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Abstract
In this paper, we propose WebCop to identify malicious
web pages and neighborhoods of malware on the inter-
net. Using a bottom-up approach, telemetry data from
commercial Anti-Malware (AM) clients running on mil-
lions of computers first identifymalware distribution
sites hosting malicious executables on the web. Next,
traversing hyperlinks in a web graph constructed from
a commercial search engine crawler in the reverse di-
rection quickly discoversmalware landing pages link-
ing to the malware distribution sites. In addition, the
malicious distribution sites and web graph are used to
identify neighborhoods of malware, locate additional ex-
ecutables distributed on the internet which may be un-
known malware and identify false positives in AM sig-
natures. We compare the malicious URLs generated by
the proposed method with those found by a commercial,
drive-by download approach and show that lists are inde-
pendent; both methods can be used to identify malware
on the internet and help protect end users.

1 Introduction

Preventing malware from infecting computers is a criti-
cal problem facing computer scientists. Malware is of-
ten downloaded by users clicking on email attachments,
but more recently, attackers are infecting computers at
an alarming rate from malicious executables hosted on
the internet. To help discover malware on the web, we
propose WebCop: a system for identifying malicious
webpages and neighborhoods of malware on the internet.
These malware neighborhoods consist of maliciousland-
ing sites (LSs) anddistribution sites (DSs) [9] directly
connected by hyperlinks to form a subgraph in the inter-
net. A malware distribution site is the location (i.e. URL)
of the malicious binary file on a remote server hosting
malware, while a malware landing site is a user acces-
sible website that either provides a link to one or more
known malicious distribution sites or contains an embed-

ded malware executable. For example, figure 1 shows
a simple malware neighborhood consisting of two ma-
licious landing sites and two malware distribution sites.
Similar benign neighborhoods also exist for the distribu-
tion of legitimate executables. We provide an analysis
of all malicious and benign neighborhoods found on the
internet in section 4. These malicious landing pages can
then be added to a list of malicious URLs and used by
an internet browser or search engine to provide warn-
ings of or block access to malicious websites. Once
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Figure 1: Sample malware neighborhood. Malicious
landing site detection can be achieved using a bottom-up
or top-down approach.

these neighborhoods are identified, we can use the graph
structure to find unknown executables which may be new
types of malware being distributed on the internet as well
as identify false positives in Anti-Malware (AM) signa-
tures.

WebCop uses a new, bottom-up method for identify-
ing malicious landing sites on the web. We provide an
overview of the WebCop system in figure 2. Millions
of computers running a commercial anti-malware client
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Figure 2: Overview of the WebCop System.

first detect malicious distribution sites when malware is
downloaded from the internet. Described in section 2,
the AM system sends a telemetry report which includes
the URL of the distribution site and file hash if it detects
that the executable is malicious or was not signed by a
trusted organization.

In parallel, a production search engine crawler con-
structs aWeb Graph of the internet where the nodes rep-
resent webpages and the edges identify links between
webpages. WebCop uses the web graph to determine
which landing pages directly link (i.e. via a hyperlink)
to the distribution sites identified by the AM system. For
the direct links, users click on a hyperlink to download an
executable stored on the internet. Modern-day operating
systems require the user to give explicit permission be-
fore downloading the file. The link determination results
from the web crawl are described further in section 3.
Referring to figure 1, the WebCop system identifies the
landing sites using a bottom-up approach starting with
the final destination distribution sites and following the
web graph hyperlinks in the reverse direction to identify
the higher level landing sites. Although we are primar-
ily interested in discovering malware landing sites and
neighborhoods, some of the unknown files are also la-
beled as benign (i.e. clean) by analysts on the backend
thereby indicating benign neighborhoods.

The WebCop approach differs from previous top-
down solutions for identifying malicious landing pages.
Considering figure 1 again, these top-down strategies
rely on first identifying suspicious landing sites at the
top of the graph and using a crawler to search for mali-
cious payloads either through direct links to known bi-
naries [6, 14] or more commonly from state changes
in a virtual machine (VM) to detect drive-by down-
loads [15, 10]. A drive-by download occurs when a
user visits a website which manages to install a new ex-
ecutable (.exe, .dll, etc.) on the host machine; often this
drive-by installation is accomplished simply by visiting
the website without user interaction.

The bottom-up approach used in WebCop offers sev-

eral advantages over the top-down methods. For drive-
by downloads, identifying the suspicious landing sites
to crawl is problematic. Algorithms to find suspicious
landing sites have been proposed [10, 12, 13, 2], but at-
tackers can adapt and learn to evade detection. Similarly,
detecting state changes in a virtual machine for drive-by
downloads can be difficult. Malware will often not run
in a virtual machine to avoid detection. Again, attackers
can learn to modify their tactics to hide. By starting with
the list of URLs hosting known malware that was gen-
erated by the AM clients, WebCop only deals with hard
classifications using a distributed, targeted detection of
the malware executables.

For previous, top-down approaches which involve a
crawler and a scanner [6, 14], a very big issue is that
downloading all executable binaries from the entire in-
ternet and evaluating them with an AM engine is prob-
lematic. Today, commercial crawlers are optimized to
traverse the internet as fast as possible and do not down-
load executable files found on the web. A list of web-
based executables could be generated by the crawler and
downloaded off-line, but this strategy includes several
delays. The simplest detection method involves comput-
ing a unique identifier (UID) for the unknown file (e.g.
SHA-1, SHA-256 hash) and comparing the UID to a list
of known malware. Simply downloading and computing
the UID of, potentially large, unknown files is expensive
and time consuming. In addition, this method fails to de-
tect polymorphic variants of existing malware families.
Scanning with an AM engine further adds significant de-
lay to the process. To avoid re-imaging the test machine,
each new scan must also be run in a VM which intro-
duces the problems noted above. Instead of relying on
a centrally located service to analyze the files, WebCop
distributes this evaluation to the millions of the individ-
ual clients running one of the AM services; end user ma-
chines identify new sites hosting malware more quickly
than the backend. Furthermore, the malware is run as de-
signed on the native operating system (i.e. not in a VM).
Accordingly, the true malicious activities can be detected
by the AM service. We discuss additional differences be-
tween WebCop and the prior work in section 6.

Results in section 4.3 show that the bottom-up and
drive-by download detection methods are complemen-
tary. The end result in either case is to construct a list
of URLs of malware landing sites; thus lists of URLs
discovered from both methods can be combined for bet-
ter coverage of the web. The main contributions of this
paper include providing:

• A large scale evaluation of malicious and benign in-
ternet neighborhoods composed of direct links.

• A targeted, bottom-up approach for detecting mal-
ware on the internet.
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• A new way to detect false positives in an AM ser-
vice using the internet web graph.

• A new method to discover potential malware.

2 Distribution Sites

This section provides an overview of the data used
to identify malicious and benign binaries on the web.
Telemetry reports are generated by four Microsoft se-
curity products including Windows Defender, Microsoft
Security Essentials, Windows OneCare, and Forefront
Client Security when executables are installed on the
computer. Windows Defender is an anti-spyware prod-
uct which includes signatures for known spyware but
does not include signatures for viruses, trojans, etc. Mi-
crosoft Security Essentials, Windows OneCare and Fore-
front Client Security include anti-virus signatures in ad-
dition to anti-spyware signatures. These security prod-
ucts will automatically submit reports to Microsoft when
a malicious executable or an unknown executable which
is not signed by a trusted authority is installed on the
computer. In addition to reports generated during nor-
mal operations (e.g. installing a new program from a
CD, etc.), reports are also transmitted when a user at-
tempts to download and install an executable from the
internet. These reports include the hash and the URL of
the executable being installed. The various security prod-
ucts have differing policies on opting-out but users are in-
formed of the data collection (URL, hash) during instal-
lation in the corresponding privacy statement (e.g. [5]).
In this paper, we limit our analysis to executable files,
but the method could also be applied to other types of
files (e.g. .jpg, .doc, etc.) that could be malicious. We
analyze a sample of the most recent one million labeled
distribution sites consisting of 837,882 malicious distri-
bution sites and 162,118 benign distribution sites from
reports collected through the end of May 2009.

The number of malware distribution sites significantly
outweighs the number of benign distribution sites. Re-
ports are not submitted for executables which are in-
stalled and signed by a respected authority. Furthermore,
AM analysts only try to investigate and label unknown
files which are suspected to be malware since AM en-
gines use signatures which detect malware and do not
typically include signatures for specific clean files. Thus,
the list of labeled distribution sites is strongly biased to-
wards those containing malware.

A unique executable could be downloaded from many
different distribution sites on the internet. A malware au-
thor may host their executable on many infected servers
in order to provide redundancy in case the malicious bi-
nary is discovered on one of the servers and deleted. We
found 6046 distinct malicious binaries distributed across
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Figure 3: Cumulative distribution function of the num-
ber of distinct, malware executable files from the AM
reports.

10,853 malware distribution sites. Figure 3 provides the
cumulative distribution function (CDF) of the number of
distribution sites (up through 25) associated with a sin-
gle malicious executable. Thex-axis is the number of in-
stances (n) a malicious binary is detected on the web, and
they-axis represents the cumulative distribution function
of files found to occur less than or equal ton number of
times. Benign files exhibit a similar CDF. To obtain this
plot, we generated a list of all distinct URLs and the cor-
responding SHA1 hash of all malware executables iden-
tified by the AM service. The figure indicates that most
malware binaries are only hosted at a few distribution
sites on the web. For example, 75.9% (4589/6046) of the
malware binaries were encountered only once on the in-
ternet while individual malware files which occur 20 or
more times account for only 0.6% of the binaries.

3 Link Determination

After detecting the malicious and benign distribution
sites using the AM services, the next step is to deter-
mine which landing sites link to the distribution sites.
To do so, we search for all results found by the crawler
where the destination URL matches a URL generated by
the AM service. The results in table 1 summarize the to-
tal number ofintersecting distribution sites included in
both the one million most recent distribution sites iden-
tified through May 31, 2009 and the web graph created
on June 1, 2009. The table also provides the number of
landing sites which link to these distribution sites in the
web graph. Of the original 837,882 malicious distribu-
tion sites identified by the Anti-Malware telemetry data,
10,853 were also included in the web graph and were
linked to by 391,893 malicious landing sites. Likewise,
1,460 benign sites found by the AM data were also in
the web graph with links from 2,850,883 benign land-
ing sites. The number of intersecting distribution sites
is approximately 6.8 times more for malicious distribu-
tion sites than for benign sites. This statistic is an arti-
fact from the AM system since, as mentioned earlier, the
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number of benign sites is actually much larger, but AM
reports are not generated for appropriately signed exe-
cutables.

Measure Count
Number of intersecting benign 1,460
distribution sites
Number of intersecting 10,853
malware distribution sites
Number of benign landing sites 2,850,883
Number of malware landing sites 391,893

Table 1: Total number of distribution sites found in both
the Anti-Malware reports and in the internet crawl. The
landing sites which link to the matching distribution sites
are also provided.

One question raised by table 1 is why the percentage
of intersecting distribution sites found in both the AM
telemetry and the web graph is so small. After reviewing
the data, we found the reason is because the vast majority
of telemetry reports for both malicious and benign distri-
bution sites are only seen within a one month period. For
example, only 8.7% of the distinct malware distribution
sites observed in May where also reported in April. As a
result, most of the URLs for the distribution sites in the
AM telemetry are not detected by the AM client or do not
exist in the web graph on June 1, 2009. To test how Web-
Cop might perform in production, we found 2763 unique
malicious distribution sites had links from 158,533 land-
ing pages found in the AM telemetry received only in
May 2009. Similarly, 212,688 landing pages contained
links to 4633 unique malicious distribution sites in the
most recent three months of AM telemetry.

4 Malicious Neighborhoods

4.1 One Hop Neighborhoods

In this section, we analyze all of the one hop graph data
(i.e. connected by a single hyperlink) described above to
understand the topology and frequency of the malware
and benign neighborhoods. Pages located two or more
hops away from the AM distribution sites are considered
in the next section. Analyzing the data, we were able
to identify the different types of malware neighborhoods
shown in figure 4. In the most common “Single Edge”
topology in (a), a single landing site links to a single
distribution site. In the “Fan-In” layout in (b), multiple
landing sites link to a single distribution site and a sin-
gle landing site has links to multiple distribution sites in
a “Fan-Out” subgraph (c). Likewise (d) is a “Complex”
graph which contains two or more landing sites and two
or more distribution sites. The example in figure 1 is a
complex graph; this graph structure provides some re-
dundancy in case a single landing site is discovered and
shut down.

Number of Malware Malware Benign Benign
subgraphs Percentage Percentage
Single Edge 2984 46.5 % 263 47.6 %
Fan-In 2498 38.9 % 245 44.4 %
Fan-Out 388 6.0 % 14 2.5 %
Complex 547 8.5 % 30 5.4 %

Table 2: Subgraph topology counts.

The corresponding counts for the topologies are pro-
vided for both malware and benign subgraphs in ta-
ble 2. We first note that the malware neighborhoods far
outnumber the benign neighborhoods due to the label-
ing bias noted earlier, but the subgraph percentages are
roughly equivalent. While the benign counts do not re-
flect the correct distribution in the wild, the counts for the
various types of malware neighborhoods do represent the
total number found on the web.

We are surprised at the relatively small number of
malicious neighborhoods identified by the system. One
reason is because the counts only reflect those malware
neighborhoods constructed with direct hyperlinks and do
not include graphs associated with drive-by downloads.
The largest number of subgraphs consist of single edge
topologies; the attacker has not provided any redundancy
for either the landing site or the distribution site. The
number of fan-in, subgraphs far exceeds the count of fan-
out and complex subgraphs which is to be expected. The
attackers choose to embed hyperlinks in many different
landing pages which direct the user to a single instance
of the malware. The fan-out and complex topologies are
somewhat easier to detect by system administrators; both
require at least one landing site to include hyperlinks to
two or more distribution sites. Multiple hyperlinks in-
crease the chance that the webpage designer or adminis-
trator will identify the malicious links.

Next, we investigate the overall statistics of the Fan-
In, Fan-Out, and Complex subgraph topologies. Table 3
provides the median and average number of edges, land-
ing and distribution sites for both malicious and benign
neighborhoods. The subgraphs in figure 4 reflect the me-
dian, malware topologies (i.e. median number of LS, DS,
links) given in table 3. For the case of complex neigh-
borhoods, we have excluded a single, very large mal-
ware subgraph and another very large benign subgraph
from the computation of the statistics since including
these two neighborhoods significantly skewed the “Av-
erage” statistics. The table indicates the median counts
of the complex malware and benign neighborhoods are
very similar while the average counts are 2-3 times larger
for the malware subgraphs when compared to the benign
subgraphs.

A portion of a malicious, complex subgraph is listed
in table 4. The entire subgraph includes 37 landing sites,
33 distribution sites, 814 edges, and 1 distinct executable.
From the example, we can identify two separate distribu-
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Figure 4: Graph layout for malware and benign neighborhoodsconsisting of landing sites (LS) and distribution sites
(DS).

Landing Site Distribution Site
http://wwwr.skycn.com/soft/48428.html http://cc163.skycn.com/down/easyvideo.zip
http://www1.skycn.com/soft/48428.html http://cc163.skycn.com/down/easyvideo.zip
http://www.onlinwww.skycn.com/soft/48428.html http://cc163.skycn.com/down/easyvideo.zip
http://www.skycn.net/soft/48428.html http://cc163.skycn.com/down/easyvideo.zip
http://www.skycn.com/soft/48428.html http://cc163.skycn.com/down/easyvideo.zip
http://www2.skycn.com/soft/48428.html http://cc163.skycn.com/down/easyvideo.zip
http://cnc.skycn.com/soft/48428.html http://cc163.skycn.com/down/easyvideo.zip
http://works.skycn.com/soft/48428.html http://hdcnc1.skycn.com/down/easyvideo.zip
http://crc.skycn.com/soft/48428.html http://hdcnc1.skycn.com/down/easyvideo.zip
http://wwwr.skycn.com/soft/48428.html http://hdcnc1.skycn.com/down/easyvideo.zip
http://tele.skycn.com/soft/48428.html http://hdcnc1.skycn.com/down/easyvideo.zip
http://www.3.skycn.com/soft/48428.html http://hdcnc1.skycn.com/down/easyvideo.zip
http://www1.skycn.com/soft/48428.html http://hdcnc1.skycn.com/down/easyvideo.zip

Table 4: Portion of a complex malware subgraph.

Measure Topology Type Median Average
Number of Fan-In Benign 4 16.1
Landing Sites Fan-In Malware 4 31.3

Complex Benign 5 17.5
Complex Malware 5 33.7

Number of Fan-Out Benign 2 3.5
Distribution Sites Fan-Out Malware 2 2.9

Complex Benign 2 2.4
Complex Malware 3 4.9

Number of Fan-In Benign 4 16.1
Edges Fan-In Malware 4 31.3

Fan-Out Benign 2 3.5
Fan-Out Malware 2 2.9
Complex Benign 8 24.1
Complex Malware 11 72.2

Table 3: Subgraph statistics.

tion sites hosting a file determined by analysts to modify
the browser. Two landing pages each link to both distri-
bution sites.

4.2 Discovering Potential New Malware

As shown in figure 5(a), we next identify unknown dis-
tribution sites (UDSs) located two hops away from the
malware distribution sites (MDSs) identified by the AM
service which should be considered suspicious and may
be previously undetected malware. To do so, we locate
all destination nodes having the malware landing sites
found in the previous section as the source node and the
URL contains a binary ending in a wide variety of possi-
ble extensions associated with executable files (e.g. .exe,
.dll, .zip., etc.). These unknown distribution sites sharea
landing site with a known malware distribution site. Af-
ter removing the known, malicious and benign distribu-

PQR SQRPTR
(a)

UVW XVWUYW XYW
(b)

Figure 5: Multi-hop topologies consisting of malware
landing sites (MLSs), malware distribution sites (MDSs),
unknown landing sites (ULSs) and unknown distribution
sites (UDSs).

tion sites from the list, we identified 346,084 unknown
distribution sites. This result corresponds to approxi-
mately 32 suspicious unknown files for each labeled mal-
ware distribution site. The binaries associated with these
URLs could be downloaded and scanned by the AM ser-
vice. If not detected as malicious by the AM scan, these
unknown executables should be subjected to more thor-
ough automated analysis such as behavioral monitoring
or placed near the top of a ranked list for analysts to
investigate. Thus, WebCop can potentially, proactively
discover new malware.

Although we did not carry out this investigation, an-
other possibility is to consider landing pages located two
or more hops away from the original malicious distribu-
tion sites as shown in figure 5(b). While a search engine
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can block landing pages linked directly (1-hop) to a ma-
licious distribution site, unknown landing sites (ULSs)
located two or more hops away should not be blocked.
However, these unknown landing pages can also be used
as a starting point to search for additional unknown dis-
tribution sites as shown in figure 5(b). All distribution
sites found three or more hops away from the original
malware distribution site can also be submitted for more
in-depth analysis but should be given lower priority com-
pared to the unknown distribution sites located two hops
away from the original malicious distribution site (fig-
ure 5(a)).

4.3 Comparison With Top-Down Methods

In this section we compare the WebCop results with the
top-down, drive-by method used by Wanget al. [15].
A production scale version of Wang’s drive-by detec-
tion system has identified millions of drive-by download
sites. Next, we generated a list of URLs detected us-
ing the drive-by download method from April 6 through
June 1, 2009 and compared the results with the WebCop
landing and distribution sites. The comparison revealed
two matching distribution sites and no matching landing
sites; the matching distribution sites were the payloads
for both a drive-by download and a separate hyperlink
delivery malware system. Of the two matching distri-
bution sites, the drive-by download system located 212
landing sites. The results are not particularly surprising;
if the attackers went to the trouble of creating a drive-by
download page, it might be considered a bit of overkill
to embed a redundant hyperlink to the malware. This
experiment suggests that WebCop is producing lists of
malware landing sites which are orthogonal to those gen-
erated by the drive-by detection methods, and the lists
generated by the two methods can be combined.

4.4 HostName Impurity

In the section, we investigate how often attackers create
landing sites and distribution sites which share the same
hostname. We define the hostname impurity score, based
on the entropy, as

hi(n) = −

∑

j

P (ωj)log2P (ωj) (1)

whereωj is the fraction of landing sites and distribution
sites in subgraphn which share the same hostname. A
similar score can also be defined for the domain names.
If the hostname impurity score is low, most of the landing
sites and distribution sites share a common hostname; the
attacker may have set up an exploit server to host both
the malicious landing sites and the vulnerabilities. On
the other hand, if the hostname impurity score is high,
the hostnames vary across the landing and distribution

sites, and the attacker has done a good job of exploiting
a large number of servers. A histogram of the hostname
impurity score for the complex, malware subgraphs is
shown in figure 6. The two large peaks are located at zero
and one bits: a large percentage of malicious subgraphs
all share the same hostname (i.e.hi(n) = 0 bits) or two
hostnames (i.e.hi(n) = 1 bit).
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Figure 6: HostName Impurity Score Histogram

4.5 Identifying False Positives

The graph structure can provide features which can clas-
sify unknown files as either malicious or benign and help
analysts identify false positives in the anti-malware sig-
natures. While reviewing the data output from the Web-
Cop system, we found a malicious, fan-in subgraph with
hundreds of thousands of landing sites linking to a dis-
tribution site which appeared to be legitimate. The in-
degree of nodex is the total number of edges wherex
is the head. Figure 7 provides the histogram of individ-
ual malware and benign distribution sites with the high-
est in-degrees. The in-degree of the questionable distri-
bution site labeled as malware by the AM signatures is
over an order of magnitude higher than the largest in-
degree observed for the malware distribution sites. The
file did turn out to be a false positive by the AM engine.
Similarly, other features of the graph structure (e.g. out-
degree, host-name impurity) can be also used to help dis-
tinguish malicious and benign files.

5 Discussion

In this section, we discuss several issues related to Web-
Cop. Quickly identifying new threats on the internet is
critical. There are several issues which affect the time
required to identify new threats using WebCop. First, the
Anti-Malware engine employed at the client must have
signatures or other methods which detect malware down-
loaded from the internet. Once the telemetry reports are
received at the backend, they must be aggregated in a
timely manner to be processed by the WebCop algorithm.
The recent trends in the AM industry is towards much

6



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3

4

5

6

Distribution Site Number

lo
g1

0(
In

−
D

eg
re

e)

 

 

Benign
Malware

False Positive

Figure 7: Largest in-degrees for distribution sites.

more frequent and automatic signature updates so early
detection should not be an issue for WebCop.

Another potential problem is whether or not the dis-
tribution sites and corresponding landing sites were pre-
viously crawled by the search engine. Since many of
the malicious landing sites are not frequently visited, the
search engine must crawl the depths of the internet of-
ten. As previously noted, Anti-Malware telemetry re-
ports for malicious distribution sites are usually only re-
ceived for a short length of time (e.g. less than 30 days).
If the crawler takes too long to discover a short-lived dis-
tribution site or landing site, WebCop will fail to pro-
tect the user. Search engine companies are employing
many more computational resources for crawling the in-
ternet which should help to alleviate this problem. The
web crawler could also be programmed to crawl mali-
cious neighborhoods and high level domains identified
by WebCop more often to search for new potential mali-
cious landing and distribution sites.

A third issue related to latency involves determining
the landing sites linked to the distribution sites identified
by the AM service. This computation involves running
a program on a very large cluster hosting the entire web
graph. For a production search engine, many other ser-
vices such as ranking must also be run. In order to put
WebCop into production, enough processing resources
must be allocated. One way to minimize the computa-
tion time is to significantly reduce the number of ma-
licious distributions sites considered. For each landing
page in the Web Graph, we must determine if each des-
tination page is contained in a list of known malicious
distribution sites. In a production environment, the new
malware distribution pages can be included in an incre-
mental list (i.e. daily, hourly) which contains only entries
recently identified by the AM service. Engineering effort
combined with parallelism on the cluster can help mini-
mize the latency involved with implementing WebCop in
production.

Although we have implemented the WebCop system
by querying the historical AM telemetry on a monthly
basis due to the database schema, the system can easily
be run much more frequently. The crawler continuously

traverses the internet to build the web graph. We can
query the AM telemetry on much finer granularity (e.g.
daily, hourly) and compare to a cached version of the
web graph. We envision WebCop being run on a daily
basis to help protect end users.

6 Related Work

There are two methods malware is downloaded from
the internet: installation via a direct link and a drive-by
download. Both methods have been intensively studied
by the research community. Studies that focus on drive-
by downloads identify malicious landing sites through
a top-down approach (crawler or search engine integra-
tion) with high-interaction client honeypots. These sys-
tems visit suspected malicious landing sites with a dedi-
cated – often virtualized – vulnerable system and monitor
for unauthorized state changes (e.g. a new file appearing
in start up folder) [15, 10, 9, 6, 16, 11].

In [15], Wanget al. report on the analysis of a com-
bination of suspected malware sites and the top 10,000
most popular websites. The analysis consists of three
stages based on a high-interaction client honeypot tech-
nique. The first stage uses a virtual machine running
on an unpatched version of Windows XP, followed by
various stages that include additional patches. Finally,
the last stage uses a virtual machine running on a fully
patched version of Windows XP. Using this method, re-
searchers were able to identify unknown attacks. Web-
Cop uses a bottom-up approach based on AM telemetry
data.

Alternative methods of detection that do not rely on
virtual machines and monitoring the system for unau-
thorized state changes are being explored as a means
to increase efficiency and effectiveness of the detection
method [7]. Researchers are also exploring techniques
to identify suspicious pages with a light-weight crawling
mechanism before sending them to the virtualized sys-
tem for inspection [10, 12, 13, 2]. Similar techniques
could be incorporated into WebCop to augment the web
graph with suspicious web pages that may not be in-
cluded in the graph.

This paper is most closely related to Moshchuket
al. [6] who propose a top-down approach using a web
crawler (as well as a drive-by download method) to dis-
cover spyware and malware. They found that 13.4% of
the executables found on the web in May 2005 were spy-
ware as identified by a random-walk crawl and a classi-
fication of the binaries using an Anti-Spyware solution.
Stammingeret al. [14] also utilize a top-down crawler
approach to identify malware on the web. Compared
to Moshchuket al., they augment their detection tech-
niques to utilize an online database of spyware-related
identifiers, signature-based scanners, and behavioral-
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based malware detection techniques. WebCop’s detec-
tion is initiated based on AM telemetry data. As men-
tioned earlier, downloading and scanning all executa-
bles on the web using a top-down approach is problem-
atic and currently not feasible; WebCop’s use of dis-
tributed AM detection alleviates this problem. Further-
more while currently focused on telemetry data collected
using signature-based scanners, WebCop is not limited to
such. As Anti-Malware software incorporates advanced
detection techniques, WebCop will directly benefit from
the increased detection coverage.

In addition to the academic papers discussed above,
commercial products also identify and can block mali-
cious landing sites on the internet [4, 3, 8, 1].

7 Conclusions

In this paper, we have presented a new, bottom-up
method to discover malicious webpages linked to mal-
ware on the web and the neighborhoods determined by
these links. Malware binaries are first identified on the
internet using an Anti-Malware service. A crawl of the
web is then used to construct a web graph that finds ma-
licious landing sites linked to the malware.

Malware changes very rapidly. Legitimate sites previ-
ously tested and deemed safe may be hacked to include
links to malware at any point in the future. Malicious
websites may be quickly created also putting users at
risk. New forms of malware are quickly identified by
large-scale, production AM services. Instead of wait-
ing long periods of time for a centrally located service
to download and scan unknown files from the web as in
top-down methods, suspicious telemetry reports from the
AM services running on millions of distributed clients
quickly identify new malicious distribution sites. Also,
AM services detect new malware from many different
sources such as email and other social engineering attack
methods. If a new instance of malware is detected from
other sources, WebCop can immediately identify new
malware landing sites based on the hash of the files asso-
ciated with the malware distribution sites. What makes
WebCop particularly effective is the combination of the
small subgraphs identified by the crawler and then la-
beled by the known distribution sites from the AM ser-
vice allowing the system to easily discover neighbor-
hoods of malware.

In section 3, we showed that WebCop identified almost
400,000 malicious landing sites on the internet. Further-
more, WebCop also identified approximately 350,000
unknown distribution sites in malware neighborhoods
likely to be malicious. While the results given in this
study do not approach the scale reported by [9], we have
shown that landing sites identified by WebCop show al-
most no overlap with the large list of known drive-by

landing sites: WebCop is complementary to drive-by
download detection systems. This result is to be ex-
pected since drive-by downloads involve using an exploit
to download malware, and the malware executable is of-
ten not accessed from a URL. Given the results included
in this paper, we believe WebCop can work well in a
commercial system to further protect users from harm.
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