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Abstract—Wireless ATM networks require efficient mobility  system can determine if there are enough resources available
management to cope with frequent mobile handoff and rerouting along the mobile’s path for the lifetime of the connection.
of connections. Although much attention has been given in the If such is the case, the system can plan in anticipation of

literature to network architecture design to support wide-area h bile's d d d tak . h
mobility in public ATM networks, little has been done to the the mobile’s demands, and take appropriate steps such as

important issue of user mobility estimation and prediction to Setting up end-to-end routes from base stations in the mobile’s
improve the connection reliability and bandwidth efficiency of the path, reserving resource along these routes, and planning quick

underlying system architecture. This paper treats the problem handoffs between the involved base stations. With these kinds
by developing a hierarchical user mobility model that closely of preparations, QoS can be guaranteed

represents the movement behavior of a mobile user, and that, ' ) -
when used with appropriate pattern matching and Kalman filter- Recently, there has been some work on providing QoS to

ing techniques, yields an accurate location prediction algorithm, mobile terminals. In [2], Acampora and Naghshineh propose
HLP, or hierarchical location prediction,which provides neces- a virtual connection tree(VCT) scheme in which multiple
sary information for_advance_ resource reservation and advance cgnnections are preestablished between a fixeat)( switch
optimal route establishment in wireless ATM networks. and a set of base stations with whom the mobile could poten-
Index Terms—tocation tracking, mobility modeling, trajectory tially connect. While providing a good starting point, the VCT

prediction, wireless ATM networks. algorithm in its native form suffers from the lack of inclusion
of accurate knowledge of the mobile’s trajectory. There is a
|. INTRODUCTION danger of underutilizing resources in base stations to which

the mobile never connects, and a potential of overloading

HE extension of broadband ATM networks to the wireless . )
Stﬂ%:\se stations when a large number of mobiles connect at the

domain presents a challenging set of problems for bo . : . )
. same time. Overloading can lead to congestion, which can
network designers and managers. One of the key problems

o . - - result in ATM cells being either dropped or buffered or both.
within this set is mobility management. Mobility managemenBFuﬁerin can cause temporary violation of delay and cell loss
as defined in [1] entails botlkonnection managemerand 9 porary y

location managementSince ATM is a connection—orientedguaramees' As a possible solution to these kinds of problems,

technology, it contains both a connection establishment pha;fé/me et al. [3] have proposed the concept of shadow

. . uster A shadow cluster defines the area of influence of a
prior to data exchange and a connection release phase a

er . : . : . .
data exchange. In a wireless network, as terminals mogfoimle terminal (i.e., a set of base stations to which the mobile

segments of connections have to be torn down and reest ergfnmal is likely to attach in the near future). Like a shadow,

lished with a frequency that corresponds to the speed of t bs set moves along with the mobile, incorporating new base

mobile. Meanwhile, data integrity in terms of cell sequenc%tatlorls while _Ie?w_ng the old ones as they_ come under and
t of the mobile’s influence. Each base station in the shadow

preservation, duplicate cell prevention, and cell loss avoidan%lé . o .
has to be provided. Additionally, quality-of-service (Qo0S uster anticipates the mobile’s arrival and reserves resources

guarantees have to be maintained regardless of the termin it A close association exists between the mobile’s arrival
mobility. prediction and reservation of resources for it. The accuracy of

At the most fundamental level, quality of service, a corneFhe mobile’s path prediction determines the number of base

stone of ATM networks, can only be provided if the system Eatlons that reserve resources, and consequently determines

able to maintain connectivity with the mobile terminal, eve e overall system efficiency.

when the terminal frequently changes its physical location. It Location mapagemgnt or !ocat|on tracking incorporates the
t of mechanisms with which the system can locate a par-

is possible to maintain connectivity and guarantee QoS to tHE ) ) X . .
mobile if the system knows, prior to the mobile’s movementicular mobile at any given time. Two strategies are possible:
the exact trajectory it will follow. With this information, the location updating and location prediction. Location updating

is a passive strategy in which the system periodically records
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the accuracy of this model and the efficiency of the predictianovement. As reported in [9], prediction performance of MMP
algorithm. While most recent studies have focused on tlecreases linearly with the increase in the random factor
update method [4]-[7], relatively little has been done on the Other methods for predicting speed and trajectory have
prediction side [21]. As a consequence, location managemetgo been proposed in the literature [10]-[13], but these have
or tracking is generally perceived as a purely database updatganerally been limited in scope as they consider rectilinear
and querying procedure. If accurate movement prediction génighway”) movement patterns only.
mobile was possible, the task of locating mobiles given their In order to develop a prediction algorithm for mobiles
last location would become substantially efficient in terms afith different mobility characteristics, we require a movement
both speed and system resources used. model that allows us to explore regularity and rationality in
Thus, to sum it up, the above discussions on connectitre seemingly random movement. We avoid using mobility
and location management make a compelling case for placimgdels that incorporate deterministic mobility [13]-[15], but
emphasis on developing algorithms and techniques for mobitstead propose a novel pseudostochastic movement model
trajectory prediction. Being able to determine the mobile’s fiwhich integrates deterministic behavior with randomness in
ture locations and access points as it moves inside the netwarkattempt to mimic actual human behavior.
while being connected can result in significant improvement To achieve this, we model the user's quasi-deterministic
in system efficiency and connection quality. intercell movement by editing her deterministic movement
One way for the system to know the future direction of thpatterns withinsertion, deletion and changing operations.
mobile is to have a formal mechanism in place that allowsdditionally, we model the mobile’s micromovement as a
the mobile to indicate to the system its intended destinatim@nstationary process with dynamic states that are nonlin-
and the duration of the connection. The system can combigarly related to a time-correlated Gaussian process whose
this information with its knowledge of the geography of thenean value behaves as a semi-Markov process. Based on
terrain, and the location of the base stations within the terrathjs model, we develop a set of low-complexity recursive
to determine the path of the mobile. Unfortunately, this imobility prediction algorithms that are trivial to implement
not a conclusive solution since there can be multiple paths real-time systems. HLP is composed of approximate
to the destination, and even the mobile cannot exactly kngyattern-matchingalgorithm that extracts any existing regular
its precise future movement patterns. It is not unreasonablemovement pattern to estimate the global intercell direction,
have the mobile diverge without warning from its stated pa#nd uses arextended self-learning Kalman filtehat deals
in order to adjust to its dynamically changing environmenwith “unclassifiable” random movements by tracking intracell
Without the system dynamically adapting to such unanticipatéf@jectory and predicting the next-cell crossing. We study
but reasonable trajectory changes, the amount of resourcedihe-performance of our prediction algorithms in the presence
quired to provide improved connectivity would be prohibitivepf path loss, shadow fading, and random user movements.
and consequently unattractive. Simulation results and performance analysis show that our
In this paper, we propose a novklerarchical location- algorithm is robust in the presence of noisy input, being able
prediction (HLP) algorithm, which substantially increases théo predict the speed and direction of travel of the mobile with
system’s probability of providing uninterrupted service to the high degree of accuracy. With good next-cell prediction,
mobile user while consuming minimal resources from th@lgorithms that improve handoffs, relieve congestion, provide
network. Derived from some classical and well-establish@givance resource reservations and advance optimal route es-
stochastic signal processing techniques, HLP is a two-tik@blishment, and which improve the overall QoS in wireless
scheme that combines location updating with location prediéTM networks can be built easily.
tion to offer enhanced connection management functions. HLPThe rest of the paper is organized as follows. In Section II,
raises the level of intelligence within the wireless ATM systerwe describe the proposed stochastic movement model. In
so that the system aggressively and effectively maintaiction lll, we introduce théierarchical location-prediction
connectivity (essential for providing QoS features) with thé1LP) algorithm. In Sections IV and V, we present our sim-
mobile. ulation results, and provide prediction performance analysis.
Some previous works in the area of mobility predictioh Section VI, we present potential ways of incorporating
includes Tabbane’s [8] proposal, which suggests that th.P for connection and location management in wireless
mobile’s location may be determined based on its quagdM systems. Finally, we conclude with some discussions
deterministic mobility behavior represented as a set of movié- Section VII.
ment patterns stored in a user profile. This method was
further pursued by Liu and Maquire [9], in which a user's
moving behavior is modeled as repetitions of some elementary IIl. USER MOBILITY MODEL
movement patterns. Based on these movement patterns, @he mobility model we advocate in this paper attempts
pattern matching/recognition-baseabbile motion prediction to mimic human (operator) movement behavior. Our model
algorithm (MMP) is proposed which is used to estimate thie built as a two-level hierarchy in which the top level is
future location of the mobile. The main drawback of théhe global mobility modelor GMM whose resolution is in
MMP algorithm is its high sensitivity to so called “randomterms of cells crossed by the mobile during the lifetime of the
movements.” Any movement that cannot be classified lpnnection, and the bottom level is thacal mobility model
the simple mobility patterns defined is classified as randofaMM), whose resolution is in terms of a 3-tuple sample
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space (speed, direction, position) that varies with time. Stated r~---""""""7""="""

another way, GMM is a deterministic model that is used ! UMP :

to create intercell movements, while LMM is a stochastic : [(7am—9am)[

model with dynamically changing state variables to model ! uMP _.\ ™P [ eqiting| URP
intracell movement. The LMM model interacts with the GMM | | (9am—4pm) : process

model to create a semirandom movement trajectory for the ! - E
mobile. Our complete model (LMM + GMM) is based on ! - E
the observation that the directional movement of mobiles is !User Profile
generally not ad hoc. The variations (or perturbation) from  ========r==========--:

a particular path occur when the mobile dynamically adjusts @)
trajectory to compensate for the changing environment (e.g.,
changing traffic conditions, unexpected roadblocks, weather
conditions, etc.). These perturbations are recreated in our
model by the intracell stochastic behavior which affects the
intercell movement pattern with varying degrees of influence.
Details follow.

A. Global Mobility Model

The global mobility model, as shown in Fig. 1(a), is mo- N
tivated by the fact that most mobile users exhibit sonfdd- 1. Global mobility model.
regularity in their daily movement, and this regularity can

best be characterized by a numberuser mobility patterns UMP becomes the sum of the weights of #uitingoperations
(UMP’s), recorded in aprofile for each user and indexedwhich are chosen not only to make the two cell sequences
by the occurrence time. The UMP’s we proposed are siralike, but also to have the smallest possible total weight.
ilar to the movement patterns in [8] and [9], but are morg the edit distanceis less than a matching threshold an
robust in the sense that we decrease the UMP’s sensitivifiyproximately matched UMP is found, indicating the general
to small deviations from thaiser’s actual path(UAP). We moving intention of the user.

are able to do this while maintaining their effectiveness For large systems or systems with complex network topolo-
for estimating the mobile’s intercell directional movemengies, the calculation of the spatial weights can be quite
intention by modeling UAP as the edited version of a UMRnvolved. In this work, for the sake of clarity and without
and employing anapproximate pattern-matchingechnique |osing generality, we limit the temporary deviation of a mo-
to find the UMP that most resembles UAP as explaingsile user within the neighboring cells of the edited UMP.
in Section Ill. Consequently, the number of UMP’s needegpecifically, we define the weight as follows.

to span the network is greatly reduced, which in turn sub-, The cost ofinsertinga cell ¢ at positioni:

stantially reduces the time needed for pattern classification.

Specifically, if a UMP is described by a cel;} sequence

(= araz --- a; 1a;a;41 --- a,), then we model the regular Wiei =
movement of a mobile user as aditedUMP by allowing the

1, cis the adjacent cell of;
fori=1,.---,n
oo, otherwise.

following legal operations: * The cost ofdeletingthe cell a;:
* inserting a cell ¢ at positions of the UMP gives UAP: 0, ai,---,a;_, have already
aiaz - G;—1CA; * - Gn, Wpa, = { been deleted
+ deletingthe cella; at position: of the UMP gives UAP: 1. otherwise.
A1Q, - Gi—1Giy1 * " Op, 7 o
. changing a cell a; to another cell¢ gives UAP: ¢ The cost ofchanginga cell to another celt at position::
102 -+ Q1041 - O 1, cis the adjacent cell of;
Fig. 1(b) demonstrates an example of a UM@ycscr, and Wee = { fori=1,---,n
its edited version UAR;c4csceer, which can be obtained by o0, otherwise.

changinge¢, to ¢y and insertinge;. -

The degree of resemblance of a UAP with a UMP i Local Mobility Model
measured by thedit distancea well-known metric for finite  Our motivation behind creating a local mobility model is
string comparison [16]. The simplest way to find this distandeased on the observation that the seemingly random choice of
is by determining the smallest numberin$ertions, deletions intercell movement is actually a logical function of the user’s
and changesby which the two finite cell sequences can beosition, speed, direction, and cell geometry. The user mobility
made alike. In order to reflect the geometric relationshipodels found in the literature assume straight line movement
between UAP and UMP in the physical domain, we assigr constant speed [10]—-[13], which does not reflect reality.
a nonnegative number to each edit operation as the spatidin order to develop time-varying movement patterns, we
weight. As a result, thedit distancebetween a UAP and a model a moving user as a dynamic linear system driven by



LIU et al: MODELING, TRACKING, AND PREDICTION IN WIRELESS ATM 925

s, _l Measurement Lh€ two-dimensional random acceleration vector; we have
Noise
s z(t) = Fx(t) + Eu(t) + Gr(t), t=1,---,m (1)
‘e a(t) ] I+
Sa g \ + — Moving | F (o) + where
Dynamics
e U(t) + ® 0 d 0
7 F= 0 © E=G= 0 @
S _T r(t) Nonlinear
Measurement .
_ with
Commands TIime Correlated
random acceleration 0 1 0
@ =1y ol ®=11|"
P(a(t)/S1) P(a(t)/Sp) P(alt) /Sm) Random acceleration(t) is correlated in time, i.e., if a

moving object is accelerating at tinteit is likely to continue
accelerating at time + = for sufficiently small+. A typical
representative model of the correlation function is [17]

Ry(r) = E[r(t)r(t+7)] = afne_alTlI, a>0 (2

where I is a 2 x 2 identity matrix, o2, is the variance of
(b) the random acceleration of a single dimension, an the

Fig. 2. Local mobility model. reciprocal of the random acceleration time constant. Such a
random process can be obtained by passing the white Gaussian

deterministic command/(¢) and random acceleration(t) signalsw(t) = [w,(t), w,(¢)]* through a one-pole shaping

shown in Fig. 2(a). In real situations, the acceleration rangiter, wherew,(t) andw,(t) are uncorrelated

for a moving user can be fairly wide. Furthermore, traffic . .

lights and road turns can lead to abrupt changes in spee(f(t) = —ar(t) +w(t),  with Ry = 2a07,8(r)I. (3)

In _order to recreate such sudde_n and unexpected changegombining (1) and (3), and applying the state-space method,
while covering the wide acceleration randé(t) is modeled the discrete-time dynamic equation can be expressed as the
as a semi-Markov process with a finite number of “statesg|owing in terms of discrete time Gaussian white nolég

Si, 82, -+, Sy, as possible discrete levels of acceleration. Ang driving command/,, (for the derivation, see part A of
semi-Markov process implies the Markovian state transitiqe Appendix):

probability and random duration of time in one state prior

to switching to another state [22]. Random acceleratiin Xny1 = AX, + BU, + Wy, 4)

is modeled as a zero-mean Gaussian random variable with Rere

variance that is chosen to cover the “gap” between adjacent

acceleration states. Fig. 2(b) shows the conditional distribution X, =[x(n) #(n) 7.(n) yn) H(n) r,n)*

of »(¢) given a particular stat§;, fori =1, 2, ---, m, within U (n) w,(n)

the acceleration range- Anax, Amax]- This modeling idea n = {uy(n)} n= {wy(n)}

has successfully been applied in tactical weapon systems for

maneuvering target tracking by Singer [17] and Moose [18]'_I'he dimension of the dynamic state vecly is now extended
The following two subsections present the mathematici® three states per Cartesian axis which represent position,

description of the local mobility model in terms of dynamicayelocity, and acceleration, respectively.and B are the state

equations and measurement equations. and disturbance transition matrices relating the system at times
1) Dynamical Equations for a Moving UseBased on the 7 + 1 and n.

model described above, the dynamical equations are derived) Measurement Equationdn existing cellular systems,

for continuous-time movement, and are then expressedtlﬂe distance between the mobile and a known base station

discrete time according to the standard discretization prodg-Practically observable. Such information is inherent in the

dure, thereby providing accurate statistical representation fgfward link RSSI (or received signal strength indication) of
the movement behavior. a reachable base station. Measured in decibels at the mobile

It is known that in two-dimensional Cartesian coordinate§tation, RSSI can be modeled as the sum of two terms: one due

the movement can be described by a first-order vector dif path loss, and another due to shadow fading. Fast fading is
ferential equation [23] with the dynamic state vecidt) = neglected assuming that a low-pass filter is used to attenuate
[2(t), &), y(t), 9(t)]Y, wherez(¢) and y(¢) represent the Rayleigh or Rician fade. Therefore, the RSSI from a particular
position at time¢, and their first-order derivatives of(t) Celli, pi, can be formulated as [20]

a_nd g)_(t) represent the relative speed along theand y Di = Poi — 107 log d; + &; (5)
directions. Furthermore, let(t) = [u,(t), u,(t)] denote the
two-dimensional driving command with,(¢) and »,(t) as where p,; is a constant determined by transmitted power,
independent semi-Markovian processes acting inzlady wavelength, and antenna gaina#ll;. » is a slope index (typ-
directions, respectively, and left) = [r..(t), r,(¢)]* denote ically, » = 2 for highways and- = 4 for microcells in a city),
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Global Prediction  Dredicllon of A. High-Level Global Prediction
B s.osequenl cells Lo . A
g[me* {alf,lff ..Pb, ) For global prediction, we solve the following problem: given
r— UYP = (b . ) | o a number of UMP’s for the current time interval, a UAP which
Uscr | - > I Approximate Pattern I . .
L _Profile @ ] Matching J reflects the current movement trend of the mobile, find the
L — = - UMP that best describes the UAP.
—_—————— FJAP*{ML--&K ac. A UAP is composed of recently crossed cells, stored in
| Usor Mobility lac an T e 7 the mobile’s user mobility buffer, and an LP for the next
Bulfer(size:L) L UAP Iorming ! a
. J . ] cell (if any). Both UAP and UMP are finite-length sequences,
Iy, L - and we assume that the memory length of a UAP does not
oral Frediction e exceed the length of the largest stored UMP. Consequently, it
- | oo o paam o '_'_"—'._'_,'l is possible for some subset of the UMP to resemble the UAP
S8 Oplimum Adaplive | Local Prediction of X L i T
—>‘L Filtering _i_>L Noxi—crossing Cell in the sense that the edit distance is the minimum and less than

the matching threshold. If such an approximately matched
sequence is found, the remaining sequence in UMP becomes
the output of the global prediction.

and¢; is the logarithm of the shadowing component, which The solution to this problem can be reduced to the following
is found to be a zero-mean Gaussian random variable wilnamic programming method [16]: suppose that the UAP

Fig. 3. Mobility prediction.

standard deviation 4—-8 dB; represents the distance between, - - -, @m, and the UMP= b, ---, b,; we can compute
the mobile and base station cEll;, which can be further the edit distancel(ai, ---, am, b1, ---, b,) by constructing
expressed in terms of the mobile’s positian(«), y(n)) at an(m+1)x (n+1) matrix [d(ay, -+ -, a;, by, - -+, b;)] with
time n and the location of base station; ( b;) (i, j) ranging from (O, 0) to(m, n), as follows: ifi = 0 or

j =0, whichmeansy; ---a; =1o0rb; ---b; =1, where 1

1/2
2, (6) represents the empty sequence, then the matrix values are

di = [(2(n) — a:)* + (y(n) — b;)’]

To locate a moving user in the two-dimensional domain,

at least three independent distance measurements are needed d(1,1)=0
[23]. The necessary data are available in GSM systems where 1. =1
each 0.48s, the mobile samples the forward link signal levels d(ay -+ ai, 1) = { O;) 1<i<m
of six neighboring cells [6]. For this problem, we select the LDy b)) =0 ) <
three largest measurements to form the observation vector ’ J
Z, = [p1,p2, p3]*, which is nonlinearly related to dynamic
states X ,,: dlay -+ a;, by -+~ by)
Z, = h(X,) + &, ) o oo ll: b

where h(X,,) can be derived from (5) and (6). — ¢ min{d(ay -+ a;i—1, by -+~ bj_1) + Wea, 9)

Applying the linearization method used éxtended Kalman dlay -+~ a;—1, b1 -+~ bj) + Wi
filer design [23], where the linearization takes place about d(ay -+~ a;, by --- by 1)+ Wy, },
the filter's estimated trajectory, the linearized measurement otherwise.

equation becomes As explained in Section II-AJVc,,,, is the spatial weight

of changingb; to a;, Wi,,; is the weight of inserting cell
(8) a; at position:, and Wp,, is the weight of deleting;.
Matrix (d(a; --- a;, by --- b;)) can be evaluated column-by-
where X, is the optimal estimate of,,. column in timeO(mn); whenever ad(ay -- - am, b1 --- by)
is found that has the proper¥(a: --- am, b; --- b;) < &,
lIl. THE HIERARCHICAL LOCATION PREDICTION ALGORITHM &N @pproximate occurrence of UAP ending at gig cell

. - S ; is announced. Ifa,, is the LP of next cell, the future
The algorithm proposed for mobility prediction is |IIustratecieII sequence predicted by GP becomes, b1, - -+, bn.

in Fig. 3. As shown, user mobility prediction is carried out 8k, oxample that clarifies the operation of this procedure is
two levels—ocal prediction(LP) andglobal prediction(GP). detailed in Section IV

LP provides a best estimate of the next cell to be crossed baseq | jitional matching criteria such as the elapsed time match-
on instantaneous trajectory tracking and cell geometry, Whﬂ‘?g [9] can further be applied in case multiple UMP subse-
GP identifies the overall movement pattern of the mobil uences have a similadit distancefrom UAP.

With LP, a high degree of accuracy for next-cell prediction

is achieved without any assumption of the user’'s mobili -

history. Furthermore, thscle UMP igentification error is greatlté' Low-Level Local Prediction

reduced since GP uses the prediction data from LP to lookLocal prediction can be achieved by two steps:

ahead before making a decision on the best matched patterrl) estimate the dynamic state of a moving user using
Details follow. subsequent RSSI measurements,

oh

Z,=HX, s ith H=—
+ £ wi X

X=X,
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2) select the neighboring cell with maximum cell-crossing Minimum prediction MSE matrix:
probability as LP output based on dynamic state estima- B T
tion and cell geometry. Motr/n = ARy A” + Q. (14)

For the first step, an optimum adaptive filter is needed for Kalman gain matrix:
real-time dynamic state estimation. As discussed previously T
since the instantaneous sampled trajectory of the mobile is @r+1 = Miyr/nHign [Rn+1 + Hn+1Mn+1/an+1]' (15)
nonstationary process, a modified Kalman filter seems to beCorrection:
the best candidate for achieving low-level local prediction. The | . .
conventional Kalman filter has to be modified since it is notX, ;1 /,y1 = Xpqy1/n + Knpa [ZnJr]L —h (Xn+1/n)] (16)
designed for deterministic input,,, which we represent as o
a semi-Markovian process witl possible (mobile acceler- Deterministic input update:
ation) states. We overcome the problem of dealing with the . n ‘
randomness within the states by using a bankroffilters U, = Z Un(S))P(Shy1/Znt1). (17)
with each filter operating on a possible state. Fortunately, i=1
as discussed in [18], when certain practical assumptions arg inimum MSE matrix update:
made, the filter bank can be reduced to a single Kalman
filter augmented by a recursive technique of estimafihg Myyimpr = [ — Kot Hy1)Muy1)n (18)
The adaptive state estimator then becomes (see part B of tI%e
Appendix for derivation) where

oh
Xpp1=AX, + BU, + Koy (Zn-l—l — HAX, — HBl7n)- Hp1 = OXny1|x, =% o (19)
(10) 4 . . .
Here, K., 41 is the standard Kalman gain matrix, afig is £(S5n11/Zn+1) for e =1, ..., m can be obtained using the

an estimate ot/,. The recursive technique for computibg, ~ recursive equation (12).

has been developed in detail by Moose [18], the final resultsTO improve the accuracy of local prediction of the next cell
of which are given by the following equations: crossing, the second step is carried out when the mobile moves

in an area that is closer to the cell boundary, and where the
chances of it making a dramatic change in its direction and
speed are reduced. This area is calleddabeelation areaof

Un = Un(S)P(Sig1/Zns1)  (11)
=t the neighboring cell denoted ad";, for¢ = 1,---,6 in a

P(S% 1/ Zn41) = (const) f(znt1/Shsrs Zn) Z _hexagon cell environment, as shown in Fig. 4. The definition
et is as follows:
Oail(Sn/Z0) 12 1y = {Xalle(m), y(m)eBiy do = d; and 6ef6;, i}
where the following are true. where 3; is the 60 sector adjacent to neighboring gell
1) Let Z,, denote all of the measurements up to and, is the distance between the mobile [with coordinate
including timen + 1, (i.e., 21, ---, 2,), and letS. ., (z(n), y(n))] and serving base station [with coordinate

denote the stat§; at timen+1. The probability density (a0, bo)], d; is the distance threshold that determines the
function f(z,41/5} 11, Z») has a Gaussian distributionconfidence in the prediction resutt,is the moving direction,
with mean H,,+1AX,.(S;) + H,+1BU,(S;) and vari- and 6, is the bearing of cell verteX;, : = 1, ---, 6. Note
anceH, (1[AM, ), AT + Q,]HI | + Ry,; M, is the that since fast-moving users are more likely to follow straight
state estimation matrixjz,, is the measurement errorline constant velocity trajectories than the slower omgsan
covariance matrix, an@),, is the Gaussian disturbancebe set dynamically to achieve early prediction for a given
covariance matrix. prediction confidence.
2) Probabilityé,; = P(l/,, = S;|U,—1 = S,) is obtained Once the moving user steps into therrelation area the
from semi-Markov considerations. This parameter caell-crossing probability can be calculated based on the user’s
be approximated by a valyenear unity fori = « and dynamic state, i.e.,
(1—p)/(m —1) for ¢ # « for many tracking situations. bips
3) The constant (const) is evaluated from P(cell;/X,,) = / f(6/X,)db,
Xm, P(St/Z,) = 1. 6: '
Based on this result, we are able to complete the adaptive with i=1,2,---,6 67 =6,
linear optimum (in the sense of minimum mean-square erQfhere r(9/X,) is the probability density function of the
filter needed to estimate and predlct_ the dyngmlc states fr‘?r%ving directiond given the dynamic staté,,.
the RSSI_measurement;. The resulting algonthm turns out toAppIying the minimum error predictioncriterion, the pre-
be very s_lmple and easily implementable in software. diction result of the next-crossing cell is
Prediction:
. next cel/ X,, = argmax P(cell,/ X,,)}, i=1,---,6.
Xn+1/n = AXn/n + BU,,. (13 i
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Celly

Fig. 4. Cell geometry.

Calculation of P(cell;/X,,) is not trivial in general sincéd is
nonlinearly related to the dynamic stakg,, i.e.,

6 =g(V,) =tan! o) 20
g(Vy) = tan ) (20)
whereV,, = [2(n), #(n)]* is the velocity vector. Sincé/,
is part of X,,, it also has a Gaussian distribution with mean
pvpn) and variancey . If py ) &~ 0, the case when the speed . et s By Q_u““""l call
of the mobile station is very slow;(8/X,,) becomes a simple

uniform distribution over[0, 2=), and Fig. 5. A practical situation necessitates looking-ahead mode for UMP
identification.
Oiv1 —0;
2

P(cell;/ X,,) = , with i=1---,6 6;,=6,.

i represented by & function, i.e.,
For more general cases, numerical methods have to be used
to calculatef(8/X,,). However, if the variance of is small, Oit1 — po 0; — o
f(6/X,,) can be approximated by a Gaussian distribution. We P(cell;/ X») :Q[E—g:| -Q [2—6}
achieve this by assuming that within the correlation area, there withi=1,..-,6, 6;=6,. (24)
is only a small change in velocity, then (20) can be linearized

as #; can be easily calculated from cell geometry. For example,
0~ g(Va) + G(AV) (21) _1 { R cos 30° — [y(n) — bo]
61 = tan /o (25)
where /2= [x(n) — ao]
a= 99 where R is the cell radius[z(n), y(n)] is the position of the
NV |y mobile station, andag, bg) is the location of the base station
—i(n) i(n) of the current cell.
= LQ(”) +32(n)  2(n) + 12(n) Note that, although the calculations shown above are for
AV =Vp, — V. (22) the classical hexagonal cell geometry case, they can easily be

carried out for a variety of other shapes as well, which may be
AV is the change of velocity between timeandn + s with ~ closer to reality than the idealized coverage span considered
s > 1. Since AV has a Gaussian distribution with mean;- in our calculations.
and covarianc&av, f(#/X,) becomes The significance of trajectory tracking-based local predic-
tion is that a kind of looking-ahead mode can be enabled
f(0/Xn) ~ N(ps, Xo), 0 €[ue—m pe+7  (23) in UMP identification. In this mode, the decision about the
matched UMP is postponed until we look ahead at the pre-
diction of a subsequent cell based on trajectory tracking. As
o = g(V*) + Hpav; Yo = HYy HY. a result, UMP identification error can be greatly reduced,
especially in the cell where there are multiple possible leaving
Notice that for small>,, we assumef(#/X,) ~ 0; if UMP’s and the crossed cell sequence is not enough to identify
8 & [ue — 7, 1o + ], then the cell-crossing probability can behe current UMP, for example, as shown in Fig. 5.

with
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Fig. 6. Actual and predicted user trajectories.

IV. SIMULATION AND RESULTS TABLE |
SIMULATION PARAMETERS

To examine the performance of HLP, a simple simulation is
carried out for the conventional hexagon cell environment.___Parameters | Comments
The simulated service area contains 30 base stations with 7 = 0.5s Sampling interval
cell radius of 4 km, as shown in Figs. 6 and 8. No consti-__%m =0.5m/s® | Variance of random acceleration
tutional constraints are assumed, and the mobile is permitted|AmaLXl = IOT”Q/ s | Maximum acceleration
to move to any cell in the network along random trajectories € [30; 60] miles/hr | Speed range

with nonconstant speed. The moving dynamics are based— 1/a = 10s Random accele?atfon constant
on the movement model discussed in Section Il, except that o¢ = 5dB Standard  deviation of ~lognormal
the acceleration is preset so that a known trajectory can Shadm”in_g _
be achieved for the purpose of performance tests. On-line—Po=20% Base station transmission power
mobility-related information includes recently crossed cells 9 = 6dB Power galn Ofbase.smtm.l

gm = 1dB Power gain of mobile station

stored in a user mobility buffer and subsequent forward link 3
RSSI measurements of the current cell and two neighboring-
cells. Simulation parameters are summarized in the Table I. In

order to cover the range of dynamic acceleratied0 m/s, g relatively insensitive to the initial conditions. The result
10 m/g7], five levels (0,425, +7.5) m/$ are selected as theof | p for the next-cell crossing is summarized in Table Il

Wavelength of RF signal

states of the deterministic driving input. with prediction ratios= 75, 80, 100% for users 1, 2, and 3,
o respectively. Here, the prediction ratio is defined as the ratio
A. Results from Local Prediction of the number of cells correctly predicted to the total number

Fig. 6 shows the results from trajectory tracking of threef cells need to be predicted in the path.
moving users. The dashed curve depicts the actual trajectoryon analyzing the prediction results of the next-cell crossing,
(UAP), and the solid curve shows the predicted trajectoriogether with the mobile’s trajectory tracking, we find that
Fig. 7 demonstrates the result of time-varying velocity predie- high degree of prediction accuracy is achieved once the
tion. The initial value of the dynamic state is estimated frotdalman filter becomes stable. The error caused by the initial
the averaged RSSI value with a position error up to 1000 mmstability is limited to the prediction of the first cell crossed at
and a speed error up to 5 m/s. Because of the strong “pulte beginning of the journey. In the stable state, the prediction
in” power of the filter, it turns out that the adaptive filteraccuracy is related to the geometric relation of the mobile’s



930 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 16, NO. 6, AUGUST 1998

25 4

x10

20

3

Actisal Speed

Speed - meter/second
=
;

I Il L I Lo v 1 L
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Y-direction{meters)
no

Time - second
Fig. 7. Actual and predicted user speed. i
TABLE 1l
PreDICTION RESULT OF NEXT-CELL CROSSING
Userl | Current Cell 31420 0r Actual trai -
Predicted Cell 20 ctual trajectory
User2 | Current Cell 819 |19

Predicted trajectory

O || O] P ]| O] =
;|| U]t Wof e
[t Bl | B =AY S

Predicted Cell 9 |19}
userd | Current Cell 12| 14 A L s ! 1 [
Predicted Cell 2] 14 35 0 05 1 15 9 25 3 35
X-direction(meters) x10°

trajectory and cell boundary, which can be compensated bBy. 8. Actual and predicted user trajectories with multiple potential UMP's.
UMP matching.
TABLE I

GLOBAL PREDICTION RESULT
B. Results from Global Prediction

Current Cell | d(UAP,UMP,) | d(UAP,UMP,) | GP output
Fig. 8 shows the results from global prediction, where a¢, 2 2 co
moving user is simulated with two possible UMP’s, UMP ¢ 00 2 €10€18€17C16
(626568612614) and UMR (62656469619618617616). In order €10 o0 3 C17C16

to identify the UMP from the tracked UAP, a recursive

approximate pattern-matchinglgorithm is mqlemented W.'t.h of changingeso. In this case, we select the second possibility,
the matching threshold as 3 and the mobile’s user mobility hich is reasonable sin is closer to the destination
buffer size as 4, which means that the GP output is availathe ags :

It is important to note that at celky, both UMP, and
when the user reache; thg fouth agll The GP output along UMP, have two cells that appear in UAP; if tetate-matching
the user moving path is given in Table III.

For cell cs, the edit distance.for UMP, and UMP, is method as described in [9] is used instead, UM#®uld not

identical (i.e.d(UAP, UMP;) = d(UAP, UMP,) = 2). Since be identified since the UMPand UMR will have the same

no pattern can be identified, HLP gives the prediction of th%egree of similarity as UAP.

next cell crossed based on what is provided by LP. For cell
cg, UMP; is identified as the matched pattern, therefore, the
GP output becomes the LP outputd) and the remaining cell  In this section, we discuss the evaluation results of the av-
sequence on UMP(czc17¢16). Fig. 9 shows the matrices usecerage prediction performance of the proposed HLP algorithm.
for edit distancecalculation at celk,, which demonstrate the Let P; represent the probability of a correct local next
recursive procedure that was described in Section IlI-A. Lirgell prediction, letP(c;),< = 1, ---, 6 denote thea priori
segments in the matrices mark the direct arc indégendency probability of crossing a neighboring cglland letP(d;/c;)
graph, going straight down or down at an angle or to theéepresent the conditional probability that we decide;dellbe
right. Notice that the path with minimum spatial weight mayhe next-crossing cell given that celb the actual cell that the
not be unique, which may result in different predictions. Fdsser will cross next. Then

example, in the matrix for UMR if ¢ is viewed as the result 6

of insertion,c19 will follow ¢ as part of the global prediction; P = Z P(c;)P(d;/c). (26)
otherwise, the cell aftet; o should bec; g sinceé, g is the result i=1

V. PREDICTION PERFORMANCE
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Fig. 9. Matrices used faapproximate pattern matchirfgr cell co, with ¢ 012 a X 6:=4¢B
as the local prediction of the next-crossing cell.
b—o— 6= 548
R . . . 07 C =] (5‘;:6dB
P(d;/e¢;) can be obtained by integrating over setwhich :
contains all possible values of dynamic stafe d % o-708 d
Ay = 10V 62 B
P(d;/c;) = | P(d;, X/c;)dX 068
(difes) /Q(“/Z) 0 15 2 % N B L K KN 5B

Residual Time (second)
= / P(d;/ X, c;)P(X/c;) dX
Q Fig. 10. Parametric behavior of probability of correctness for local prediction
Py
:/P%MWMMMX @n
Q

o ) a uniform distribution [9]). The probability of a correct GP is
The last equation is obtained due to the fact that local

prediction P(d;/X) is independent of the mobility history po_1_ 0" 1
reflected inP(c;). g K

Assuming that the next-cell prediction is made when the ) . . .
user enters theorrelation areal’;, and that,P(X/c;) has where n is the number of_ neighboring cells from v_vh|ch
uniform distribution overT’;, we can further simplify the the next cell for the mobile may be chosen. Obviously,
estimation by only considering a finite number of positionSP S not reliable ify is high (unclassifiable movement

on the boundary of correlation aréd, as shown in Fig. 4. !N [9] corresponds to the case when = 1). However,
Since AB.L';, we have prediction of the next cell to be crossed can still be achieved

in HLP with a high degree of accuracy since LP is completely
independent of the long-term mobility patterns. Fig. 11 shows
/A}a P(di, X/ei) < /r P(di, X/ei) (28)  the performance of our HLP algorithm in comparison to the
! MMP algorithm proposed in [9]. The figure illustrates next-
hence, the estimation results ov&B can serve as a lower Cell prediction versus change in the random factarsed for
bound. P, is further calculated for a spectrum of value$AP. With HLP, if v is greater than a threshol, trajectory-
representing the standard deviation of log-normal shadowiHgcking-based LP is enabled for next-cell prediction. A logical
o¢ and the residual time when prediction is made for @10ice of_TW is the value ofy of the inflection point (0.3 in
given acceleration rangp-Auax, Amax]. Fig. 10 illustrates Fig- 11), i.e.,
the parametric behavior aF; for residual time between 10
and 50 s, and standard deviation of shadowing from 4 to 8 ,=(01-Fr)
dB with Ay, = 10 m/S’. Fig. 10 can be extremely useful
for providing a quick, first-cut estimate of the prediction In Fig. 11, the value off; is obtained for a residual time
performance for the wireless ATM system. =30 s, Ay, = 10 m/$, and g¢ = 6 dB. Comparing
For GP, if the mobile’s movement is classifiable, i.e., BILP with MMP (the dotted line obtained from pure pattern
matched UMP has been found, the prediction performancenimtching [9]), it is clear that the prediction accuracy of
linearly related to the mobile’s random facter(+ determines HLP shows a marked improvement over MMIRclassifiable
the degree of randomness in choosing the next cell basedimercell movement.

(29)

n

. (30)
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Fig. 11. Comparison of probability of correctness of the next-crossing cell using HLP and MMP [9].

VI. SYSTEMS IMPLEMENTATION which will significantly reduce the number of additions and

We now present two examples to illustrate how HLP ¢ multiplications needed to implement the matrix equations [23].

. o . urthermore, if the measurement availability and rate are high,
be applied within a wireless ATM system. The examples Lo d . .
as the sampling interval of 0.5 s used in the simulation,

include a prediction-based dynamic virtual connection tre<%he error covariance and corresponding Kalman gain do not
(PVCT) strategy for providing enhanced connection manag

. 4 - . . (ﬁwange much from one cycle to the next. Then, instead of
ment functionality, and grediction-based dynamic location . I .
updating these quantities every cycle, doing so at a lower
update strategy.

. . - rate will result in a substantial amount of computational
For the sake of this explanation, a minimal system arCh'évings
tecture is assumed. Specifically, we assume that the W|reles§o reduce signaling traffic, distribute computation load,

ATM system consists of. 1) a wired backbone mfrastructurgnd improve system security while still achieving location

that supports ATM packet transport; 2) a collection of raéréd speed prediction, we suggest implementing the HLP
o]

dio base station transreceivers, each of which is Connecgq fithm within the mobile hosts rather than in the base
to the fixed wired infrastructure, and each of which SUR;

; d d ket N hared radio ch taﬁions. By storing the historical long-term movement patterns
ports on-demand packet access 1o a shared radio cha U‘T\/IP’S) and the current movement history (UAP) within
(the base stations provide connectivity to all mobiles withi

hei £ infl lled I and 3 f bi e mobile, security against unwanted predictors and locators
their area of influence called a cell, an )_a set of Mobiigy, pe provided. Additional information needed by the HLP
users who are equipped with portable RF wireless termin

Th bil ¢ h _ orithm to function correctly, such as cell identification
ese users (mobiles) are free to roam anywhere in f mbers and cell topology, can be obtained from the base

ereless networll<,. relying on tT]e system ]EO maintain (l:lor%'tation broadcasting on a protected control channel at the
tinuous connectivity even as they move from one cell i.,.4n frequency in each cell. The results from HLP are trans-

anoth_er. . o mitted to the network infrastructure for predictive mobility
To implement the HLP algorithm in wireless ATM SyStemSmanagement.

we notice that both Kalman filtering and the approximate
pattern-matching algorithm have a recursive nature and modest
use of memory storage, which make it feasible to be i
plemented as a low-power, embedded software process.
computation load of Kalman filtering can be further lowered As explained in Section I, thértual connection tre¢VCT)

by taking advantage of matrix sparseness or matrix symmetgproach [2] maintains QoS by minimizing latency during

r%ieprediction-Based Dynamic Virtual Connection Trees
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handoffs initiation and completion, by minimizing cell lossto collect location information with a lower periodicity. As
and by reducing processing delay during handoff. The strengtiost mobile users are quite regular in their daily movement,
of the VCT is in the admission control and rerouting algosignaling traffic due to location update can be significantly
rithms which are fairly simple to implement. The primaryeduced.
drawback of the VCT approach is its inefficient use of net-

work resources, a potential for causing system overload,

and a long setup processing time needed for assigning vir-

tual connection (VC) numbers on a typically large area. We have explored the fundamental problem of providing
System inefficiencies occur since the preassigned VC's tifgtime connectivity to ongoing sessions initiated by mobile
not accurately account for the mobile’s current and prasers in a cell-based wireless ATM network. The motivation
jected movement patterns. Consequently, many preassigbetiind this research is derived from the recognition that the
VC’s are wasted, and efficient resource reservation cannotgerformance of the mobility management subsystem is key to
achieved. any QoS-based wireless ATM network.

While keeping the advantages of the VCT approach, weThe approach we took was to develop a robust algorithm
propose to reduce its disadvantages by dynamically allocatifag predicting the future locations and speeds of the mobiles.
VC’s based on location prediction. When a matched UMP ia order to develop such an algorithm, we proposed a novel
found, the mobile informs the current serving base station bfiman-centric pseudostochastic mobility model that rejects
the results of the HLP algorithm, which include identifiershe notion that all movement is ad hoc. With this refined
for the cells in the path of the mobile’s predicted trajectorgbservation of human mobility behavior, we developed a
and the mobile’s predicted speed (cell-dwell time) in thesao-level hierarchical location prediction (HLP) algorithm for
cells. Using this information, the system sets up end-taecurate prediction of the cells the mobile will cross during
end connections with appropriate resources from the bake lifetime of its connection. The HLP algorithm had two
stations in the predicted cells. A set wirtual circuit iden- main components in it: 1) global prediction and 2) local
tifier numbers(VCN's) is associated with these connectiongrediction.
and passed on to the mobile. Each of these connection$or global prediction, we proposed approximate pattern-
is maintained by the system (VCN stays valid) for a timenatchingalgorithm good for any finite sequence comparisons.
duration determined from the mobile’s predicted velocity andle showed that this algorithm improves the prediction ac-
predicted cell dwell time. In the case when no UMP isuracy by abstracting the geometric similarity between two
found to match the UAP and only information from LP isell sequences which may otherwise seem dissimilar. Our
available, VCN’s of the most likely neighboring cells areanethod effectively enlarges the area covered by a UMP, mak-
assigned to the mobile. By following the fairly accuraténg pattern classification flexible and robust, while reducing
hints about the mobile’s trajectory, provided by the HLPmemory requirements significantly. Only a few UMP’s have
unwanted cell overloading is reduced, admission control te be stored as they can represent a large number of mobility
faster, and system efficiency is superior since only a subgeitterns, needed for accurate intercell prediction.
of the VCT footprint (cluster of base stations) is involved For local prediction, we applied classical stochastic signal
in resource reservation for each ATM connection. Thus, tipeocessing techniques to extract user mobility information
PVCT approach trades off minimal QoS reliability for vasthifrom noisy measurements. Analysis and simulation results
improved system efficiency when compared to the natiygoved that aself-adaptive extended Kalman filtprovides
exhaustive VCT approach. a high degree of accuracy for next-cell location and instan-
taneous speed prediction. Local prediction in HLP was kept
independent of global prediction (vice versa is not true) so that
reasonably accurate short-distance prediction can be obtained

HLP is based on the belief that, at a global level, a uset@yen when the system has no knowledge of the user’s historical
movement pattern is fairly regular, and can be approximatétpbility patterns.
by a representative UMP. (Implicit in this statement is the fact Finally, HLP is independent of the architecture of the under-
that, with time, the user “learns” and stores the regular pattedy#g wireless ATM system. Two strategigstediction-based
of its movement.) Therefore, for the purpose of locatiolynamic virtual connection tre¢®VCT) andprediction-based
tracking, the predefined zones, as proposed in the two-tihamic location updatewere presented as examples of de-
architecture in [4], can dynamically be mapped to the matchgtbyable predictive mobility management in wireless ATM
UMP obtained from the GP. As long as the mobile followsetworks.
the assumed UMP, no location update is necessary since the
current location server can preinform the rest of the predicted
location servers through the wired network. Therefore, the
mobile can continue to use the services without conventional
registration and location update procedures when it arrives/at Derivation of Discrete-Time Equations for a Mobile User
the zone.

In the special case when no UMP is found to match
UAP, the conventional location update method can be enabled(t) = A'z(t) + B'u(t) + C'w(t), i=1,---,m (31)

VII. CONCLUSION

B. Prediction-Based Dynamic Location Update

APPENDIX

The continuous-time dynamic equation has the form
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where
a(t) =la(t) @) () w(®) 9t r,@OF
w(t) =[ux(t) uy ()],
w(t) =[w,(t) w,(®)]*,  with variance2ao?,
o 1 0 0 0 0
0 0 1 0 0 0
, 0 0 —a 0 O 0
A= 0 0 0 0 1 0
0 0 0 0 0 1
L0 0 0 0 0 —«
0 0 0 O
1 0 0 0
, oo . 11 0
B = 0 0 ¢ = 0 0
0 1 0 0
L0 0 0 1

Sampling the process eveily s, the appropriate (discrete-

time) dynamic equations are given by

Xpq1 = AT, )X, + B(T)U,, + W,,. (32)
Since
7 t+T 7
.’L'(t + T) ICA TIL’(t) +/ GA (t—I—T—-r)B/ dr
t
t+T ,
+/ e (H'TfT)C’w('r) dr (33)
t
it follows that
AT, a) =e*'T,
t+T ,
B(T) = / VT By
tH—T ,
W,, = / AT Ol (1) dr. (34)
t

These terms can be calculated using eigenvalue analysi

The eigenvalues off! satisfy
det(A—A) = A*(A\+a) =0 sothat A =0,0, —a. (35)

It can be verified that

1 7T pp 0 0 0 Dy 0
01 ppb 0 0 O ps 0
oo ps 0 0 0 lo o
AT )=10 0 0 1 T 1 BT =1 P4
0 0 0 0 1 po 0 ps
0 0 0 0 0 p3 0 O
(n+1)T
W, = Alln + )T — 7|C'w(7) d (36)
nT
where
1 —aT
plzﬁ(—l—i-oeT—i-e )
1
——(1— —aT
p2=—(1-e™")
ps=c T

pa=T—1+¢ 7T

ps =1 —e 7
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Sincew(t) is white noise E[W,,W,, ;] = 0 for ¢ # 0 so that
W, is a discrete-time white noise sequence. The covariance
matrix 3 of W'[n] is given by

Q'[n] = E{W'[n)(W'[n])" }

qu @2 @3 0 0 O
g1 22 q3 O 0 0
0 0 0
— 92082 q31 432 433 37
™o 0 0 gqu q2 @3 (37)
0 0 0 qa g2 g3
0 0 0 g1 g2 gs3
where
1 —2aT 20°7° 22
1111:2—6%5 l1-e¢ + 201" + — 20T
— 4aT6aT>

1
qi2 = 5ok (cfQ‘XT +1=2¢7T 4 20T T
o

20T 4 o*17?)
qi3 = 2%3 (1—c 2T —2aTc *T)
22 = 2%3 (de T =3 — 2T 4 2aT)
25 = 5og (027 1 2¢7°7)
55 = 5 (1= 7).

B. Derivation of the Adaptive State Estimator
The desired estimator is to be the conditional mean given by

Xn+1 = E[Xn+l/Zn+l]
=Y X1 P(Xpi1/Znga)

Xog1

(38)

wl":n'ere Z,4+1 denotes all of the measurements up to and
including timen + 1 (i.e., z1, -~ -, z,41). Define P(S? ;) as
the probability that the input is in statg at timen + 1 given

the data sequenc®,,+1, P(X,+1/Z,+1) can be represented
by

P(Xpg1/Znir) =Y P(Xni1/Zng1, Siyr)

=1
P(Sh 1/ Zng1). (39)
Combining (39) and (40)
Kog1 = X1 (S)P(S)11)/Zntn) (40)
=1
where
Xnga(S) = Z X1 P(Xpg1/Znyrs Shyr)- (42)
Ty 41
Denoting Z,,+1 = (Zy, zn+1), We have
4 Zna1/Sh 1y Zn)P(SE 17

f(Zn-I-l/Zn)
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Assuming that the probability of state transition between
any two adjacent time samples is small, the first terrrh]
f(#n41/5,41,Z,) can be approximated by a Gaussian
density, which can be established from the Kalman filtering2]
algorithms conditioned on;, i.e.,

f(zn‘i'l/s’ril—l—l? Zy) ~ N{[Hp41AX0(S:) + Hop 1 BUL(Si)];
(Hn-l—an-l—l/an—l—l + Rn+1)}
(43)

(3]

[4]
where M, ,,, is the one-step prediction error matrix in
the Kalman algorithm, andz, 4+, is the measurement noise [s5]
covariance matrix.

Expanding P(S:, 1/ %) [6]
[71
[8]

El

3

(3

P(S’fl-f'l/Zn) =

(a3

P(Si /S, Z2)P(S2 ) Zy)

30
—

P(S; 1/S2)P(S5 [ Zn).  (44)

2
Il
—

[10]

The last equation is obtained by observing ti&t and
P(5%) are strongly dependent; actually,, aids in determin- [11]
ing P(Sy); therefore,P(S;, /Sy, Z,) can be expressed asy;y
P(S) . 1/Sy). It has been pointed out that for uniform sam-
pling of a semi-Markovian process this transition probability*3]
only depends on the sampling interval. A good engineering
approximation is [7]

(14]
095  i=j
i ay _ _ . [15]
P(S)1/S5) =6ai =< 095 oy (45)
1 7 [16]

Combining (40) and (42), we finally get the recursivél?]
equation to computé>(S;, 1 /Z,+1) [18]

P(S) 41/ Zns1) = 0f (zna1/Shyrs Zn) Y 0aiP(S3/Z0)  pag]
a=1

(46) [20]
whered is a normalization constant. 21]
If the covariance matrix of the random acceleration ané

measurement nois@ and R does not change with the input
statess;, it is possible to greatly simplify the Kalman filter (22
bank structure to only one Kalman filter. In this case, thgg]
Kalman gain K,,+1(5;) becomes the same for eaéfy =
1,2, ---,m). By adding the weighted estimates from the
bank of m filters and again making the approximation that
the weighting coefficients change very little from sample to
sample, i.e.P(5! 1/ Zn11) ~ P(S!/Zy,), it follows that the
adaptive estimator reduces to

Kp1 = AX, + BU, + Kyt (Zn+1 ~ HAX, — HBl7n)
(47)
where

Un

Un(Si)P(S;+1/Zn+1) (48) ——

1 =t

-

?

-
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with P(S?%,,/Z,+1) given by (43) andK,; the standard
Kalman gain.
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