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Abstract. Modern challenges led to a design of a wide range of programming 

models for reactive, parallel and concurrent programming, but these are often 

difficult to encode in general purpose languages. We present an abstract type of 

computations called joinads together with a syntactic language extension that 

aims to make it easier to use joinads in modern functional languages.  

 Our extension generalizes pattern matching to work on abstract computations. 

It keeps a familiar syntax and semantics of pattern matching making it easy to 

reason about code, even in a non-standard programming model. We demonstra-

te our extension using three important programming models – a reactive model 

based on events; a concurrent model based on join calculus and a parallel model 

using futures. All three models are implemented as libraries that benefit from 

our syntactic extension. This makes them easier to use and also opens space for 

exploring new useful programming models. 

1 Introduction 

Today, we often write programs for environments that are in some way non-standard 

when contrasted to traditional expression-based computation. In parallel program-

ming, multiple functions can execute at one time; in concurrent programming, we 

need to express synchronization of multiple processes; in reactive programming, we 

write code that waits for events from the GUI or completion of background tasks and 

acts in response. Academia offers many programming models for these domains, and 

more and more of them are being used by main-stream developers, though often awk-

wardly through object-model, library-based encodings.  

This raises the question of providing language support for those models. Speciali-

zed languages become overly specific, while library-based solutions often result in 

unnatural encodings where the declarative intent of the program is lost. We believe 

that the best option lies in between. If we identify a repeating pattern, we can provide 

a syntactic extension that enables a large number of programming models. This 

approach is successfully utilized by Haskell’s monads [2], computation expressions in 

F# [1] and LINQ queries in C# [25]. Language supported, pattern-based approaches 

are particularly appealing in the area of reactive, parallel and concurrent program-

ming, where we need to choose between different programming models. 
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In this paper, we identify a repeating pattern that we call joinad. It arises when we 

need to pattern match on abstract computations as opposed to pattern matching on 

concrete values. The key contributions of our work are the following: 

Practically useful. Joinads naturally fit with many important programming models. 

Section 2 supports this claim by showing a reactive programming model (Section 2.1) 

inspired by imperative streams and FRP [17, 23]; a concurrent programming model 

(Section 2.2) based on join calculus [5] bearing similarities to JoCaml and Cω [6, 7]; 

and a parallel programming model (Section 2.3) based on futures, which can nicely 

express some aspects of Manticore [12]. 

Lightweight extension. We present a construct that allows pattern matching on 

abstract computations (e.g. event, channel or future). The construct is just a syntactic 

sugar and is translated into calls to two simple operations provided by a joinad. We 

describe the two operations as well as the translation procedure (Section 3). 

Well-founded. As usual when describing abstract computation types, we identify a 

set of laws that needs to be followed by joinad operations. We chose laws such that 

our generalized pattern matching construct keeps the familiar semantics of ML-style 

pattern matching (Section 4) and we describe the relationship between joinads and 

other abstract computations (Section 5), most notably commutative monads. 

This paper presents joinads as an extension to F# computation expressions. Thanks to 

their relations with monads, the presented ideas could be applied to any language with 

support for monads. We start by giving background on F# computation expressions. 

1.1 Computation expressions 

Computation expressions [1, 3] are a syntactic mechanism in F# that provides 

convenient syntax for a range of computations. As with Haskell monadic syntax and 

LINQ queries, F# computation expressions are just a syntactic mechanism. In 

practice, they are usually used with established computation type (e.g. monoids, 

monads or additive monads [4; Ch. 2]) which satisfies specific laws.  

We demonstrate computation expressions using a reactive programming model 

described in detail in [4]. As we’ll see later, the work presented in this paper can be 

used (among other things) to encode complex interaction patterns in this reactive 

programming model. We work with values of type Event<'T>, which represents 

running computations that emit values of type 'T along the way. The type can be mo-

deled as a sequence of time-value pairs. The following example shows a counter of 

button clicks that limits the rate of clicks to one per second:  

1: let rec counter n = event { 
2:   let! me = btn.Click 
3:   let! _ = Event.sleep 1000 
4:   return n + 1 
5:   return! counter (n + 1) } 
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Let’s look what the code does assuming appropriate definitions of event, Event.sleep 

and the Click property. The recursive function returns a computation Event<int>. Its 

body is wrapped in an event { ... } block, which provides the meaning of constructs 

such as return, return! and let! The computation starts by waiting for the btn.Click 

event (line 2). The meaning of the let! construct is that it waits for the first occur-

rence of the specified event and runs the rest of the code once afterwards. Next, we 

create an event that will occur after 1 second and wait for its occurrence (line 3).  

The return construct is used to emit values from the event (line 4). We can call it 

multiple times because an event may be triggered repeatedly. The return! construct 

performs a tail-call to implement looping and wait for the next Click. 

In computation expressions, the semantics of the control-flow in the syntactic 

fragment enclosed by event { .. } is determined by the operations on the event 

value. The expected types of operations and translation rules are defined in [3], and in 

this case the event value supports the following operations: 

event.Bind       : M<'T> → ('T → M<'R>) → M<'R> 
event.Combine     : M<'T> * M<'T> → M<'T> 
event.Return      : 'T → M<'T> 
event.ReturnFrom  : M<'T> → M<'T> 

The type signatures bare similarity to the MonadPlus typeclass in Haskell, although the 

library for events described above does not satisfy the usual MonadPlus laws. The 

following snippet demonstrates how the translation looks for the above example. 

let rec counter n =  
  event.Bind (btn.Click, fun me -> 
    event.Bind (Event.sleep 1000, fun _ -> 
      event.Combine ( 
          event.Return n,  
          event.ReturnFrom (counter (n + 1))))) 

Uses of the let! construct are translated into calls to the Bind operation and the rest of 

the computation is transformed to a continuation. In this example, binding waits for 

the first occurrence of an event, and so the continuation will be called at most once, 

but other computations may run it multiple times (e.g. each time an event occurs).  

The return construct is translated into calls to the Return operation, which has the 

same type signature as monadic unit and lifts a value 'T into a computation M<'T>. The 

return! construct translates to the ReturnFrom operation, in this case implemented as 

an identity function. Finally, when we sequence multiple event generators, the com-

putations are combined using the Combine construct. 

2 Joinads by example 

In this section, we introduce our lightweight syntactic extension and we’ll explore 

several practically useful programming models that can benefit from it. The trans-

lation to underlying operations will be discussed later in section 3. 
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2.1 Reactive programming with Events 

First we show a more complicated example of user interaction logic using the reactive 

programming model from the previous section. Let’s say that we want to reset the 

counter by pressing the Esc key. In practice, this means that we need to wait for either 

Click event or KeyDown event that carries the Esc key code as a value. Unfortunately, 

this cannot be written directly using existing constructs. Using let! we can wait for 

multiple events only sequentially, but not in parallel.  

What do we do about this? One approach is to use a combinator library that allows 

us to filter and compose events. However, a combinator approach to waiting for 

multiple events makes the syntax more involved and forces the programmer to leave 

the computation expression syntax. A solution using this approach is available in 

Appendix A [27] for a comparison. The alternative approach described in this paper is 

to add a new syntactic control flow construct to computation expressions to express 

joining computations. What should this control flow operator look like? It should 

• accept multiple computations as inputs, 

• select a computation path based on the values produced by computations, and 

• enable its use with different computation types (be retargetable). 

In functional languages, the similarity to pattern matching is easy to note. In ML-like 

languages, the match construct accepts multiple values as inputs, and selects a 

computation path based on the inputs. In our proposal, the  match! construct plays an 

analogous role for computations. Similarly, just as let! allows binding on computa-

tion values, match! allows pattern matching on computation values. The resettable 

counter can be written as follows: 

1: let rec counter n = event { 
2:   match! btn.Click, win.KeyDown with 
3:   | !_, _   -> let! _ = Event.sleep 1000 
4:                return n + 1 
5:                return! counter (n + 1) 
6:   | _, !Esc -> return! counter 0 } 

The match! construct takes one or more computations as arguments (line 2). In our 

example, we give it two values of type Event<'T>. The patterns (lines 3, 6) belong to a 

syntactic category that we call computation patterns. The form “!<pat>” means that 

we need to obtain a matching value from the computation (in case of events, we wait 

until the event emits a value matching the underlying ML-style pattern <pat>). We 

call this form a binding pattern. The second form (written as “_”) is called ignore 

pattern. It specifies that we don’t need to obtain any value from the computation. 

Note that there is a difference between “_” and “!_” (line 3). In the first case, we don’t 

need the value at all, while in the second case, we need to obtain the value (i.e. wait 

for an event), but we ignore it afterwards. 

The meaning of match! in the event-based reactive programming model is that it 

waits for the first combination of event occurrences that enables a particular clause 

(when waiting for multiple events, the values of last occurrences are remembered). In 
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the previous example, each clause has only a single binding pattern meaning that each 

clause waits only for a single event. In the second clause (line 7), the value has to 

match the pattern Esc, so some occurrences of the KeyDown event will be ignored. 

As we’ll see in section 4, match! should generalize the let! construct. This is 

indeed the case for events – if we pattern match only on a single computation and 

specify an irrefutable pattern, the behavior is the same as when using let! 

2.2 Concurrent programming with Joins 

Our second example is based on Join calculus [5], which provides a declarative way 

for expressing synchronization patterns. Joins have been used as a basis for language 

features [6, 7], but it is also possible to implement them as a library [8, 10].  

Programming model based on Join calculus expresses synchronization using 

channels and join patterns. A channel can be viewed as a thread-safe container into 

which we can put values without blocking the caller. A join pattern is a rule saying 

that a certain combination of values in channels should trigger a specified reaction 

(and remove values from the channels). We can use match! to specify the combina-

tions of values by pattern matching on multiple channels of type Channel<'T>. A 

simple unbounded buffer can be implemented as follows: 

1: let put = new Channel<int>() 
2: let get = new Channel<ReplyChannel<int>>() 
3: 
4: let buffer = join { 
5:   match! put, get with  
6:   | !num, !chnl -> chnl.Reply num }  

We start by defining two channels (lines 1, 2). The first one is used for putting values 

into the buffer, and the second one for obtaining them. The type ReplyChannel<int> is 

essentially a continuation taking int. In our example, the continuation will be invoked 

by the buffer as soon as a value (provided by a call to put) is available.  

The buffer is implemented using the match! construct provided by the join compu-

tation expression. Join patterns are encoded as clauses of match! In our example, we 

have a single clause (line 6) consisting of two bindings. This means that the body will 

be called when there is a value in the put channel and also a continuation in the get 

channel. When the join pattern fires, we pass the num value to the continuation. 

The match! construct becomes essential when we have multiple join patterns, each 

of them binding on one or more channels. The next example shows a buffer that 

allows storing of two distinct types of values using two input channels. Values can be 

read using a get channel that returns them as strings. This logic can be encoded using 

two join patterns that bind on the get channel and one (putInt) or the other 

(putString) channel for storing values: 

1: let putInt = new Channel<int>() 
2: let putString = new Channel<string>() 
3: let get = new Channel<ReplyChannel<string>>() 
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4: let buffer = join { 
5:   match! get, putInt, putString with 
6:   | !chnl, !n, _ -> chnl.Reply ("Number: " + (string n))  
7:   | !chnl, _, !s -> chnl.Reply ("String:" + s) } 

Each clause combines two channels (lines 6 and 7) and ignores the third one. If we 

get an integer value and a reply channel chnl in the first join pattern (line 6), we send 

a number converted to a string as the reply. The second clause is quite similar. 

2.3 Parallel programming with Futures 

The next example shows how to multiply values in a binary tree. We use futures – 

values of type Future<'T> that represent a computation that is (or may be) running in 

the background and eventually produces a value of type 'T. A computation future 

creates a future and can wait for the results of another future using let! The match! 

extension allows us to wait for multiple features and pattern matches on the results: 

1: let rec treeProd t = future { 
2:   match t with 
3:   | Node(lt, rt) -> 
4:       match! treeProd lt, treeProd rt with 
5:       | !0, _  -> return 0 
6:       | _, !0  -> return 0 
7:       | !a, !b -> return a * b 
8:   | Leaf(n) -> return n } 

The function creates a future. It starts by standard pattern matching on the tree (line 

2), which is just a discriminated union. If the tree is a node, we recursively call the 

treeProd function to create two futures to process both of the branches (line 4). Then 

we need to wait for both of the futures to produce a value, which is done using pattern 

matching on computations with two binding patterns (line 7). In case when one future 

completes earlier and produces 0, we know the overall result immediately, and we can 

return it (lines 5 and 6) and the computation automatically cancels remaining futures.  

When using match! with futures, it waits for the first future to produce a value and 

then checks whether it can run any of the clauses. If yes, it follows the selected clause 

and cancels remaining futures. In the other case, it waits for more futures to complete. 

This behavior is in many ways similar to the pcase construct in Manticore [12].  

3 A language extension for joinads 

In this section, we present our language extension for F# in detail. Just like other 

aspects of F# computation expressions, it is a retargetable control flow construct im-

plemented by a syntactic translation to function calls. We first show how the 

translation works on the examples from the previous section and then present formal 

translation rules. The joinad operations and laws are discussed in section 4. 
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3.1 Introducing operations 

The translation of match! requires three functions – the usual map operation and two 

additional operations that we call merge and choose. In this section, we gradually 

introduce how the translation works, starting with a case where we need only map and 

a slightly simplified choose that doesn’t allow refutable patterns in match! clauses.  

Simplified choose. We start by looking at the example from section 2.1, but we 

ignore the fact that the second clause contains a pattern that may fail – we reset the 

counter whenever KeyDown occurs. This way, we get an example with multiple clauses 

where each clause contains a single binding with an irrefutable pattern. 

In this case, we only need an operation that allows us to select one of the clauses. 

This is the purpose of the choose operation, which is explained in figure 1. The trans-

lation also needs the map operation, which allows us to transform values “inside the 

computation” and has the usual type ('T → 'R) → M<'T> → M<'R>. 

 

Fig. 1. The choose operation takes a list of computations. Each of the computations in  

the list carries (or produces) other computations. These wrapped computations represent 

the body of the clause that should be called when the clause is selected. 

If you’re familiar with the definition of monads in terms of join, map and unit, you 

probably noticed that our choose operation looks similar to join, except that it takes a 

list of M<M<'a> computations instead of just a single one. As we’ll see in section 4, 

when a joinad is also a monad, choose should be a generalization of join. The 

following code shows desugared version of the example from section 2.1: 

1: let rec counter n =  
2:   choose [ 
3:     map (fun me -> event { 
4:       let! _ = Event.sleep 1000 
5:       return n + 1 
6:       return! counter (n + 1) }) btn.Click; 
7:     map (fun ke -> event { 
8:       return! counter 0 }) win.KeyDown ] 

The two clauses are translated into two elements of a list passed as the argument to 

choose (line 2). Each computation representing a clause is constructed by taking the 

source event and projecting values emitted by the event into event computations 

representing the body that should be executed when the clause is selected. This is 

done using the map operation (lines 3 and 7). 
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Merge. In the previous example each clause contained only a single binding pattern. 

This means that we didn’t need to obtain values from a combination of computations. 

If we wanted to do that, we would need some way of merging two computations into 

a single one carrying tuples. To enable this, we need a merge operation with the 

following type signature: 

val ⦷ : M<'T> → M<'U> → M<'T * 'U> 

The merge operation takes two computations that may produce value of different 

types and constructs a single computation that produces a tuple of values. The 

meaning of the operation depends on the computation, but as we’ll see in section 4, it 

should obey certain laws. We’ll discuss how the operation relates to monads in 

section 5 and focus on the translation for now. The following example shows a 

translated version of the first join pattern example from section 2.2: 

1: let buffer =  
2:   choose [ map (fun (num, chnl) ->  
3:     join { chnl.Reply num }) (put ⦷ get) ]  

The example uses only a single clause, so the list passed to choose consists of a single 

element. However, the clause binds on multiple channels, so we need to obtain values 

from both of the channels simultaneously. This is achieved by merging the channels 

using the ⦷ operator (line 3) and then passing the merged channel as an argument to 

the map operation. 

The implementation of the merge operation for join channels is perhaps the most 

complicated of the three examples presented in this paper. It creates a new channel, 

but when a clause is selected in choose, we need to remove values from the original 

channels (e.g. put and get). This can be done by creating an alias channel that keeps 

reference to the two merged channels. 

Choose with failures. Earlier we wrote that choose takes a list of computations that 

contain computations to be used if the clause is selected. This simplification does not 

take failure into account. The outer computation consists of pattern matching that may 

fail or succeed. In the second case, it produces an inner computation that can be used 

to continue with. As a result, the actual type signature of choose is the following1: 

val choose : list<M<Option<M<'T>>>> -> M<'T> 

When compared with the signature shown earlier, the only change is that the inner 

computation of type M<'T> is now wrapped in the Option<'T> type. This allows us to 

represent pattern matching failure using the None case.  

We show the handling of patterns by looking at the translation of an example from 

section 2.3, which used futures to multiply leaves of a tree. The next snippet shows 

the code generated for the last two clauses of the example (one that returns 0 when the 

                                                           
1 In a strict language like F#, we also need to delay the inner M<'T> value to ensure that its side-

effects are evaluated only when a clause is actually selected. We omit this detail for simplicity. 
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second future yields 0 and the general case where we wait for both of the futures). 

The values f1 and f2 store the result of calling treeProd on lt and rt respectively: 

1: choose [ 
2:   ... 
3:   map (function 
4:    | 0 -> Some(future { return 0 }) 
5:    | _ -> None) f2; 
6:   map (function 
7:    | a, b -> Some(future { 
8:        return a * b })) (f1 ⦷ f2) ] 

The first clause is translated into a computation that applies the map operation to the f2 

value (lines 3-5). The function given as an argument to map will be called with a value 

produced by the future. If the value is 0, it returns Some with a future computation to 

run (line 4) otherwise it returns None (line 5). The second clause is similar, with the 

exception that it first combines two futures using the ⦷ operator. Also, the pattern 

matching always succeeds, so we can omit the None case. 

The interesting case is when f2 produces a value. As a result, the first computation 

of the list we gave to choose also finishes. If it produces Some, the choose operation 

cancels all other futures in the list (which in turn cancels the f1 future) and runs the 

body provided in the Some discriminator. In case of non-zero result, it continues 

waiting until some other clause produces Some. If all clauses produce None, then the 

choose operation throws a match failure exception. 

3.2 Syntax extension 

Let’s now look at the syntax of the extension. In addition the standard constructs des-

cribed in [3], we add a single new case to the cexpr category. The match! construct 

takes one or more expressions as arguments and has one or more computation clauses.  

cpat  = _                  Ignore pattern 

     !pat                Binding pattern 

ccl   = cpat1, …, cpatk → cexpr      Computation match clause 

cexpr  = match! expr1, …, exprk with    Computation pattern matching 

     ccl1 | … cclp            …consisting of several clauses 

Clauses do not consist of standard patterns, but are formed by computation patterns. 

As a result, we need to introduce a new syntactic category for clauses (ccl) and a new 

category for computation patterns (cpat). A computation clause looks like an ordinary 

clause with the exception that it consists of computation patterns (instead of usual 

patterns) and the body is computation expression (instead of standard expression). 

Finally, a computation pattern can be either an ignore pattern (written as “_”) or a 

binding pattern, which is a standard F# pattern [3] prefixed with “!”. In the next 

section, we describe a translation that transforms computation expressions that 

include match! into ordinary F# expressions. 
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3.3 Translation semantics 

We extend the translation defined in the F# specification [3] by adding a case for the 

match! construct. The translation is defined in terms of three functions. The first one 

translates an expression into an expression that does not contain computation expres-

sions. The next two deal with the body of a computation expression and with a com-

putation clause respectively: 

⟦ – ⟧  : expr → expr 

⟪ – ⟫  : cexpr → ident → expr 

 ⟨ – ⟩   : ccl → ident ⨯ [ ident ] → expr 

In section 1.1, we saw that computation expressions are wrapped in blocks denoted by 

an expression. The result of this expression is a computation builder, which exposes 

operations defining the computation. In the translation, we pass the builder to fun-

ctions as an identifier and we write mergem to denote the merge operation provided by 

the builder m. When translating a clause, we also need the parameters of match! These 

are stored in fresh values and passed to the function as a list of identifiers: 

⟦ expr { cexpr } ⟧  ≡  let m = expr in ⟪ cexpr ⟫m 

⟪ match! expr1, …, exprk with  ccl1 | … cclp ⟫m   ≡              (1) 

  let v1 = expr1 in …  let vk = exprk in 

  choosem [ ⟨ ccl1 ⟩m, (v1, …, vk); … ; ⟨ cclp ⟩m, (v1, …, vk) ] 

⟨ cpat1, …, cpatk -> cexpr ⟩m, (v1, …, vk)   ≡                  (2) 

  mapm (function (pat1, …), patn → Some ⟪ cexpr ⟫m 

          | _ → None) cargs 

 where  { (pat1, v1), … , (patn, vn) } = { (pat, vi) | cpati = !pat; 1 ≤ i ≤ k}  (3) 

     cargs = v1 ⦷m … ⦷m vn-1 ⦷m vn  for  n ≥ 1           (4) 

When translating match! (1), we construct a fresh value for each of the arguments. 

This guarantees that any side-effects of an expression used as an argument will be 

executed only once. The rest of the rule translates all clauses of the pattern matching 

and creates an expression that chooses one clause using the choosem operation.  

When translating a clause (2), we need to identify which of the arguments are 

matched against a binding pattern. This is done in (3) where we construct a list 

containing an ordinary pattern (extracted from the binding pattern) and a computation, 

to be matched against it. Next we combine all needed computations into a single value 

using the merge operator (4). The operator is left-associative, so when combining for 

example three values, the resulting value will be of type M<('a * 'b) * 'c>. 

Finally, we pass the combined computation as an argument to a mapm operation. In 

the projection function, we match the actual value against the patterns extracted 

earlier. If the matching succeeds we return Some containing a delayed and translated 

body of the clause. The result of translating a computation clause will be of a type 

M<Option<M<'T>>>. 
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4 Reasoning about joinads 

So far we described the types of operations that a joinad defines and a translation of 

our lightweight language extension. Since joinad is an abstract type, we cannot 

specify the semantics of its operations in general. However, we can specify that they 

should follow certain algebraic laws. In this paper, we identify some of the laws that 

we would expect to hold about joinad operations. We do not claim a completeness 

result for these laws (c.f. Haskell Arrows [22, 26] where equations have been iden-

tified, but a completeness result is elusive). 

When using standard pattern matching, we have an intuition about transformations 

that do not change the meaning of program. Since our match! construct bears a close 

resemblance to an ordinary match, we want to be able to perform similar syntactic 

transformations without affecting the semantics: 

match! mp(1), … , mp(n) with  

| cpat1, p(1), … , cpat1, p(n) → cexpr1 | …     

| cpatk, p(1), … , cpatk, p(n) → cexprk 

…are equivalent for any 

permutation p of n numbers 
(1) 

match! m with  

| !var1 -> cexpr1  

| !var2 -> cexpr2 

≡ 
match! m with  

| !var1 -> cexpr1  
(2) 

match! m with  

| !var → cexpr  
≡ 

let! var = m 

cexpr 
(3) 

match!  m {return e1},   

    m {return e2} with  

| !var1, !var2 → cexpr  

≡ 
m { match e1, e2 with  

  | var1, var2 → cexpr } 
(4) 

We first give a brief overview of the equations and then look at simpler laws about 

the underlying joinad operations that are imposed by these equations. Many joinads 

are also monads, so the equations (3) and (4) relate match! to operations that are pro-

vided by monad (namely map and join used by let! and unit that enables return). 

1. Reordering. The equation specifies that we can arbitrarily reorder the arguments 

and patterns of the match! construct. By analyzing the translation, we can see that 

this only changes the order in which the merge operations are applied to computa-

tions, so this equation imposes laws about the merge operation. 

2. Match first. In ML-style pattern matching, we can have overlapping patterns and 

the compiler can identify unreachable clauses. This equation provides similar 

guarantees for the match! construct. The equation matches on a single computation, 

so it talks only about the choose operation. 

3. Correspondence to binding. When the computation provides the let! construct, the 

meaning of match! in the degenerated case should be the same as the meaning of 

let! This equation describes a relation between choose and monadic join. 
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4. Matching on units. If the computation is a monad and provides the unit operation, 

we can specify the meaning of matching on two unit computations. This equation 

specifies an important aspect of merge operation.   

As already mentioned, joinad needs to provide the map operation. This is common to 

all functors and follows usual laws [9], so we only discuss laws specific to joinads. 

4.1 Merge operation laws  

The laws that should hold about the merge operation are shown below. The first two 

laws follow from the equation 1 (reordering of arguments). The last law should hold 

only when the computation is a monad. In that case, the third law is required by the 

equation 4 (matching on units). 

     u ⦷ (v ⦷ w) ≡ map assoc ((u ⦷ v) ⦷ w)  (associativity) 

         u ⦷ v ≡ map swap (v ⦷ u)      (commutativity) 

      unit (a, b) ≡ (unit a) ⦷ (unit b)      (unit merge) 

           where assoc ((a, b), c) = (a, (b, c)) 

              swap (a, b) = (b, a) 

The first two laws can be used to arbitrarily rearrange elements of a sequence of 

computations that is aggregated using the merge operation. Together with properties 

of the translation, this guarantees that the equation 1 will hold. The commutativity law 

reveals an interesting connection with commutative monads as discussed in section 5. 

The third law (unit merge) specifies how the merge operation behaves with respect 

to monadic unit. In general, we cannot say anything about matching on multiple com-

putations, so this law provides some cue in the case when the computation is a monad. 

We can apply the law to the equation 4 to get an equation that uses match! with only a 

single argument. The rest of the equation follows from the fact that choose is a 

generalization of the monadic join (as discussed in section 4.2). It may be of interest 

that this law is very similar to the product law of causal commutative arrows [24]. 

4.2 Choose operation laws 

The equation 2 (match first) talks almost directly about the choose operation, but we 

can express it in simpler terms. The equation 3 (correspondence to binding) shows a 

property that must hold when a joinad computation also forms a monad. The laws 

about choose are less obvious due to the complexity of the operation: 

     choose [ map (λv → Some expr1) m; 

        map (λv → Some expr2) m ]    (ordering) 

    ≡ choose [ map (λv → Some expr1) m ] 

     join ≡ choose [ map (λv → Some v) ]    (correspondence) 
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The ordering law is essentially the result of direct translation of the equation 3. It 

specifies that the order of elements in the list given as the argument to choose matters. 

In particular, when there are multiple clauses that always succeed, the body of the 

first clause will be used. Notably, this law doesn’t hold for proposals based on the 

MonadPlus typeclass [11, 13]. However, we believe that this property of ML-style 

pattern matching is essential for pattern matching on computations as well. 

The correspondence law is applicable only when the computation in question is 

also a monad meaning that it defines operations join and unit in addition to map, 

choose and merge. This is a very important special case that deserves our attention. 

As mentioned in section 3.1, the choose operation bears similarity with monadic join. 

The type of the argument of choose is list<M<Option<M<'T>>>>, while the type of join 

is just M<M<'T>>. The correspondence law essentially says that the natural restriction of 

choose to a compatible type is equivalent to join.  

5 Related notions of computations 

In this section, we discuss the relationship between joinads and monads. We also 

discuss an interesting special case when a computation is joinad and a commutative 

monad. Due to the space restrictions, we do not cover relationships with idioms (also 

called applicative functors), which use an operation similar to our merge, but with a 

different set of laws. The thesis [4; Ch. 5] contains more information on this topic. 

5.1 Relation with monads 

When the computation is a monad, it needs to follow a set of monad laws that can be 

formulated in terms of join, map and unit (see for example [20]). As we saw earlier, if 

a joinad is also a monad, the join operation can be expressed in terms of choose. This 

means that a computation which is both joinad and monad can be defined just in terms 

of choose, merge, map and unit. 

In that case, the computation needs to obey the laws of joinads (discussed in the 

previous section), but also the laws of monads [20]. We need to reformulate monad 

laws that involve join in terms of choose, but this can be easily done by replacing join 

with the definition from the correspondence law. 

5.2 Commutative monads 

Judging just from the type signature, it appears that the merge operation could be im-

plemented in terms of bind and unit in a monad. We would use bind to obtain values 

of both of the arguments in a sequence and then use unit to return a tuple. This 

definition has the right type, but if we look at the merge laws, we find a problem. 

The commutativity law of joinads states that reordering the arguments of merge 

should not change the meaning of code. This is not, in general, true for the imple-

mentation described above. However, if the monad is commutative, we can change 
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the order of bindings and as a result, the described implementation is correct. A more 

detailed discussion including a proof can be found in [4].  

In a retrospective on Haskell, Peyton-Jones considered working with commutative 

monads as an interesting open problem [15]. Although they are not sequential, the do-

notation in Haskell [18] allows only a sequential use. Our work makes it possible to 

write code that works with commutative monads using match! in a less sequential 

fashion. If we have four values of type Option<float> representing possibly missing 

values that specify a location of a rectangle, we can calculate the center as follows: 

maybe { match! mleft, mtop, mwid, mhgt with 
        | !l, !t, !w, !h -> return (l + w/2), (t + h/2) } 

We cannot write the calculation directly because the values are not numeric types. We 

first need to extract their content. Using match! we can obtain values of all four 

computations at once. In commutative monads, the order doesn’t matter, so the 

arguments to match! can be rearranged in any way. The syntax still requires rebinding 

of all symbols, but it offers an interesting alternative to the do-notation.  

6 Related work 

We describe operations and laws of abstract computation type that makes it possible 

to pattern match on computations when composing computations. We discussed how 

our work relates to monads [2] and in particular commutative monads. Other related 

computation types include applicative functors [16] and arrows [22, 24]. We believe 

that it may be interesting to consider whether a generalized pattern matching could be 

provided for these computation types as well. 

The existing work on pattern matching mainly focused on providing better abstrac-

tion when pattern matching on standard values [14, 21]. Extensible patterns in Scala 

[19] can be composed using custom operators. Some authors propose a generalization 

based on MonadPlus typeclass. This is an interesting alternative to our work, but it does 

not obey all equations that we intuitively expect (as discussed in section 4).  

7 Conclusions 

The key claim of this paper is that a range of important modern programming models 

can be encoded using a simple, retargetable and theoretically well founded extension. 

We describe an abstract computation joinad and present a lightweight syntax that 

makes it easy to write computations based on joinads. We use it for encoding 

declarative programming models for concurrent, reactive and parallel programming. 

Our extension is based on pattern matching and we made a special effort to 

preserve the user’s existing intuition about pattern matching. By requiring several 

laws about basic operations, we guarantee that usual reasoning about pattern matching 

applies in our generalized scenario. Finally, joinads are related to monads and in 

particular commutative monads which are considered as an interesting open problem. 
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We show that our construct can be used for binding on multiple monadic values in a 

less sequential fashion than the one provided by the usual do-notation. 
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