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Abstract. The advance of object tracking technologies leads to huge volumes 
of spatio-temporal data accumulated in the form of location trajectories. Such 
data bring us new opportunities and challenges in efficient trajectory retrieval. 
In this paper, we study a new type of query that finds the k Nearest Neighboring 
Trajectories (k-NNT) with the minimum aggregated distance to a set of query 
points. Such queries, though have a broad range of applications like trip 
planning and moving object study, cannot be handled by traditional k-NN query 
processing techniques that only find the neighboring points of an object. To 
facilitate scalable, flexible and effective query execution, we propose a k-NN 
trajectory retrieval algorithm using a candidate-generation-and-verification 
strategy. The algorithm utilizes a data structure called global heap to retrieve 
candidate trajectories near each individual query point. Then, at the verification 
step, it refines these trajectory candidates by a lower-bound computed based on 
the global heap. The global heap guarantees the candidate’s completeness (i.e., 
all the k-NNTs are included), and reduces the computational overhead of 
candidate verification. In addition, we propose a qualifier expectation measure 
that ranks partial-matching candidate trajectories to accelerate query processing 
in the cases of non-uniform trajectory distributions or outlier query locations. 
Extensive experiments on both real and synthetic trajectory datasets 
demonstrate the feasibility and effectiveness of proposed methods. 

1   Introduction 
The technical advances in location-acquisition devices have generated a huge volume 
of location trajectories recording the movement of people, vehicle, animal and natural 
phenomena in a variety of applications, such as social networks, transportation 
systems and scientific studies: In Foursquare [1], the check-in sequence of a user in 
restaurants and shopping malls can be regarded as a location trajectory. In many GPS-
trajectory-sharing websites like Geolife [17, 18, 19], people upload their travel routes 
for the purpose of memorizing a journey and sharing life experiences with friends. 
Many taxis in big cities have been embedded with GPS sensors to report their 
locations. Such reports formulate a large amount of trajectories being used for 
resource allocation, security management and traffic analysis [8]. Biologists solicit 
the moving trajectories of animals like migratory birds for their research [2]. Similarly, 
climatologists are busy collecting the trajectories of natural phenomena such as 
hurricane and ocean currents [3].  

In the above-mentioned applications, people usually expect to retrieve the 
trajectories passing a set of given point locations. For example, the social network 
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users want to retrieve their friend’s trails of visiting some scenic spots as references 
for trip planning. The fleet operators expect to analyze the business of their taxis 
traveling around several hot spots by the GPS traces. The biologists are interested in 
study the migration trails of birds passing some mountains, lakes and forests. In 
general, these applications need to efficiently query and access trajectories from large 
datasets residing on disks by geospatial locations. Note that, the system needs to 
select the top k trajectories with the minimum aggregated distance to the given 
locations instead of the trajectory exactly passing those locations, since in most case 
exact match may lead to no result or not the best results returned. This study aims to 
provide an efficient method to expedite a novel geospatial query, the k-Nearest 
Neighboring Trajectory Query (k-NNT query), in a trajectory database. 

Unfortunately, the k-NNT query is not efficiently supported in existing systems. 
Most traditional k-NN query processing methods are designed to find point objects 
[11, 6, 5]. On the other hand, the traditional trajectory search techniques focus on 
retrieving the results with similar shapes to a sample trajectory [9, 13]. The new 
problem, searching top-k trajectories given a set of geospatial locations, poses the 
following challenges:   

 Huge size: Many databases contain large volumes of trajectories. For example, 
the T-drive system [8] collects the trajectories from over 33,000 taxis for 3 
months. The total length of the trajectories is more than 400 million kilometers 
and the total number of GPS points reaches 790 million. The huge I/O overhead 
is the major cost in query processing. 

 Distance computation: The distance computation in k-NNT query is more 
complex than traditional spatial queries. To compute the aggregated distance 
from a trajectory to a set of query points, the system has to check all the 
member points of the trajectory, find out the closest one to each individual 
query point (i.e., shortest matching pairs) and sum up all the matching pairs as 
the measure. The techniques of point k-NN queries, such as best-first search [6] 
and aggregate k-NN [5], cannot handle this problem. 

 Non-uniform distribution: In many real applications, the distributions of 
trajectories are highly skewed, e.g., taxi trajectories are much denser in 
downtown than suburban areas. In addition, query points are given by users in 
an ad-hoc manner and some of them may be far from all the trajectories.  

In this study, we propose a robust, systematic and efficient approach to process k-
NNT queries in the trajectory database. The system employs a data structure called 
global heap to generate candidate trajectories by only accessing a small part of the 
data and verifies the candidates with the lower-bound derived from global heap. To 
handle the skewed trajectory data and outlier query locations, a qualifier expectation 
measure is designed to rank the candidates and accelerate query processing.  

The rest of the paper is organized as follows. Section 2 provides the background 
and problem definition, Section 3 describes detailed query processing framework, and 
Section 4 introduces the qualifier expectation-based algorithm. Section 5 evaluates the 
approaches by extensive experiments on both real and synthetic datasets. Section 6 
discusses related studies. Finally, Section 7 concludes the paper. 
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2 Problem Formulation 
The trajectory data are collected in the form of point sequences. Trajectory Ri can be 
represented as Ri = {pi,1, p i,2, … pi,n}, where pi,j is the j-th member point of Ri. The 
input of k-NNT query Q, according to applications, is specified by a set of point 
locations, Q = {q1, q2, … qm}. In the following we first define the distance measures 
between trajectories and query points. 

Definition 1. Let trajectory Ri = {pi,1, pi,2, … pi,n} and q be a query point. The 
matching pair of a member point pi,j and q is denoted as <pi,j, q>. If ∀𝑝𝑖,𝑘 ≠ 𝑝𝑖,𝑗,  
𝑑𝑖𝑠𝑡�𝑝𝑖,𝑗 , 𝑞� ≤ 𝑑𝑖𝑠𝑡�𝑝𝑖,𝑘, 𝑞�, <pi,j, q> is the shortest matching pair of Ri and q. 

Definition 2. Let trajectory Ri = {pi,1, pi,2, …, pi,n} and query Q = {q1, q2,…, qm}. The 
distance between Ri and a query point q is the distance of the shortest matching pair 
<pi,j, q>, the aggregated distance between Ri and Q is the sum of distances of the 
shortest matching pairs from Ri to all query points. 

𝑑𝑖𝑠𝑡(𝑅𝑖,𝑄) = �𝑑𝑖𝑠𝑡(𝑅𝑖 , 𝑞) = �𝑑𝑖𝑠𝑡�𝑝𝑖,𝑗 , 𝑞�
𝑞∈𝑄𝑞∈𝑄

 

Example 1. Figure 1 shows a matching example of two trajectories and three query 
points. The query points q1, q2 and q3 are matched with the closest points in R1 and R2. 
The nearest neighboring trajectory is selected by the aggregated distance of all the 
query points. Even R2 is more distant to q1 and q3, its aggregated distance is still 
smaller than R1. So R2 should be returned as the query result. 

 
Figure 1. Aggregated Distance Example 

With the distance measures, now we formally describe the task of k-NNT query. 

Task Definition: Given the trajectory dataset, D, and a set of query points, Q, the k-
NNT query retrieves k trajectories K from D, K = {R1, R2, …, Rk} that for ∀𝑅𝑖 ∈
𝐾, ∀𝑅𝑗 ∈ 𝐷 − 𝐾, 𝑑𝑖𝑠𝑡(𝑅𝑖 ,𝑄) ≤ 𝑑𝑖𝑠𝑡(𝑅𝑗,𝑄). 

A direct way to process k-NNT query is to scan the whole trajectory dataset, 
compute all the shortest matching pairs for each trajectory, and then compare their 
aggregated distances. The I/O overhead is very high since all the trajectories are 
retrieved.  

R1

R2
q1

q2 q3

p1,1 p1,2
p1,3 p1,4

p1,5

p2,1 p2,2

p2,3
p2,4

p2,5

p2,6

dist(R1, q1)= dist(p1,2, q1)= 20 m
dist(R1, q1)= dist(p1,3, q2)= 50 m
dist(R1, q1)= dist(p1,5, q3)= 15 m
dist(R1, Q)= 85 m

dist(R2, q1)= dist(p2,3, q1)= 30 m
dist(R2, q1)= dist(p2,4, q2)= 5 m
dist(R2, q1)= dist(p2,6, q3)= 40 m
dist(R2, Q)= 75 m
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A candidate-generation-and-verification framework was first proposed by Fagin et 
al. for processing top k aggregation queries for distributed systems and middleware 
[12]. The Fagin’s algorithm generates a candidate set by searching the objects listed at 
the top in each individual site, and then carries out the detailed verification only on 
such candidates. The general idea can be employed to solve this problem, since the k-
NNTs usually have member points close to some query locations. The system should 
search for candidate trajectories around each query point, and then verify them for 
final results. However, since Fagin’s algorithm is not designed for spatial query 
processing, the candidate search operations on individual sites are carried out in 
parallel (i.e., the system retrieves the top member from each site, then gets the second 
member of each of the sites, and so on). In the scenarios of k-NNT query, the 
situations around each query points are different. It is inefficient to search in such 
parallel manner. Thus the key problem becomes how to coordinate the candidate 
searching processes. Meanwhile, the algorithm must guarantee that all the k-NNTs are 
included in the candidate set (i.e., completeness). Section 3 will discuss those issues in 
detail. Table 1 lists the notations used in the following sections. 

Table 1. A List of Notations 

 

3   Query Processing 
3.1 Candidate Generation  

The first task of candidate generation is to retrieve the neighboring points around 
query locations. In this study, we utilize the best-first strategy to search for k-NN 
points [6]. The best-first strategy traverses R-tree index from root node and always 
visits the node with the least distance to the query point, until it reaches the leaf node 
and returns it as the result. Based on the best-first search strategy, we construct a data 
structure of individual heap to search k-NN points.  

Definition 3. Let qi be a query point. The individual heap hi is a minimum heap 
whose elements are the matching pairs of trajectory member point and qi. The 
matching pairs are sorted by their distances to qi. 

The individual heap takes qi as the input and visits R-tree nodes with the shortest 
distance. If the R-tree node is an inner node, the heap retrieves all its children node 
and keeps to traverse the tree; if the R-tree node is leaf node (i.e., a trajectory’s 
member point pj), the heap composes a matching pair of pj with qi.  

Notation
D
R

H
G
C

Explanation
the trajectory dataset
a trajectory

the individual heap list
the global heap
the candidate set

Notation
K

pi,j, pi

q, qj

N
δ

Explanation
the k-NNT result set
member points of traj.
k-NNT query points

an R-tree node
the pruning threshold

hi an individual heap
Q the k-NNT query

μ the full-matching ratio k a constant given by user
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There are two advantages of individual heap: (1) It employs the best-first strategy 
to traverse R-tree and achieves optimal I/O efficiency [6]. (2) The individual heap 
does not need to know k in advance, it can pop out the matching pairs incrementally. 

For a query Q = {q1, q2, …, qm}, the system constructs a heap list H = {h1, h2, …, 
hm} and finds out the shortest matching pairs from the m heaps. Since there are 
multiple heaps, the key problem is to coordinate the searching processes of individual 
heaps. To this end, we introduce the global heap. 

Definition 4. Let k-NNT query Q = {q1, q2, …, qm} and individual heap list H = {h1, 
h2, …, hm}. The global heap G consists of m matching pairs, G = {<p1, q1>, <p2, 
q2>, …, <pm, qm>}, where <pi, qi> is popped from the individual heap hi. G is a 
minimum heap that sorts the matching pairs by their distances. 

The global heap has two operations, pop and retrieve. The pop operation simply 
outputs the shortest matching pair of G. The retrieve operation is carried out 
immediately after popping a pair <pi, qi>. The global heap retrieves another matching 
pair <pi', qi> from the corresponding individual heap hi. In this way, there are always 
m matching pairs in G.  

The popped matching pairs are kept in a candidate set. In the beginning, the 
candidate trajectories only have a few matching pairs, we call them partial-matching 
candidates. When the global heap pops out more matching pairs, several trajectories 
will eventually complete all the matching pairs for query Q, they are called full-
matching candidates. In Figure 2, trajectory R1 is a full-matching candidate with all 
shortest matching pairs, and R2 and R4 are partial-matching candidates since they miss 
the pairs of several query points. One may notice that, not all the matching pairs 
popped out by global heap G are added to the candidate set. For example, the current 
top element of G is <p1,4, q1>, and there is already a shortest matching pair <p1,2, q1> 
in candidate R1. Since the individual heap h1 reports the k-NN points in incremental 
manner, the oldest pair < p1,2, q1> is guaranteed to be the shortest one from R1 to q1. 
The new pair <p1,4, q1> is then a useless pair. It should be thrown away.  

 
Figure 2. Data Structures for Candidate Generation 

<p2,3, q1>
<p5,2, q1>
<p1,6, q1>
<p2,9, q1>

…...

h1

<p6,2, q2>
<p5,3, q2>
<p7,4, q2>
<p4,8, q2>

…...

<p2,2, q3>
<p3,5, q3>
<p7,3, q3>
<p8,6, q3>

…...

<p5,1, qm>
<p2,3, qm>
<p5,7, qm>
<p9,2, qm>

…...

…...

<p1,4, q1>, <p5,1, q3>, <p6,4, q4>, <p3,4, q2>, …...

Global Heap (Size=m)

R1: <p1,2, q1>, <p1,5, q2>, <p1,3, q3>, ……, <p1,9, qm>.  
R2:             , <p2,2, q2>, <p2,4, q3>, ……,               .         
R4: <p4,5, q1>,            , <p4,3, q3>, ……, <p4,7, qm>  
………... Candidate Set

h2 h3 hmIndividual Heaps
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The last issue of candidate generation is the stop criterion. The algorithm should 
not stop unless the candidate set has already contained all the k-NNTs. 

Proper ty 1. If a candidate set has at least k full-matching candidates whose shortest 
matching pairs are all popped from the global heap, then the candidate set is 
complete. 

Proof: A candidate set C is complete if it contains all the k-NNTs. That is, for any 
trajectory 𝑅𝑖 ∉ 𝐶, we need to prove that Ri cannot be a k-NNT. 

For ∀ 𝑞 ∈ 𝑄, we denote the shortest matching pair from Ri to q as <pi, q>. Since 
𝑅𝑖 ∉ 𝐶, <pi, q> has not been popped out yet. The global heap G pops out matching 
pairs in the order of increasing distance, the distance of <pi, q> is large than or equal 
to current matching pair <pG, q> in G, that is: 𝑑𝑖𝑠𝑡(𝑝𝐺 , 𝑞) ≤ 𝑑𝑖𝑠𝑡(𝑝𝑖 , 𝑞). 

Let 𝑅𝑗 ∈ 𝐶 be a full-matching trajectory candidate, whose matching pair for q is 
<pj, q>. Since <pj, q> is already popped from G, its distance is less than <pG, q>: 
𝑑𝑖𝑠𝑡�𝑝𝑗 , 𝑞� < 𝑑𝑖𝑠𝑡(𝑝𝐺 , 𝑞). Then 𝑑𝑖𝑠𝑡�𝑝𝑗 , 𝑞� < 𝑑𝑖𝑠𝑡(𝑝𝑖 , 𝑞). Hence we have: 

𝑑𝑖𝑠𝑡�𝑅𝑗,𝑄� = �𝑑𝑖𝑠𝑡�𝑝𝑗 , 𝑞�
𝑞∈𝑄

< �𝑑𝑖𝑠𝑡(𝑝𝑖 , 𝑞)
𝑞∈𝑄

= 𝑑𝑖𝑠𝑡(𝑅𝑖 ,𝑄) 

There are at least k full-matching trajectories in C, their aggregated distances are 
all smaller than Ri, so Ri is not possible to be a k-NNT, candidate set C is complete. ∎ 

Based on Property 1, we develop the algorithm of k-NNT candidate generation. 
The algorithm first constructs the individual heaps and initializes the global heap and 
candidate set (Lines 1--3). Each individual heap pops a shortest matching pair to the 
global heap (Lines 4--5). In this way the global heap has m matching pairs. Then the 
candidate generation process begins. Once the global heap is full with m pairs, it pops 
out the shortest one. The system checks whether the candidate set already contains an 
old pair with the same trajectory and query point. If there is no such pair, the new 
popped pair is a shortest matching pair, it is then added to the candidate set (Lines 7--
9). After that, the global heap retrieves another pair from the corresponding individual 
heap (Line 10). This process stops when there are k full-matching trajectories in the 
candidate set (Line 11). 

Algorithm 1. k-NNT Candidate Generation 
Input: Trajectory dataset D, Query Q, k 
Output: k-NNT Candidate Set C 
1. for  each 𝑞𝑖 ∈ 𝑄  
2.     construct the individual heap hi on D; 
3. initialize the global heap G and candidate set C; 
4. for  each individual heap hi  
5.    pop a matching pair and push it to G; 
6. repeat 
7.    pop the shortest pair <pj, qj> from G; 
8.    if <pj, qj> is a shortest matching pair, then 
9.       add <pj, qj> to C; 
10.    pop a matching pair from hj and push it to G; 
11. until C contains k full-matching candidates 
12. return C;  
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Example 2. Figure 3 shows an example of the candidate generation algorithm. 
Suppose k is set to 1. The algorithm first constructs the global heap with matching 
pairs <p1,4, q2>, <p1,6, q3> and <p1,2, q1>. In the first iteration the pair <p1,4, q2> is 
popped to the candidate list, candidate R1 is generated. Meanwhile the global heap 
retrieves the another pair <p5,5, q2> from q2’s individual heap. In the next three 
iterations, the global heap pops matching pairs <p1,6, q3>, <p5,5, q2> and <p4,5, q3> and 
generates two partial-matching candidates R4 and R5. At the 5th iteration, <p1,2, q1> is 
popped out and a full-matching candidate R1 is generated. The algorithm then stops 
and outputs the candidate set for further verification. 

 
Figure 3. Running Example of Candidate Generation 

3.2 Candidate Ver ification  

After generating the candidates, the system needs to verify them to select k-NNTs. 
For the partial-matching candidates, the algorithm has to make up their missing pairs. 
The computational and I/O costs are high for this task. Suppose the candidate set’s 
size is l (with k full-matching candidates), each trajectory contains average n member 
points and the number of query points is m. In the worst case, each partial-matching 
candidate only has one matching pair, the system has to carry out (𝑙 − 𝑘) ∗ 𝑛 ∗ (𝑚 −
1) times of distance calculation to make up the missing pairs. And it needs to access 
the 𝑙 − 𝑘  partial-matching trajectories. Fortunately the global heap provides a 
shortcut to enhance the efficiency of candidate verification.  

Property 2. Let Q be the query, G be the global heap, R be a partial-matching 
candidate trajectory and 𝑄𝑅 ⊂ 𝑄 be the subset of query points that are contained in 
R’s matching pairs. Then LB(R, Q), as defined in the following equation, is a lower-
bound of R’s aggregated distance. 

𝐿𝐵(𝑅,𝑄) = � 𝑑𝑖𝑠𝑡(𝑝𝑅, 𝑞𝑖)
𝑞𝑖∈𝑄𝑅 

+ � 𝑑𝑖𝑠𝑡(𝑝𝐺 , 𝑞𝑗)
𝑞𝑗∈𝑄−𝑄𝑅 

  

where <pR, qi> is a matching pair in R and <pG, qj> is a matching pair in G.  

Proof:  For ∀ 𝑞𝑗 ∈ 𝑄 − 𝑄𝑅, we denote the shortest matching pair from R to qj as 
<pR, qj>.  <pR, qj> is a missing pair that has not been popped out from the global 

R1 R2
R3 R4

q1

q2

q3

R5

p1,2

p4,4
p4,5p1,4

p1,6

p5,5

<p1,4, q2>, <p1,6, q3>, <p1,2, q1>    Iteration 1

R1: <p1,2, q1>, <p1,4, q2>, <p1,6, q3>. (Full Matching)
R4:                                <p4,5, q3>. (Partial Matching)
R5:                  <p5,5, q2>.               (Partial Matching)

<p1,6, q3>, <p5,5, q2>, <p1,2, q1>    Iteration 2

<p5,5, q2>, <p4,5, q3>, <p1,2, q1>    Iteration 3

<p4,5, q3>, <p1,2, q1>, <p4,4, q2>    Iteration 4

Global Heap 

<p1,2, q1>, <p4,4, q2>, <p1,5, q3>    Iteration 5

Candidate Set
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heap G yet. Since G is a minimum heap and pops out matching pairs with increasing 
distance, 𝑑𝑖𝑠𝑡�𝑝𝑅 , 𝑞𝑗� ≥ 𝑑𝑖𝑠𝑡�𝑝𝐺 , 𝑞𝑗�.  So we have: 

𝑑𝑖𝑠𝑡(𝑅,𝑄) = � 𝑑𝑖𝑠𝑡(𝑝𝑅,𝑞𝑖)
𝑞𝑖∈𝑄 

= � 𝑑𝑖𝑠𝑡(𝑝𝑅, 𝑞𝑖)
𝑞𝑖∈𝑄𝑅 

+ � 𝑑𝑖𝑠𝑡�𝑝𝑅,𝑞𝑗�
𝑞𝑗∈𝑄−𝑄𝑅 

 

≥ � 𝑑𝑖𝑠𝑡(𝑝𝑅, 𝑞𝑖)
𝑞𝑖∈𝑄𝑅 

+ � 𝑑𝑖𝑠𝑡(𝑝𝐺 , 𝑞𝑗)
𝑞𝑗∈𝑄−𝑄𝑅 

=  𝐿𝐵(𝑅,𝑄)   

Hence LB(R,Q) is a lower-bound of R’s aggregated distance. ∎ 

Note that, for ∀ 𝑞𝑖 ∈ 𝑄𝑅 and ∀ 𝑞𝑗 ∈ 𝑄 − 𝑄𝑅, the distances of <pR, qi> and <pG, 
qj> have been already computed. Thus LB(R, Q) is calculated without any I/O 
overhead.  

Algorithm 2 outlines the processing of candidate verification based on Property 2. 
The algorithm starts by adding all the full-matching trajectories to the result set and 
obtaining the k-th trajectory’s aggregated distance as the pruning threshold (Lines 1--
4). Then it computes the lower-bound for each partial-matching candidate. If the 
lower-bound is larger than the threshold, the trajectory is pruned without further 
computation (Lines 6--7). Otherwise, the algorithm has to access the trajectory’s 
member points and compute its aggregated distance (Lines 8--9). If the system finds a 
trajectory with a shorter distance than threshold, it adds the trajectory to the result set 
and updates the threshold (Lines 9--12). After processing all the partial-candidates, 
the algorithm outputs the top k trajectories in the result set as k-NNTs (Line 13). This 
pruning strategy is especially powerful if there are many partial-matching candidates 
with only one or two matching pairs. The more matching pairs a candidate lacks, the 
lager lower-bound it will have, and the higher probability it will be pruned. 

Algorithm 2. k-NNT Candidate Verification 
Input: k-NNT candidate set C, global heap G, query Q. 
Output: k-NNTs. 
1. initialize result set K; 
2. add all full-matching candidate of C to K; 
3. sort K in the order of increasing distance; 
4. threshold δ k-th trajectory’s aggregated distance in K;  
5. for  each partial-matching candidate R in C 
6.    compute LB(R,Q); 
7.    if 𝐿𝐵(𝑅,𝑄) ≥ δ then continue; 
8.    else  
9.       compute dist(R,Q); 
10.       if 𝑑𝑖𝑠𝑡(𝑅,𝑄) < δ then 
11.         add R to K; 
12.         sort K and update δ;                
13. return the top k trajectories in K;  

 

Example 3. Figure 4 shows the process to verify the candidates from Example 2. 
There are one full-matching candidate, R1, and two partial-matching candidates R4 
and R5. The algorithm first calculates LB(R4, Q) and LB(R5, Q). The calculations are 
carried out based on the results in the global heap and candidate set. Since LB(R4, Q) 
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is larger than the threshold, R4 is pruned directly. The system only accesses the 
member points of R5 for further computation. Finally, R1 is returned as the result. 

 
Figure 4. Running Example of Candidate Ver ification 

4 Qualifier  Expectation 
In k-NNT query processing, there are two steps that involve I/O overheads: (1) In 
candidate generation, the individual heaps traverse the R-tree to pop out matching 
pairs; (2) In candidate verification, if the lower-bound of a partial-matching candidate 
is less than the threshold, the system needs to access the trajectory’s member points 
for distance computation. The key to reduce I/O costs is to generate tight candidate set, 
i.e., the number of the candidates should be as small as possible. A tight candidate set 
costs less time to generate and is easier to be verified since the number of partial-
matching trajectories is also smaller.  

The major function of global heap is to raise the candidate set’s tightness in the 
premise of guaranteeing completeness. The global heap controls searching processes 
of different individual heaps, restricts the search regions as equal-radius circles, as 
illustrated in Figure 5. When the trajectories and query points are all uniformly 
distributed, the global heap can pop out a similar number of matching pairs to 
different locations. In this way, the k full-matching candidates are soon found and the 
candidate generation algorithm stops early. However, many real trajectory datasets 
are skewed: the taxi trajectories are dense in the downtown areas, the animal 
movements are concentrated around water/food sources. In addition, the query points 
are ad-hoc. It is possible that a user may provide an outlier location that is distant 
from all the trajectories. In such cases, the matching pairs of outlier locations are 
much longer, they could be stuck in the global heap and significantly delay query 
processing.  

Example 4. Figure 5 shows an example of outlier location. The query point q3 is an 
outlier since it is far from all the trajectories. The distance of its shortest matching 
pair <p2,7, q3> is much larger than the pairs from other individual heaps. This pair 
cannot be popped out from the global heap and no full-matching candidate is found. 
The global heap has to increase the search radius and keep on popping useless pairs. 
Finally the algorithm ends with a large candidate set. And the system has to cost even 
more time in the verification step. The query efficiency is affected seriously due to a 
single outlier location.  

R1
R4

q1

q2

q3

R5

p1,2

p4,4
p4,5p1,4

p1,6

p5,5

δ = dist(R1, Q) = 95 m
LB(R4, Q) = 42+40+32= 114 m> δ  (pruned)
LB(R5, Q) = 42+15+37= 94 m<   δ 

R1: <p1,2, q1>: 35, <p1,4, q2>: 27, <p1,6, q3>: 33. 
R4:                                               <p4,5, q3>: 32. 
R5:                        <p5,5, q2>: 15.               

Global Heap (unit: m) 
 <p1,5, q3>: 37, <p4,4, q2>:  40, <p1,1, q1>: 42   

Candidate Set (unit: m)
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Figure 5. Example of Outlier Point 

In the cases of outlier locations, the cost is high to wait global heap to pop k full-
matching candidates. Then can we compute them directly? The system can retrieve 
some partial-matching trajectories and make up their missing pairs. The key point is 
to guarantee the completeness of generated candidates. 

Property 3. If a candidate set has at least k full-matching candidates, and their 
aggregated distances are smaller than the accumulated distance of all the matching 
pairs in the global heap, then the candidate set is complete. 

Proof: A candidate set C is complete if it contains all the k-NNTs. In another word, 
for ∀𝑅𝑖 ∉ 𝐶 , we need to prove that Ri cannot be a k-NNT. 

For ∀ 𝑞 ∈ 𝑄, we denote the shortest matching pair from Ri to q as <pi, q> and the 
current matching pair in G as <pG, q>. According to the proof of Property 1, we have 
𝑑𝑖𝑠𝑡(𝑝𝐺 , 𝑞) ≤ 𝑑𝑖𝑠𝑡(𝑝𝑖 , 𝑞), then 

𝑆𝑢𝑚(𝐺) = �𝑑𝑖𝑠𝑡(𝑝𝐺 , 𝑞) ≤
𝑞∈𝑄

�𝑑𝑖𝑠𝑡(𝑝𝑖 , 𝑞)
𝑞∈𝑄

= 𝑑𝑖𝑠𝑡(𝑅𝑖,𝑄) 

Let Rj denote the full-matching candidate that, 𝑅𝑗 ∈ 𝐶  and 𝑑𝑖𝑠𝑡�𝑅𝑗,𝑄� <
𝑆𝑢𝑚(𝐺). Then 𝑑𝑖𝑠𝑡�𝑅𝑗,𝑄� < 𝑑𝑖𝑠𝑡(𝑅𝑖,𝑄). There are at least k such full-matching 
candidates in C, then Ri is not possible to be a k-NNT, candidate set C is complete. ∎ 

Based on Property 3, if the candidate set contains k full-matching candidates with 
smaller distances than the distance sum of global heap’s matching pairs, the candidate 
generation can end safely. We call such full-matching candidates as qualifiers. Since 
the number of partial-matching candidates is usually much larger than k, the system 
needs to select out the ones that are most likely to become qualifiers to make up. A 
measure is thus required to represent the expectation of a partial-candidate to be a 
qualifier. To reveal the essential factors of such measure, let us investigate the 
following example. 

Example 5. Figure 6 lists out the matching pairs in a candidate set. There are three 
partial-matching candidates R1, R2 and R4 with current aggregated distances as 70m, 

R1 R2 R3 R4
q1

q2

q3

p1,2
R1: <p1,1, q1>, <p1,4, q2>,    . (Partial Matching) 
R2: <p2,1, q1>, <p2,5, q2>,    . (Partial Matching)
R4:                , <p4,4, q2>,    . (Partial Matching)

<p1,1, q1>, <p4,4, q2>, <p2,7, q3>   Iteration 4

Global Heap 

Candidate Set 

p2,1

p2,2

p2,5

p2,7 p1,6

p4,4

p1,4

<p1,4, q2>, <p1,1, q1>, <p2,7, q3>   Iteration 3

<p2,1, q1>, <p1,4, q2>, <p2,7, q3>   Iteration 2

<p2,5, q2>, <p2,1, q1>, <p2,7, q3>   Iteration 1

…… 

<p2,7, q3>  cannot 
be popped out

p1,7
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80m and 70m. q3 is an outlier location, the distance of its matching pair is much larger 
than others. Now if the system has to select a candidate and makes it up, which one is 
most likely to be a qualifier? 

 
Figure 6. Par tial-Matching Candidates 

Intuitively, we prefer R4 to R2, they have the same number of matching pairs but 
R4’s aggregated distance is smaller. Furthermore, R1 is better than R4, their aggregated 
distances are the same but R4 has one more missing matching pair than R1. To become 
a qualifier, R4 needs to make up two matching pairs but R1 only needs one. 

From the above example, we can find out that a candidate’s qualifier expectation is 
determined by two factors: the number of missing pairs and the advantage of existing 
matching pairs over the corresponding ones in global heap.  

Let R be a partial-matching candidate trajectory and 𝑄𝑅 ⊂ 𝑄 be the subset of 
query points that are contained in R’s matching pairs. The qualifier expectation of R is 
given in the following equation: 

𝐸𝑥𝑝𝑒𝑐𝑡(𝑅) =
∑ (𝑑𝑖𝑠𝑡(𝑝𝐺 , 𝑞) − 𝑑𝑖𝑠𝑡(𝑝𝑅 , 𝑞))𝑞∈𝑄𝑅

|𝑄 − 𝑄𝑅|
 

The qualifier expectation actually denotes an upper-bound of the average distance 
that R’s missing pairs could be larger than the corresponding ones in global heap. The 
larger this value is, the more likely that R will be a qualifier. Note that, the 
computation of qualifier expectation can be done with the current matching pairs in 
the candidate set and global heap, and no more I/O access is needed.  

Algorithm 3. Qualifier Expectation-based Generation 
Input: Trajectory dataset D, Query Q, Full-matching ratio μ 
Output: k-NNT Candidate Set C 
1.  (Lines 1-10 are the same as Algorithm 1) …… 
11.    while (|full-matching candidate| / |C|< μ) 
12.      compute partial-matching candidate’s expectation; 
13.      retrieve the candidate R with highest expectation;  
14.      make up the matching pairs for R; 
15. until C contains k qualifiers; 
16. return C; 

 

With the help of qualifier expectation, we can improve the candidate generation 
algorithm as shown in Algorithm 3. The first few candidate generating steps are the 
same as Algorithm 1 (Lines 1--9). The difference is at Line 10, Algorithm 3 controls 

<p2,6, q2>, 50; <p2,1, q1>, 65; <p6,3, q4>, 75; <p1,7, q3>, 150.     

R1: <p1,2, q1>, 10; <p1,4, q2>, 20;         ;<p1,6, q4>, 40. [Agg. : 70]
R2:                      ; <p2,5, q2>, 45;         ;<p2,8, q4>, 35. [Agg. : 80]
R4:                      ; <p4,4, q2>, 40;         ;<p4,5, q4>, 30. [Agg. : 70]

Global Heap (Accumulated distance: 340 m)

Candidate Set (Unit: m)
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the size of full-matching candidates by a ratio parameter μ. Each time the global heap 
pops out a matching pair to candidate set, the proportion of full-matching candidate is 
compared with μ. If a full-matching candidate needs to be generated, the algorithm 
first calculates the qualifier expectations of all partial-matching candidates and picks 
the one with the highest expectation for making up. (Lines 11--13). The algorithm 
stops if there are k qualifiers (Lines 14--15).  

Example 6. Figure 7 illustrates the qualifier expectation-based method. Suppose k is 
set as 1 and the full-matching ratio μ is 0.33. At the 5th iteration, the candidate set 
size is 3 and a full-matching candidate should be generated. The algorithm calculates 
the qualifier expectations of the three partial-matching candidates. R1 is the one with 
the highest expectation. The algorithm then retrieves R1’s member points and makes 
up the missing pairs. Since dist(R1, Q) is less than the global heap’s accumulated 
distance, R1 is a qualifier. The candidate generation ends and R1, R2 and R4 are 
returned as candidates. 

 
Figure 7. Qualifier  Expectation-based Method 

5 Performance Evaluation 
5.1 Exper iment Settings 

Datasets: We conduct extensive experiments to evaluate the proposed methods, using 
both real-world and synthetic trajectory datasets. The real datasets D3 is retrieved 
from the Microsoft GeoLife and T-Drive projects [8, 17, 18, 7]. The trajectories are 
generated from GPS devices with sampling rate from 5 seconds to 10 minutes. 
Meanwhile, to test the algorithm’s scalability, we also generate two synthetic datasets, 
being comprised of both uniform and skewed trajectory distributions, with a size more 
than 2 GB.  

Environments: The experiments are conducted on a PC with Intel 7500 Dual CPU 
2.20G Hz and 3.00 GB RAM. The operating system is Windows 7 Enterprise. All the 
algorithms are implemented in Java on Eclipse 3.3.1 platform with JDK 1.5.0. The 
parameter settings are listed in Table 2. 

R1
R2

R3 R4

q1

q2

q3

p1,2

R1: <p1,1, q1>, <p1,4, q2>,    . (Expect: 40 m) 
R2: <p2,1, q1>, <p2,5, q2>,     . (Expect: 30 m)
R4:                , <p4,4, q2>,     . (Expect: 15 m)

<p2,1, q1>, <p4,3, q2>, <p2,7, q3>   Iteration 5

Global Heap (Accumulated dist.: 200)

Candidate Set 

p2,1

p2,2

p2,5

p2,7 p2,6

p4,4

p1,4

R1: <p1,1, q1>, <p1,4, q2>, <p2,7, q3>. 
(Agg.: 160 m)

Full-Matching Candidate

p4,3
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Table 2. Exper imental Settings 

Dataset Type Traj. # Total Points File Size 
Syn 1 (D1) syn., uniform 40,000 4.0*107 2.0 GB 
Syn 2 (D2) syn., skewed 40,000 4.0*107 2.0 GB 
Real (D3) taxi 12,643 1.1*106 54 M 
The value of k: 4 – 20, default 20 
The query size |Q| (number of query points): 2 –10, default 10 
The full matching ratio μ: 20% – 100%, default 40% 

Competitors: The proposed Global Heap-based algorithm (GH) and Qualifier 
Expectation-based method (QE) are compared with Fagin’s Algorithm (FA) [12] and 
Threshold Algorithm (TA) [14]. 

5.2 Evaluations on Algor ithm’s Per formance 

We first evaluate the algorithm using uniform dataset D1. We start the experiments by 
tuning different k value. Figure 8 shows the query time and accessed R-tree nodes. 
Note that the y-axes are in logarithmic scale. GH achieves the best performance in 
both time and I/O efficiency. Because the trajectories are uniformly distributed in D1, 
the global heap does a good job to coordinate the candidate search around query 
points. No matching pair is stuck in the global heap. It is thus unnecessary to directly 
make up the partial-matching candidates, which involves higher cost. 

 
Figure 8. Performances vs. k on D1 

 
Figure 9. Performances vs. |Q| on D1 

1000

10000

100000

1000000

4 8 12 16 20

GH QE TA FA

100

1000

10000

100000

4 8 12 16 20

Time (unit: ms) Accessed Rtree Nodes

(a) Query Time vs. k (b) I/O Cost vs. k

1000

10000

100000

1000000

2 4 6 8 10
100

1000

10000

100000

2 4 6 8 10

GH QE TA FA

Time (unit: ms) Accessed Rtree Nodes

(a) Query Time vs. |Q| (b) I/O Cost vs. |Q|



14 
 

Figure 9 illustrates the influences of query size |Q| in the experiments. When the 
query size is small, QE has better performance than GH, because in such cases, the 
partial-matching candidates have higher probability to become qualifiers. Hence the 
candidate generation ends earlier. When the query size grows larger, GH outperforms 
other algorithms with the power of coordinated candidate search. It is also more 
robust than other competitors.  

The second part of our experiments is carried out on skewed dataset D2. Based on 
default settings, we evaluate the time and I/O costs of the four algorithms with 
different values of k and |Q|. From Figures 10 and 11 one can clearly see the problem 
of outlier locations on skewed datasets. The best algorithm on D1, GH, has 
degenerated to two orders of magnitude slower. FA also has the same problem. 
Fortunately, QE still achieves a steady performance, it can process the k-NNT query 
in 10 seconds even with the largest k and |Q| (k = 20, |Q| = 10).   

 
Figure 10. Performances vs. k on D2 

 
Figure 11. Performances vs. |Q| on D2 

An interesting observation is that, in Figure 10, GH’s time and I/O costs are almost 
not influenced by the number of k, but the costs increase rapidly with |Q| in Figure 11. 
This phenomenon can be illustrated by the mechanism of global heap. In the case of 
outlier point locations, the global heap is difficult to pop out the first matching pair, 
since such query is distant from all the trajectories. The global heap has to wait for a 
long time before the first full-matching candidate is generated. Once the global heap 
pops out the first pair of an outlier point location, it may quickly pop out more 
matching pairs of that outlier, because the search region has already been enlarged to 

1000

10000

100000

1000000

10000000

4 8 12 16 20
100

1000

10000

100000

4 8 12 16 20

GH QE TA FA

Time (unit: ms) Accessed Rtree Nodes

(a) Query Time vs. k (b) I/O Cost vs. k

1000

10000

100000

1000000

10000000

2 4 6 8 10
100

1000

10000

100000

2 4 6 8 10

GH QE TA FA

Time (unit: ms) Accessed Rtree Nodes

(a) Query Time vs. |Q| (b) I/O Cost vs. |Q|



15 
 

reach the dense areas of trajectories. As an illustration, please go back to Figure 5, in 
which GH uses four more iterations to pop out <p2,7, q3>. But once this pair is popped 
out, other pairs such as <p1,7, q3> will soon be popped. Hence if GH generates the first 
full candidate, it can quickly generate more to form a complete candidate set.  

We also conduct experiments on the real dataset D3. In the experiments of tuning k 
value, QE is the winner, as shown in Figure 12. Comparing to Figures 8 and 10, the 
algorithm performances on D3 are more to close to the ones on skewed dataset D2, 
since the distribution of real trajectories is more likely to be skewed.  

 
Figure 12. Performances vs. k on D3 

In Figure 13, GH has better performance than QE when the query size is less than 
6. As query size grows, GH’s performance degenerates rapidly and QE will be the 
most efficient algorithm. With more query points, the probability of outlier location 
becomes higher. GH suffers from such a problem, but QE is relatively robust.  

 
Figure 13. Performances vs. |Q| on D3 

Finally, we tune the full-matching ratio μ used in QE. The system starts by setting 
μ as 20% and gradually increases the parameter. The results are recorded in Figure 14. 
Overall, QE’s performance is much better on the real dataset since the data size is 
much smaller. From the figures one can learn that, when μ is smaller than 40%, the 
qualifiers are not enough to stop the candidate generation process, but if μ is larger 
than 60%, the system has to make up too many partial-matching candidates that are 
unlikely to be qualifiers. QE achieves the best efficiency when μ ranges from 40% to 
60%.  
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Figure 14. Performances vs. μ 

5.3 Discussions 

In summary, GH achieves the best efficiency when the trajectories are uniformly 
distributed, QE is more suitable for the skewed dataset. Although there is no overall 
winner on real dataset, we suggest QE as the best choice since it is much robust than 
GH. In addition, QE is better to handle the complex queries with more location points. 

When processing k-NNT query, we set the upper-bounds of k as 20 and |Q| as 10. 
Since most users are only interested in the first few results, and it is impractical for 
them to enter tens of query points as input. From the trends of performances of QE 
and GH, we can see that the algorithms work without problem with even larger k and 
|Q|. In the experiments, datasets are indexed by R-trees. However, the proposed 
techniques are flexible to higher dimensions or alternative indexes, such as R* Trees 
and A-trees. The methods can also be extended to road network. We only need to 
make minor changes by adjusting the distance computation of individual heap for 
road network distances.  

In the experiments, we use the GPS datasets with high sampling frequency. It is 
possible that the raw trajectory data collected from other tracking devices are not as 
ideal as expected. The trajectories could be sparse due to device limitations or users’ 
turning off tracking sensors. On the other hand, if a very long trajectory traverses the 
entire region, it has higher probability to be selected as k-NNT. In such cases, the 
trajectories should be preprocessed with similar sampling frequency and length.  

6 Related Work 
A number of algorithms were proposed to process k-NN queries for point objects. 
Roussopoulos et al. propose a depth-first algorithm for k-NN query in 2D Euclidean 
space [11]. Hjaltason et al. improve the algorithm with a best-first search strategy [6]. 
Papadias et al. propose the concept of Aggregate k-NN (ANN) query and extend the 
problem to multiple query points [5]. However, those methods search k-NN as points, 
while the objects in k-NNT query are trajectories. The distance measures are different. 
It is difficult to use them for k-NNT query processing.  

There are many studies about searching trajectories by sample based on different 
similarity measures. Some representative works are: Chen et al. propose the edit 
distance [9]; Sherkat et al. develop a uDAE-based MBR approximation approach [13]. 
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Those methods define the similarity functions on the shape of trajectories, but they do 
not consider the spatial properties. 

There are several studies in the category of searching trajectory by point locations. 
As a pioneering work, Frentzos et al. propose the concepts of Moving Object Query 
(MOQ) to find the trajectories near a single query point [4]. The moving object query 
can be seen as a special case of k-NNT query with a single query point.  

The most related work to k-NNT query is the k-Best Connected Trajectory (k-BCT) 
query [20]. The biggest difference between k-BCT and k-NNT is the distance 
measure. In the k-BCT query, the similarity function between a trajectory R and query 
locations Q is defined by an exponential function, where 
𝑆𝑖𝑚(R,𝑄) = ∑ e−𝑑𝑖𝑠𝑡(𝑅,𝑞)

𝑞∈𝑄 . With the exponential function, the k-BCT query 
assigns a larger contribution to closer matched query points and trajectories than far 
away ones. However, the exponential function of k-BCT query may not be robust to 
the distance unit.  

For a query with m point locations, the FA algorithm generates candidates in a 
parallel manner around each point location [12]. Without the coordination of global 
heap, the FA algorithm costs more time on candidate search and also more time to 
prune the candidates since the lower-bound cannot be computed to help processing. 
Fagin et al. propose another Threshold Algorithm (TA) for top k aggregation query in 
distributed systems and middleware [14]. For any generated candidates, TA computes 
their aggregated distances immediately. Indeed it can be seen as a special case of 
qualifier expectation-based method when the full candidate ratio μ is set to 100%. In 
Section 5.2 we study the influence of ratio μ. The results indicate that the best value 
for μ is in the range of 40% to 60%. 

7 Conclusions and Future Work 
In this study we present the k-Nearest Neighboring Trajectory (k-NNT) query to 
retrieve top k trajectories with the minimum aggregated distance to a set of point 
locations. This k-NNT query will facilitate a board range of applications, such as 
travel recommendation, traffic analysis and biological research. We propose a global 
heap-based method, which coordinates candidate generation, guarantees the 
completeness of candidates and offers a lower-bound for candidate verification. 
Meanwhile, by leveraging the proposed measure of qualifier expectation, our method 
handles the trajectory dataset with skewed distribution and outlier query locations, 
which are practical situations we need to face in the real world. We evaluate our 
methods using both real-world and synthetic trajectory datasets, and compare our 
methods with the state-of-the-art algorithms. The results demonstrate the feasibility 
and effectiveness of our proposed methods.  

This paper is the first step of our trajectory search study. We plan to evaluate the k-
NNT queries with different constraints, e.g., temporal constraints and traffic 
congestions. We are also interested in applying them to advanced spatial applications 
such as driving route recommendation and traffic management. 
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