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Abstract

We review work on computing with solitons, from the discovery of solitons in cellular au-
tomata, to an abstract model for particle computation (particle machines), to information trans-
fer in collisions of (continuum) optical solitons, to state transformations in collisions of Manakov
(vector) solitons. We conclude by discussing open problems and the prospects for practical ap-
plications using optical solitons in photorefractive crystals and other materials.

1 Introduction

In most present-day conceptions of a “computer,” information travels between logical elements

fixed in space. This is true for abstract models like Turing machines, as well as real silicon-
chip-based electronic computers. This paper will review work over the past few years that views
computation in an entirely different way: information is carried through space by particles,
computation occurs when these particles collide.

Much of this review will focus on our own work, but of course will necessarily touch on related
work by many others. Our intent is to describe the progression of ideas which has brought the
authors to a study of the computational power of the Manakov system and its possible practical
implementation, and in no way do we intend to minimize important contributions by others to
the growing field of embedded computation, and nonstandard computation in general. We will
cite such related work as we are aware of, and will appreciate readers bringing omissions to our
attention.

This paper is written more or less historically, and we will trace the development in the
following stages:

e solitons in automata,

e the particle machine model and embedded arithmetic,
e information transfer in collisions of continuum solitons,
o the Manakov system.

We conclude with a discussion of open problems and a brief appraisal of the prospects for the
practical application of these ideas.

2 Computation in cellular automata

Our own story begins in a sense with influential work of S. Wolfram in the mid-1980s [1], and
in particular with the seminal study [2], where he observed that the behavior of a simple but
representative type of cellular automata (CA) can be partitioned into four classes, the most
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Figure 1: Typical soliton-like collision in a PRFA. The dots are ones against a field of zeros and the
time evolution progresses downward. Notice the displacements caused by the collision, quite similar to
what happens in continuum systems. This example uses a window radius of five and is from [3].

interesting of which he conjectured to be Turing universal. At this time S. Wolfram was in
Princeton, at the Institute for Advanced Study, and his work led one of us (KS) to begin
experimentation with CA. It was subsequently discovered that a new class of CA, the parity
rule filter automata (PRFA) [3], support particles which behave remarkably like solitons in
continuum systems. (We review the essential features of continuum solitons in physical systems
in Section 4.)

The PRFA differ from conventional CA in that the update rule uses new values as soon
as they become available, scanning to update from left to right. They are thus analogous to
so-called infinite impulse response (IIR) digital filters, while ordinary CA correspond to finite
impulse response (FIR) digital filters [4]. We note that although the operations of FA and
CA are different, the two classes of automata are equivalent, as shown in [3]. However, to our
knowledge it is an open question whether the subclass of PRFA are computationally universal.
The term “parity rule” refers to the algorithm for refreshing site values: to update at a particular
site, the total number of ones in a window centered at that site is found (using new values to
the left), and the new site value is set to one if that sum is even but not zero, and to zero
otherwise. Figure 1 shows a typical soliton-like collision in a PRFA. Notice that the bit pattern
of both particles is preserved in the collision, and that both particles are displaced from their
pre-collision paths.

The subsequent paper [5] showed that a ripple-carry adder can be realized in a PRFA. This
construction was not simple, and we were not able to “program” more complex computation
in these one-dimensional structures. However, several researchers have been contributing to a
growing literature on embedded computation in automata using particles, and recent results are
quite interesting. The literature is large enough, in fact, that it is not possible to review it here.
But before leaving PRFA we cite (without claim to completeness) some representative work
by important researchers: Goldberg [6], Fokas, Papadopoulou, and Saridakis [7, 8], Ablowitz,
Keiser, and Takhtajian [9], Bruschi, Santini and O. Ragnisco [10], Adamatzky [11, 12, 13], and
Siwak [14, 15, 16].



3 Particle Machines

The particle machine (PM) model was introduced and studied in [5, 17] and is intended to
capture the notion of computation by propagating and colliding particles. It was a natural
outgrowth of the study of the computational power of the PRFA. Like the Turing machine (TM),
the PM can do general computation [17], and operates in discrete time and space. However,
while the TM’s tape, read-write head, and uniprocessing operations hint at mechanical, man-
made origins, the PM’s particle interactions and fine-grain parallelism are reminiscent of natural
physical systems.

We will review the PM model and mention several efficient algorithms that have been encoded
in the model. We define a PM as a cellular automaton (CA) with states that represent idealized
particles, and with an update rule that encodes the propagation and collisions of such particles.
While PMs can have any number of dimensions, we concentrate here on one-dimensional PMs,
which are nevertheless powerful enough to support efficient implementations of arithmetic and
convolution.

3.1 Characteristics of PMs

Quite apart from their use as an abstract model of computation, PMs can be viewed as a way
to incorporate the parallelism of systolic arrays [18] in hardware that is not application-specific
and is easy to fabricate. A PM can be realized easily in VLSI and the resultant chips are locally
connected, very regular (being CA), and can be concatenated with a minimum of glue logic.
Thus, many identical VLSI chips can be strung together to provide a very long PM, which
can then support many computations in parallel. What computation takes place is determined
entirely by the stream of injected particles: There are no multipliers or other fixed arithmetic
units in the machine, and the logic supports only particle propagation and collisions. While
many algorithms for a PM mimic systolic arrays and achieve their parallelism, these algorithms
are not hard-wired, but are “soft,” or “floating,” in the sense that they do not determine any
fixed hardware structures.

An interesting consequence of this flexibility is that the precision of fixed-point arithmetic
is completely arbitrary and determined at run time by the user. In [17] the authors show that
FIR filtering (convolution) of a continuous input stream, and arbitrarily nested combinations of
fixed-point addition, subtraction, and multiplication, can all be performed in one fixed CA-based
PM in time linear in the number of input bits, all with arbitrary precision. Later in this section
we complete this suite of parallel arithmetic operations with a linear-time implementation of
division that exploits the PM’s flexibility by changing precision during computation.

3.2 The PM model
We define the PM formally as follows:

Definition 1 A Particle Machine (PM) is a CA with an update rule designed to support the
propagation and collision of logical particles in a one-dimensional homogeneous medium. Each
particle has a distinct identity, which includes the particle’s velocity. We think of each cell’s
state in a PM as a binary occupancy vector, in which each bit represents the presence or absence
of one of n particle types (the same idea is used in lattice gasses; see, for example, [19]). The
state of cell 7 at time t+1 is determined by the states of cells in the neighborhood of cell 4, where
the neighborhood includes the 2r+1 cells within a distance, or radius, r of cell 4, including cell
i. In a PM, the radius is equal to the maximum velocity of any particle, plus the maximum
displacement that any particle can undergo during collision.

Although this definition is explicitly in one-dimension, it can be generalized easily to higher
dimensions.

In summary, a PM is a CA with an update rule modeling propagation and collision of
logical particles that are encoded by the state values in one cell (or in a number of adjacent
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Figure 2: The basic conception of a particle machine.

cells). Particles propagate with constant velocities. Two or more particles may collide; a set of
collision rules, which are encoded by the CA update rule, specifies which particles are created,
which are destroyed, and which are unaffected in collisions. A PM begins with a finite initial
configuration of particles and evolves in discrete time steps.

3.3 Simple computation with PMs

Figure 2 shows the general arrangement of a 1-d PM. Particles are injected at one end of the one-
dimensional CA, and these particles move through the medium provided by the cells. When two
or more particles collide, new particles may be created, existing particles may be annihilated,
or no interaction may occur, depending on the types of particles involved in the collision.

Figure 3 illustrates some typical collisions when binary addition is implemented by particle
collisions. This particular method of addition is only one of many possibilities. The basic idea
here is that each addend is represented by a stream of particles containing one particle for each
bit in the addend, one stream moving left and the other moving right. The two addend streams
collide with a ripple-carry adder particle where the addition operation takes place. The ripple-
carry particle keeps track of the current value of the carry between collisions of subsequent
addend-bit particles as the streams collide least-significant-bit first. As each collision occurs,
a new right-moving result-bit particle is created and the two addend particles are annihilated.
Finally, a trailing “reset” particle moving right resets the ripple-carry to zero and creates an
additional result-bit particle moving right.

3.4 Algorithms
3.4.1 Arithmetic

Addition and subtraction on a PM are relatively straightforward to implement, and both can
operate in linear time and with arbitrary precision. A multiplication algorithm with similar
properties is not much more difficult to obtain, but a linear-time, arbitrary-precision division
algorithm is somewhat more involved. We briefly describe some arithmetic algorithms, and we
refer the reader to [17, 20, 21] for details.

Figure 4 shows the particle arrangement for fixed-point multiplication. This mirrors a well
known systolic array for the same purpose [18], but of course the structure is “soft” in the sense
that it represents only the input stream of the PM that accomplishes the operation. Figure 5
shows a simulation of this multiplication scheme for the product 112 % 11,5. In that figure, the
particles depicted by r and R represent right-moving 0 and 1 operand bits, respectively, and L
and [ similarly represent left-moving operand bits; p represents stationary “processor” particles
in the computation region where the product is formed; ¢ represents “carry” particles propagated
during computation; and 0 and 1 represent stationary bits of the product. The top of the figure
shows two operands (11» and 115) on their way towards collisions in the central computation
region containing stationary “processor” particles; the bottom of the figure shows the same
operands emerging unchanged from the computation, with the answer (10015) remaining in the
central computation region.

For division, a PM can implement a linear-time, arbitrary-precision algorithm based on
Newtonian iteration and described by Leighton [22]. Figure 6 shows a simulation of such an
algorithm running on a PM. Details of this algorithm can be found in [20, 21].
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Figure 3: An example illustrating some typical particle collisions, and one way to perform addition in a
particle machine. What is shown is actually the calculation 012 + 115 = 1002, implemented by having
the two operands, one moving left and the other moving right, collide at a stationary “ripple-carry”
particle. When the leading, least-significant bits collide (in the third row from the top of the figure),
the ripple-carry particle changes its identity so that it encodes a carry bit of 1, and a right-moving sum
particle representing a bit value of 0 is created. The final answer emerges as the right-moving stream
1002, and the ripple-carry particle is reset by the “equals” particle to encode a carry of 0. The bits of
the two addends are annihilated when the sum and carry bits are formed. Notice that the particles are
originally separated by empty cells, and that all operations can be effected by a CA with a neighborhood
size of 3 (a radius of 1).

processor
particles

[leftmultipicand ] O 0 0 0 00 [ right multiplicand |

Figure 4: Multiplication scheme, based on a systolic array. The processor particles are stationary and
the data particles collide. Product bits are stored in the identity of the processor particles, and carry
bits are stored in the identity of the data particles, and thereby transported to neighbor bits.
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Figure 5: Simulator output for PM multiplication. The top line in the figure gives the initial state of
the PM’s medium, representing the multiplication problem 115 % 115, as described in the text. Each
successive pair of lines depicts the state of the medium after the propagation and collision phases of
each time step. The bottom line in the picture shows the stationary answer, 10013, in the central
computation region, along with the unchanged operands moving away from the region.
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Figure 6: Output generated by a simulation of the division implementation. Each cell is represented by
a small circle whose shading depends on which particles are present in that cell. For clarity, only every
seventh generation is shown. The example shown is actually the division 1/7.



3.4.2 Convolution, filtering, and other systolic-array algorithms

As mentioned above, arithmetic operations can be nested to achieve the pipelined parallelism
inherent in systolic arrays [17]. This leads to highly parallel, pipelined particle machine im-
plementations of convolution, filtering, and other common digital signal processing algorithms,
such as the FFT. Similar non-numerical algorithms with systolic implementations also fit in this
category (see, for example, [23]) and are amenable to the same soft realizations.

3.5 Comment on VLSI Implementation

Whether it is actually advantageous to implement applications this way in VLSI is an interesting
question. The tradeoff is clearly between the efficiencies of using fixed, modular, concatenated
chips in a very long pipeline on the one hand, and the inefficiencies in transferring all the problem
coding to a very low-level “program” in terms of particles. Where that tradeoff ends up depends
a great deal on technology and economies of production scale.

We will not pursue this question of VLSI implementation further in this paper, but rather
follow the road that leads to particles as solitons in nonlinear optical materials.

3.6 Particles in other automata

Before we leave CA, we mention some related work on CA with particles. Crutchfield, Das,
D’haeseleer, Hanson, Hordijk, Mitchell, Nimwegen, and others report intriguing work in which
CA are evolved to perform some simple computational tasks (see [24], for example, and the
web site www.santafe.edu/"evca). Particles appear in these evolved CAs quite spontaneously,
suggesting that they may be a very natural way to embed computation in regular structures
and materials. Boccara, Nasser, and Roger [25] describe a wide variety of particles observed
in a conventional CA. Takahashi [26] presents an appealingly simple box-and-ball model for a
CA that supports solitons. Santini [27] extends the concept of integrability to algebraic and
functional equations, as well as CA, including the joint work with Bruschi and Ragnisco [10].
Finally, we also mention some additional, historically significant work: the very simple uni-
versal model using ideal elastically colliding billiard balls in the plane [28, 29]; the exhaustive
study of universal dynamic computations by Adamatzky [30]; the very early example of pipelined
computation in a one-dimensional CA by Atrubin [31]; Conway’s universal game of Life in 2+1
dimensions [32], and perhaps the simplest known universal CA in 2+1 dimensions [33].

4 Solitons and computation

4.1 Scalar envelope solitons

It is a natural step from trying to use solitons in CA to trying to use “real” solitons in physical
systems, and the most promising candidates appear to be optical solitons in nonlinear media
such as optical fibers and photorefractive crystals. We can envision such computation as taking
place via collisions inside a completely uniform medium and aside from its inherent theoretical
interest might ultimately offer the advantages of high speed, high parallelism, and low power
dissipation. We cannot review here in any detail the fascinating development of soliton theory
and its application to optical solitons, but the reader is referred to [34], still a classic beginning
reference, and the general book [35] for further reading. We will however review the essential
features of enwvelope solitons, which are most relevant to our work.
For our purposes a soliton can be defined as in [36]:

Definition 2 A soliton is a solitary wave which asymptotically preserves its shape and velocity
upon nonlinear interaction with other solitary waves, or, more generally, with another (arbitrary)
localized disturbance.
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Figure 7: An envelope soliton.

We focus on solitons that arise in systems described by the nonlinear Schrédinger (NLS)
equation
iug + Dugy + N(Ju)u =0, (1)

where D is a real number, and N an arbitrary operator on |u|, and the subscripts denote partial
differentiation. This describes nonlinear wave propagation in a variety of physical systems,
most notably certain optical fibers, where to first order N(|u|) = |u|?, and in certain (so-called
saturable) photorefractive crystals, where N(|u|) = m + k|u|?>/(1 + |u|?), where k and m are
real constants. In the former instance we will call the equation the cubic NLS (3-NLS), and
in the latter, the saturable NLS (sat-NLS). The solitons that result in these systems are called
envelope solitons, and as shown in Figure 7, they are complex-valued wave packets, consisting
of a carrier wave moving at a characteristic phase velocity, modulated by an enwvelope, moving
at a characteristic group velocity.

4.2 Integrable and nonintegrable systems

There is a crucial difference in behavior between integrable and nonintegrable systems. Omitting
technical details, the integrable systems we consider are analytically solvable, and collisions
between solitons are perfectly elastic. That is, solitons emerge from collisions with all their
original energy. Collisions in nonintegrable systems are characterized by radiation—energy that
is lost from the solitons in the form of waves radiating away from the collision site. Such
unavoidable energy loss means that collisions cannot be cascaded in many stages, and that any
useful computational system must entail restoration of full-energy solitons.

Clearly, some particle-like behavior is sacrificed in nonintegrable systems, and in fact purists
(generally the mathematical physicists), reserve the term soliton for integrable systems only.
Particle physicists on the other hand are more forgiving, and we will follow their lead in using
the term soliton more loosely [37, 38].

4.3 The cubic NLS

The most obvious candidate for a useful soliton system is the integrable equation, 3-NLS. This
is one of the two or three best-studied soliton equations, and the resultant sech-shaped solitons
have been observed experimentally in real optical fibers for many years. To proceed, we need
to identify some soliton parameters as state variables that can be used to carry information.
Of the possible parameters, the amplitude and velocity can be ruled out because they are
unaffected by collisions. The remaining parameters are the carrier phase and positional phase
(location). Now what happens in 3-NLS collisions is very disappointing from the point of view
of computation: the values of the state variables that can change do not have any effect on the
results of subsequent collisions. This rules out communication of information from soliton to
soliton and effectively rules out useful computation in 3-NLS.

4.4 Oblivious and transactive collisions

We next introduce two definitions that allow us to state the preceding argument somewhat more
precisely.



Definition 3 For a given system define the state of a soliton to be a set of selected parameters
that can change during collisions.

Definition 4 Collisions of solitons in a given system are termed transactive if some changes in
the state of one colliding soliton depend on the state of the other. If collisions are not transactive,
they are termed oblivious.

We also call systems themselves transactive or oblivious. We see therefore that 3-NLS is
oblivious. The key problem then becomes finding a transactive system.

4.5 The saturable NLS

At the time this obstacle was encountered it seemed to us that all integrable systems are oblivi-
ous, and we began looking at some nonintegrable systems, which strictly speaking do not support
solitons, but which in fact support near-solitons [39]. At this point M. Segev brought sat-NLS
to our attention, an equation that describes the recently discovered 1+1-dimension (one space
and one time dimension) photorefractive optical spatial solitons in steady state [40, 41, 42],
and optical spatial solitons in atomic media in the proximity of an electronic resonance [43]. A
numerical study revealed definite transactivity [44]. But the observed effect is not dramatic,
and it comes at the cost of unavoidable radiation.

At this point it appeared that transactivity and elastic collisions were somehow antagonistic
properties, and that integrable systems were doomed to be oblivious. A pleasant surprise awaited
us.

5 Computation in the Manakov system

The surprise came in the form of the paper by R. Radhakrishnan, M. Lakshmanan and J.
Hietarinta [45], which gave a new bright two-soliton solution for the Manakov system [46], and
derived explicit asymptotic results for collisions. The solutions were more general than any given
previously, and were remarkable in demonstrating what amounts to pronounced transactivity in
perfectly integrable equations. The Manakov system consists of two coupled 3-NLS equations,
and models propagation of light in certain materials under certain circumstances. The two
coupled components can be thought of as orthogonally polarized. Manakov solitons have been
recently observed experimentally in [47].

This brings our review to very recent work. The Manakov system is less well known than
3-NLS or sat-NLS, so we will describe it in some detail, following [48].

5.1 The Manakov system and its solutions

As mentioned, the Manakov system consists of two coupled 3-NLS equations,

iqu + Qoo + 20l |? + |2 = 0, (2)
it + G2aa + 20(|l01)* + |@2)*)2 = 0,
where ¢1 = q(z,t) and g2 = g¢a2(z,t) are two interacting optical components, u is a positive

parameter, and z and ¢ are normalized space and time. Note that in order for ¢ to represent the
propagation variable, as in Manakov’s original paper [46], our variables z and ¢ are interchanged
with those of [45]. The system admits single-soliton solutions consisting of two components,

; R
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Figure 8: A general two-soliton collision in the Manakov system. The complex numbers p1, pr, p2, and
pr indicate the variable soliton states; k1 and ko indicate the constant soliton parameters.

where
n = k(z+ikt), (4)
al? + |32
€R — /‘L(|k|+k!'< |)’ (5)

and a, 3, and k are arbitrary complex parameters. Subscripts R and I on 1 and k indicate real
and imaginary parts. Note that kg # 0. Solitons with more than one component are called
vector solitons.

5.2 State in the Manakov system

The three complex numbers «, 3, and k (with six degrees of freedom) in eq. 3 characterize
bright solitons in the Manakov system. The complex parameter k is unchanged by collisions,
so two degrees of freedom can be removed immediately from an informational state character-
ization. We note that Manakov [46] removed an additional degree of freedom by normalizing
the polarization vector determined by o and (3 by the total magnitude (o + 32)/2. However,
it is a remarkable fact that the single complex-valued polarization state p = «/f3, with only
two degrees of freedom [49], suffices to characterize two-soliton collisions when the constants k
of both solitons are given [48].

We use the tuple (p, k) to refer to a soliton with variable state p and constant parameter k:

e p=q(z,t)/g2(z,t) = a/B: a complex number, constant between collisions;
e k= kg +iky: a complex number, with kg # 0.

We use the complex plane extended to include the point at infinity.

Consider a two-soliton collision, and let k; and ko represent the constant soliton parame-
ters. Let p; and pr denote the respective soliton states before impact. Suppose the collision
transforms p; into pgr, and pr into py (see fig. 8). We will always associate ki and p; with
the right-moving particle, and ks and py with the left-moving particle. To specify these state
transformations, we write

Tﬂl,kl(pLakQ) = P2 (6)
TPL,kz(plakl) = PR (7)

The soliton velocities are determined by k17 and koy, and are therefore constant.

It turns out that the state change undergone by each colliding soliton takes on the very simple
form of a linear fractional transformation (LFT) (also called bilinear or Mébius transformation).
The coefficients are simple functions of the other soliton in the collision. Explicitly, the LFTs
are

(1 —9)/pt + prlpL + gp1/ P}

p2 = e 8
2 gpr + (1 —g)p1 +1/p} ®)
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where
ki + kT

ki,ko) = . 9
g(k1, k2) o ¥ R 9)
and
_ [ =h")/pi + pLlpr + R*pL/p},
PR = - ¥ * ) (10)
h*pr + (1 — h*)pr, +1/p;
where oo 4+ kit
h(ky, ko) = =2 11
(buok) = T (1)

We assume here, without loss of generality, that k1 g, keg > 0.

Several properties of these transformations are derived in [48], including characterization of
inverse operators, fixed points, and implicit forms. In particular, when viewed as an operator
every particle has an inverse, and the two traveling together constitute an inverse pair. Collision
with an inverse pair leaves the state of every particle intact.

5.3 Particle design for computation

In any particle collision we can view one of the particles as an “operator” and the other as “data.”
In this way we can hope to find particles and states that effect some useful computation. This
is work in progress, and we give some examples that illustrate simple logical operations.

5.3.1 An : operator

A simple nontrivial operator is pure rotation by m/2, or multiplication by 4. This changes
linearly polarized solitons to circularly polarized solitons, and vice versa. A numerical search
yielded the useful transformations

. « . . 1
Tpr(p) =Top-ilp,1+4) = (A-h*(1+i1-0))p= ik “'p, (12)
. p 3n;
T = Toos_i(p,1 = = /2eTip, 1
o (0) 5oi(p, 141) TR A5 V2etip (13)
which, when composed, result in the transformation
Ulp,1+1i) = ip. (14)

(Here we think of the data as right-moving and the operator as left-moving.) We refer to U as
an 4 operator. Its effect is achieved by first colliding a soliton (p, 1+ 4) with (0,1 — ), and then
colliding the result with (00,5 — 4), which yields (ip,1 + 7).

5.3.2 A —1 operator (NOT processor)

Composing two ¢ operators results in the —1 operator, which with appropriate encoding of
information can be used as a logical NOT processor. Figure 9 shows a NOT processor with
reusable data and operator solitons. The two right-moving particles represent data and are an
inverse pair, and thus leave the operator unchanged; the left-moving group comprise the four
components of the —1 operator. This figure was obtained by direct numerical simulation of the
Manakov system, with initial state that contains the appropriate data and processor solitons.
This NOT processor switches the phase of the (right-moving +1) data particles, using the
energy partition of the (left-moving 0 and co) operator particles. A kind of dual NOT gate exists,
which switches the energy of data particles using only the phase of the operator particles. In
particular, if we use the same k’s as in the phase-switching NOT gate, code data as 0 and oo,
and use a sequence of four =1 operator particles, the effect is to switch 0 to co and oo to 0—that
is, to switch all the energy from one component of the data particles to the other (see fig. 10).

12



1

Figure 9: Numerical simulation of a NOT processor implemented in the Manakov system. These graphs
display the color-coded phase of p for solitons that encode data and processors for two cases. In the
initial conditions (top of graphs), the two leftmost (data) solitons are an inverse pair that can represent
a 0 in the left graph, and a 1 in the right graph. In each graph, these solitons collide with the four
rightmost (processor) solitons, resulting in a soliton pair representing a 1 and a 0, respectively. The
processor solitons are unchanged. These graphs were obtained by numerical simulation of eq. 2 with
p = 1.

Figure 10: Numerical simulation of an energy-switching NOT processor implemented in the Manakov
system. These graphs display the magnitude of one component, for the same two cases as in the
previous figure. In this gate the right-moving (data) particles are the inverse pair with states oo, 0 (left),
or 0,00 (right) and the first component is shown. As before, the left-moving (operator) particles emerge
unchanged, but here have initial and final states +1.

13



A B

Figure 11: Numerical simulation of a “move” operation implemented in the Manakov system. These
graphs display the color-coded phase of p. In each graph, the information contained in the middle
particle in the initial conditions (top of graphs) is moved to the middle particle in the final conditions
(bottom of graphs). The information transfer is effected by the “carrier” particle C. These graphs were
obtained by numerical simulation of eq. 2 with 4 = 1.

5.3.3 A “move” operator

Figure 11 depicts a simple example of information transfer from one particle to another, rem-
iniscent of an assembly-language MOVE instruction. In the initial conditions of each graph, a
“carrier” particle C' collides with the middle particle; this collision transfers information from
the middle particle to C'. The carrier particle then transfers its information to another particle
via a collision. The appropriate particles A, B, and C for this operation were found through a
numerical search, as with the particles for our NOT gate.

Note that “garbage” particles arise as a result of this “move” operation. In general, because
the Manakov system is reversible, such “garbage” often appears in computations, and needs to
be managed explicitly or used as part of computation, as with conservative logic [28]. Of course
reversibility does not necessarily limit the computational power of the Manakov system, since
reversible systems can be universal [50].

6 Conclusion

This brings us to current work, and suggests many open questions, some theoretical, some
experimental, and some a mixture of the two. We conclude by mentioning some of these.
In the theoretical area:

¢ What is a complete mathematical characterization of the state LFTs obtainable by com-
posing either a finite number—or an infinite number—of the Manakov collisions?

e How can we “program” Manakov solitons? (A major obstacle is the one-dimensional nature
of the system, and the difficulty of “crossing wires.”)

e Is the complex-valued polarization state used here for the Manakov system also useful
in other multi-component systems, especially those that are near-integrable and support
spatial solitons?

e What is the theoretical computational power of the Manakov and related systems from
the point of view of implementing logic of some generality? In particular, which systems in
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141 or 241 dimensions, integrable or nonintegrable, are Turing-equivalent and therefore
universal?

e Can 2+1 and higher-dimensional soliton systems be used for efficient computation in uni-
form media? For example, can a 2+1 integrable system simulate the billiard-ball model
of computation, and can such a system be useful without fixed barriers off which balls
bounce?

On the experimental side of things:

e Can the Manakov system be implemented in a simple and accurate way?

¢ Can saturable materials like photorefractive crystals be made that are highly transactive
with acceptable radiation?

o What new physical systems might be found that support solitons which can be easily used
to compute?

We’ve followed one particular line of work, from the discovery of solitons in abstract cellular
automata, to the abstract model of the particle machine, to possible harnessing of optical vector
solitons for useful computation. This reflects one aspect of the growing field that is sometimes
called “nonstandard computation,” and includes alternatives to the lithographed silicon-chip
based paradigm as a physical basis for computation.

As we’ve seen there are many fascinating questions of interest—to both computer scien-
tists and physicists—about soliton information processing. The very notion that nonlinear
waves/particles can encode and process information remains largely unexplored.
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