

 _

Abstract—Practical mapping and navigation solutions for
large indoor environments continue to rely on relatively expensive
range scanners, because of their accuracy, range and field of view.
Microsoft Kinect on the other hand is inexpensive, is easy to use
and has high resolution, but suffers from high noise, shorter range
and a limiting field of view. We present a mapping and navigation
system that uses the Microsoft Kinect sensor as the sole source of
range data and achieves performance comparable to state-of-the-
art LIDAR-based systems. We show how we circumvent the main
limitations of Kinect to generate usable 2D maps of relatively large
spaces and to enable robust navigation in changing and dynamic
environments. We use the Benchmark for Robotic Indoor
Navigation (BRIN) to quantify and validate the performance of our
system.

I. INTRODUCTION

2D mapping and navigation for indoor mobile robots using
single-line laser range-finders is a well-studied problem with
efficient algorithms and proven implementations, including
commercial ones [1]. However, these solutions are relatively
expensive, the cost being dominated by the cost of the LIDAR.

Since Kinect is an order of magnitude cheaper than single-
line LIDARs, we wanted to see if Kinect could provide a
viable low-cost alternative for 2D mapping and navigation.
This question appears to have been investigated only
superficially so far, particularly when it comes to navigation in
dynamic environments. A common approach is to combine a
few center rows from the depth image generated by Kinect, cut
off the depth at 8m or less to remove the noisiest readings and
feed the resulting scan line into an existing 2D mapping and
navigation implementation [2]. Not surprisingly, the results
obtained with this approach are disappointing, since the
method exposes the weaknesses of Kinect (smaller horizontal
field of view, range limitations) without explicitly leveraging
its strengths (higher resolution and larger vertical field of
view).

We introduce a complete recipe for reliable Kinect-based
mapping and navigation. Our approach focuses on increasing
the useful range and field of view of the depth data acquired
from Kinect, in principal by integrating readings over time into
an always up-to-date, sliding-window local map. This is done
during mapping as well as navigation, and informs both the
motion model and the observation model of both systems. Our
method is inspired by Kinect Fusion [3], but is applied in 2D
rather than 3D to reduce the computational burden.

Specifically, our contributions are:

 A sensor calibration method that eliminates most of the
systematic noise in the depth image.

 A scan alignment procedure that combines a truncated
signed distance function (TSDF) grid map with a
particle filter operating at frame rate.

 A method for making use of depth readings that are
extremely noisy (>10% error) during mapping and
localization. This allows us to extend the useful range
of Kinect depth data to 20m.

 A method for increasing the field of view (FOV) of
Kinect during navigation by generating virtual 360
degree views from incremental local maps.

We include experimental results based on the Benchmark
for Robotic Indoor Navigation (BRIN) [4] that quantify the
performance of our approach relative to state-of-the-art
systems.

It should be noted that, while all our experiments have been
conducted with Kinect v1, we expect the method and findings
to apply equally well to Kinect v2.

II. RELATED WORK

Consumer 3D sensors like Microsoft Kinect and its
successors have dramatically simplified access to reliable and
accurate 3D data, and as a result spurred a lot of research
activity in computer vision and robotics. Simultaneous
Localization and Mapping (SLAM) in particular has seen
some notable developments. Newcombe et al. [3]
demonstrated remarkable real-time 3D reconstruction results
with a frame-to-model matching approach that aligns dense
depth data with a voxel map using ICP. Real-time performance
requires GPU-acceleration and as a result the volume that can
be reconstructed is limited by the available GPU memory, with
small office environments being the practical limit. The
method was later extended to larger environments by Whelan
et al. [5] by allowing the region of space mapped by Kinect
Fusion to vary and by paging the model data out to a mesh
representation. An RGB-only variant called DTAM that also
uses frame-to-model matching but is based on dense RGB data
and a photometric distance was also proposed by Newcombe
et al. [6]. A number of successful sparse methods have also
been developed, notably the RGB-D SLAM system introduced
by Engelhard et al. [7], where sparse local features extracted
from RGB data are augmented with their depth. Frame-to-
frame alignment is performed in a two-step process, using

Mihai Jalobeanu, Greg Shirakyan, Gershon Parent, Harsha Kikkeri, Brian Peasley and Ashley Feniello

Microsoft Research

Reliable Kinect-based Navigation in Large Indoor Environments

RANSAC and ICP. Dryanovski et al. [8] developed an
efficient alternative using frame-to-model matching.

In 2D SLAM, motion estimation from alignment of
LIDAR scans is part of most SLAM front-ends. Related to our
method, the approach by Hahnel et al. [9] uses an occupancy
grid map and a cost function that considers only the cells that
fall under the beam-endpoints, and performs gradient descent
to minimize the cost function. Similarly, Kohlbrecher et al.
[10] use the spatial derivative of the occupancy map for
gradient descent and rely on a multi-scale approach to avoid
local minima.

The idea of using sliding-window local maps to localize on
a global map has been introduced by Gutmann and Konolige
[11], who use incremental scan matching to generate local
maps and then correlation to determine overlap.

The use of particle filters for SLAM goes back many years,
with a significant body of work dedicated to Rao-
Blackwellized filters (where each particle has its own map)
introduced first by Murphy [12], and extended by Montemerlo
et al. [13], Hahnel et al. [9], Eliazar and Par [14] and later by
Grisetti et al. [15]. These approaches demonstrate remarkable
results not only in scan alignment and incremental mapping
but also in closing relatively large loops.

Among the navigation methods that take full advantage of
the Kinect depth data is the work done by Biswas et al. [16],
where planes are extracted from the depth image and projected
in the horizontal plane to match against a map. While this
method assumes preexisting maps, building maps from large
plane registration has been addressed by Pathak et al. [17].

Kinect depth calibration was covered by Teichman et al.
[18], who show the need for individual sensor calibration and
perform calibration of long-range readings using SLAM
results from close readings, and Smisek et al. [19], who
attempt to eliminate vertical banding in the depth distortion
based on the assumption that they are static.

III. OUR METHOD

Our approach has three main ingredients: a method for
processing depth frames to de-noise them and to extract a
relevant subset of the data, a method for continuous
incremental mapping to generate reliable local maps from
extremely noisy readings and a method for integrating the
local maps into the navigation pipeline (primarily localization,
but also path planning and path tracking). In particular,
localization is done based on a virtual 360 degree view
extracted from local maps. Depth processing, incremental
mapping, extraction of the 360 degree view and localization
are all performed at frame rate (30Hz).

A. Notation

Our method deals with three distinct coordinate systems:

- The world domain in R3. Within world space, a global
frame of reference is chosen for simplicity to be the
start pose of the robot, with the x and y axes parallel to
the floor.

- The image domain in I2, with the coordinate system
origin in the top-left corner and x and y being pixel

coordinates. The function u(x,y) represents the depth
map generated by the Kinect sensor after rectification,

relating a point p  I2 to a depth measurement. The
transformation from R3 to I2 is given by the pin-hole
camera projection.

- The map domain in I2, where x and y are grid map
coordinates. The origin of the map is in the bottom-
right corner. A point pg in the global frame is
projected onto the xy plane and transformed to map
coordinates by a similarity transform TM..

In world space, the 3DOF robot pose is represented by the
rigid transformation TR, and the 3DOF pose of the camera
relative to the robot by the transformation TC, such that a point
p in camera frame is transformed to global frame coordinates
by pg = TRTCp.

B. Calibration

 While the Kinect depth sensor can generate long-range
readings of over 20m, it exhibits significant noise beyond its
main operational range of 4m. We discuss treatment of random
error in Section C below. The dominant type of systematic
error is a radial error that distorts the depth map in a doughnut
shape.

The severity of the systematic error is sensor-specific and
increases with distance, being as high as 10% at 10m. We were
able to eliminate most of this error using a semi-autonomous
calibration procedure. It consists of positioning the robot at
various known distances from the wall and learning a mapping
D(u, x, y) between the distance u(x, y) reported by the sensor
for a given image point [x, y]T in I and the actual distance to
the wall d. Ground truth distance to the wall is determined
using a consumer-grade single point laser range finder rigidly
attached to the robot and aligned with the Kinect camera.
Alignment is achieved by pointing the range finder to a marker
placed at the center of the IR image. In the data collection
phase, the robot increases its distance d from the wall in small
increments from 0.5 m to 4m. At each step we automatically
align the sensor to the wall by minimizing the deviation from
the mean of each pixel in the depth map.

Figure 1. Depth image of a flat wall at 1.5m exhibiting radial error and
vertical banding effects. Deviation from ground truth is shown on grayscale
dial.

We then remove banding effects from each frame (see
below) and integrate multiple frames to eliminate random
noise. The clean depth image obtained this way is fed into our
learning algorithm together with the ground truth distance d.

The learning algorithm is a simple parameter estimator for
a family of quadratic functions of the form Dk(u(x,y)) =
aku(x,y)2+bku(x,y)+ck, where k represents tiled 16x16 regions
of I2, similar to [19]. The 16x16 size was chosen
experimentally, by varying the tile size from 1x1 to 64x64.

Once the error function for each region is learned using
data captured from stepping through 0.5-4m range, we
extrapolate depth reading correction values for distances of up
to 20m. We use step sizes of 5%-15% of distance from the wall
with good results, as opposed to fixed size step. This ensured
a denser sampling at closer distances, effectively giving higher
weight to readings at closer range during polynomial fitting, to
avoid degrading sensor accuracy.

An often overlooked problem in Kinect depth calibration
procedures such as [18] and [19] is the presence of dynamic
vertical banding artifacts in the depth image. The number of
vertical bands and their effects appear to be changing with low
frequency even after many hours of sensor operation. It would
be a mistake to factor them into the sensor bias correction
function, since the behavior is scene-specific and the effects
will be different later, at runtime. Thus, we remove banding
effects from each frame during calibration by detecting
discontinuities along the horizontal and adjusting depth values
in each column such that the average frame-wide reported
distance to the wall is the same.

Note that we also calibrate the intrinsic parameters of the
IR camera (in particular the center of the sensor) using the
calibration procedure described in [20].

C. Depth frame processing

The Kinect depth frame has a resolution of 640x480 pixels.
The depth image can contain any number of pixels for which
no depth estimate is available (because of shadows, objects
that are closer than 0.5m, obstacles that are too far or open
space). We discard all such invalid pixels, as well as any depth
readings greater than 20m.

The Kinect uses rolling-shutter cameras, and as a result the
generated depth image exhibits significant shearing effects
when panning. We use the robot motion to determine the
angular speed of the camera around the vertical axis and we
correct rolling-shutter effects by shifting the rows in the depth
image, as described in [21].

Once the depth map is corrected and aligned, we eliminate
from the image all pixels that are either floor readings or are
above a given height (2m). This way we retain a slice of the
world parallel to the floor and of fixed thickness, extending out
to the end of the depth range. Our method of floor extraction
operates in image space on each individual frame, by
approximating the floor plane based on the readings in the
bottom 10% of the depth image and extrapolating it out to the
rest of the depth map. Specifically, the method iterates over
each column that has enough valid depth readings in the
bottom 48 rows and fits a plane to these depth readings. The
columns that have a small enough standard deviation from the
candidate planes are used to determine the final floor plane,
through majority voting. If the majority is less than 75%, the
frame is discarded and the floor plane extracted from the
previous frame is used instead. Other floor extraction methods,
such as the plane detector in [22], would work equally well.

Finally, we walk the resulting image in column order,
looking for the smallest value from each column. The value
represents the point closest to the camera. We smooth the
value by applying bilateral filtering to its neighborhood [23],
and retain the resulting depth value in the corresponding entry
of a 640x1 array. The array represents the depth profile of the
depth frame, matching the corrected Kinect depth map column
for column.

D. Local map representation

Similar to KinectFusion, our method relies on the TSDF
representation of the 2D model. Thus, our map mk obtained at
step k is a fixed-size grid in which each cell contains the signed
distance value Fk from the cell to the closest obstacle, together
with an associated weight Wk:

 mk(x, y) = [Fk(x, y), Wk(x, y)] 

The distance function is the same projective TSDF used by
KinectFusion, which is an approximation of a true signed
distance function, theoretically correct only at the zero
crossing. In practice, the averaging effect obtained from
incremental updates from a moving sensor makes the
approximation sufficient.

This representation has two important advantages over the
classical occupancy grid:

 It allows extraction of coherent contours even after
integrating very noisy readings, with sub-cell
resolution.

 It is directional, in that cells with non-zero values
don’t appear as obstacles when seen from a different
angle. Only the zero-crossings are interpreted as
obstacles.

-100

0

100

200

300

400

500

600

700

800

0 2000 4000 6000 8000

B
ia

s
(m

m
)

Distance (mm)

Figure 2. Average frame-wide bias relative to distance, before (dotted
line) and after (solid line) calibration, computed on a training dataset and a
validation dataset respectively.

The process of integrating a new depth profile into the map
for a given camera pose estimate consists of visiting and
updating every cell in the map that could be affected by the
new reading (given the camera’s horizontal field of view and
the current maximum depth reading). Each candidate cell is re-
projected onto the camera to find its corresponding depth
profile entry (nearest neighbor). The cell value is updated with
the difference η between the distance from the camera to the
cell and the corresponding value in the depth profile line (i.e.
the distance from the camera to the obstacle along the same
ray), truncated and normalized by the truncation threshold μ.
As a result, cells very close to an obstacle get a value close to
0, while cells in front get a positive value increasing away from
the surface. Cells behind the obstacle, up to the truncation
threshold distance, are updated with a negative value
decreasing away from the surface:

 Ψ(η) = {
min (1,

η

μ
) sgn(η), iff η ≥ −μ

null, otherwise
 (2)

The cells with value <1 make up the support region of the
surface. The truncation threshold μ is scaled with the distance
to the obstacle along the ray, so that obstacles farther away get
a larger support region. This helps in integrating the large noise
present in long-range readings.

Given a new depth profile Sk obtained at time k from the
current robot position p0, the projective TSDF at point p is
given by:

 𝐹𝑆𝑘
(𝑝) = Ψ(𝑆𝑘(𝑇𝑆𝑝) − ‖𝑝 − 𝑝0‖2) (3)

 𝑊𝑆𝑘
(𝑝) =

1

‖𝑝−𝑝0‖2
2 (4)

The map cell is then updated according to:

 𝐹𝑘(𝑝) =
𝐹𝑘−1(𝑝)∗ 𝑊𝑘−1(𝑝) +𝐹𝑆𝑘

(𝑝)∗ 𝑊𝑆𝑘
(𝑝)

𝑊𝑘−1(𝑝)+ 𝑊𝑆𝑘
(𝑝)

 (5)

 𝑊𝑘(𝑝) = 𝑊𝑘−1(𝑝) + 𝑊𝑆𝑘
(𝑝) (6)

The weight associated with each update is a function of
distance from the camera to the cell being updated. Since the
weight of a cell is ever increasing, it also captures the number
of times the cell was seen so far. The weight plays an important
role in incrementally improving the obstacle contours as more
observations are added to the map.

E. Incremental mapping

The critical ingredient of our method is the ability to
maintain a correct local map from which a 360 degree contour
can be easily extracted. The contour is then used as a scan line
instead of the actual observation during navigation. Our
method for incremental mapping is frame-to-model matching.
The approach used by Kinect Fusion is to extract the surface
from the current model using ray-tracing and to re-project it
onto a virtual camera. Computing the cost function becomes a

pixel-wise operation between the Kinect depth map and the
depth map obtained via re-projection of the model, but the ray
tracing operation is expensive. We opted for a simpler and
cheaper way to compute an approximate version of the cost
function by using the TSDF directly. Given a camera pose Pk,
a depth profile Sk obtained from the latest camera frame k, and
the current map mk, we denote with C(mk, Pk, Sk) the cost
function representing how well the observed depth profile Sk
and the predicted contour match.

𝐶(𝑚𝑘, 𝑃𝑘 , 𝑆𝑘) = ∑ |(𝐹𝑘 ∗ 𝑊𝑘)(𝑇𝑀𝑇𝑅𝑇𝐶𝑝)𝑝∈𝑆𝑘
| (7)

When it comes to pose estimation via minimizing the cost
function, Kinect’s reduced field of view and high noise levels
make single-solution search methods like gradient descent or
ICP [24] of limited usefulness, particularly once the depth
image is reduced to a scan line. There are many cases in which
the robot faces an area devoid of salient features, resulting in a
sequence of observations that cannot be properly aligned with
the model. Presence of moving obstacles in the field of view
can also present an alignment problem (outlier detection can
help only to some extent). In such cases single-solution
methods fail and need external input to recover. Our approach
is to use a multi-theory search method instead, implemented as
a particle filter that approximates the probability distribution
over the robot pose given the robot motion, the most likely
map and a set of observations, similar to [25]. The filter is
updated at frame rate, and the average lifespan of a particle is
<10 seconds. This is in contrast with Rao–Blackwellized
particle filter implementations, which keep multiple theories
alive (together with their associated maps) until a loop closure
is detected, typically by updating the filter with low frequency
[9], [15]. Hence, we refer to our method as an incremental
mapping method rather than a SLAM solution.

Because computing the distance function is cheap (linear
in the horizontal resolution of the sensor), and because we only
maintain the map generated by the maximum likelihood
solution, the particle filter can maintain and update thousands

Figure 3. TSDF map generated using our incremental mapping method.

of particles at frame rate. The filter update is also fully
parallelizable, since particles of the same generation are
independent of each other. In our tests, the ability to compute
many more candidate poses appears to outweigh the fact that
the cost function is a relatively coarse approximation of fitness
when compared to the ray-traced approach.

As with any incremental mapping method, our method
suffers from drift over long distances and/or time intervals. To
ensure that our local map remains consistent in the vicinity of
the robot, we update it using a sliding window approach. We
maintain a queue of the observations currently integrated into
the map. The queued observations are removed from the map
(and from the queue) once they become too old (>120s) or
once the robot traveled a maximum distance (20m). The
removal operation is the inverse of the map update operation:

 𝐹𝑘(𝑝) =
𝐹𝑘−1(𝑝)∗ 𝑊𝑘−1(𝑝)− 𝐹𝑆𝑘

(𝑝)∗ 𝑊𝑆𝑘
(𝑝)

𝑊𝑘−1(𝑝) − 𝑊𝑆𝑘
(𝑝)

 (8)

 𝑊𝑘(𝑝) = 𝑊𝑘−1(𝑝) − 𝑊𝑅𝑘
(𝑝) (9)

F. Contour extraction

To compensate for the small field of view of the Kinect,
we generate, after each map update, a virtual observation in
the form of a dense 360 degree depth profile. For a given robot
position and orientation, the visible obstacle contours are
extracted from the current map using ray-tracing, by visiting
the map cells along each ray in a dense set of rays within a
given field of view. The method iterates over map cells in
order of increasing distance from the observer for as long as
the current cell value is positive. When a negative value is
encountered, the surface has been crossed and its exact
position can be computed by linearly interpolating between the
positive and negative values. The resulting position is added to
the point set that describes the surface. The positive and
negative values are themselves interpolated from the
surrounding cells. Once all the desired rays in the field of view
have been traced, the computed point set describes the surface
as seen from the given pose with the given field of view.

Note that, unlike Kinect Fusion, our ray tracing visits every
cell along the ray. We found the Kinect Fusion approach of
space skipping to be unreliable when applied to our maps, due
to the nature of the robot motion. In particular, when moving
along a corridor, the generated support region of the walls is
thin because of the sharp viewing angle. When the robot
rotates, changing the viewing direction, the space skipping
method ends up jumping over the thin support region, missing
the surface.

G. Global map

The global map used for navigation is represented as a grid
map containing a true signed distance function. The global
map is generated in an offline step from data recorded while
manually driving the robot around the target environment.
Loop closure information is provided by pressing a button
during recording. An initial estimate of the trajectory of the
robot is obtained using the incremental mapping procedure,
and is then corrected in a graph optimization step based on the
loop closure information. A TSDF map is generated using the

updated trajectory and is then transformed to a true distance
function by ray-tracing from every map cell and retaining the
minimum distance to the extracted contour.

H. Navigation

The key ingredient of our localization method is the
generation, at frame rate, of a virtual 360 degree scan line from
the most recent observation and a local map that is always up
to date. The 360 degree contour is extracted from the local map
by ray-tracing as described in Section F. Then, the most recent
observation is used to replace the section of the scan line that
it overlaps with (after a simple conversion of the observation
from pin-hole model to angular model). The resulting
combined scan line makes it look as if the robot was equipped
with a 360 degree LIDAR. However, our scan line is denser,
containing 3600 readings, or 10x more than most LIDARs.

 Localization is performed using a particle filter with the
same cost function C(mk, Pk, Sk) described earlier, this time
applied to the true distance function map. The motion update
of the filter is based on the motion estimate output of the
incremental mapping subsystem.

To handle changes to the environment such as furniture
being moved, path (re)planning is performed with high
frequency against a combined map obtained by overlaying the
most recent local map over the global map, given the most
likely pose from the localization subsystem. While fairly
simplistic and theoretically prone to live-locks due to
oscillating alignment of the maps (and the resulting oscillation
of the planned path), this approach appears to work well in
practice. Nonetheless, this area merits more attention and
future work.

Dynamic obstacles such as people are handled at path
tracking level, using a purely reactive obstacle avoidance
strategy consisting of a short sequence of random rotations and
translations towards open space. The random behavior is
designed to eliminate the risk of live-locks between obstacle
avoidance and path tracking.

IV. EXPERIMENTAL RESULTS

We conducted several experiments to compare our method
with existing state-of-the-art implementations and to quantify
the benefits of our continuous mapping technique. For reasons
of size and drive train similarities with our hardware prototype,
we chose to compare our platform with two similar platforms
running complete mapping and navigation solutions:
TurtleBot 2 (from Yujin Robot) and Adept Pioneer 3DX. The
TurtleBot is an open source platform based on iRobot Create.
It is equipped with a Microsoft Kinect, and runs Linux and
ROS [26]. The Pioneer 3DX is a commercial platform
produced by Adept Mobile Robots. It is equipped with a Sick
LIDAR and runs Adept’s proprietary ARNL navigation
software [1].

It became obvious early on that our TurtleBot system
(using the default mapping and navigation solution) was not
able to handle the large space we picked for our benchmark,
and thus we removed it from the test. The Adept Pioneer on
the other hand proved to be a capable contender. Note that in

our experiments we used the research version of the Adept
ARNL software.

A. Benchmarking method

We used the BRIN method (Benchmark for Robotic Indoor
Navigation) to quantify the performance of our navigation
method in large environments. The benchmark method was
introduced in [4] and was presented in detail in [27].

To summarize, we picked a large environment consisting
of four areas: office, hallway, lounge and atrium. The lounge
and atrium share an open space of more than 30 x 30 m. The
lounge area was densely furnished, while the atrium was
mostly empty. We chose 8 interesting places in the
environment and marked one waypoint in each place by
applying an overhead fiducial. We ensured that the robot
visited these waypoints during mapping, and we captured the
position of the robot on the generated map, as well as the
position of the robot in the real world, relative to the fiducial
associated with the waypoint being visited. This last step was
done using an up-facing camera mounted on the robot and the
ground truth software described in [28]. Note that the up-
facing camera was used solely for ground truth information
and was not available to the navigation software.

Once the initial map was created and the waypoints were
recorded, the robot was instructed to visit the waypoints in a
particular sequence designed to maximize exposure to
environmental challenges. The track length of the sequence
was about 250m. The sequence was repeated 12 times, for a
total of 3km, and every time a different set of modifications
was made to the environment, such as people walking by or
blocking the robot, doors being closed, obstacles placed in the
path and furniture being disturbed or moved to new locations.
For a complete description of the benchmark procedure see
[4].

The main metric used to compare the tested systems was
the total number of failures. Failure was defined as the inability
of the robot to reach the next waypoint in the set within a given
amount of time. In all failure cases observed it was fairly
obvious that the robot could not recover and would never reach
the waypoint. After a failure, the robot was reset to the next
waypoint and the test resumed.

We ran the tested platforms one after the other for each
sequence of points, thus guaranteeing that the systems were
exposed to the same changes in the environment. The tests
were run in late afternoon and evening, to eliminate the
possibility of interference.

B. Results

Table 1 below quantifies the contribution of the mapping
and localization strategy described in this paper. It compares
the benchmark results obtained in two distinct benchmark
runs, performed a few weeks apart in the same environment.
The two runs used the same hardware platform but different
versions of the navigation systems. In the first run we used a
simpler version of our navigation stack which implemented the
same depth frame processing method but relied directly on the
resulting 60° scan line to localize against a static map. As
expected, the majority of the failures were due to loss of
localization, either when the furniture was moved (lounge) or

when encountering people in areas with sparse features
(traversing the atrium).

The second run used the system described in this paper and
showed a dramatic improvement across the board. The always
up-to-date local map and the virtual 360° view generated from
it helped a lot in maintaining good localization even when the
environment changed, resulting in a five-fold increase in
positioning accuracy.

Because these were distinct benchmark sessions, the
results are normalized by the performance of the reference
platform in each session, as required by BRIN.

Table 2 shows the results of our prototype, MSR-P1, and
the Pioneer 3DX robot. Our system outperformed the Pioneer
in all regards except speed. Accuracy of the two systems is
almost the same, even though the LIDAR used by the Pioneer
system is 10x more accurate than the Kinect, has 5x the range
and 6x the field of view. Note that failures are not reflected in
the positioning error, since measuring the positioning error
requires the robot to arrive at the landmark to begin with.

Metric No local map,

60° FOV

Local map,

360° FOV

Number of failures* 2.40 0.56

Mean time to failure 0.23 3.12

Max time to failure 0.43 2.55

Mean dist. to failure 0.13 2.01

Max dist. to failure 0.27 1.82

Average speed 0.50 0.64

Positioning error* 5.22 1.05

TABLE 1. Comparison of navigation results with and without the
incremental mapping method, using the MSR-P1 platform. The results are
normalized with the performance of the reference platform, and are thus unit-
less. Larger values are better, except for items marked with *.

Figure 5. Map of the environment in which the benchmark was
conducted.

Metric MSR-P1 Pioneer

Number of failures 5 9

Mean time to failure 2265 s 726 s

Max time to failure 5023 s 1971 s

Mean dist. to failure 367 m 183 m

Max dist. to failure 860 m 472 m

Average speed 0.16 m/s 0.25 m/s

Positioning error 0.23m ±0.2m 0.22m ±0.1m

TABLE 2. Comparison of results obtained with MSR-P1 running our
method and the Pioneer 3DX running the ARNL navigation system.

While the Pioneer software was better in navigating a static
environment, especially in the large atrium, the ability of our
robot to deal with environment changes was ultimately the
main differentiator in the overall score.

The breakdown of the failures of MSR-P1 is as follows: 1
software crash, 3 localization failures and 1 localization
divergence. The Pioneer failures were: 1 software hang, 5
localization failures, 1 path oscillation for more than 5
minutes, 1 not able to traverse path plotted around a new
obstacle and 1 failure to detect a low obstacle.

V. CONCLUSION

In this paper we have shown that the Microsoft Kinect
depth camera is a viable low-cost alternative to LIDARs for
indoor navigation scenarios. We have devised a method for
correcting systematic error in sensor readings and for coping
with large random noise in long-range Kinect data. We
introduced a method for extracting better statistics about
obstacle proximity. Finally, we have shown how, by
performing continuous incremental mapping and by using a
TSDF map representation, we can compensate for the limited
field of view of the Kinect sensor. Our experimental results
demonstrate that the resulting system can outperform existing
state-of-the-art indoor navigation systems that use LIDARs,
particularly when it comes to overall reliability in dynamic
environments. Despite the LIDARs significant advantage in
accuracy, range and field of view over Kinect, our system
achieves similar positioning accuracy and has a significantly
lower failure rate.

References

[1] "Adept Mobile Robots ARNL Software," [Online].
Available: http://robots.mobilerobots.com/wiki/ARNL.

[2] "Turtlebot navigation package," [Online]. Available:
http://wiki.ros.org/turtlebot_navigation.

[3] R. A. Newcombe, A. J. Davison, S. Izadi, P. Kohli, O.
Hilliges, J. Shotton, D. Molyneaux, S. Hodges, D. Kim and A.
Fitzgibbon, "KinectFusion: Real-time dense surface mapping and
tracking.," in International symposium on Mixed and augmented
reality (ISMAR), 2011.

[4] C. Sprunk, J. Röwekämper, G. Parent, L. Spinello, G. D.
Tipaldi, W. Burgard and M. & Jalobeanu, "An Experimental

Protocol for Benchmarking Robotic Indoor Navigation.," in
International Symposium on Experimental Robotics (ISER), 2014.

[5] T. Whelan, M. Kaess, M. Fallon, H. Johannsson, J. Leonard
and J. McDonald, "Kintinuous: Spatially extended kinectfusion,"
2012.

[6] R. A. Newcombe, S. J. Lovegrove and A. J. Davison,
"DTAM: Dense tracking and mapping in real-time," in
International Conference on Computer Vision (ICCV), 2011 .

[7] N. Engelhard, F. Endres, J. Hess, J. Sturm and W. Burgard,
"Real-time 3D visual SLAM with a hand-held RGB-D camera.,"
in RGB-D Workshop on 3D Perception in Robotics at the
European Robotics Forum.

[8] I. Dryanovski, R. G. Valenti and J. Xiao, "Fast visual
odometry and mapping from rgb-d data," in International
Conference on Robotics and Automation (ICRA), 2013.

[9] D. Hahnel, W. Burgard, D. Fox and S. Thrun, "An efficient
FastSLAM algorithm for generating maps of large-scale cyclic
environments from raw laser range measurements," in
International Conference on Intelligent Robots and Systems
(IROS), 2003.

[10] S. Kohlbrecher, O. v. Stryk, J. Meyer and U. Klingauf, "A
flexible and scalable slam system with full 3d motion estimation,"
in International Symposium on Safety, Security, and Rescue
Robotics (SSRR), 2011.

[11] J.-S. Gutmann and K. Konolige, "Incremental mapping of
large cyclic environments," in International Symposium on
Computational Intelligence in Robotics and Automation, 1999.

[12] K. P. Murphy, "Bayesian Map Learning in Dynamic
Environments," NIPS, pp. 1015-1021, 1999.

[13] M. Montemerlo, S. Thrun, D. Koller and B. Wegbreit,
"FastSLAM: A factored solution to the simultaneous localization
and mapping problem.," AAAI/IAAI, pp. 593-598, 2002.

[14] A. Eliazar and R. Parr, "DP-SLAM: Fast, robust simultaneous
localization and mapping without predetermined landmarks,"
IJCAI, vol. 3, pp. 1135-1142, 2003.

[15] G. Grisetti, G. D. Tipaldi, C. Stachniss, W. Burgard and D.
Nardi, "Fast and accurate SLAM with Rao–Blackwellized particle
filters," Robotics and Autonomous Systems, vol. 55, no. 1, pp. 30-
38, 2007.

[16] J. Biswas and M. Veloso, "Depth Camera Based Indoor
Mobile Robot Localization and Navigation," in International
Conference on Robotics and Automation (ICRA), 2012 .

[17] K. Pathak, A. Birk, N. Vaskevicius, M. Pfingsthorn, S.
Schwertfeger and J. Poppinga, "Online three‐dimensional SLAM
by registration of large planar surface segments and closed‐form
pose‐graph relaxation.," Journal of Field Robotics, pp. 52-84,
2010.

[18] A. Teichman, S. Miller and S. Thrun, "Unsupervised intrinsic
calibration of depth sensors via SLAM," in Robotics: Science and
Systems, 2013.

[19] J. Smisek, M. Jancosek and T. Pajdla, "3d with kinect," in
IEEE Workshop on Consumer Depth Cameras for Computer
Vision, 2011.

[20] Z. Zhang, "A flexible new technique for camera calibration,"
Transactions on Pattern Analysis and Machine Intelligence, vol.
22, no. 11, pp. 1330-1334., 2000.

[21] E. Ringaby and P.-E. Forssen, "Scan rectification for
structured light range sensors with rolling shutters.," in
International Conference on Computer Vision (ICCV), 2011.

[22] D. Holz, S. Holzer, R. B. Rusu and S. Behnk, "Real-time
plane segmentation using RGB-D cameras," in RoboCup 2011:
Robot Soccer World Cup XV, Springer Berlin Heidelberg, 2012,
pp. 306-317.

[23] C. Tomasi and R. Manduchi, "Bilateral filtering for gray and
color images," in Sixth International Conference on Computer
Vision, 1998.

[24] F. Lu and E. Milios, "Robot pose estimation in unknown
environments by matching 2d range scans," Journal of Intelligent
and Robotic Systems, vol. 18, no. 3, pp. 249-275, 1997.

[25] S. Thrun, W. Burgard and D. Fox, "A real-time algorithm for
mobile robot mapping with applications to multi-robot and 3D
mapping," in International Conference on Robotics and
Automation, 2000.

[26] "TurtleBot," [Online]. Available: http://www.turtlebot.com/.

[27] "Benchmark for Robotic Indoor Navigation," [Online].
Available: http://research.microsoft.com/en-us/projects/brin/.

[28] H. Kikkeri, G. Parent, M. Jalobeanu and S. Birchfield, "An
Inexpensive Methodology for Evaluating the Performance of a
Mobile Robot Navigation System," in International Conference
on Robotics and Automation (ICRA), 2014.

