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Abstract: This paper describes a new framework for design, implementation and evaluation of software-protection
schemes. Our approach is based on the paradigm of iterated protection, which repeats and combines sim-
ple transformations to build up complexity and security. Based on ideas from the field of complex systems,
iterated protection is intended as an element of a comprehensive obfuscation and tamper-resistance system,
but not as a full-fledged, standalone solution. Our techniques can (and should) be combined with previously
proposed approaches, strengthening overall protection.
A long-term goal of this work is to create protection methods amenable to analysis or estimation of security
in practice. As a step towards this, we present security evaluation via metrics computed over transformed
code. Indicating the difficulty of real-life reverse engineering and tampering, such metrics offer one approach
to move away from ad hoc, poorly analyzable approaches to protection.

1 INTRODUCTION

Open systems, such as PCs and mobile devices, have
long suffered from malicious tampering and reverse
engineering by hackers. To facilitate more secure
code execution, researchers have devised and imple-
mented many approaches that complicate observa-
tion and modification of software. These include
obfuscation (Collberg et al., 1997; Collberg et al.,
1998b), anti-tampering measures (Aucsmith, 1996;
Horne et al., 2001; Jacob et al., 2007), data hid-
ing (Collberg et al., 1998a; El-khalil and Keromytis,
2004), and other protective transformations (Wang
et al., 2000; Anckaert et al., 2004; Tan et al., 2006;
Anckaert et al., 2007a). Such techniques have served
well in various contexts, but few have offered a prac-
tical security analysis to estimate how long a pro-
tected program will remain uncracked in practice.
While solutions exist under certain engineering as-
sumptions (Dedić et al., 2007), a current open prob-
lem is to develop practical protection techniques that
support a realistic security evaluation.

In this paper, we propose a new general approach
to devise transformations that protect code while en-

abling practical assessment of security via quantita-
tive metrics (Anckaert et al., 2007b). The central
idea is to combine and iterate simple transforma-
tions, such as injection of opaque predicates (Coll-
berg et al., 1998b), oblivious hashing (Chen et al.,
2002; Jacob et al., 2007), and control-flow transfor-
mations (Collberg et al., 1997). These transforma-
tions may be far simpler than traditionally applied
techniques, and need not create much obfuscation or
tamper-resistance on their own; the main idea is to
build up complexity by repeated application and re-
combination of simple operations, creating a cascad-
ing effect. Particularly simple yet useful transforma-
tions include injection of inert “chaff” code, as well
as conversion of variable references to be performed
via newly created pointers. Indeed, rather than rely-
ing on well known transformations, iterated protec-
tion may facilitate controllable security and simpler
tool implementation by repeatedly applying straight-
forward primitives.

Our approach was inspired by the field of com-
plex systems, which studies how simple transforma-
tion rules affect the state of abstract systems over
time. For example, cellular automata (CA) such as



the Game of Life (Wolfram, 2002) are represented
as arrays or grids of cells, each in a particular state
(e.g., discrete binary 0 or 1), and updated in discrete
time steps. A function called an update rule is ap-
plied to each neighborhood (e.g., a 3x3 square) in the
grid to yield the state of the center cell after the next
time step. Some surprisingly simple CA can perform
universal computation via emulation of Turing ma-
chines. In essence, iteration of very simple functions
over binary arrays can lead to arbitrary (or emergent)
behavior of the system. By analogy, iteration of sim-
ple transformations can lead to similar complexity in
software code.

In general, complex systems cannot be “short-cut”
to predict states at arbitrary future times; the sys-
tem must actually be run to determine what happens.
Thus, we may not be able to model or predict the
effects of iterating simple transformations over soft-
ware. In terms of security analysis, we do not typi-
cally attempt to predict the outcomes of iterated trans-
formations; instead, we evaluate security via metrics
computed over the final transformed code. In particu-
lar, we use metrics from a study on quantitative eval-
uation of obfuscation (Anckaert et al., 2007b), along
with additional metrics devised for analysis of iter-
ated and recombined transforms. Via heuristics, ex-
periments and analysis, such estimates of complexity
can be associated with actual security. A spectrum of
various metrics offers a means of evaluating complex-
ity and security in terms of real-life tampering and re-
verse engineering.

The rest of this paper is structured as follows. In
Section 2, we provide more explanation and back-
ground on the iteration approach. A list of some
practical protective transformations is found in Sec-
tion 3. Section 4 describes a metric-based approach
towards evaluating the security of iterated and recom-
bined transformations. A tool implementation and ex-
perimental results are the topic of Section 5. We pro-
vide a final assessment and future directions in Sec-
tion 6.

2 ITERATED PROTECTION

We propose iterated protection as a general frame-
work for design, analysis, and implementation of
software-protection techniques. This methodology
involves the iterated application and recombination
of various obfuscating transformations (or primitives)
over code, with the output of each successive transfor-
mation serving as input to the next. Via this strategy,
even simple and easy to implement primitives can be
cascaded to yield effective obfuscation.

As an example, the technique of oblivious hash-
ing (OH) (Chen et al., 2002; Jacob et al., 2007) can
serve as a tamper-resistance primitive. A single OH
transformation injects code to hash a program’s run-
time state (i.e., data and control flow), thus ascertain-
ing execution integrity of the original code. Applying
OH again to the transformed program protects both
the original program and the first OH round. In gen-
eral, each new OH round verifies the integrity of both
the original program and all previous OH rounds.

To increase security further, arbitrary other prim-
itives can be combined and iterated with the OH
rounds. For ease of design and implementation, such
primitives can be quite simple; e.g., conversion of
variable references to pointer references, and even
source-to-source translation among different code di-
alects or languages. Via iteration, the interaction of
simple primitives can achieve the effect of far more
complex obfuscation operators.

An important general principle of the iteration ap-
proach is usage of transformations that appear to be
“weak” or not particularly obfuscating. It is not nec-
essary to eliminate all weaknesses from each trans-
formation operator; instead, we rely on the iterated,
combined effect of multiple operators to augment one
another’s security, essentially “filling in” both known
and unknown holes. To verify this, overall security
can be measured by quantitative metrics, as we dis-
cuss in detail later.

2.1 Related areas

2.1.1 Cryptography

Iterated protection is related to the concept of rounds
in cryptographic schemes such as hash functions and
block ciphers (Menezes et al., 1996). Often chosen
heuristically to resist known and unknown attacks, the
number of rounds determines security and efficiency.
Each individual round may be easily breakable, and
a small number of iterated rounds can usually be at-
tacked successfully. However, once the number of
rounds becomes large enough, an algorithm may sur-
vive in practical use for many years, despite improved
cryptanalysis and more powerful computing systems.

In this spirit, any single obfuscation method can
be treated as a round of an obfuscation algorithm.
The individual techniques may be very simple and not
particularly secure when used alone, but allow us to
bootstrap to a desired security level when applied it-
eratively. Much like in cryptography, iteration of ob-
fuscation primitives can achieve the ”confusion” and
”diffusion” effects necessary for security evaluation
via quantitative metrics or heuristic arguments.



The analogy between round-based cryptography
and iterated obfuscation is not perfect, mainly be-
cause constructions like hash functions and block ci-
phers are highly specialized. In contrast, obfuscation
should be able to operate on universal programs, mak-
ing analysis and even heuristic arguments difficult or
impossible. However, this also leads to more exten-
sive possibilities for obfuscation, especially for spe-
cific purposes.

2.1.2 Complex Systems

Another related area is the field of complex sys-
tems (Wolfram, 2002), which studies aggregate be-
havior of systems of states controlled by iterative
evolution rules. Such rules are essentially functions
whose inputs are sets of states at time t and whose out-
puts are individual states at time t +1. A main theme
is the frequent emergence of complex, essentially un-
predictable behaviors over time in large systems of
simple agents governed by simple rules. Such emer-
gent behavior occurs in a variety of natural and ab-
stract scenarios, such as weather, vehicle traffic, eco-
nomic markets, cellular automata and software sys-
tems.

A program to be protected can be considered as
a system of states (e.g., program statements, vari-
ables, and objects), with protection primitives serv-
ing as evolution rules. Emergent program structure
and behavior can arise as a result of applying sim-
ple primitives iteratively. In such a program, we may
observe characteristics that are not easily explained
in terms of either the original program or the simple
nature of each individual obfuscation round. For ex-
ample, if an obfuscation primitive performs code out-
lining (i.e., transforming code sections into separate
functions), call graphs of arbitrary shapes and proper-
ties can arise via iteration.

2.2 Security Modeling

Recent theoretical work (Barak et al., 2001; Gold-
wasser and Kalai, 2005) has put obfuscation on a
formal foundation, and certain schemes (Lynn et al.,
2004; Wee, 2005) have been shown secure in this
framework. Earlier results on oblivious RAMs (Gol-
dreich and Ostrovsky, 1996) involved a somewhat
different obfuscation model based on randomizing
memory-access patterns. However, such theoretical
work has not yielded practical obfuscation schemes
for typical real-life programs, where an important
goal is often simply to provide a lower bound on
breaking complexity (e.g., preventing hacks for a new
game from appearing for at least a couple of weeks
or months). In practice, “ad hoc” approaches, such

as code encryption and integrity checks, are currently
most popular.

For efficiency of implementation, commonly used
cryptography is often not proved strictly secure in
a formal model. Perceived security is based on de-
sign heuristics and long-term cryptanalysis by the re-
search community, not on security proofs. Certain al-
gorithms with provable security are known, but tend
to be impractical and seldom used. Even such algo-
rithms may fail when attacks violate their models or
complexity assumptions turn out to be unfounded.

As with popular block ciphers and hash functions,
a formal security proof may be neither known nor
necessary for our iterative methods to be useful in
practice. In addition to security metrics and heuris-
tic arguments, practical security could be determined
by releasing a system to be attacked by security re-
searchers, both academic and commercial. In some
sense, this could allow us to put obfuscation on a
cryptographic foundation, at least in terms of estab-
lishing a new area of cryptanalysis devoted to obfus-
cation.

Formal security analysis of iterated protection
may still be possible, at least for specific instances
of transformations. However, given the current real-
ity of software protection, a heuristic approach like
that in practical cryptography may yield more imme-
diate and useful results. In addition, we suggest that
real-life security may be reasonably assessed through
quantitative metrics (Anckaert et al., 2007b) com-
puted over transformed code.

3 PROTECTIVE
TRANSFORMATIONS

This section presents a number of transformations
(or protection operators) suitable for iteration and re-
combination. Practical application of iterated pro-
tection involves mainly selecting sequences of oper-
ators and their parameters, including the number of
iterations to be performed by each operator instance.
Some of the operators described here are simple trans-
formations derived from earlier work, while others
are geared specifically towards the iterated-protection
framework (and thus need not provide much protec-
tion or obfuscation when used standalone instead of
iteratively). We present these operators in the context
of our tool implementation, as described in Section 5.

The sections below group operators into several
categories, based on the main intended purpose of the
operators. Some functionality overlap exists among
various operators, but this grouping helps to classify
and organize different transformations.



3.1 Tamper-Resistance Operators

These operators serve mainly to inject code that veri-
fies runtime integrity of execution.

3.1.1 Oblivious Hashing

This operator is for injection of oblivious-hashing
(OH) code (Chen et al., 2002; Jacob et al., 2007), in-
cluding hash initialization, actual hashing, and hash
verification. OH helps to provide tamper-resistance
by verifying the integrity of both computations and
control flow. The basic idea is to maintain special
hash variables during runtime, updating these hashes
upon every state change (e.g., after variable assign-
ments and control-flow transfers). At chosen points in
the program, hashes may be verified explicitly (e.g.,
by comparing against precomputed values) or implic-
itly (e.g., by using a hash to decrypt crucial data or
code).

The implementation supports two main ap-
proaches to OH: (1) Hash pre-computation, which
computes and stores “correct” hashes for a set of user-
provided (or automatically generated) inputs that ex-
ercise all relevant code paths; and (2) the code-replica
method, which creates individualized copies of ba-
sic blocks (or other code sections) and compares the
hashes produced by independent execution of these
redundant code sections.

int x = 123;

if (GetUserInput() > 10)
{

x = x + 1;
}
else
{

printf("Hello\n");
}

Figure 1: Sample code before application of OH

As an example, Figure 1 shows sample C++ code
before application of OH, and Figure 2 lists the same
code after injection of one OH round. Figure 3 shows
the code resulting from injection of two OH rounds.
Note that with two OH rounds, hash variables of the
second round are used to verify hash variables of the
first round; i.e., the second OH round verifies both the
original program variables and the first OH round.

INITIALIZE_HASH(hash1);

int x = 123;
UPDATE_HASH(hash1, x);

if (GetUserInput() > 10)
{
UPDATE_HASH(hash1, BRANCH_ID_1);
x = x + 1;
UPDATE_HASH(hash1, x);

}
else
{
UPDATE_HASH(hash1, BRANCH_ID_2);
printf("Hello\n");

}

VERIFY_HASH(hash1);

Figure 2: Sample code after one round of OH

3.1.2 State-Change Verification

This tamper-checking operator injects code to verify
the operation of individual instructions and small sets
of instructions. For example, given an instruction that
increments a variable by N, the difference between
the new and old variable versions should be N; the
operator injects code to check this explicitly at run-
time. The intent is to introduce tamper-resistance at
a low level without requiring specific inputs or code
replicas, as with OH.

3.2 Control-Flow Operators

These transformations serve mainly to increase the
complexity of control flow in target code.

3.2.1 Opaque Predicates

This is a traditional operator that injects code to com-
pute predicates and corresponding branches that are
either never or always taken (Collberg et al., 1998b).
Alternately, both branch paths may be possible with
varying probabilities. While the tool user knows this
in advance, this property is difficult for other parties
to deduce from the code. The effect is to add extra
edges to the control-flow graphs (CFGs) of functions
while only modestly impacting performance and code
size.



INITIALIZE_HASH(hash1);
INITIALIZE_HASH(hash2);

int x = 123;
UPDATE_HASH(hash1, x);
UPDATE_HASH(hash2, x);
UPDATE_HASH(hash2, hash1);

if (GetUserInput() > 10)
{

UPDATE_HASH(hash1, BRANCH_ID_1);
UPDATE_HASH(hash2, BRANCH_ID_1);
UPDATE_HASH(hash2, hash1);
x = x + 1;
UPDATE_HASH(hash1, x);
UPDATE_HASH(hash2, x);
UPDATE_HASH(hash2, hash1);

}
else
{

UPDATE_HASH(hash1, BRANCH_ID_2);
UPDATE_HASH(hash2, BRANCH_ID_2);
UPDATE_HASH(hash2, hash1);
printf("Hello\n");

}

VERIFY_HASH(hash1);
VERIFY_HASH(hash2);

Figure 3: Sample code after two rounds of OH

3.2.2 Branch Transformations

This operator performs branch flattening, which
moves one or more branch operations into a sin-
gle dispatch block that performs the actual tests and
jumps. The operator also implements branch diffu-
sion, which arranges for a single branch to be scat-
tered and merged with other branches. These opera-
tions are a form of control-flow flattening or obfusca-
tion (Wang, 2000).

3.3 Generic Obfuscation Operators

These operators are geared towards various obfuscat-
ing transformations that increase the difficulty of un-
derstanding code.

3.3.1 Pointer Conversion

This transformation converts variable references to
pointer references (by creating a new pointer for each
variable and modifying variable references to use this

pointer). This conversion can also transform func-
tion calls to be performed via function pointers. This
is mainly a means of obfuscation via pointer indi-
rection, and is effective especially when iterated and
combined with operators that inject new variables.

int x = GetTickCount();
printf("%d\n", x);

Figure 4: Sample code before application of pointer conver-
sion

int * ptr_x_0;
int x;
ptr_x_0 = &x;
unsigned int tmp_151 =
(* (unsigned int (__stdcall *)())
&GetTickCount)();

int tmp_152 = (int) tmp_151;
*(int *) ptr_x_0 = tmp_152;
char * tmp_ptr_154 = (char *) "%d\n";
printf(tmp_ptr_154, * (int *) ptr_x_0);

Figure 5: Sample code after one iteration of pointer conver-
sion (tool output)

int * ptr_x_2;
int ** ptr_ptr_x_0_1;
int * ptr_x_0;
int x;
ptr_ptr_x_0_1 = &ptr_x_0;
ptr_x_2 = &x;
*(int **) ptr_ptr_x_0_1 = ptr_x_2;
unsigned int tmp_151 =
(* (unsigned int (__stdcall *)())
&GetTickCount)();

int tmp_152 = (int) tmp_151;
int * tmp_ptr_159 = * (int **) ptr_ptr_x_0_1;
* (int *) tmp_ptr_159 = tmp_152;
char * tmp_ptr_154 = (char *) "%d\n";
int * tmp_ptr_160 = * (int **) ptr_ptr_x_0_1;
printf(tmp_ptr_154, * (int *) tmp_ptr_160);

Figure 6: Sample code after two iterations of pointer con-
version (tool output)

To illustrate, Figure 4 shows original sample C++
code, and Figure 5 lists the same code after one itera-
tion of pointer conversion. Figure 6 shows the effects



of two iterations. The latter two figures list the ac-
tual code output by the source-to-source transforma-
tion tool described in Section 5.

3.3.2 Dataflow Stopping

This dataflow-obfuscation operator creates a copy of
a variable at a random (or specified) point in a target
function, overwriting the original variable and replac-
ing all later references with the copy. This helps to
hinder dataflow analysis.

3.4 Individualization Operators

These operators help primarily to diversify code, cre-
ating individualized copies that prevent easy reuse or
retargeting of one particular break. This also allevi-
ates the software “monoculture” problem, where ma-
licious programs work more or less equally well on
most systems that run the same installed code.

3.4.1 Code Replication

This is a code-duplication operator that implements
various methods to create redundant, individualized
copies of code sections. This is useful for the code-
replica approach of OH, as well as for other obfusca-
tion and tamper-resistance operations.

3.4.2 Random Code Generation

This operator injects random expressions generated
from a simple grammar. After recursive generation of
a random parse tree, the operator generates code from
the tree in a compiler-like manner. The main purpose
is to hide existing program code in tightly integrated,
randomized chaff code generated by this operator.

3.4.3 Chaff Code Generation

This code-injection operator inserts random expres-
sions that corrupt and restore existing program vari-
ables, resulting in more thorough integration with tar-
get code. A variable is corrupted after an assignment
(def) and restored prior to each reference (use). Cor-
ruption and restoration may occur at randomly se-
lected locations between defs and uses.

Our current approach creates shadow variables to
save correct values of corrupted program variables for
restoration. An alternative is to corrupt variables re-
versibly and un-corrupt prior to uses. However, com-
plex, unpredictable control flow complicates the task
of matching up the corrupt and restore operations, un-
less the corruption is simple and generic (e.g., always
the same operations). Nonetheless, either shadow

variables or simple corruption/un-corruption may suf-
fice if additional operators obfuscate the code output
by this chaff generator.

For corruption, this operator uses assignments to
random expressions produced by the random-code-
generation operator. Via randomly built parse trees,
such expressions may reference existing program
variables, helping to integrate chaff code more se-
curely. These expressions may read uninitialized vari-
ables, leading to compiler warnings; however, this is
intentional and helps with obfuscation.

3.5 Non-Transformation Operators

These operators do not actually transform code, but
perform other useful functionality. In our tool design,
implementing various tasks is often best done simply
by representing them as operators inserted at the de-
sired positions in the transformation pipeline.

3.5.1 Source Generation

This operator generates source code from the tool in-
termediate representation (IR), but does not modify
the IR. This can be used to generate source code at
any point during processing, typically after all pro-
tection operators have finished. Since this operator
transforms the IR instructions into source, obfusca-
tion is naturally introduced into the output sources (in
the same spirit as “obfuscation” due to compiling C++
into x86 code, for example). However, while this op-
erator fits naturally as a “protection operator” in our
implementation architecture (Section 5), it is not an
obfuscation primitive per se.

3.5.2 Metric Evaluation

This operator provides functionality to compute com-
plexity and security metrics over code. As with source
generation, metric evaluation fits well into the archi-
tecture of our tool as just another operator, despite the
fact that no transformations occur for metric compu-
tation. We describe metrics in the next section.

3.6 Other Operators

The above listing is meant to provide only a sampling
of possible transformations. Depending on security
goals and application contexts, the possibilities for
other operators are virtually unlimited. We again em-
phasize that such operators may be nearly trivial and
very easily implemented; the combined effect of iter-
ating many such operators in different orders can cre-
ate far more complexity than typical individual trans-
formations.



4 COMPLEXITY EVALUATION
VIA METRICS

In general, complex systems do not lend themselves
to accurate prediction of future state. Such systems
must be run forward or allowed to evolve, and state
can be inspected at any time. Thus, instead of predic-
tive modeling, we use a posteriori metrics to assess
complexity and security in a quantitative manner. In
other words, we evaluate various functions over code
to quantify its properties in terms of complexity and
security.

As a starting point, we use three specific met-
rics investigated in a quantitative study of obfusca-
tion (Anckaert et al., 2007b). These are used in a rel-
ative fashion; i.e., the metrics are computed over both
original and transformed code, and the differences be-
tween these metric values serve as indicators of how
much complexity was added by the transformations.
The actual metrics are as follows:

• Instruction count: This is simply the number of
instructions in code, and serves as a very rough
indicator of code complexity.

• Cyclomatic number: This is equal to e− n + 2,
where e and n are the numbers of edges and nodes,
respectively, in a function’s control-flow graph
(CFG). Intuitively, this indicates the number of
decision points where control flow can take alter-
nate paths.

• Knot count: This is the number of crossings in a
function’s CFG, assuming the CFG is drawn in
a specific manner; i.e., with nodes laid out lin-
early in order of address, and with edges all drawn
on one side of the node list. Heuristically, this
estimates the lack of typically expected structure
in the CFG, as well as potential complexity of
control-flow transfers in the CFG.

We also use other metrics designed to capture var-
ious complexity properties of code. Some examples
are as follows:

• Number of variables per instruction: This is
computed simply as v/c, where v the number of
variables in a function’s symbol table, and c is the
number of instructions in the function’s interme-
diate representation. Intuitively, this measures the
potential complexity of data handling within the
function.

• Variable indirection: This is measured as p/v,
where p is the number of pointers in a function,
and v is the total number of variables. This is de-
signed to capture the complexity of using pointers
to access data indirectly.

• Operational indirection: This is computed as
r/R, where r is the number of pointer references
in a function, and R is the total number of variable
references; i.e., this is the fraction of references
performed through pointers.

• Code homogeneity: This measures the unifor-
mity or “local indistinguishability” of instruction
sequences throughout functions. This could be
computed via histograms or frequency tables of
instructions in selected portions of code.

• Dataflow complexity: This is a data-centric ana-
log of CFG-complexity metrics like cyclomatic
number and knot count. One means of measure-
ment is the complexity of a graph where each
node represents a variable, and a directed edge
between variables exists if the first variable influ-
ences the value of the other variable. If such a
graph is complete, all variables influence one an-
other. Thus, the metric may compute how close
the graph is to a complete graph, or how “random”
the graph appears to be.

5 IMPLEMENTATION AND
EXPERIMENTAL RESULTS

We have implemented a Phoenix-based (Microsoft
Corporation, 2008) toolkit that protects high-level
code by iterated transformations. As emphasized ear-
lier, this toolkit should be used to complement other
methods, not to create a standalone, all-inclusive ob-
fuscation solution. However, the source-based trans-
formations used by the tool may help to imple-
ment other techniques. Moreover, arbitrary protective
transformations in other tools can often be iterated (or
modified to make iteration possible and effective).

The current section describes the architecture and
usage of the tool, followed by experimental results on
several SPEC CPU2006 benchmarks.

5.1 Phoenix-based Implementation

The tool implementation relies on the following sys-
tems:

• Phoenix (Microsoft Corporation, 2008): A Mi-
crosoft compiler and analysis framework based on
a common intermediate representation (IR). We
use Phoenix mainly as a code-processing engine
that reads input code, both source and binary, and
passes this to our tools for processing.

• .NET and CLR (Common Language Runtime): A
next-generation Microsoft development and run-



Table 1: Metrics for one round of pointer conversion

Benchmark Code Size Cyclomatic No. Knot Count Variable Density Indirection Performance
401.bzip2 1.035 1.000 1.000 1.513 1.663 1.572
429.mcf 1.063 1.000 1.000 1.646 1.325 1.055
458.sjeng 1.025 1.000 1.000 1.309 1.780 1.267

Table 2: Metrics for 5 rounds of pointer conversion

Benchmark Code Size Cyclomatic No. Knot Count Variable Density Indirection Performance
401.bzip2 4.043 1.000 1.000 4.095 3.214 8.550
429.mcf 5.363 1.000 1.000 4.624 2.186 2.938
458.sjeng 3.114 1.000 1.000 2.731 3.703 5.379

time environment. The tool is implemented using
C# in the .NET framework.

Assuming the availability of some means to pro-
cess input source code, iterated obfuscation lends it-
self to straightforward implementation. Relying on
Phoenix as a code-processing engine, our basic tool
design is centered on the concept of protection op-
erators, which serve as primitives for iteration and
recombination. Such an operator is a class that im-
plements some protective transformation, such as OH
or conversion of variable references to pointer refer-
ences. Typically, each operator is derived from an ab-
stract base operator class, which encapsulates useful
basic functionality common to all operators.

At runtime, the tool applies a sequence of protec-
tion operators to each input function, as specified by
a user-created configuration file. This text file con-
tains an ordered list of operators specified by name,
along with parameters for each operator (e.g., num-
ber of iterations to perform and names of functions to
obfuscate). The tool executes the operators in order,
as listed in the configuration file. Alternately, a secret
key and additional user input may select a randomized
subset of operators, number of iterations, order of ap-
plication, and other parameters.

Our current tool works as a Phoenix compiler
backend (C2) plug-in, operating on input C++ source
code. A compiler (Visual C++) parses input source
code into a high-level intermediate form (CIL, or
C Intermediate Language). Phoenix converts CIL
into its own universal high-level intermediate repre-
sentation (HIR). The Phoenix backend then passes
each HIR function to our plug-in tool, which applies
the transformations and passes the function back to
Phoenix for further processing and eventual native-
code generation. As described above, the tool uses
configuration files to steer its operation.

5.2 Experimental Results

The tables in this section present experimental re-
sults from running the Phoenix-based tool on se-
lected SPEC CPU2006 benchmarks (data compres-
sion, transportation scheduling, and chess). For each
benchmark, we computed metrics on the SPEC source
code both before and after sample sets of transforma-
tions; we then calculated the ratios of these values.
The results indicate how the metrics change as a result
of applying the transformations. A value of 1.0 indi-
cates that the corresponding metric was unaffected;
values greater than 1.0 indicate higher complexity.
Values less than 1.0 show lower complexity, which
may occur as a result of higher complexity in other
metrics. To estimate overall complexity, the metrics
should be interpreted in combination.

The metrics in the tables include code size (in
terms of the number of IR instructions), cyclomatic
number, knot count, variable density, and operational
indirection. These metrics are cumulative over all
benchmark source functions. In addition, the right-
most value in each table indicates the performance hit
due to the transformations; e.g., a value of 1.5 indi-
cates that the transformed code took 1.5 as much time
in our tests.

As a first example, Table 1 shows the effect of
applying a single round of pointer conversion. This
increases the instruction count slightly, but does not
affect any metrics related to the CFG. The extra
pointer variables cause increases in the variable den-
sity and operation indirection. Finally, depending
on the benchmark, the performance hit is variable.
This shows that pointer conversion should sometimes
be applied selectively, avoiding performance-critical
variables such as loop indices in compression algo-
rithms (401.bzip2).

Table 2 shows the results of applying 5 rounds of



Table 3: Metrics for 10 rounds of opaque predication

Benchmark Code Size Cyclomatic No. Knot Count Variable Density Indirection Performance
401.bzip2 1.191 1.580 1.899 1.277 0.712 1.036
429.mcf 1.397 2.137 4.241 1.525 0.672 1.019
458.sjeng 1.192 1.409 1.713 1.149 0.734 1.068

Table 4: Metrics for 10 rounds of opaque predication plus a round of OH

Benchmark Code Size Cyclomatic No. Knot Count Variable Density Indirection Performance
401.bzip2 2.979 1.580 1.862 0.903 1.331 12.727
429.mcf 3.543 2.137 3.952 0.692 0.886 6.403
458.sjeng 3.337 1.409 1.707 0.719 1.587 12.360

pointer conversion. Every round approximately dou-
bles the number of variables, including new pointers
to existing pointers from all earlier rounds. Thus, the
effect on some metrics is exponential.

Table 3 shows the results of injecting 10 opaque
predicates into each function. This also creates some
additional non-pointer variables, increasing variable
density but reducing operational indirection. The
cyclomatic number and knot count also increase,
since randomly injected opaque branches may strad-
dle other branches. This comes at relatively little ex-
pense in code size and especially performance.

Table 4 adds a round of OH to 10 rounds of opaque
predication. Since OH was applied to hash every rele-
vant variable, including performance-critical loop in-
dicates, the results are expensive in space and time.
This shows that OH may need to be applied selec-
tively.

Table 5 shows an example where iterating multi-
ple rounds of several transformations results in a pro-
tective code envelope that dwarfs the code size of the
actual SPEC benchmarks. While this results in final
code several dozen times larger and slower, such pro-
tection can still be used in areas where performance
is not critical (e.g., typical DRM and license checks).

We note that all our experiments involved apply-
ing operators over the entire code of the selected
benchmarks. Thus, effects on code size and per-
formance are sometimes significant, especially when
transformations impact performance-sensitive pro-
gram elements. While the tables show such worst-
case scenarios, typical usage may involve selective
application of operators. For example, users may
specify performance-critical variables and code sec-
tions where operators should limit or omit processing.
Also, users may indicate which application sections
should be protected, though transformations should
be applied elsewhere as well (to avoid attracting at-

tention to security-sensitive parts). Additional com-
plexity and unpredictability are possible via a user-
specified secret key used to select operators and pa-
rameters. Via these and other means, a balance be-
tween performance, code size and metric complexity
may be achieved for different applications.

6 CONCLUSION AND FUTURE
WORK

This paper presented a framework for design and im-
plementation of software protection via iteration and
recombination of simple primitives. As in complex
systems, such a process can lead to cascading com-
plexity and emergent behavior via the interaction of
multiple transformations. The nature of individual
transformations, as well as number of iterations and
order of application, can make dramatic differences
in the final output code. We demonstrated the use
of quantitative metrics to evaluate the complexity and
corresponding security of transformed code. Such an
approach may be useful as part of a comprehensive
software-protection system.

Future work will involve designing and imple-
menting additional protection operators, as well as
analyzing their security and benefits. A main goal
is to position this work in a formal context, includ-
ing analysis that accurately estimates the practical re-
sistance of our methods against hacker attacks. We
also plan to investigate how iterated obfuscation can
help other approaches currently under development,
perhaps combining various standalone methods into a
more systematic, comprehensive solution for software
protection.



Table 5: Metrics for 10 rounds of opaque predication, 2 rounds of OH, 3 rounds of random-code injection, and 3 rounds of
pointer conversion

Benchmark Code Size Cyclomatic No. Knot Count Variable Density Indirection Performance
401.bzip2 48.788 3.285 2.258 0.696 3.919 68.164
429.mcf 61.310 4.147 5.234 0.427 2.347 41.966
458.sjeng 59.147 2.883 2.032 0.517 4.784 80.683
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