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Abstract—Wireless ATM networks require efficient mobility
management to cope with frequent mobile handoff and rerouting
of connections. Although much attention has been given in the
literature to network architecture design to support wide-area
mobility in public ATM networks, little has been done to the
important issue of user mobility estimation and prediction to
improve the connection reliability and bandwidth efficiency of the
underlying system architecture. This paper treats the problem
by developing a hierarchical user mobility model that closely
represents the movement behavior of a mobile user, and that,
when used with appropriate pattern matching and Kalman filter-
ing techniques, yields an accurate location prediction algorithm,
HLP, or hierarchical location prediction,which provides neces-
sary information for advance resource reservation and advance
optimal route establishment in wireless ATM networks.

Index Terms—Location tracking, mobility modeling, trajectory
prediction, wireless ATM networks.

I. INTRODUCTION

T HE extension of broadband ATM networks to the wireless
domain presents a challenging set of problems for both

network designers and managers. One of the key problems
within this set is mobility management. Mobility management
as defined in [1] entails bothconnection managementand
location management. Since ATM is a connection-oriented
technology, it contains both a connection establishment phase
prior to data exchange and a connection release phase after
data exchange. In a wireless network, as terminals move,
segments of connections have to be torn down and reestab-
lished with a frequency that corresponds to the speed of the
mobile. Meanwhile, data integrity in terms of cell sequence
preservation, duplicate cell prevention, and cell loss avoidance
has to be provided. Additionally, quality-of-service (QoS)
guarantees have to be maintained regardless of the terminal’s
mobility.

At the most fundamental level, quality of service, a corner-
stone of ATM networks, can only be provided if the system is
able to maintain connectivity with the mobile terminal, even
when the terminal frequently changes its physical location. It
is possible to maintain connectivity and guarantee QoS to the
mobile if the system knows, prior to the mobile’s movement,
the exact trajectory it will follow. With this information, the
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system can determine if there are enough resources available
along the mobile’s path for the lifetime of the connection.
If such is the case, the system can plan in anticipation of
the mobile’s demands, and take appropriate steps such as
setting up end-to-end routes from base stations in the mobile’s
path, reserving resource along these routes, and planning quick
handoffs between the involved base stations. With these kinds
of preparations, QoS can be guaranteed.

Recently, there has been some work on providing QoS to
mobile terminals. In [2], Acampora and Naghshineh propose
a virtual connection tree(VCT) scheme in which multiple
connections are preestablished between a fixed (root) switch
and a set of base stations with whom the mobile could poten-
tially connect. While providing a good starting point, the VCT
algorithm in its native form suffers from the lack of inclusion
of accurate knowledge of the mobile’s trajectory. There is a
danger of underutilizing resources in base stations to which
the mobile never connects, and a potential of overloading
base stations when a large number of mobiles connect at the
same time. Overloading can lead to congestion, which can
result in ATM cells being either dropped or buffered or both.
Buffering can cause temporary violation of delay and cell loss
guarantees. As a possible solution to these kinds of problems,
Levine et al. [3] have proposed the concept of ashadow
cluster. A shadow cluster defines the area of influence of a
mobile terminal (i.e., a set of base stations to which the mobile
terminal is likely to attach in the near future). Like a shadow,
this set moves along with the mobile, incorporating new base
stations while leaving the old ones as they come under and
out of the mobile’s influence. Each base station in the shadow
cluster anticipates the mobile’s arrival and reserves resources
for it. A close association exists between the mobile’s arrival
prediction and reservation of resources for it. The accuracy of
the mobile’s path prediction determines the number of base
stations that reserve resources, and consequently determines
the overall system efficiency.

Location management or location tracking incorporates the
set of mechanisms with which the system can locate a par-
ticular mobile at any given time. Two strategies are possible:
location updating and location prediction. Location updating
is a passive strategy in which the system periodically records
the current location of the mobile in some database that it
maintains. Tracking efficiency is based on the frequency of
these updates which, in most systems, are initiated by the
mobile. Location prediction is a dynamic strategy in which
the system proactively estimates the mobile’s location based
on a user movement model. Tracking capability depends on
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the accuracy of this model and the efficiency of the prediction
algorithm. While most recent studies have focused on the
update method [4]–[7], relatively little has been done on the
prediction side [21]. As a consequence, location management
or tracking is generally perceived as a purely database updating
and querying procedure. If accurate movement prediction per
mobile was possible, the task of locating mobiles given their
last location would become substantially efficient in terms of
both speed and system resources used.

Thus, to sum it up, the above discussions on connection
and location management make a compelling case for placing
emphasis on developing algorithms and techniques for mobile
trajectory prediction. Being able to determine the mobile’s fu-
ture locations and access points as it moves inside the network
while being connected can result in significant improvement
in system efficiency and connection quality.

One way for the system to know the future direction of the
mobile is to have a formal mechanism in place that allows
the mobile to indicate to the system its intended destination
and the duration of the connection. The system can combine
this information with its knowledge of the geography of the
terrain, and the location of the base stations within the terrain,
to determine the path of the mobile. Unfortunately, this is
not a conclusive solution since there can be multiple paths
to the destination, and even the mobile cannot exactly know
its precise future movement patterns. It is not unreasonable to
have the mobile diverge without warning from its stated path
in order to adjust to its dynamically changing environment.
Without the system dynamically adapting to such unanticipated
but reasonable trajectory changes, the amount of resources re-
quired to provide improved connectivity would be prohibitive,
and consequently unattractive.

In this paper, we propose a novelhierarchical location-
prediction (HLP) algorithm, which substantially increases the
system’s probability of providing uninterrupted service to the
mobile user while consuming minimal resources from the
network. Derived from some classical and well-established
stochastic signal processing techniques, HLP is a two-tier
scheme that combines location updating with location predic-
tion to offer enhanced connection management functions. HLP
raises the level of intelligence within the wireless ATM system
so that the system aggressively and effectively maintains
connectivity (essential for providing QoS features) with the
mobile.

Some previous works in the area of mobility prediction
includes Tabbane’s [8] proposal, which suggests that the
mobile’s location may be determined based on its quasi-
deterministic mobility behavior represented as a set of move-
ment patterns stored in a user profile. This method was
further pursued by Liu and Maquire [9], in which a user’s
moving behavior is modeled as repetitions of some elementary
movement patterns. Based on these movement patterns, a
pattern matching/recognition-basedmobile motion prediction
algorithm (MMP) is proposed which is used to estimate the
future location of the mobile. The main drawback of the
MMP algorithm is its high sensitivity to so called “random
movements.” Any movement that cannot be classified by
the simple mobility patterns defined is classified as random

movement. As reported in [9], prediction performance of MMP
decreases linearly with the increase in the random factor

. Other methods for predicting speed and trajectory have
also been proposed in the literature [10]–[13], but these have
generally been limited in scope as they consider rectilinear
(“highway”) movement patterns only.

In order to develop a prediction algorithm for mobiles
with different mobility characteristics, we require a movement
model that allows us to explore regularity and rationality in
the seemingly random movement. We avoid using mobility
models that incorporate deterministic mobility [13]–[15], but
instead propose a novel pseudostochastic movement model
which integrates deterministic behavior with randomness in
an attempt to mimic actual human behavior.

To achieve this, we model the user’s quasi-deterministic
intercell movement by editing her deterministic movement
patterns with insertion, deletion, and changing operations.
Additionally, we model the mobile’s micromovement as a
nonstationary process with dynamic states that are nonlin-
early related to a time-correlated Gaussian process whose
mean value behaves as a semi-Markov process. Based on
this model, we develop a set of low-complexity recursive
mobility prediction algorithms that are trivial to implement
in real-time systems. HLP is composed of anapproximate
pattern-matchingalgorithm that extracts any existing regular
movement pattern to estimate the global intercell direction,
and uses anextended self-learning Kalman filterthat deals
with “unclassifiable” random movements by tracking intracell
trajectory and predicting the next-cell crossing. We study
the performance of our prediction algorithms in the presence
of path loss, shadow fading, and random user movements.
Simulation results and performance analysis show that our
algorithm is robust in the presence of noisy input, being able
to predict the speed and direction of travel of the mobile with
a high degree of accuracy. With good next-cell prediction,
algorithms that improve handoffs, relieve congestion, provide
advance resource reservations and advance optimal route es-
tablishment, and which improve the overall QoS in wireless
ATM networks can be built easily.

The rest of the paper is organized as follows. In Section II,
we describe the proposed stochastic movement model. In
Section III, we introduce thehierarchical location-prediction
(HLP) algorithm. In Sections IV and V, we present our sim-
ulation results, and provide prediction performance analysis.
In Section VI, we present potential ways of incorporating
HLP for connection and location management in wireless
ATM systems. Finally, we conclude with some discussions
in Section VII.

II. USER MOBILITY MODEL

The mobility model we advocate in this paper attempts
to mimic human (operator) movement behavior. Our model
is built as a two-level hierarchy in which the top level is
the global mobility modelor GMM whose resolution is in
terms of cells crossed by the mobile during the lifetime of the
connection, and the bottom level is thelocal mobility model
(LMM), whose resolution is in terms of a 3-tuple sample
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space (speed, direction, position) that varies with time. Stated
another way, GMM is a deterministic model that is used
to create intercell movements, while LMM is a stochastic
model with dynamically changing state variables to model
intracell movement. The LMM model interacts with the GMM
model to create a semirandom movement trajectory for the
mobile. Our complete model (LMM + GMM) is based on
the observation that the directional movement of mobiles is
generally not ad hoc. The variations (or perturbation) from
a particular path occur when the mobile dynamically adjusts
trajectory to compensate for the changing environment (e.g.,
changing traffic conditions, unexpected roadblocks, weather
conditions, etc.). These perturbations are recreated in our
model by the intracell stochastic behavior which affects the
intercell movement pattern with varying degrees of influence.
Details follow.

A. Global Mobility Model

The global mobility model, as shown in Fig. 1(a), is mo-
tivated by the fact that most mobile users exhibit some
regularity in their daily movement, and this regularity can
best be characterized by a number ofuser mobility patterns
(UMP’s), recorded in aprofile for each user and indexed
by the occurrence time. The UMP’s we proposed are sim-
ilar to the movement patterns in [8] and [9], but are more
robust in the sense that we decrease the UMP’s sensitivity
to small deviations from theuser’s actual path(UAP). We
are able to do this while maintaining their effectiveness
for estimating the mobile’s intercell directional movement
intention by modeling UAP as the edited version of a UMP,
and employing anapproximate pattern-matchingtechnique
to find the UMP that most resembles UAP as explained
in Section III. Consequently, the number of UMP’s needed
to span the network is greatly reduced, which in turn sub-
stantially reduces the time needed for pattern classification.
Specifically, if a UMP is described by a cell () sequence
( ), then we model the regular
movement of a mobile user as aneditedUMP by allowing the
following legal operations:

• inserting a cell at position of the UMP gives UAP:
,

• deletingthe cell at position of the UMP gives UAP:
,

• changing a cell to another cell gives UAP:
.

Fig. 1(b) demonstrates an example of a UMP , and
its edited version UAP , which can be obtained by
changing to and inserting .

The degree of resemblance of a UAP with a UMP is
measured by theedit distance,a well-known metric for finite
string comparison [16]. The simplest way to find this distance
is by determining the smallest number ofinsertions, deletions,
and changesby which the two finite cell sequences can be
made alike. In order to reflect the geometric relationship
between UAP and UMP in the physical domain, we assign
a nonnegative number to each edit operation as the spatial
weight. As a result, theedit distancebetween a UAP and a

(a)

(b)

Fig. 1. Global mobility model.

UMP becomes the sum of the weights of theeditingoperations
which are chosen not only to make the two cell sequences
alike, but also to have the smallest possible total weight.
If the edit distanceis less than a matching threshold, an
approximately matched UMP is found, indicating the general
moving intention of the user.

For large systems or systems with complex network topolo-
gies, the calculation of the spatial weights can be quite
involved. In this work, for the sake of clarity and without
losing generality, we limit the temporary deviation of a mo-
bile user within the neighboring cells of the edited UMP.
Specifically, we define the weight as follows.

• The cost ofinserting a cell at position :

is the adjacent cell of
for

otherwise.

• The cost ofdeleting the cell :

have already
been deleted

otherwise.

• The cost ofchanginga cell to another cell at position :

is the adjacent cell of
for

otherwise.

B. Local Mobility Model

Our motivation behind creating a local mobility model is
based on the observation that the seemingly random choice of
intercell movement is actually a logical function of the user’s
position, speed, direction, and cell geometry. The user mobility
models found in the literature assume straight line movement
or constant speed [10]–[13], which does not reflect reality.

In order to develop time-varying movement patterns, we
model a moving user as a dynamic linear system driven by
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(a)

(b)

Fig. 2. Local mobility model.

deterministic command and random acceleration
shown in Fig. 2(a). In real situations, the acceleration range
for a moving user can be fairly wide. Furthermore, traffic
lights and road turns can lead to abrupt changes in speed.
In order to recreate such sudden and unexpected changes,
while covering the wide acceleration range, is modeled
as a semi-Markov process with a finite number of “states”

as possible discrete levels of acceleration. A
semi-Markov process implies the Markovian state transition
probability and random duration of time in one state prior
to switching to another state [22]. Random acceleration
is modeled as a zero-mean Gaussian random variable with a
variance that is chosen to cover the “gap” between adjacent
acceleration states. Fig. 2(b) shows the conditional distribution
of given a particular state , for , within
the acceleration range . This modeling idea
has successfully been applied in tactical weapon systems for
maneuvering target tracking by Singer [17] and Moose [18].

The following two subsections present the mathematical
description of the local mobility model in terms of dynamical
equations and measurement equations.

1) Dynamical Equations for a Moving User:Based on the
model described above, the dynamical equations are derived
for continuous-time movement, and are then expressed in
discrete time according to the standard discretization proce-
dure, thereby providing accurate statistical representation of
the movement behavior.

It is known that in two-dimensional Cartesian coordinates,
the movement can be described by a first-order vector dif-
ferential equation [23] with the dynamic state vector

, where and represent the
position at time , and their first-order derivatives of
and represent the relative speed along theand
directions. Furthermore, let denote the
two-dimensional driving command with and as
independent semi-Markovian processes acting in theand
directions, respectively, and let denote

the two-dimensional random acceleration vector; we have

(1)

where

with

Random acceleration is correlated in time, i.e., if a
moving object is accelerating at time, it is likely to continue
accelerating at time for sufficiently small . A typical
representative model of the correlation function is [17]

(2)

where is a 2 2 identity matrix, is the variance of
the random acceleration of a single dimension, andis the
reciprocal of the random acceleration time constant. Such a
random process can be obtained by passing the white Gaussian
signals through a one-pole shaping
filter, where and are uncorrelated

with (3)

Combining (1) and (3), and applying the state-space method,
the discrete-time dynamic equation can be expressed as the
following in terms of discrete time Gaussian white noise
and driving command (for the derivation, see part A of
the Appendix):

(4)

where

The dimension of the dynamic state vector is now extended
to three states per Cartesian axis which represent position,
velocity, and acceleration, respectively.and are the state
and disturbance transition matrices relating the system at times

and .
2) Measurement Equations:In existing cellular systems,

the distance between the mobile and a known base station
is practically observable. Such information is inherent in the
forward link RSSI (or received signal strength indication) of
a reachable base station. Measured in decibels at the mobile
station, RSSI can be modeled as the sum of two terms: one due
to path loss, and another due to shadow fading. Fast fading is
neglected assuming that a low-pass filter is used to attenuate
Rayleigh or Rician fade. Therefore, the RSSI from a particular
cell , , can be formulated as [20]

(5)

where is a constant determined by transmitted power,
wavelength, and antenna gain ofcell . is a slope index (typ-
ically, for highways and for microcells in a city),



926 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 16, NO. 6, AUGUST 1998

Fig. 3. Mobility prediction.

and is the logarithm of the shadowing component, which
is found to be a zero-mean Gaussian random variable with
standard deviation 4–8 dB. represents the distance between
the mobile and base station ofcell , which can be further
expressed in terms of the mobile’s position ( ) at
time and the location of base station ( )

(6)

To locate a moving user in the two-dimensional domain,
at least three independent distance measurements are needed
[23]. The necessary data are available in GSM systems where
each 0.48s, the mobile samples the forward link signal levels
of six neighboring cells [6]. For this problem, we select the
three largest measurements to form the observation vector

, which is nonlinearly related to dynamic
states :

(7)

where can be derived from (5) and (6).
Applying the linearization method used inextended Kalman

filer design [23], where the linearization takes place about
the filter’s estimated trajectory, the linearized measurement
equation becomes

with (8)

where is the optimal estimate of .

III. T HE HIERARCHICAL LOCATION PREDICTION ALGORITHM

The algorithm proposed for mobility prediction is illustrated
in Fig. 3. As shown, user mobility prediction is carried out at
two levels—local prediction(LP) andglobal prediction(GP).
LP provides a best estimate of the next cell to be crossed based
on instantaneous trajectory tracking and cell geometry, while
GP identifies the overall movement pattern of the mobile.
With LP, a high degree of accuracy for next-cell prediction
is achieved without any assumption of the user’s mobility
history. Furthermore, the UMP identification error is greatly
reduced since GP uses the prediction data from LP to look
ahead before making a decision on the best matched pattern.
Details follow.

A. High-Level Global Prediction

For global prediction, we solve the following problem: given
a number of UMP’s for the current time interval, a UAP which
reflects the current movement trend of the mobile, find the
UMP that best describes the UAP.

A UAP is composed of recently crossed cells, stored in
the mobile’s user mobility buffer, and an LP for the next
cell (if any). Both UAP and UMP are finite-length sequences,
and we assume that the memory length of a UAP does not
exceed the length of the largest stored UMP. Consequently, it
is possible for some subset of the UMP to resemble the UAP
in the sense that the edit distance is the minimum and less than
the matching threshold. If such an approximately matched
sequence is found, the remaining sequence in UMP becomes
the output of the global prediction.

The solution to this problem can be reduced to the following
dynamic programming method [16]: suppose that the UAP

, and the UMP ; we can compute
the edit distance by constructing
an matrix with

ranging from (0, 0) to , as follows: if or
, which means or , where 1

represents the empty sequence, then the matrix values are

if

otherwise.

(9)

As explained in Section II-A, is the spatial weight
of changing to , is the weight of inserting cell

at position , and is the weight of deleting .
Matrix can be evaluated column-by-
column in time ; whenever a
is found that has the property ,
an approximate occurrence of UAP ending at theth cell

is announced. If is the LP of next cell, the future
cell sequence predicted by GP becomes .
An example that clarifies the operation of this procedure is
detailed in Section IV.

Additional matching criteria such as the elapsed time match-
ing [9] can further be applied in case multiple UMP subse-
quences have a similaredit distancefrom UAP.

B. Low-Level Local Prediction

Local prediction can be achieved by two steps:

1) estimate the dynamic state of a moving user using
subsequent RSSI measurements,
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2) select the neighboring cell with maximum cell-crossing
probability as LP output based on dynamic state estima-
tion and cell geometry.

For the first step, an optimum adaptive filter is needed for
real-time dynamic state estimation. As discussed previously,
since the instantaneous sampled trajectory of the mobile is a
nonstationary process, a modified Kalman filter seems to be
the best candidate for achieving low-level local prediction. The
conventional Kalman filter has to be modified since it is not
designed for deterministic input which we represent as
a semi-Markovian process with possible (mobile acceler-
ation) states. We overcome the problem of dealing with the
randomness within the states by using a bank offilters
with each filter operating on a possible state. Fortunately,
as discussed in [18], when certain practical assumptions are
made, the filter bank can be reduced to a single Kalman
filter augmented by a recursive technique of estimating.
The adaptive state estimator then becomes (see part B of the
Appendix for derivation)

(10)
Here, is the standard Kalman gain matrix, and is

an estimate of . The recursive technique for computing
has been developed in detail by Moose [18], the final results
of which are given by the following equations:

(11)

(12)

where the following are true.

1) Let denote all of the measurements up to and
including time , (i.e., ), and let
denote the state at time . The probability density
function has a Gaussian distribution
with mean and vari-
ance ; is the
state estimation matrix; is the measurement error
covariance matrix, and is the Gaussian disturbance
covariance matrix.

2) Probability is obtained
from semi-Markov considerations. This parameter can
be approximated by a valuenear unity for and

for for many tracking situations.
3) The constant (const) is evaluated from

.

Based on this result, we are able to complete the adaptive
linear optimum (in the sense of minimum mean-square error)
filter needed to estimate and predict the dynamic states from
the RSSI measurements. The resulting algorithm turns out to
be very simple and easily implementable in software.

Prediction:

(13)

Minimum prediction MSE matrix:

(14)

Kalman gain matrix:

(15)

Correction:

(16)

Deterministic input update:

(17)

Minimum MSE matrix update:

(18)

where

(19)

for can be obtained using the
recursive equation (12).

To improve the accuracy of local prediction of the next cell
crossing, the second step is carried out when the mobile moves
in an area that is closer to the cell boundary, and where the
chances of it making a dramatic change in its direction and
speed are reduced. This area is called thecorrelation areaof
the neighboring cell, denoted as , for in a
hexagon cell environment, as shown in Fig. 4. The definition
is as follows:

and

where is the 60 sector adjacent to neighboring cell,
is the distance between the mobile [with coordinate

] and serving base station [with coordinate
], is the distance threshold that determines the

confidence in the prediction result,is the moving direction,
and is the bearing of cell vertex , . Note
that since fast-moving users are more likely to follow straight
line constant velocity trajectories than the slower ones,can
be set dynamically to achieve early prediction for a given
prediction confidence.

Once the moving user steps into thecorrelation area, the
cell-crossing probability can be calculated based on the user’s
dynamic state, i.e.,

cell

with

where is the probability density function of the
moving direction given the dynamic state .

Applying the minimum error predictioncriterion, the pre-
diction result of the next-crossing cell is

next cell argmax cell
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Fig. 4. Cell geometry.

Calculation of cell is not trivial in general since is
nonlinearly related to the dynamic state , i.e.,

(20)

where is the velocity vector. Since
is part of , it also has a Gaussian distribution with mean

and variance . If , the case when the speed
of the mobile station is very slow, becomes a simple
uniform distribution over , and

cell with

For more general cases, numerical methods have to be used
to calculate . However, if the variance of is small,

can be approximated by a Gaussian distribution. We
achieve this by assuming that within the correlation area, there
is only a small change in velocity, then (20) can be linearized
as

(21)

where

(22)

is the change of velocity between timeand with
. Since has a Gaussian distribution with mean

and covariance , becomes

(23)

with

Notice that for small , we assume ; if
, then the cell-crossing probability can be

Fig. 5. A practical situation necessitates looking-ahead mode for UMP
identification.

represented by a function, i.e.,

cell

with (24)

can be easily calculated from cell geometry. For example,

(25)

where is the cell radius, is the position of the
mobile station, and is the location of the base station
of the current cell.

Note that, although the calculations shown above are for
the classical hexagonal cell geometry case, they can easily be
carried out for a variety of other shapes as well, which may be
closer to reality than the idealized coverage span considered
in our calculations.

The significance of trajectory tracking-based local predic-
tion is that a kind of looking-ahead mode can be enabled
in UMP identification. In this mode, the decision about the
matched UMP is postponed until we look ahead at the pre-
diction of a subsequent cell based on trajectory tracking. As
a result, UMP identification error can be greatly reduced,
especially in the cell where there are multiple possible leaving
UMP’s and the crossed cell sequence is not enough to identify
the current UMP, for example, as shown in Fig. 5.
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Fig. 6. Actual and predicted user trajectories.

IV. SIMULATION AND RESULTS

To examine the performance of HLP, a simple simulation is
carried out for the conventional hexagon cell environment.
The simulated service area contains 30 base stations with
cell radius of 4 km, as shown in Figs. 6 and 8. No consti-
tutional constraints are assumed, and the mobile is permitted
to move to any cell in the network along random trajectories
with nonconstant speed. The moving dynamics are based
on the movement model discussed in Section II, except that
the acceleration is preset so that a known trajectory can
be achieved for the purpose of performance tests. On-line
mobility-related information includes recently crossed cells
stored in a user mobility buffer and subsequent forward link
RSSI measurements of the current cell and two neighboring
cells. Simulation parameters are summarized in the Table I. In
order to cover the range of dynamic acceleration10 m/s
10 m/s five levels (0, 2.5, 7.5) m/s are selected as the
states of the deterministic driving input.

A. Results from Local Prediction

Fig. 6 shows the results from trajectory tracking of three
moving users. The dashed curve depicts the actual trajectory
(UAP), and the solid curve shows the predicted trajectory.
Fig. 7 demonstrates the result of time-varying velocity predic-
tion. The initial value of the dynamic state is estimated from
the averaged RSSI value with a position error up to 1000 m
and a speed error up to 5 m/s. Because of the strong “pull-
in” power of the filter, it turns out that the adaptive filter

TABLE I
SIMULATION PARAMETERS

is relatively insensitive to the initial conditions. The result
of LP for the next-cell crossing is summarized in Table II
with prediction ratios 75, 80, 100% for users 1, 2, and 3,
respectively. Here, the prediction ratio is defined as the ratio
of the number of cells correctly predicted to the total number
of cells need to be predicted in the path.

On analyzing the prediction results of the next-cell crossing,
together with the mobile’s trajectory tracking, we find that
a high degree of prediction accuracy is achieved once the
Kalman filter becomes stable. The error caused by the initial
instability is limited to the prediction of the first cell crossed at
the beginning of the journey. In the stable state, the prediction
accuracy is related to the geometric relation of the mobile’s
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Fig. 7. Actual and predicted user speed.

TABLE II
PREDICTION RESULT OF NEXT-CELL CROSSING

trajectory and cell boundary, which can be compensated by
UMP matching.

B. Results from Global Prediction

Fig. 8 shows the results from global prediction, where a
moving user is simulated with two possible UMP’s, UMP
( ) and UMP ( ). In order
to identify the UMP from the tracked UAP, a recursive
approximate pattern-matchingalgorithm is implemented with
the matching threshold as 3 and the mobile’s user mobility
buffer size as 4, which means that the GP output is available
when the user reaches the fourth cell. The GP output along
the user moving path is given in Table III.

For cell , the edit distance,for UMP and UMP , is
identical (i.e., UAP UMP UAP UMP ). Since
no pattern can be identified, HLP gives the prediction of the
next cell crossed based on what is provided by LP. For cell

, UMP is identified as the matched pattern, therefore, the
GP output becomes the LP output () and the remaining cell
sequence on UMP( ). Fig. 9 shows the matrices used
for edit distancecalculation at cell , which demonstrate the
recursive procedure that was described in Section III-A. Line
segments in the matrices mark the direct arc in thedependency
graph, going straight down or down at an angle or to the
right. Notice that the path with minimum spatial weight may
not be unique, which may result in different predictions. For
example, in the matrix for UMP, if is viewed as the result
of insertion, will follow as part of the global prediction;
otherwise, the cell after should be since is the result

Fig. 8. Actual and predicted user trajectories with multiple potential UMP’s.

TABLE III
GLOBAL PREDICTION RESULT

of changing . In this case, we select the second possibility,
which is reasonable since is closer to the destination.

It is important to note that at cell , both UMP and
UMP have two cells that appear in UAP; if thestate-matching
method as described in [9] is used instead, UMPwould not
be identified since the UMPand UMP will have the same
degree of similarity as UAP.

V. PREDICTION PERFORMANCE

In this section, we discuss the evaluation results of the av-
erage prediction performance of the proposed HLP algorithm.

Let represent the probability of a correct local next
cell prediction, let denote thea priori
probability of crossing a neighboring cell, and let
represent the conditional probability that we decide cellto be
the next-crossing cell given that cellis the actual cell that the
user will cross next. Then

(26)
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Fig. 9. Matrices used forapproximate pattern matchingfor cell c9, with ĉ10

as the local prediction of the next-crossing cell.

can be obtained by integrating over setwhich
contains all possible values of dynamic state

(27)

The last equation is obtained due to the fact that local
prediction is independent of the mobility history
reflected in .

Assuming that the next-cell prediction is made when the
user enters thecorrelation area , and that, has
uniform distribution over , we can further simplify the
estimation by only considering a finite number of positions
on the boundary of correlation areaAB, as shown in Fig. 4.
Since AB , we have

(28)

hence, the estimation results overAB can serve as a lower
bound. is further calculated for a spectrum of values
representing the standard deviation of log-normal shadowing

and the residual time when prediction is made for a
given acceleration range . Fig. 10 illustrates
the parametric behavior of for residual time between 10
and 50 s, and standard deviation of shadowing from 4 to 8
dB with m/s . Fig. 10 can be extremely useful
for providing a quick, first-cut estimate of the prediction
performance for the wireless ATM system.

For GP, if the mobile’s movement is classifiable, i.e., a
matched UMP has been found, the prediction performance is
linearly related to the mobile’s random factor( determines
the degree of randomness in choosing the next cell based on

Fig. 10. Parametric behavior of probability of correctness for local prediction
Pl.

a uniform distribution [9]). The probability of a correct GP is

(29)

where is the number of neighboring cells from which
the next cell for the mobile may be chosen. Obviously,
GP is not reliable if is high (unclassifiable movement
in [9] corresponds to the case when ). However,
prediction of the next cell to be crossed can still be achieved
in HLP with a high degree of accuracy since LP is completely
independent of the long-term mobility patterns. Fig. 11 shows
the performance of our HLP algorithm in comparison to the
MMP algorithm proposed in [9]. The figure illustrates next-
cell prediction versus change in the random factorused for
UAP. With HLP, if is greater than a threshold, , trajectory-
tracking-based LP is enabled for next-cell prediction. A logical
choice of is the value of of the inflection point (0.3 in
Fig. 11), i.e.,

(30)

In Fig. 11, the value of is obtained for a residual time
s, m/s , and dB. Comparing

HLP with MMP (the dotted line obtained from pure pattern
matching [9]), it is clear that the prediction accuracy of
HLP shows a marked improvement over MMPunclassifiable
intercell movement.
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Fig. 11. Comparison of probability of correctness of the next-crossing cell using HLP and MMP [9].

VI. SYSTEMS IMPLEMENTATION

We now present two examples to illustrate how HLP can
be applied within a wireless ATM system. The examples
include a prediction-based dynamic virtual connection tree
(PVCT) strategy for providing enhanced connection manage-
ment functionality, and aprediction-based dynamic location
updatestrategy.

For the sake of this explanation, a minimal system archi-
tecture is assumed. Specifically, we assume that the wireless
ATM system consists of: 1) a wired backbone infrastructure
that supports ATM packet transport; 2) a collection of ra-
dio base station transreceivers, each of which is connected
to the fixed wired infrastructure, and each of which sup-
ports on-demand packet access to a shared radio channel
(the base stations provide connectivity to all mobiles within
their area of influence called a cell; and 3) a set of mobile
users who are equipped with portable RF wireless terminals.
These users (mobiles) are free to roam anywhere in the
wireless network, relying on the system to maintain con-
tinuous connectivity even as they move from one cell to
another.

To implement the HLP algorithm in wireless ATM systems,
we notice that both Kalman filtering and the approximate
pattern-matching algorithm have a recursive nature and modest
use of memory storage, which make it feasible to be im-
plemented as a low-power, embedded software process. The
computation load of Kalman filtering can be further lowered
by taking advantage of matrix sparseness or matrix symmetry

which will significantly reduce the number of additions and
multiplications needed to implement the matrix equations [23].
Furthermore, if the measurement availability and rate are high,
as the sampling interval of 0.5 s used in the simulation,
the error covariance and corresponding Kalman gain do not
change much from one cycle to the next. Then, instead of
updating these quantities every cycle, doing so at a lower
rate will result in a substantial amount of computational
savings.

To reduce signaling traffic, distribute computation load,
and improve system security while still achieving location
and speed prediction, we suggest implementing the HLP
algorithm within the mobile hosts rather than in the base
stations. By storing the historical long-term movement patterns
(UMP’s) and the current movement history (UAP) within
the mobile, security against unwanted predictors and locators
can be provided. Additional information needed by the HLP
algorithm to function correctly, such as cell identification
numbers and cell topology, can be obtained from the base
station broadcasting on a protected control channel at the
beacon frequency in each cell. The results from HLP are trans-
mitted to the network infrastructure for predictive mobility
management.

A. Prediction-Based Dynamic Virtual Connection Trees

As explained in Section I, thevirtual connection tree(VCT)
approach [2] maintains QoS by minimizing latency during
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handoffs initiation and completion, by minimizing cell loss,
and by reducing processing delay during handoff. The strength
of the VCT is in the admission control and rerouting algo-
rithms which are fairly simple to implement. The primary
drawback of the VCT approach is its inefficient use of net-
work resources, a potential for causing system overload,
and a long setup processing time needed for assigning vir-
tual connection (VC) numbers on a typically large area.
System inefficiencies occur since the preassigned VC’s do
not accurately account for the mobile’s current and pro-
jected movement patterns. Consequently, many preassigned
VC’s are wasted, and efficient resource reservation cannot be
achieved.

While keeping the advantages of the VCT approach, we
propose to reduce its disadvantages by dynamically allocating
VC’s based on location prediction. When a matched UMP is
found, the mobile informs the current serving base station of
the results of the HLP algorithm, which include identifiers
for the cells in the path of the mobile’s predicted trajectory
and the mobile’s predicted speed (cell-dwell time) in these
cells. Using this information, the system sets up end-to-
end connections with appropriate resources from the base
stations in the predicted cells. A set ofvirtual circuit iden-
tifier numbers(VCN’s) is associated with these connections
and passed on to the mobile. Each of these connections
is maintained by the system (VCN stays valid) for a time
duration determined from the mobile’s predicted velocity and
predicted cell dwell time. In the case when no UMP is
found to match the UAP and only information from LP is
available, VCN’s of the most likely neighboring cells are
assigned to the mobile. By following the fairly accurate
hints about the mobile’s trajectory, provided by the HLP,
unwanted cell overloading is reduced, admission control is
faster, and system efficiency is superior since only a subset
of the VCT footprint (cluster of base stations) is involved
in resource reservation for each ATM connection. Thus, the
PVCT approach trades off minimal QoS reliability for vastly
improved system efficiency when compared to the native
exhaustive VCT approach.

B. Prediction-Based Dynamic Location Update

HLP is based on the belief that, at a global level, a user’s
movement pattern is fairly regular, and can be approximated
by a representative UMP. (Implicit in this statement is the fact
that, with time, the user “learns” and stores the regular patterns
of its movement.) Therefore, for the purpose of location
tracking, the predefined zones, as proposed in the two-tier
architecture in [4], can dynamically be mapped to the matched
UMP obtained from the GP. As long as the mobile follows
the assumed UMP, no location update is necessary since the
current location server can preinform the rest of the predicted
location servers through the wired network. Therefore, the
mobile can continue to use the services without conventional
registration and location update procedures when it arrives at
the zone.

In the special case when no UMP is found to match
UAP, the conventional location update method can be enabled

to collect location information with a lower periodicity. As
most mobile users are quite regular in their daily movement,
signaling traffic due to location update can be significantly
reduced.

VII. CONCLUSION

We have explored the fundamental problem of providing
lifetime connectivity to ongoing sessions initiated by mobile
users in a cell-based wireless ATM network. The motivation
behind this research is derived from the recognition that the
performance of the mobility management subsystem is key to
any QoS-based wireless ATM network.

The approach we took was to develop a robust algorithm
for predicting the future locations and speeds of the mobiles.
In order to develop such an algorithm, we proposed a novel
human-centric pseudostochastic mobility model that rejects
the notion that all movement is ad hoc. With this refined
observation of human mobility behavior, we developed a
two-level hierarchical location prediction (HLP) algorithm for
accurate prediction of the cells the mobile will cross during
the lifetime of its connection. The HLP algorithm had two
main components in it: 1) global prediction and 2) local
prediction.

For global prediction, we proposed anapproximate pattern-
matchingalgorithm good for any finite sequence comparisons.
We showed that this algorithm improves the prediction ac-
curacy by abstracting the geometric similarity between two
cell sequences which may otherwise seem dissimilar. Our
method effectively enlarges the area covered by a UMP, mak-
ing pattern classification flexible and robust, while reducing
memory requirements significantly. Only a few UMP’s have
to be stored as they can represent a large number of mobility
patterns, needed for accurate intercell prediction.

For local prediction, we applied classical stochastic signal
processing techniques to extract user mobility information
from noisy measurements. Analysis and simulation results
proved that aself-adaptive extended Kalman filterprovides
a high degree of accuracy for next-cell location and instan-
taneous speed prediction. Local prediction in HLP was kept
independent of global prediction (vice versa is not true) so that
reasonably accurate short-distance prediction can be obtained
even when the system has no knowledge of the user’s historical
mobility patterns.

Finally, HLP is independent of the architecture of the under-
lying wireless ATM system. Two strategies,prediction-based
dynamic virtual connection trees(PVCT) andprediction-based
dynamic location update, were presented as examples of de-
ployable predictive mobility management in wireless ATM
networks.

APPENDIX

A. Derivation of Discrete-Time Equations for a Mobile User

The continuous-time dynamic equation has the form

(31)



934 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 16, NO. 6, AUGUST 1998

where

with variance

Sampling the process every s, the appropriate (discrete-
time) dynamic equations are given by

(32)

Since

(33)

it follows that

(34)

These terms can be calculated using eigenvalue analysis.
The eigenvalues of satisfy

so that (35)

It can be verified that

(36)

where

Since is white noise, for so that
is a discrete-time white noise sequence. The covariance

matrix of is given by

(37)

where

B. Derivation of the Adaptive State Estimator

The desired estimator is to be the conditional mean given by

(38)

where denotes all of the measurements up to and
including time (i.e., ). Define as
the probability that the input is in state at time given
the data sequence , can be represented
by

(39)

Combining (39) and (40)

(40)

where

(41)

Denoting , we have

(42)
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Assuming that the probability of state transition between
any two adjacent time samples is small, the first term

can be approximated by a Gaussian
density, which can be established from the Kalman filtering
algorithms conditioned on , i.e.,

(43)

where is the one-step prediction error matrix in
the Kalman algorithm, and is the measurement noise
covariance matrix.

Expanding

(44)

The last equation is obtained by observing that and
are strongly dependent; actually, aids in determin-

ing ; therefore, can be expressed as
. It has been pointed out that for uniform sam-

pling of a semi-Markovian process this transition probability
only depends on the sampling interval. A good engineering
approximation is [7]

(45)

Combining (40) and (42), we finally get the recursive
equation to compute

(46)
where is a normalization constant.

If the covariance matrix of the random acceleration and
measurement noise and does not change with the input
states , it is possible to greatly simplify the Kalman filter
bank structure to only one Kalman filter. In this case, the
Kalman gain becomes the same for each

. By adding the weighted estimates from the
bank of filters and again making the approximation that
the weighting coefficients change very little from sample to
sample, i.e., , it follows that the
adaptive estimator reduces to

(47)
where

(48)

with given by (43) and the standard
Kalman gain.
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