can be applied:

e External Shuffling: The order of buckets is shuffled,
whereas the contents of the buckets remain intact.
This can be achieved by creating a new ordered series
consisting of bucket ids. Each bucket is given incre-
mentally an id starting from the beginning of the time
series. Then we replace each bucket contents after the
bucket-id series is shuffled. External shuffling results in
preserving the time-series correlations up to the bucket
length. Long-range correlations are distorted because
of the shuffling. Thus, the autocorrelation function
should not exhibit significant correlations beyond the
bucket size.

e Internal Shuffling: The order of bucket remains the
same as that of the original signal, whereas the con-
tents of each bucket are shuffled. As a result, short-
range correlations are distorted, whereas long-range
correlations remain relatively unaltered. Hence, if the
original signal has long-memory, the autocorrelation
function of the internal-shuffied series should still show
power-law behavior. Examples of bucket shuffling are
presented in the next section.

3.2 Hurst Estimators

Various estimators can be used to provide estimates of self-
similarity and long-range dependence. A number of meth-
ods, such as RSplot and the Variance method define an ag-
gregated series X (™) (k) given a time series X;. That is,

km
1 N
=Y X k=120

X" (k) =
m i=(k—1)m+1



On the other hand there are the power spectrum methods
like the periodogram estimator. Finally some methods use
wavelets and Fourier transform to estimate the Hurst ex-
ponent, like the Abry-Veitch wavelet-based estimator in [8].
An overview of a large number of the estimation method-
ologies can be found in [7], [4]. In our tool the following
estimators are included:

e Absolute Value method, where the log-log plot of the
aggregation level versus the absolute first moment of
the aggregated series X (m) should be a straight line
with slope of H-1, if the data are long-range dependent
(where H is the Hurst exponent).

e Variance method, where we plot on a log-log plot the
sample variance versus the block size of each aggrega-
tion. If the series is self-similar with long-range depen-
dence then the plot is a line with slope § greater than
-1. The estimation of H is given by H =1+ g

e R/S method. This method uses the rescaled range
statistic (R/S statistic). The R/S statistic is the range
of partial sums of deviations of a time-series from its
mean, rescaled by its standard deviation. A log-log
plot of the R/S statistic versus the number of points
of the aggregated series should be a straight line with
the slope being an estimation of the Hurst exponent.

e Periodogram method. This method plots the logarithm
of the spectral density of a time series versus the log-
arithm of the frequencies. The slope provides an esti-
mate of H. The periodogram is given by

N
1 -
I —_ X (4 ijr |2
)= el LX)
where v is the frequency, N is the length of the time-
series and X is the actual time series.

o Whittle estimator. The method is based on the min-
imization of a likelihood function, which is applied to
the periodogram of the time-series. It gives an estima-
tion of H and produces the confidence interval. It does
not produce a graphical output.

e Variance of Residuals. A log-log plot of the aggre-
gation level versus the average of the variance of the
residuals of the series should be a straight line with
slope of H/2.

e Abry-Veitch. Wavelets are used for the Hurst exponent
to be estimated. The energy of the series in various
scales is studied to calculate the Hurst exponent.

3.3 Transforms
SELFIS includes the following transforms:

e Fourier Transform. Fourier transform is used to trans-
form a signal from the time domain to the frequency
domain. Intuitively, the signal is broken down into
sinusoids of different frequencies.

e Wavelets (Haar and D4). Fourier transform cannot
present information about the time. Wavelets cover
for this inefficiency by combining frequency and time
domains.

e Power Spectrum. The power spectrum presents the
amount of energy that corresponds to each frequency
of the Fourier transform.

3.4 Data Processing

Data processing is an essential element in time-series analy-
sis. Processing reveals the underlying behavior of the series
and allows for further analysis. SELFIS currently includes
the following data processing methodologies:

e Smoothing Algorithms. Smoothing can be achieved by
median, average or exponential smoothing algorithms.
Our tool includes the 4253H smoothing algorithm de-
scribed in [15]. The algorithm has been shown to pro-
vide sufficient results for different kinds of data. Ac-
cording to 4253H smoothing the signal is smoothed by
successively applying median smoothing with window
4,25 and 3 followed by a hanning operation. A han-
ning operation multiplies the values of a window 3 by
0.25, 0.5 and 0.25 respectively, and sums the results.

e Stationarity tests. Stationarity means intuitively that
there is no trend in the series. There is a number of
tests that check a series for stationarity. One of the
common tests for stationarity is the run test. The test
can detect a monotonic trend in the series by evaluat-
ing the number of runs. A run is defined as a sequence
of identical observations. The number of runs must

be a random variable with mean 4§ + 1 and variance
N(N-2)
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ber of runs is evaluated from a series s(i), where:

where N is the length of the series. The num-

S(l) =0, if y(z) < median(y), and
s(i) =1, if y(¢) > median(y),

where y(i) is the time series. Stationarity is important
when long-range dependence is studied, since estima-
tors fail in non-stationary data. If stationarity is de-
tected, the time series must be differenced successively
until stationarity is achieved.

3.5 Fractional Gaussian Noise Generators
Fractional Gaussian Noise (FGN) generators can synthe-
size series with long-range dependence. The tool includes
two generators. The first proposed in [10], is a method
based on fast Fourier transform to generate a FGN series.
The second generator produces FGN series by using the
Durbin-Levinson coefficients. The latter algorithm was im-
plemented in java, based on the source code written by
Vadim Teverovsky in S-Plus [14].

4. CASE STUDY

This section presents SELFIS. We present two showcases of
the capabilities of the tool. First, an application of bucket
shuffling to validate long-range dependence in time-series.
To demonstrate the methodology, we use Fractional Gaus-
sian Noise series generated by one of the generators included
in SELFIS. Second, initial observations regarding long-range
dependence behavior of packet loss in real Internet traffic
data are presented.



Figure 1: LEFT: FGN series of length 65536 and Hurst
0.8. RIGHT: Autocorrelation function (ACF) of the se-
ries up to lag 200. Clearly the ACF shows power-law like
behavior.

4.1 Bucket Shuffling

Bucket shuffling (see precious section) is an intuitive, straight-
forward methodology that validates the existence of long-
memory. To show how long-range dependence can be de-
tected using bucket shuffling , we synthesized a sample se-
ries of fractional Gaussian noise. The series (fig. 1) has
length 65536, Hurst exponent 0.8 and was synthesized us-
ing the generator created by Paxson. The right part of fig.
1 shows the sample autocorrelation function (ACF) of the
series which clearly follows a power-law like behavior and
implies long-range dependence. To ensure that long-range
dependence really exists we employ bucket shuffling. Fig. 2
shows the ACF function after the signal is shuffled with three
different ways. First, we shuffle externally with bucket size
1, in order to create a complete randomized signal. As one
would expect ACF shows that no correlation exists (Fig. 2
up left). Second, external shuffle cancels the effect of long-
range correlations. Clearly the up right part of Fig. 2 shows
that there is no correlation beyond the bucket size. Finally,
internal shuffle distorts the sort-term correlations, while not
affecting the long-range behavior. It is obvious that the
ACF presents the same behavior as that of the ACF of the
original series. Hence, one can conclude that long-range de-
pendent behavior dominates the original series since there
are no short-term correlations.

4.2 LRD in Packet Loss

The set of data includes measurements for various routes
inside and outside the United States. Within the United
States measurements were conducted for one route, from
UCR to CMU. Routes outside the US include measurements
from UCR to Greece, Japan and Australia. For these routes,
we collect various characteristics of the network such as the
Round Trip, packet loss and delay jitter. Measurements are
conducted for different packet sizes and different sending
rates. The sending rates range from 20msec to 1sec. This
section presents only initial results for packet loss, since the
scope of this paper is to present the functionality of SELFIS.

Fig. 3 presents a packet-loss time-series. Each data point
represents the number of lost packets per second. The send-
ing rate for the specific series is 50msec. Hence, the maxi-
mum number of lost packets in a second is 20. The series
represents measurements that took place from April 25, 4pm
to April 26, 3am. Self-similarity in multiple time scales was
observed also in [18] and [9]. Table 1 shows the estimation of
Hurst exponent for the time-series. The estimators agree on
the existence of long-range dependence, however the estima-

Figure 2: UP LEFT: External bucket shuffling with
bucket size 1. Full randomize of the series results in
no correlation to appear. UP RIGHT: External bucket
shuffling with bucket size 50. After lag 50 all correla-
tions are insignificant. DOWN: Internal bucket shuffling
with bucket size 50. The ACF shows the same power-law
behavior like the original series (Fig. 1).

Packet Loss UCR—CMU April 25

©

Figure 3: Packet loss per second for the route UCR-
CMU (April 25, 4pm - April 26, 3am).

tion of Hurst exponent ranges from 0.61 to 0.83. Variance
in Hurst exponent estimation has been observed and ana-
lyzed in [13]. Fig. 4 shows the graphical output of two of the
estimators, RSplot and the log-log plot of Variance of Resid-
uals. The rest of the traces both for other days as well as
for other routes show similar results. The main difference is
in the intensity of long-range dependence, namely the value
of the Hurst exponent.

5. CONCLUSIONS

Through this work, we wish to facilitate practitioners by
providing practical ways for long-range dependence estima-
tion. We develop a software tool, SELFIS that can become
a reference point in estimating long-range dependence in
time-series. We provide a number of different estimators
that capture various features of long-range dependent be-
havior. SELFIS is designed as a modular, open-source tool
that is distributed freely so that it will incorporate more
and more functionality in the future. To our knowledge this
is the first attempt to collect all the long-range dependent
estimators in a common platform without the need of any



Table 1: Estimations for packet loss from UCR-CMU.
For each estimator the resulting value of Hurst expo-
nent estimation is shown. All estimations are with 97%
correlation coefficients

Variance | Resid .R/S Whittle | AV | Period
0.83 0.79 | 0.83 0.61 0.61 0.73
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Figure 4: R/Splot and Variance of Residuals log-log plot
for packet loss from UCR to CMU

commercial software.

We propose bucket shuffling as the ultimate test to detect
and validate long-range dependence. The goal of bucket
shuffling is to distinguish short-range from long-range cor-
relations. The decoupling of correlations can show if the
behavior of the original series is based on short-term behav-
ior or long-memory. The appropriate selection of fitting and
prediction models depends on identification of the length of
correlation in the series.

We presented the functionality of SELFIS in a case study.
In particular, we studied long-range dependence in packet-
loss. We conclude that, packet-loss traces show long-range
dependent behavior. We found that this is true in large time
scales (1 sec). Various earlier measurements in literature
with different datasets emphasize similar findings ([18],[9]).
However, it is interesting to note that the estimators do not
agree in their estimations and Hurst exponent estimation
varies significantly.

SELFIS will be further extended with additional function-
ality in the future. Calculation of fractal dimensions and
forecasting models are some of our priorities. In addition,
we are very interested in collaborative development. Inter-
ested parties are highly encouraged to contribute code.

Summing up, long-range dependence is identified in increas-
ing aspects of many disciplines such as, networking, data-
bases, economics. Thus, the need for a complete long-range
dependence analysis is crucial. SELFIS is a step towards
this direction.
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