
Joinads: a retargetable control-flow construct for

reactive, parallel and concurrent programming

Tomas Petricek
1
, Don Syme

2

1 Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic
2 Microsoft Research, Cambridge, United Kingdom

tomas@tomasp.net, dsyme@microsoft.com

Abstract. Modern challenges led to a design of a wide range of programming

models for reactive, parallel and concurrent programming, but these are often

difficult to encode in general purpose languages. We present an abstract type of

computations called joinads together with a syntactic language extension that

aims to make it easier to use joinads in modern functional languages.

 Our extension generalizes pattern matching to work on abstract computations.

It keeps a familiar syntax and semantics of pattern matching making it easy to

reason about code, even in a non-standard programming model. We demonstra-

te our extension using three important programming models – a reactive model

based on events; a concurrent model based on join calculus and a parallel model

using futures. All three models are implemented as libraries that benefit from

our syntactic extension. This makes them easier to use and also opens space for

exploring new useful programming models.

1 Introduction

Today, we often write programs for environments that are in some way non-standard

when contrasted to traditional expression-based computation. In parallel program-

ming, multiple functions can execute at one time; in concurrent programming, we

need to express synchronization of multiple processes; in reactive programming, we

write code that waits for events from the GUI or completion of background tasks and

acts in response. Academia offers many programming models for these domains, and

more and more of them are being used by main-stream developers, though often awk-

wardly through object-model, library-based encodings.

This raises the question of providing language support for those models. Speciali-

zed languages become overly specific, while library-based solutions often result in

unnatural encodings where the declarative intent of the program is lost. We believe

that the best option lies in between. If we identify a repeating pattern, we can provide

a syntactic extension that enables a large number of programming models. This

approach is successfully utilized by Haskell’s monads [2], computation expressions in

F# [1] and LINQ queries in C# [25]. Language supported, pattern-based approaches

are particularly appealing in the area of reactive, parallel and concurrent program-

ming, where we need to choose between different programming models.

2 T. Petricek, D. Syme

In this paper, we identify a repeating pattern that we call joinad. It arises when we

need to pattern match on abstract computations as opposed to pattern matching on

concrete values. The key contributions of our work are the following:

Practically useful. Joinads naturally fit with many important programming models.

Section 2 supports this claim by showing a reactive programming model (Section 2.1)

inspired by imperative streams and FRP [17, 23]; a concurrent programming model

(Section 2.2) based on join calculus [5] bearing similarities to JoCaml and Cω [6, 7];

and a parallel programming model (Section 2.3) based on futures, which can nicely

express some aspects of Manticore [12].

Lightweight extension. We present a construct that allows pattern matching on

abstract computations (e.g. event, channel or future). The construct is just a syntactic

sugar and is translated into calls to two simple operations provided by a joinad. We

describe the two operations as well as the translation procedure (Section 3).

Well-founded. As usual when describing abstract computation types, we identify a

set of laws that needs to be followed by joinad operations. We chose laws such that

our generalized pattern matching construct keeps the familiar semantics of ML-style

pattern matching (Section 4) and we describe the relationship between joinads and

other abstract computations (Section 5), most notably commutative monads.

This paper presents joinads as an extension to F# computation expressions. Thanks to

their relations with monads, the presented ideas could be applied to any language with

support for monads. We start by giving background on F# computation expressions.

1.1 Computation expressions

Computation expressions [1, 3] are a syntactic mechanism in F# that provides

convenient syntax for a range of computations. As with Haskell monadic syntax and

LINQ queries, F# computation expressions are just a syntactic mechanism. In

practice, they are usually used with established computation type (e.g. monoids,

monads or additive monads [4; Ch. 2]) which satisfies specific laws.

We demonstrate computation expressions using a reactive programming model

described in detail in [4]. As we’ll see later, the work presented in this paper can be

used (among other things) to encode complex interaction patterns in this reactive

programming model. We work with values of type Event<'T>, which represents

running computations that emit values of type 'T along the way. The type can be mo-

deled as a sequence of time-value pairs. The following example shows a counter of

button clicks that limits the rate of clicks to one per second:

1: let rec counter n = event {
2: let! me = btn.Click
3: let! _ = Event.sleep 1000
4: return n + 1
5: return! counter (n + 1) }

Joinads: a retargetable construct for reactive, parallel and concurrent programming 3

Let’s look what the code does assuming appropriate definitions of event, Event.sleep

and the Click property. The recursive function returns a computation Event<int>. Its

body is wrapped in an event { ... } block, which provides the meaning of constructs

such as return, return! and let! The computation starts by waiting for the btn.Click

event (line 2). The meaning of the let! construct is that it waits for the first occur-

rence of the specified event and runs the rest of the code once afterwards. Next, we

create an event that will occur after 1 second and wait for its occurrence (line 3).

The return construct is used to emit values from the event (line 4). We can call it

multiple times because an event may be triggered repeatedly. The return! construct

performs a tail-call to implement looping and wait for the next Click.

In computation expressions, the semantics of the control-flow in the syntactic

fragment enclosed by event { .. } is determined by the operations on the event

value. The expected types of operations and translation rules are defined in [3], and in

this case the event value supports the following operations:

event.Bind : M<'T> → ('T → M<'R>) → M<'R>
event.Combine : M<'T> * M<'T> → M<'T>
event.Return : 'T → M<'T>
event.ReturnFrom : M<'T> → M<'T>

The type signatures bare similarity to the MonadPlus typeclass in Haskell, although the

library for events described above does not satisfy the usual MonadPlus laws. The

following snippet demonstrates how the translation looks for the above example.

let rec counter n =
 event.Bind (btn.Click, fun me ->
 event.Bind (Event.sleep 1000, fun _ ->
 event.Combine (
 event.Return n,
 event.ReturnFrom (counter (n + 1)))))

Uses of the let! construct are translated into calls to the Bind operation and the rest of

the computation is transformed to a continuation. In this example, binding waits for

the first occurrence of an event, and so the continuation will be called at most once,

but other computations may run it multiple times (e.g. each time an event occurs).

The return construct is translated into calls to the Return operation, which has the

same type signature as monadic unit and lifts a value 'T into a computation M<'T>. The

return! construct translates to the ReturnFrom operation, in this case implemented as

an identity function. Finally, when we sequence multiple event generators, the com-

putations are combined using the Combine construct.

2 Joinads by example

In this section, we introduce our lightweight syntactic extension and we’ll explore

several practically useful programming models that can benefit from it. The trans-

lation to underlying operations will be discussed later in section 3.

4 T. Petricek, D. Syme

2.1 Reactive programming with Events

First we show a more complicated example of user interaction logic using the reactive

programming model from the previous section. Let’s say that we want to reset the

counter by pressing the Esc key. In practice, this means that we need to wait for either

Click event or KeyDown event that carries the Esc key code as a value. Unfortunately,

this cannot be written directly using existing constructs. Using let! we can wait for

multiple events only sequentially, but not in parallel.

What do we do about this? One approach is to use a combinator library that allows

us to filter and compose events. However, a combinator approach to waiting for

multiple events makes the syntax more involved and forces the programmer to leave

the computation expression syntax. A solution using this approach is available in

Appendix A [27] for a comparison. The alternative approach described in this paper is

to add a new syntactic control flow construct to computation expressions to express

joining computations. What should this control flow operator look like? It should

• accept multiple computations as inputs,

• select a computation path based on the values produced by computations, and

• enable its use with different computation types (be retargetable).

In functional languages, the similarity to pattern matching is easy to note. In ML-like

languages, the match construct accepts multiple values as inputs, and selects a

computation path based on the inputs. In our proposal, the match! construct plays an

analogous role for computations. Similarly, just as let! allows binding on computa-

tion values, match! allows pattern matching on computation values. The resettable

counter can be written as follows:

1: let rec counter n = event {
2: match! btn.Click, win.KeyDown with
3: | !_, _ -> let! _ = Event.sleep 1000
4: return n + 1
5: return! counter (n + 1)
6: | _, !Esc -> return! counter 0 }

The match! construct takes one or more computations as arguments (line 2). In our

example, we give it two values of type Event<'T>. The patterns (lines 3, 6) belong to a

syntactic category that we call computation patterns. The form “!<pat>” means that

we need to obtain a matching value from the computation (in case of events, we wait

until the event emits a value matching the underlying ML-style pattern <pat>). We

call this form a binding pattern. The second form (written as “_”) is called ignore

pattern. It specifies that we don’t need to obtain any value from the computation.

Note that there is a difference between “_” and “!_” (line 3). In the first case, we don’t

need the value at all, while in the second case, we need to obtain the value (i.e. wait

for an event), but we ignore it afterwards.

The meaning of match! in the event-based reactive programming model is that it

waits for the first combination of event occurrences that enables a particular clause

(when waiting for multiple events, the values of last occurrences are remembered). In

Joinads: a retargetable construct for reactive, parallel and concurrent programming 5

the previous example, each clause has only a single binding pattern meaning that each

clause waits only for a single event. In the second clause (line 7), the value has to

match the pattern Esc, so some occurrences of the KeyDown event will be ignored.

As we’ll see in section 4, match! should generalize the let! construct. This is

indeed the case for events – if we pattern match only on a single computation and

specify an irrefutable pattern, the behavior is the same as when using let!

2.2 Concurrent programming with Joins

Our second example is based on Join calculus [5], which provides a declarative way

for expressing synchronization patterns. Joins have been used as a basis for language

features [6, 7], but it is also possible to implement them as a library [8, 10].

Programming model based on Join calculus expresses synchronization using

channels and join patterns. A channel can be viewed as a thread-safe container into

which we can put values without blocking the caller. A join pattern is a rule saying

that a certain combination of values in channels should trigger a specified reaction

(and remove values from the channels). We can use match! to specify the combina-

tions of values by pattern matching on multiple channels of type Channel<'T>. A

simple unbounded buffer can be implemented as follows:

1: let put = new Channel<int>()
2: let get = new Channel<ReplyChannel<int>>()
3:
4: let buffer = join {
5: match! put, get with
6: | !num, !chnl -> chnl.Reply num }

We start by defining two channels (lines 1, 2). The first one is used for putting values

into the buffer, and the second one for obtaining them. The type ReplyChannel<int> is

essentially a continuation taking int. In our example, the continuation will be invoked

by the buffer as soon as a value (provided by a call to put) is available.

The buffer is implemented using the match! construct provided by the join compu-

tation expression. Join patterns are encoded as clauses of match! In our example, we

have a single clause (line 6) consisting of two bindings. This means that the body will

be called when there is a value in the put channel and also a continuation in the get

channel. When the join pattern fires, we pass the num value to the continuation.

The match! construct becomes essential when we have multiple join patterns, each

of them binding on one or more channels. The next example shows a buffer that

allows storing of two distinct types of values using two input channels. Values can be

read using a get channel that returns them as strings. This logic can be encoded using

two join patterns that bind on the get channel and one (putInt) or the other

(putString) channel for storing values:

1: let putInt = new Channel<int>()
2: let putString = new Channel<string>()
3: let get = new Channel<ReplyChannel<string>>()

6 T. Petricek, D. Syme

4: let buffer = join {
5: match! get, putInt, putString with
6: | !chnl, !n, _ -> chnl.Reply ("Number: " + (string n))
7: | !chnl, _, !s -> chnl.Reply ("String:" + s) }

Each clause combines two channels (lines 6 and 7) and ignores the third one. If we

get an integer value and a reply channel chnl in the first join pattern (line 6), we send

a number converted to a string as the reply. The second clause is quite similar.

2.3 Parallel programming with Futures

The next example shows how to multiply values in a binary tree. We use futures –

values of type Future<'T> that represent a computation that is (or may be) running in

the background and eventually produces a value of type 'T. A computation future

creates a future and can wait for the results of another future using let! The match!

extension allows us to wait for multiple features and pattern matches on the results:

1: let rec treeProd t = future {
2: match t with
3: | Node(lt, rt) ->
4: match! treeProd lt, treeProd rt with
5: | !0, _ -> return 0
6: | _, !0 -> return 0
7: | !a, !b -> return a * b
8: | Leaf(n) -> return n }

The function creates a future. It starts by standard pattern matching on the tree (line

2), which is just a discriminated union. If the tree is a node, we recursively call the

treeProd function to create two futures to process both of the branches (line 4). Then

we need to wait for both of the futures to produce a value, which is done using pattern

matching on computations with two binding patterns (line 7). In case when one future

completes earlier and produces 0, we know the overall result immediately, and we can

return it (lines 5 and 6) and the computation automatically cancels remaining futures.

When using match! with futures, it waits for the first future to produce a value and

then checks whether it can run any of the clauses. If yes, it follows the selected clause

and cancels remaining futures. In the other case, it waits for more futures to complete.

This behavior is in many ways similar to the pcase construct in Manticore [12].

3 A language extension for joinads

In this section, we present our language extension for F# in detail. Just like other

aspects of F# computation expressions, it is a retargetable control flow construct im-

plemented by a syntactic translation to function calls. We first show how the

translation works on the examples from the previous section and then present formal

translation rules. The joinad operations and laws are discussed in section 4.

Joinads: a retargetable construct for reactive, parallel and concurrent programming 7

3.1 Introducing operations

The translation of match! requires three functions – the usual map operation and two

additional operations that we call merge and choose. In this section, we gradually

introduce how the translation works, starting with a case where we need only map and

a slightly simplified choose that doesn’t allow refutable patterns in match! clauses.

Simplified choose. We start by looking at the example from section 2.1, but we

ignore the fact that the second clause contains a pattern that may fail – we reset the

counter whenever KeyDown occurs. This way, we get an example with multiple clauses

where each clause contains a single binding with an irrefutable pattern.

In this case, we only need an operation that allows us to select one of the clauses.

This is the purpose of the choose operation, which is explained in figure 1. The trans-

lation also needs the map operation, which allows us to transform values “inside the

computation” and has the usual type ('T → 'R) → M<'T> → M<'R>.

Fig. 1. The choose operation takes a list of computations. Each of the computations in

the list carries (or produces) other computations. These wrapped computations represent

the body of the clause that should be called when the clause is selected.

If you’re familiar with the definition of monads in terms of join, map and unit, you

probably noticed that our choose operation looks similar to join, except that it takes a

list of M<M<'a> computations instead of just a single one. As we’ll see in section 4,

when a joinad is also a monad, choose should be a generalization of join. The

following code shows desugared version of the example from section 2.1:

1: let rec counter n =
2: choose [
3: map (fun me -> event {
4: let! _ = Event.sleep 1000
5: return n + 1
6: return! counter (n + 1) }) btn.Click;
7: map (fun ke -> event {
8: return! counter 0 }) win.KeyDown]

The two clauses are translated into two elements of a list passed as the argument to

choose (line 2). Each computation representing a clause is constructed by taking the

source event and projecting values emitted by the event into event computations

representing the body that should be executed when the clause is selected. This is

done using the map operation (lines 3 and 7).

8 T. Petricek, D. Syme

Merge. In the previous example each clause contained only a single binding pattern.

This means that we didn’t need to obtain values from a combination of computations.

If we wanted to do that, we would need some way of merging two computations into

a single one carrying tuples. To enable this, we need a merge operation with the

following type signature:

val ⦷ : M<'T> → M<'U> → M<'T * 'U>

The merge operation takes two computations that may produce value of different

types and constructs a single computation that produces a tuple of values. The

meaning of the operation depends on the computation, but as we’ll see in section 4, it

should obey certain laws. We’ll discuss how the operation relates to monads in

section 5 and focus on the translation for now. The following example shows a

translated version of the first join pattern example from section 2.2:

1: let buffer =
2: choose [map (fun (num, chnl) ->
3: join { chnl.Reply num }) (put ⦷ get)]

The example uses only a single clause, so the list passed to choose consists of a single

element. However, the clause binds on multiple channels, so we need to obtain values

from both of the channels simultaneously. This is achieved by merging the channels

using the ⦷ operator (line 3) and then passing the merged channel as an argument to

the map operation.

The implementation of the merge operation for join channels is perhaps the most

complicated of the three examples presented in this paper. It creates a new channel,

but when a clause is selected in choose, we need to remove values from the original

channels (e.g. put and get). This can be done by creating an alias channel that keeps

reference to the two merged channels.

Choose with failures. Earlier we wrote that choose takes a list of computations that

contain computations to be used if the clause is selected. This simplification does not

take failure into account. The outer computation consists of pattern matching that may

fail or succeed. In the second case, it produces an inner computation that can be used

to continue with. As a result, the actual type signature of choose is the following1:

val choose : list<M<Option<M<'T>>>> -> M<'T>

When compared with the signature shown earlier, the only change is that the inner

computation of type M<'T> is now wrapped in the Option<'T> type. This allows us to

represent pattern matching failure using the None case.

We show the handling of patterns by looking at the translation of an example from

section 2.3, which used futures to multiply leaves of a tree. The next snippet shows

the code generated for the last two clauses of the example (one that returns 0 when the

1 In a strict language like F#, we also need to delay the inner M<'T> value to ensure that its side-

effects are evaluated only when a clause is actually selected. We omit this detail for simplicity.

Joinads: a retargetable construct for reactive, parallel and concurrent programming 9

second future yields 0 and the general case where we wait for both of the futures).

The values f1 and f2 store the result of calling treeProd on lt and rt respectively:

1: choose [
2: ...
3: map (function
4: | 0 -> Some(future { return 0 })
5: | _ -> None) f2;
6: map (function
7: | a, b -> Some(future {
8: return a * b })) (f1 ⦷ f2)]

The first clause is translated into a computation that applies the map operation to the f2

value (lines 3-5). The function given as an argument to map will be called with a value

produced by the future. If the value is 0, it returns Some with a future computation to

run (line 4) otherwise it returns None (line 5). The second clause is similar, with the

exception that it first combines two futures using the ⦷ operator. Also, the pattern

matching always succeeds, so we can omit the None case.

The interesting case is when f2 produces a value. As a result, the first computation

of the list we gave to choose also finishes. If it produces Some, the choose operation

cancels all other futures in the list (which in turn cancels the f1 future) and runs the

body provided in the Some discriminator. In case of non-zero result, it continues

waiting until some other clause produces Some. If all clauses produce None, then the

choose operation throws a match failure exception.

3.2 Syntax extension

Let’s now look at the syntax of the extension. In addition the standard constructs des-

cribed in [3], we add a single new case to the cexpr category. The match! construct

takes one or more expressions as arguments and has one or more computation clauses.

cpat = _ Ignore pattern

 !pat Binding pattern

ccl = cpat1, …, cpatk → cexpr Computation match clause

cexpr = match! expr1, …, exprk with Computation pattern matching

 ccl1 | … cclp …consisting of several clauses

Clauses do not consist of standard patterns, but are formed by computation patterns.

As a result, we need to introduce a new syntactic category for clauses (ccl) and a new

category for computation patterns (cpat). A computation clause looks like an ordinary

clause with the exception that it consists of computation patterns (instead of usual

patterns) and the body is computation expression (instead of standard expression).

Finally, a computation pattern can be either an ignore pattern (written as “_”) or a

binding pattern, which is a standard F# pattern [3] prefixed with “!”. In the next

section, we describe a translation that transforms computation expressions that

include match! into ordinary F# expressions.

10 T. Petricek, D. Syme

3.3 Translation semantics

We extend the translation defined in the F# specification [3] by adding a case for the

match! construct. The translation is defined in terms of three functions. The first one

translates an expression into an expression that does not contain computation expres-

sions. The next two deal with the body of a computation expression and with a com-

putation clause respectively:

⟦ – ⟧ : expr → expr

⟪ – ⟫ : cexpr → ident → expr

 ⟨ – ⟩ : ccl → ident ⨯ [ident] → expr

In section 1.1, we saw that computation expressions are wrapped in blocks denoted by

an expression. The result of this expression is a computation builder, which exposes

operations defining the computation. In the translation, we pass the builder to fun-

ctions as an identifier and we write mergem to denote the merge operation provided by

the builder m. When translating a clause, we also need the parameters of match! These

are stored in fresh values and passed to the function as a list of identifiers:

⟦ expr { cexpr } ⟧ ≡ let m = expr in ⟪ cexpr ⟫m

⟪ match! expr1, …, exprk with ccl1 | … cclp ⟫m ≡ (1)

 let v1 = expr1 in … let vk = exprk in

 choosem [⟨ ccl1 ⟩m, (v1, …, vk); … ; ⟨ cclp ⟩m, (v1, …, vk)]

⟨ cpat1, …, cpatk -> cexpr ⟩m, (v1, …, vk) ≡ (2)

 mapm (function (pat1, …), patn → Some ⟪ cexpr ⟫m

 | _ → None) cargs

 where { (pat1, v1), … , (patn, vn) } = { (pat, vi) | cpati = !pat; 1 ≤ i ≤ k} (3)

 cargs = v1 ⦷m … ⦷m vn-1 ⦷m vn for n ≥ 1 (4)

When translating match! (1), we construct a fresh value for each of the arguments.

This guarantees that any side-effects of an expression used as an argument will be

executed only once. The rest of the rule translates all clauses of the pattern matching

and creates an expression that chooses one clause using the choosem operation.

When translating a clause (2), we need to identify which of the arguments are

matched against a binding pattern. This is done in (3) where we construct a list

containing an ordinary pattern (extracted from the binding pattern) and a computation,

to be matched against it. Next we combine all needed computations into a single value

using the merge operator (4). The operator is left-associative, so when combining for

example three values, the resulting value will be of type M<('a * 'b) * 'c>.

Finally, we pass the combined computation as an argument to a mapm operation. In

the projection function, we match the actual value against the patterns extracted

earlier. If the matching succeeds we return Some containing a delayed and translated

body of the clause. The result of translating a computation clause will be of a type

M<Option<M<'T>>>.

Joinads: a retargetable construct for reactive, parallel and concurrent programming 11

4 Reasoning about joinads

So far we described the types of operations that a joinad defines and a translation of

our lightweight language extension. Since joinad is an abstract type, we cannot

specify the semantics of its operations in general. However, we can specify that they

should follow certain algebraic laws. In this paper, we identify some of the laws that

we would expect to hold about joinad operations. We do not claim a completeness

result for these laws (c.f. Haskell Arrows [22, 26] where equations have been iden-

tified, but a completeness result is elusive).

When using standard pattern matching, we have an intuition about transformations

that do not change the meaning of program. Since our match! construct bears a close

resemblance to an ordinary match, we want to be able to perform similar syntactic

transformations without affecting the semantics:

match! mp(1), … , mp(n) with

| cpat1, p(1), … , cpat1, p(n) → cexpr1 | …

| cpatk, p(1), … , cpatk, p(n) → cexprk

…are equivalent for any

permutation p of n numbers
(1)

match! m with

| !var1 -> cexpr1

| !var2 -> cexpr2

≡
match! m with

| !var1 -> cexpr1
(2)

match! m with

| !var → cexpr
≡

let! var = m

cexpr
(3)

match! m {return e1},

 m {return e2} with

| !var1, !var2 → cexpr

≡
m { match e1, e2 with

 | var1, var2 → cexpr }
(4)

We first give a brief overview of the equations and then look at simpler laws about

the underlying joinad operations that are imposed by these equations. Many joinads

are also monads, so the equations (3) and (4) relate match! to operations that are pro-

vided by monad (namely map and join used by let! and unit that enables return).

1. Reordering. The equation specifies that we can arbitrarily reorder the arguments

and patterns of the match! construct. By analyzing the translation, we can see that

this only changes the order in which the merge operations are applied to computa-

tions, so this equation imposes laws about the merge operation.

2. Match first. In ML-style pattern matching, we can have overlapping patterns and

the compiler can identify unreachable clauses. This equation provides similar

guarantees for the match! construct. The equation matches on a single computation,

so it talks only about the choose operation.

3. Correspondence to binding. When the computation provides the let! construct, the

meaning of match! in the degenerated case should be the same as the meaning of

let! This equation describes a relation between choose and monadic join.

12 T. Petricek, D. Syme

4. Matching on units. If the computation is a monad and provides the unit operation,

we can specify the meaning of matching on two unit computations. This equation

specifies an important aspect of merge operation.

As already mentioned, joinad needs to provide the map operation. This is common to

all functors and follows usual laws [9], so we only discuss laws specific to joinads.

4.1 Merge operation laws

The laws that should hold about the merge operation are shown below. The first two

laws follow from the equation 1 (reordering of arguments). The last law should hold

only when the computation is a monad. In that case, the third law is required by the

equation 4 (matching on units).

 u ⦷ (v ⦷ w) ≡ map assoc ((u ⦷ v) ⦷ w) (associativity)

 u ⦷ v ≡ map swap (v ⦷ u) (commutativity)

 unit (a, b) ≡ (unit a) ⦷ (unit b) (unit merge)

 where assoc ((a, b), c) = (a, (b, c))

 swap (a, b) = (b, a)

The first two laws can be used to arbitrarily rearrange elements of a sequence of

computations that is aggregated using the merge operation. Together with properties

of the translation, this guarantees that the equation 1 will hold. The commutativity law

reveals an interesting connection with commutative monads as discussed in section 5.

The third law (unit merge) specifies how the merge operation behaves with respect

to monadic unit. In general, we cannot say anything about matching on multiple com-

putations, so this law provides some cue in the case when the computation is a monad.

We can apply the law to the equation 4 to get an equation that uses match! with only a

single argument. The rest of the equation follows from the fact that choose is a

generalization of the monadic join (as discussed in section 4.2). It may be of interest

that this law is very similar to the product law of causal commutative arrows [24].

4.2 Choose operation laws

The equation 2 (match first) talks almost directly about the choose operation, but we

can express it in simpler terms. The equation 3 (correspondence to binding) shows a

property that must hold when a joinad computation also forms a monad. The laws

about choose are less obvious due to the complexity of the operation:

 choose [map (λv → Some expr1) m;

 map (λv → Some expr2) m] (ordering)

 ≡ choose [map (λv → Some expr1) m]

 join ≡ choose [map (λv → Some v)] (correspondence)

Joinads: a retargetable construct for reactive, parallel and concurrent programming 13

The ordering law is essentially the result of direct translation of the equation 3. It

specifies that the order of elements in the list given as the argument to choose matters.

In particular, when there are multiple clauses that always succeed, the body of the

first clause will be used. Notably, this law doesn’t hold for proposals based on the

MonadPlus typeclass [11, 13]. However, we believe that this property of ML-style

pattern matching is essential for pattern matching on computations as well.

The correspondence law is applicable only when the computation in question is

also a monad meaning that it defines operations join and unit in addition to map,

choose and merge. This is a very important special case that deserves our attention.

As mentioned in section 3.1, the choose operation bears similarity with monadic join.

The type of the argument of choose is list<M<Option<M<'T>>>>, while the type of join

is just M<M<'T>>. The correspondence law essentially says that the natural restriction of

choose to a compatible type is equivalent to join.

5 Related notions of computations

In this section, we discuss the relationship between joinads and monads. We also

discuss an interesting special case when a computation is joinad and a commutative

monad. Due to the space restrictions, we do not cover relationships with idioms (also

called applicative functors), which use an operation similar to our merge, but with a

different set of laws. The thesis [4; Ch. 5] contains more information on this topic.

5.1 Relation with monads

When the computation is a monad, it needs to follow a set of monad laws that can be

formulated in terms of join, map and unit (see for example [20]). As we saw earlier, if

a joinad is also a monad, the join operation can be expressed in terms of choose. This

means that a computation which is both joinad and monad can be defined just in terms

of choose, merge, map and unit.

In that case, the computation needs to obey the laws of joinads (discussed in the

previous section), but also the laws of monads [20]. We need to reformulate monad

laws that involve join in terms of choose, but this can be easily done by replacing join

with the definition from the correspondence law.

5.2 Commutative monads

Judging just from the type signature, it appears that the merge operation could be im-

plemented in terms of bind and unit in a monad. We would use bind to obtain values

of both of the arguments in a sequence and then use unit to return a tuple. This

definition has the right type, but if we look at the merge laws, we find a problem.

The commutativity law of joinads states that reordering the arguments of merge

should not change the meaning of code. This is not, in general, true for the imple-

mentation described above. However, if the monad is commutative, we can change

14 T. Petricek, D. Syme

the order of bindings and as a result, the described implementation is correct. A more

detailed discussion including a proof can be found in [4].

In a retrospective on Haskell, Peyton-Jones considered working with commutative

monads as an interesting open problem [15]. Although they are not sequential, the do-

notation in Haskell [18] allows only a sequential use. Our work makes it possible to

write code that works with commutative monads using match! in a less sequential

fashion. If we have four values of type Option<float> representing possibly missing

values that specify a location of a rectangle, we can calculate the center as follows:

maybe { match! mleft, mtop, mwid, mhgt with
 | !l, !t, !w, !h -> return (l + w/2), (t + h/2) }

We cannot write the calculation directly because the values are not numeric types. We

first need to extract their content. Using match! we can obtain values of all four

computations at once. In commutative monads, the order doesn’t matter, so the

arguments to match! can be rearranged in any way. The syntax still requires rebinding

of all symbols, but it offers an interesting alternative to the do-notation.

6 Related work

We describe operations and laws of abstract computation type that makes it possible

to pattern match on computations when composing computations. We discussed how

our work relates to monads [2] and in particular commutative monads. Other related

computation types include applicative functors [16] and arrows [22, 24]. We believe

that it may be interesting to consider whether a generalized pattern matching could be

provided for these computation types as well.

The existing work on pattern matching mainly focused on providing better abstrac-

tion when pattern matching on standard values [14, 21]. Extensible patterns in Scala

[19] can be composed using custom operators. Some authors propose a generalization

based on MonadPlus typeclass. This is an interesting alternative to our work, but it does

not obey all equations that we intuitively expect (as discussed in section 4).

7 Conclusions

The key claim of this paper is that a range of important modern programming models

can be encoded using a simple, retargetable and theoretically well founded extension.

We describe an abstract computation joinad and present a lightweight syntax that

makes it easy to write computations based on joinads. We use it for encoding

declarative programming models for concurrent, reactive and parallel programming.

Our extension is based on pattern matching and we made a special effort to

preserve the user’s existing intuition about pattern matching. By requiring several

laws about basic operations, we guarantee that usual reasoning about pattern matching

applies in our generalized scenario. Finally, joinads are related to monads and in

particular commutative monads which are considered as an interesting open problem.

Joinads: a retargetable construct for reactive, parallel and concurrent programming 15

We show that our construct can be used for binding on multiple monadic values in a

less sequential fashion than the one provided by the usual do-notation.

Acknowledgements. We thank to Simon Peyton Jones, Gregory Neverov, Dmitry

Lomov and James Margetson as well as anonymous reviewers of this and earlier

version of this paper for useful comments and suggestions. Tomas is grateful to

Microsoft Research for an internship invitation, which made this work possible.

References

1. Syme, D., Granicz, A., Cisternino, A.: Expert F#, Chapter 9. Apress, 2007.

2. Wadler, P.: Monads for functional programming. In LNCS Vol. 925, 1995.

3. Syme, D.: F# Language Specification. http://tinyurl.com/fsspec

4. Petricek, T.: Reactive Programming with Events (Master thesis), Charles University, 2010

5. Fournet, C., Gonthier, G.: The reflexive CHAM and the join-calculus. In POPL 1996.

6. Fournet, C., Le Fessant, F., Maranget, L., Schmitt, A.: JoCaml: A language for concurrent

distributed and mobile programming. In LNCS Vol. 2638, pp 129–158. Springer, 2002.

7. Benton, N., Cardelli, L., Fournet, C.: Modern concurrency abstractions for C#. ACM Trans.

Program. Lang. Syst, 26(5):769–804, 2004.

8. Russo, C.: The Joins concurrency library. In PADL 2007.

9. Yorgey, B.: The Typeclassopedia. The Monad.Reader Issue 13. http://tinyurl.com/tycls

10. Haller, P., Van Cutsem, T.: Implementing Joins using Extensible Pattern Matching. In

Proceedings of COORDINATION 2008.

11. Tullsen, M.: First class patterns. In Proceedings of PADL 2000

12. Fluet, M., Rainey, M., Reppy, J., Shaw, A.: Implicitly-threaded parallelism in Manticore. In

Proceedings of ICFP 2008

13. Syme, D., Neverov, G., Margetson, J.: Extensible Pattern Matching via a Lightweight

Language Extension. ICFP, 2007.

14. Wadler, P: Views: A way for pattern matching to cohabit with data abstraction. POPL 1987

15. Peyton Jones, S.: Wearing the hair shirt - A retrospective on Haskell. Invited talk, POPL

2003. Slides available online at: http://tinyurl.com/haskellretro

16. McBride, C. and Paterson, R.: Applicative programming with effects, Journal of Func.

Programming 18 (2008)

17. Scholz, E.: Imperative streams - a monadic combinator library for synchronous

programming. In Proc. ICFP, 1998

18. S. Peyton Jones (ed.): Haskell 98 Language and Libraries—The Revised Report.

Cambridge University Press, 2003.

19. Emir, B., Odersky, M., Williams, J.: Matching Objects with Patterns. ECOOP 2007

20. King, D., Wadler, P.: Combining Monads. In Proceedings of Glasgow Workshop on

Functional Programming, 1992.

21. Okasaki, C.: Views for Standard ML. In Proc. of Workshop on ML, pp. 14–23, 1998.

22. Hughes, J.: Generalising Monads to Arrows, in Sci. of Comput. Prog. 37, pp. 67-111, 2000.

23. Elliott, C.: Declarative event-oriented programming. In Proceedings of PPDP 2000

24. Liu, H., Cheng, E., Hudak, P.: Causal commutative arrows and their optimization. ICFP ‘09

25. Bierman, G. M., Meijer, E., Torgersen, M.: Lost In Translation: Formalizing Proposed

Extensions to C#. In Proc. of OOPSLA 2007

26. Lindley, S., Wadler, P., Yallop, J.: The arrow calculus, Technical Report EDI-INF-RR-

1258, School of Informatics, University of Edinburgh, 2008

27. Petricek, T., Syme, D.: Joinads (Extended version). Online at: http://tinyurl.com/joinads

