Appears in Proceedings of the 5th International Workshop on Active Middleware Services, Seattle, WA, June 2003

JAGR: An Autonomous Self-Recovering Application Server

George Candea, Emre Kiciman, Steve Zhang, Pedram Keyani, Armando Fox
Stanford University
Computer Systems Lab
Stanford, CA 94305, USA

{candea, emrek, steveyz, pkeyani, fox}@cs .stanford.edu

Abstract

This paper demonstrates that the dependability of
generic, evolving J2EE applications can be enhanced
through a combination of a few recovery-oriented tech-
niques. Our goal is to reduce downtime by automatically
and efficiently recovering from a broad class of transient
software failures without having to modify applications. We
describe here the integration of three new techniques into
JBoss, an open-source J2EE application server. The re-
sulting system is JAGR—JBoss with Application-Generic
Recovery—a self-recovering execution platform.

JAGR combines application-generic failure-path infer-
ence (AFPI), path-based failure detection, and micro-
reboots. AFPI uses controlled fault injection and obser-
vation to infer paths that faults follow through a J2EE
application. Path-based failure detection uses tagging of
client requests and statistical analysis to identify anoma-
lous component behavior. Micro-reboots are fast reboots
we perform at the sub-application level to recover compo-
nents from transient failures; by selectively rebooting only
those components that are necessary to repair the failure,
we reduce recovery time. These techniques are designed to
be autonomous and application-generic, making them well-
suited to the rapidly changing software of Internet services.

1. Introduction

We would like 24 x 7 Internet applications to be able
to automatically recover from a variety of transient fail-
ures, freeing system operators to focus on higher-leverage
tasks and requiring fewer operators to oversee larger-
sized systems. Our Recovery-Oriented Computing (ROC)
project [19] embraces the philosophy that failures will
happen—whether due to hardware, software, or operator
error—and fast recovery is the key to maintaining high
availability in the face of these failures. To this end, ROC
researchers and others have been investigating techniques

for failure detection and recovery that are external to the ap-
plication and do not rely on a priori fault models or models
of the application’s semantics; examples include recursive
restarts as a form of recovery [4] and anomaly detection
in runtime path analysis as a form of failure detection [7].
Given the emergence of popular middleware platforms for
Internet/Web-based applications, such as Java 2 Enterprise
Edition (J2EE), we believe these techniques can be applied
today to the middleware platform implementation itself, so
that all applications written to that platform will benefit.

In this paper we describe progress toward just such a
goal; we present an integrated system that leverages several
pieces of our prior work. We have augmented JBoss, an
open-source implementation of the J2EE middleware plat-
form. By adding a plug-in architecture for failure monitor-
ing and a recovery manager that reacts to failures by us-
ing component-level micro-reboots for recovery, we enable
JBoss, along with any J2EE-compliant application running
on top of it, to automatically detect and recover from a va-
riety of transient failures. The result is an end-to-end self-
recovering system which is application-generic with respect
to this class of failures.

Past work [14, 6] has painted a grim picture regarding
application-generic recovery, showing that general-purpose
transparent recovery is unlikely to work. But this con-
clusion derives in part from the fact that a fully generic
recovery system cannot make any assumptions about ap-
plication structure, and therefore about what constitutes
safe (correctness-preserving) generic recovery. We argue
that for the specific class of applications we’re targeting—
interactive Internet services deployed in a traditional multi-
tier configuration—we can make assumptions about their
structural properties, and these assumptions make it possi-
ble to obtain application-generic benefits solely by modi-
fying the middleware. Although we do exploit application-
specific fault propagation information to guide recovery, the
process for collecting this information is itself application-
generic, automatic, and relatively fast to perform (on the
order of hours).

1.1. J2EE and JBoss

J2EE [21] is a standard for constructing enterprise appli-
cations from reusable Java modules, called Enterprise Java
Beans (EJBs). An EJB is a Java component that conforms
to a particular programmatic interface and provides services
to local and remote clients. The EJB architecture runs dis-
tributed components within a special container, which is
provided and serviced by the application server (see Fig-
ure 1).

A J2EE application server provides a standard environ-
ment and set of runtime services specified by J2EE, in-
cluding naming and directory services, authorization and
authentication, state management, integration with a Web
server, etc. To run a J2EE application, one must boot the
operating system, start the J2EE application server (e.g.,
JBoss), start any necessary additional components required
by the application (e.g., a database used for persistent state
storage), and finally instruct the application server to deploy
and instantiate the beans associated with the application.

We chose J2EE because it is widely used and enjoys
good developer infrastructure. The J2EE APIs provide a
useful level of indirection between the applications and the
underlying platform, which we exploit to do instrumenta-
tion and recovery from which all applications can benefit.
Among the various commercial and open-source implemen-
tations of J2EE application servers, we chose JBoss [11]
because it is open source, performs well, and is very popu-
lar: it has been downloaded from SourceForge [20] over 3
million times, and received JavaWorld 2002 Editors’ Choice
Award in its product category over several commercial com-
petitors. More than 100 corporations, including WorldCom
and Dow Jones, are using JBoss for demanding computing
tasks.

1.2. From JBoss to JAGR

As shown in Figure 1, we have augmented JBoss in a
number of ways: we added a modular monitoring plug-
in infrastructure (the figure shows three sample monitors,
E2EMon, ExcMon, and PPMon), a recovery manager, a re-
covery agent, a stall proxy, and a fault injector used for au-
tomated failure-path inference. Since these changes were
made in the J2EE execution platform, they can be used for
any J2EE-compliant application.

Accommodating multiple failure monitors reflects the
observation that no single type of monitoring will detect
all types of failures, and that failure monitors themselves
are likely to be imperfect. In this paper we report on three
implemented failure monitors: one based on tracking Java-
level exceptions in the middleware and the failures that may
cause them (ExcMon), one based on detecting behavioral
anomalies in the application relative to historical data (PP-

J2EE Application

a~
o
Q
]
NRE
<
JAHIE @
I'OWSBI’S QE. % Q
L &
(clients) I! = E 2 @ -
[7) -
Tl |2 | Database
=
D
EJB Gonlamers Nammg Dir Txn Svc
é] D
| Messagmg Secumy Mgr
AFPI Fault Recovery ExcMon —»
E2EMon Injector Agent —
PPMon

Application Server Recovery Mgr

Figure 1. JBoss with Application-Generic Recovery (JAGR): A J2EE
application server that can self-recover. Dark gray boxes indicate
components we added to JBoss.

Mon), and one based on detecting end-user-visible failures
(E2EMon). Each plug-in failure monitor is responsible for
sending failure notifications to the recovery manager (RM).

For PPMon and ExcMon, we modified JBoss to allow
request tracing and exception tracking. Request tracing al-
lows PPMon to follow the “path” of any request through the
system [8], recording which EJB’s are invoked in satisfying
a request. Exception tracking allows us to observe excep-
tions thrown by EJB’s and report them to the recovery man-
ager, which can then attempt immediate micro-rebooting.

The recovery manager oversees the whole recovery pro-
cess and resides outside the application server proper; this
design choice allows us to fortify it, which is important
given the degree to which fast recovery of the application
server depends on accurate RM actions. When the RM
suspects that one or more components have failed, it in-
structs a recovery agent, inside the JBoss application server,
to micro-reboot the suspect components [2].

To keep clients from failing while parts of the system
are rebooting, our stall proxy will intercept new client con-
nections and force them to wait up to 8 seconds while the
recovery process completes.

Finally, we have added a fault injection mechanism used
by the automatic failure-path inference algorithm [3] to ob-
tain a graph that guides the RM in deciding which specific
components or J2EE services to recover. We call this graph
a failure-propagation map (f-map).

In the next sections we describe the extensions we have
made to JBoss in more detail: section 2 describes our failure
monitoring infrastructure; section 3 presents the recovery
manager and agent, along with the automated failure-path
inference procedure. Section 4 describes our use of micro-
reboots and the stall proxy. In section 5 we show experi-
mental evidence for JAGR’s efficient self-recovery abilities.
We conclude with related work and future directions.

1.3. Testbed Applications

We used two J2EE applications, Petstore and RUBIS,
to test the work described here. PetStore 1.1 [22] is a
freely available sample application that implements an e-
commerce site, complete with personalized web pages,
product catalogs, and shopping carts. It consists of 233 Java
files and about 11K lines of code. It uses 14 database tables,
contains 28 different kinds of items (pets) and 2 suppliers

RUBIS [5] implements a web-based auction service
modeled on eBay. Its features include user accounts, cus-
tomized summary information, item bidding, and com-
ments pages. RUBiS contains 582 Java files and about 26K
lines of code; it uses MySQL for the database back-end, and
stores 7 tables.

2. Failure Monitoring

The first step of the recovery process is detecting that a
failure has occurred and what components require recovery
action. Often, we can recover from a failure without solving
the harder problem of deducing the root-cause of the fault.
Individual monitors are not required to be perfect, as we
cross-reference reports from multiple failure monitors.

Rather than trying to mask a specific failure from the end
user, which would likely require application-specific knowl-
edge, our goal is to report the failure and initiate generic
recovery actions to eliminate it quickly, before the failure
impacts a large number of end users. This approach of sac-
rificing a small number of user sessions for the good of the
majority of the user population is appropriate for Internet
services; for large sites, one would expect the number of
concurrent users to be in the thousands or more, and the
servers to handle hundreds to thousands of requests per sec-
ond [18].

2.1. ExcMon: An Exception Monitor

The first failure monitor we have implemented tracks
and reports Java exceptions (ExcMon). This monitor instru-
ments the JAGR internals to intercept any Java exceptions
thrown by application and platform components. Once an
exception has been intercepted, the exception monitor re-
ports the error and the offending component to the recovery
manager.

The kinds of failures that the exception monitor can de-
tect include many application-level failures (e.g., derefer-
encing null pointers), resource failures (e.g., out-of-memory
errors), and network failures. Of course, the exception mon-
itor cannot detect failures that do not manifest as Java ex-
ceptions. Among others, this includes failures that cause the
whole Java virtual machine to crash or hang. Previous ex-
periments involving fault injection confirmed that our mon-

itor correctly tracks faults across component boundaries.
They also showed that a variety of low-level failures unre-
lated to the application, such as the hard failure of a remote
node hosting a needed service, ultimately manifest as Java
exceptions [3].

While developing ExcMon, we found that not all of the
exceptions ExcMon catches are definitive signs of failure.
Many exceptions are thrown, caught, and handled as part
of the normal behavior of our testbed applications. For
example, when a client tries to log into the RUBIS auc-
tion site using a non-existent user name, it cannot be found
in the database and javax.ejb.FinderExceptionis
thrown. This exception is caught by a servlet and a suitable
informational page is generated; this is correct behavior. To
distinguish between these acceptable exceptions and those
exceptions which cause an end-to-end failure, we have to
combine ExcMon’s reports with those of other failure mon-
itors.

2.2. E2EMon: An End-to-End Failure Monitor

The end-to-end failure monitor is a module that simu-
lates a real client; in fact, our current implementation is
colocated with our client emulator. E2EMon submits HTTP
requests to the application through the web front end, ac-
cording to a trace of such requests specific to the applica-
tion under consideration. The monitor detects end-to-end
failures, as experienced by an end user, at three different
levels, and reports these failures to the recovery manager.

As an end-to-end monitor, E2ZEMon only reports that a
request appears to be failing, and cannot tell which compo-
nents in the system might be at fault. E2EMon’s reports do,
however, give us enough information to validate the com-
ponent failures reported by ExcMon.

Our current implementation of E2EMon can be used for
both the PetStore and RUBIS applications with minimal
modifications, because E2EMon is not very sophisticated.
The levels at which E2ZEMon detects failures are:

e Network level: connection between client and JAGR
closed, connection refused, timeout while reading data
from server, etc.

e HTTP level: inspects all HTTP return codes, and re-
ports those that indicate failure, such as HTTP 403
(“Forbidden”) or HTTP 500 (“Internal Server Error”).

e HTML level: empty HTML page returned, or page
contains certain keywords that have been observed to
correspond to failure or error pages (in our case erro
and fail).

By definition, an end-to-end monitor cannot be entirely
application-generic. For example, our generic approach of

searching for keywords needs to be tailored to the appli-
cation under consideration. E2EMon searches for the erro
and fail string prefixes, catching keywords such as error,
erroneous, failed, failure, failing, etc. However, PetStore
1.1 has a help page which contains some of these keywords
(as in “if you encounter an error, then sign out and...”); we
needed to special-case this page to not signal an end-to-end
failure.

The more sophisticated the end-to-end detection gets, the
more application-specific this monitor becomes. For in-
stance, placing a bid in RUBiS and then verifying that it
is correctly reflected in that item’s bid history requires se-
mantic understanding of what an auction site does; we have
not implemented this functionality.

There are certain failures, however, that E2EMon can-
not catch. Generally, these are either masked failures where
the application attempts to hide the failure behind a plausi-
ble response; or Byzantine failures, such as subtly corrupt
data. For example, a failure in Petstore’s Thelnventory EJB
results in the web catalog masking the failure with an in-
nocuous (and incorrect) “Not in stock” message. Regard-
less of the level of sophistication we embed in E2EMon,
these kinds of failures cannot be reliably diagnosed; even a
human user would have difficulty realizing something went
wrong. The failure monitor described in the next section,
however, can notice some of these failures by looking for
anomalous behavior in the application.

2.3. PPMon: A Pinpoint-Based Monitor

The third failure monitor we have implemented is based
on Pinpoint [7, 8]. To detect failures, Pinpoint uses coarse-
grained tagging of client requests, following their path
through the system and tracing their component and re-
source usages. Using statistical and data mining techniques,
Pinpoint analyzes these traced client requests, or paths, to
capture the aggregate behavior and structure of the whole
system.

Pinpoint then compares this behavior and structure to
the historically-observed “good” behavior of the system.
By looking for anomalies relative to past behavior, Pin-
point is able to detect likely failures without requiring any
application-specific knowledge or semantics. Also, because
Pinpoint traces every client request separately, it can explic-
itly compensate for changes in system structure, though not
performance, caused by variations in the workload mix.

To detect failures, Pinpoint studies the communication
patterns of components, looking at which components are
calling one another. When the pattern of calls being made
to and by a component changes significantly, Pinpoint tags
the component as an anomaly and reports it to the recovery
manager as a likely failing component.

We evaluated standalone Pinpoint by injecting faults into

various EJBs and found that it correctly identified faulty
components in most of the cases. When we injected de-
clared exceptions, 80% of the time Pinpoint correctly iden-
tified the failed components; for both undeclared exceptions
and fail-silent component behavior, 90% of the failures
were detected. The remainder were either mis-diagnosed
or not detected.

The modifications made to JBoss to trace requests for
Pinpoint adds a latency penalty of 2-40ms to each client
request, depending on the number of components used, and
degrades overall throughput by 17% on a mixed workload.
Pinpoint’s analysis engine operates on a separate machine
and does not directly impact application performance.

3. The Recovery Manager and Recovery Agent

As shown in Figure 1, the recovery manager (RM) is
an entity external to the application server. It attempts
automated recovery and only involves system administra-
tors when automated recovery is unsuccessful. We rely
on micro-reboots for recovery; micro-rebooting is a good
way to recover from most transient failures in Internet sys-
tems [4].

The recovery manager listens on a UDP port for failure
notifications from the monitors. Using failure information,
it builds up a representation of the failure propagation paths
through the system in the form of a graph, whose structure
is described in section 3.1. After updating the graph, the
recovery manager decides which components might have
been affected, by determining the connected graph com-
ponent in which the failed component resides. The RM
then activates the stall proxy, simultaneously reboots all
the nodes in that connected component, and deactivates the
proxy.

To effect the reboots, the recovery manager sends reboot
signals to a recovery agent. We have one recovery agent
at the moment, which resides inside JAGR. It is in charge
of micro-rebooting EJBs by undeploying and redeploying
them, upon receiving orders from the RM. In the general
case, we expect to have recovery agents for various domains
of control, each of them being in charge of rebooting the
entities that run in their “jurisdiction.” These entities could
range from EJBs to entire Java Virtual Machines (JVMs), or
even real machines, in which case the recovery agent would
be an IP-addressable power supply.

If targetted reboot-based recovery does not work, our
framework is designed to employ the notion of recursive
reboots [2]. The recovery manager is responsible for initi-
ating coarser grained reboots when it recognizes that previ-
ous reboots have not cured a failure. If the recovery man-
ager ends up rebooting the entire system to no avail, it can
notify a sysadmin by pager, email, etc. Right now we only
have two levels of rebooting: micro-reboot a small subset of

EJBs, or restart the entire application. The RM keeps track
of the previously-rebooted subset of EJB’s and, if the new
subset is the same, it chooses to restart the entire application
instead of the subset of EJBs. In our limited experiments,
however, we have not yet encountered the need for recursive
reboots.

The RM is also in charge of recognizing repeating pat-
terns and preventing JAGR from going into infinite reboot
loops. Though we have not yet seen it occur in our testbed,
it is possible for two or more components to form an unde-
tected reboot-failure cycle; e.g., where rebooting one com-
ponent causes a second to fail, and rebooting the second
component causes the original component to fail again, re-
peating the process. Since we have not encountered this sit-
uation in practice, we have not implemented the detection
and avoidance of these reboot loops.

3.1. Determining Failure Propagation Paths

Since the RM reboots failed components along with the
components it thinks a fault may have propagated to, it
needs to have a representation of the system’s fault prop-
agation paths. However, relying on humans to identify
ways in which faults propagate in their systems is unreli-
able: large scale systems are notorious for exhibiting un-
expected failure modes. This section describes in more
detail how the RM obtains a failure dependency graph in
an application-generic fashion, with no human intervention.
Our technique, automatic failure-path inference (AFPI) [3],
uses systematic injection of Java exceptions to discover de-
pendencies between EJBs.

AFPI is a two-stage process. The first stage is invasive,
and relies on controlled, systematic fault injection to cause
system components to fail; it takes on the order of hours to
run, but requires no a priori knowledge of the application.
Monitors report all observed failures to the recovery man-
ager, which then constructs a graph containing components
as nodes and inter-component fault propagation as edges.
The second, non-invasive stage continues to passively mon-
itor the production system after fault injection has com-
pleted, and updates the graph as new failures are observed.
This second phase has essentially no performance overhead.

During the first phase, the monitors and the RM are not
aware that faults are being injected purposely—they react
as if the faults were “naturally occurring” and do exactly
what they would do during the second phase. Every time
the RM receives a failure notification, it augments the f-
map, and then decides what to reboot based on the updated
f-map. The recovery agent(s) can be selectively disabled
during the initial AFPI phase.

In applying AFPI to J2EE, we injected Java exceptions
into two applications, PetStore and RUBIiS. The AFPI-
generated graphs of exception propagation are more de-

tailed and accurate than what could be derived by time-
consuming manual inspection or by analysis of readily-
available static application descriptions [3].

estore/control/validatenewaccount |
/ estore/control/signout
MainServlet estore/control/verifysignin

[estore/control/commitorder |

ShoppingCartEJB

[estore/control/updateaccount |

estore/control/language

ProfileMgrEJB

ShoppingClientControllerEJB

\iomerEJB

[HttpJspBase |

InventoryEJB

OrderEJB

CatalogEJB
AccountEJB

SignOnEJB

InventoryDB

EStoreDB

Figure 2. The AFPI-generated failure propagation map for PetStore 1.1.
This is more complete and accurate than a map obtained based on
the application’s deployment descriptors. The boxes in the diagram
are EJBs, Java Server Pages (JSPs), and/or serviets. Two databases
are used, and are shown at the bottom.

In Figure 2 we show one of the maps obtained by AFPI
for the e-commerce application. AFPI was able to find com-
ponents and edges that were not represented in the static
deployment information that came with the application. In
addition, AFPI ignored several edges incorrectly contained
in the deployment information, which could not propagate
faults because the components involved did not reference
each other. We obtained similar results when applying AFPI
to RUBIS.

We did not illustrate in Figure 2 the additional informa-
tion that the recovery manager maintains in the f-map: for
each node, it keeps track of how many times the correspond-
ing component was micro-rebooted, as well as the number
of times the components has failed. For each edge in the f-
map, the RM keeps track of how many times a fault was de-
tected as having propagated along that edge. This historical
information will be used in future versions of the recovery
manager to avoid previously-encountered reboot mistakes.

4. Micro-Reboots

Rebooting a single component, as opposed to the entire
system, is what we refer to as a micro-reboot. Three-tier
Internet systems in general, and J2EE applications in par-
ticular, have two structural properties that make rebooting

relatively safe: important, persistent state is managed sepa-
rately from temporary state, and the workload is character-
ized by short-lived, mostly-independent requests.

By managing the persistence of important state exclu-
sively in a dedicated persistence tier, three-tier Internet sys-
tems guarantee the safety of restarting nodes in the other
tiers of the service. This lets us simply (and safely) recover
from a range of transient failures in the relatively compli-
cated software of the presentation and application tiers.

Since the workload on an Internet service consists of
many short-lived, mostly-independent requests, the work a
service must do is well-partitioned; even if a few requests
fail, most clients are unaffected. Additionally, the under-
lying protocol (HTTP) and most of the application logic is
stateless and, except for marked, non-idempotent requests,
end-users can safely retry failed requests until they succeed.
This lets us reboot components in the system, knowing that
any users affected will face only a minor inconvenience.

Micro-recovery vs. whole-system recovery is meant to
reduce time-to-recovery, which in Internet systems is often
more important than increasing time-between-failures [9].
We showed in [2] how micro-reboots can reduce recovery
time in a small Java system by up to a factor of four. To see
whether a similar benefit could be observed for J2EE appli-
cations, we augmented the existing EJB componentization
with coarser reboot boundaries, by splitting the application
server into three separate subsystems: the JNDI naming ser-
vice, the Cloudscape database, and the remainder of JAGR.

According to informal, empirical observations made by
system administrators running large scale J2EE installa-
tions, a frequent failure mode is one in which JVMs run
out of memory; to recover from this failure, it is often nec-
essary to reboot the affected node. We performed a simple
experiment where we compared the time to reboot a whole
server node to the times to reboot the various combinations
of our subsystems plus the PetStore application; the results
are shown in Table 1. All measurements were made on a
4-way multiprocessor (4x550 MHz Intel Xeon), with 1 GB
ECC RAM, and 3 SCSI disks. We performed 5 trials for
each measurement, and had a variance of less than 1%.

Duration | Fraction
357 seconds 100.0%
47 seconds 13.2%
9 seconds 2.5%
<1 second 0.2%

Restarted unit

Reboot server+JAGR+Petstore
Restart JAGR+PetStore
Restart PetStore

Micro-reboot EJB

Table 1. Restart times at various granularities; micro-rebooting the
smallest application component (EJB) is more than 2 orders of magni-
tude faster than rebooting the whole server, and 1 order of magnitude
faster than restarting the application.

4.1. Delaying Client Requests

During the recovery process, we delay incoming requests
with a stall proxy. This keeps clients from seeing failures
due directly to the recovery process; instead of a failure,
clients perceive an increased latency in the request. This
induced latency is finite, as we stall requests for a maximum
of 8 seconds (consistent with the “distraction thresholds”
identified in [17, 1]), after which we return a failure to the
client if recovery has not completed and the request cannot
be admitted to the system.

This feature is not directly part of the self-management
aspect of JAGR, and is not needed for correctness. How-
ever, it allows automatic micro-reboots to happen with min-
imal impact on the end user. Some failures resulting in re-
covery will be masked by short delays; the user whose re-
quest triggered the failure will still experience an error, but
other users may only experience a performance hiccup.

5. Experimental Validation of JAGR

To validate our approach to building a self-recovering
application server, we used fault injection to trigger failures
and allow JAGR to recover from them'. The faults we in-
jected were Java exceptions, as these are a high level man-
ifestation of a wide range of underlying faults. We delib-
erately inject application-level failures, in contrast to work
that injects low-level hardware faults. Determining which
(if any) application-visible failures result from particular
low-level hardware faults requires the construction of a fault
dictionary [12], which has proven difficult. The construc-
tion of the dictionary is complicated by the many software
layers between low-level hardware and the application [10].

While applying the faultload to our system, we replay
a workload that exercises the application under considera-
tion. In order to gather these workloads and replay them,
we used a combination of a recording proxy and a load gen-
erator. The proxy intercepts the interaction of a human user
with the application’s web site, and records all these inter-
actions to a workload trace file. The load generator plays
back the recorded traces, simulating any number of concur-
rent clients by forking a separate thread for each one. The
clients do not have any think time inbetween requests: as
soon as a response is received, the following request is is-
sued.

The PetStore trace we used for the experiments shown
in this paper captures a multi-hour interaction with the pet
store, comprising account creation operations, purchases,
account updates, browsing, etc. Since we could not find
publicly-available request traces for this application, one

TAll experimental data behind the graphs and anlysis presented
here is available at http://www.cs.stanford.edu/ candea/
papers/jagr.

of our colleagues created one by interactively performing
a range of operations typical of e-commerce site interac-
tions, though we do not claim that the resulting mix is par-
ticularly “representative” (in the benchmarking sense) of an
e-commerce workload. For RUBIS, we recorded several
traces played by the RUBIS load generator that comes with
the software.

The workload presented by the load generator simulates
a trace of several distinct user sessions executed serially. A
session consists of the user logging in, performing various
operations, and then leaving the site. Each individual op-
eration is an HTTP request to the service, and its success
or failure can be unambiguously detected. When a request
fails, our load generator retries that request up to a maxi-
mum of 3 times for our experiments, with a 2-second inter-
val between retries. If all attempts fail, the load generator
abandons the current session and moves to the next, simu-
lating a customer that re-logs in, or a new customer arriving.

In the rest of this section, we will describe two cate-
gories of experiments: section 5.1 provides quantitative ev-
idence that JAGR is able to recover automatically, in an
application-generic fashion, for both PetStore and RUBiS;
the results in section 5.2 suggest that such recovery can im-
prove the end users’ experience.

5.1. Application-Generic Recovery

Our first goal was to determine whether JAGR is able to
recover correctly from observed failures. We chose three
different faultloads that exercise different parts of PetStore,
and injected them into both unmodified “vanilla” JBoss and
JAGR. Each faultload consisted of 5 faults, and we injected
one fault every minute.

Figure 3 illustrates the instantaneous availability for the
systems, when placed under faultload and workload. Time
runs left to right, and we show a total of six timelines, two
for each faultload. The top timeline within each faultload
is for vanilla JBoss, while the bottom timeline is for JAGR.
The bands indicate how the test client perceived the sys-
tem at each point in time: a solid band indicates the system
appears to be available and successfully executing client re-
quests, and a gap indicates the server is perceived as being
down.

This experiment suggests that JAGR is able to self-
recover and allow its clients to continue doing useful work
after recovery. While JAGR was able to fully recover after
every injected fault, vanilla JBoss/PetStore no longer func-
tioned correctly after the first injected fault. Human inter-
vention or a coarse reboot, which has a higher latency than
our self-recovery, would be needed to resolve these failures.
The sparse impulses of availability on JBoss’s post-failure
timelines correspond to some requests completing success-
fully even after failure; these are requests for static HTML

_IIIIIIIIIIIIIIIIIIIIIIIIIIII

EEETE R

JAGR JBoss

JAGR JBoss

£ PEOTI3INDd Z PEol3Ined

JAGR JBoss

I I I I I
e i f=d 2 4 =1
Time [minutes]

Figure 3. The client-perceived instantaneous availability of
JBoss/PetStore and JAGR/PetStore under three different faultloads.
Faults are injected every minute; JAGR manages to successfully and
autonomously recover PetStore every time.

pages and images, which are served directly by the front
end. All requests that involved application logic embedded
in EJBs failed; this means the user was not able to do any
useful work, despite sporadic successful requests.

To verify that our approach is indeed application-
generic, we ran similar experiments on RUBIS, the on-line
auction application, after running the automated failure-
path inference algorithm to obtain a corresponding f-map.
Without making any modifications to either of the two ap-
plications, we were able to obtain the same encouraging re-
sults. We report here on a more interesting case of self-
recovery.

During the experimentation, we noticed that one of our
workload traces would cause RUBIS to deadlock often, es-
pecially when a large number of users accessed the applica-
tion simultaneously. Such hangs resulted in the application
becoming unresponsive, and the client connections timing
out. We did not investigate which specific operations in the
workload caused the hangs, but instead relied on JAGR to
autonomously recover from the hangs. Its chosen form of
recovery was a micro-reboot of all EJBs in the application,
due to the way RUBIS is packaged: all EJBs are in one JAR
file. In Figure 4 we show results from running 4 concurrent
clients against RUBIS; each client ran on a dedicated CPU.
Unlike the experiment shown in Figure 3, here we do not
inject any faults, but wait for the application to “naturally”
fail, and then allow JAGR to recover.

Using a similar illustration method as in Figure 3, we
show vanilla JBoss/RUBIiS’s behavior in the top part, and
our JAGR/RUBIS’s behavior in the bottom part. In each di-
agram there are four timelines, one for each client (shown
as CO, C1, C2, and C3). Although the workload is identical

JBoss / RUBAS
T

<3

CZ

<

<Ol

1 1 1 I I
a 2 4 & = i@

JAGR / RUBIS
T

Time [minutes]

Figure 4. JAGR recovers on its own from naturally occurring dead-
locks in RUBIS. The top half shows instantaneous service availability
of JBoss/RUBIS, as perceived by each of the 4 clients; the bottom
half shows the same for JAGR/RUBIS. Deadlock occurred 3 times
when running on JAGR, and it was able to recover every time, un-
like JBoss/RUBIS, which hung right after the first deadlock, denying
application access to all clients throughout the remainder of the run.

in the two runs, the precise sequence of events inside the
server and application is not the same, because of nonde-
terministic interleaving of client requests and potential race
conditions inside the application. This explains why the oc-
currence of the first deadlock does not line up for the two
different systems. The condition that causes the hangs is the
same every time, and the server logs indicate that the hang
in the JBoss/RUBIS case is the same type as the 3 hangs
experienced in the JAGR/RUBIS case.

5.2. Self-Recovery Improves End User Experience

The experiments in the previous section illustrated
JAGR’s ability to recover unassisted, and they suggested
that users may be able to get more work done when the
server recovers on its own. In this section we try to see just
how much better a self-recovering application server can be.

In one of our RUBIS runs, we encountered a case where
one user’s detection of a failure enabled the complete mask-
ing of that failure from all other users. Figure 5 shows
three timelines corresponding to three concurrent clients,
CO0, C1, and C2. We injected a fault into the server (specifi-
cally,aNullPointerException to simulate a real-life
data corruption error) during one of C0O’s requests. Since
E2EMon is embedded in the load generator, this failure was
detected and reported to the recovery manager, which had

e 8.3 1 1.5 =) 2.3 2
Time [minutes]

Figure 5. JAGR can improve end user experience by offering them the
illusion of continuous availability. Fast and effective recovery helps
mask the injected fault from clients C/ and C2.

already noticed the exception. The recovery manager in-
structed the stall proxy to hold up the other requests; once
recovery completed, the stalled requests were admitted to
the system and user CO successfully retried her failed re-
quest. The net effect on users C/ and C2 was a delay of 3.3
seconds in serving their requests. Since this is below the
8-second distraction threshold discussed in section 4.1, it is
fair to say these users did not notice the failure. Hence, fast
recovery in conjunction with a brief stall was able to mask
the failure from some of the system’s users. If a more heavy
weight, non-micro-reboot recovery had been employed, the
delay would have been perceptable and would have resulted
in end-to-end visible failures.

To characterize these effects in more general terms, we
compared the performability [16] of JAGR/RUBIS to that
of JBoss/RUBIS. To do so, we measured the successful re-
quest throughput, or “goodput,” while the system was under
load and experiencing faults. The faultload was the same
for both platforms and the three faults were injected every
2 minutes. The workload consisted of 10 users executing
exclusively read-only requests, to avoid the deadlock prob-
lems described in section 5.1.

In Figure 6 we plot the goodput for JBoss (left side)
and JAGR (right side). We computed average throughput
over 10-second intervals, to amortize the variability result-
ing from our relatively small user population. The area un-
der the throughput curve represents the number of requests
that were successfully completed during that interval. In the
vanilla JBoss case, as soon as our monitors detect a prob-
lem, the JBoss server automatically gets rebooted. For a
human-administered system, this is very optimistic: detec-
tion time is practically zero and it assumes the administrator
does not fumble with the system before rebooting.

Unlike JAGR, the system does not have enough time to
ramp back up to its original performance after reboot. This
is in part due to the rebooted server having to page in Java
classes, recompile servlets, etc. as well as due to the clients,
who have difficulty picking up the work where they left off,
because of the highly disruptive reboot. JAGR automati-

JBoss: manual recovery

Requests/sec

Time [minutes]

JAGR: automatic self-recovery

Requests/sec

Time [minutes]

Figure 6. JAGR improves service performability. The shaded area under the curve represents the total number of requests that succeeded; JAGR/RUBIS
did 78% better than JBoss/RUBIS, and maintained a goodput of at least 20 requests/sec, even in the face of faults.

cally micro-reboots RUBiS’s EJBs, without affecting the
server; notice how JAGR’s goodput never drops below 20
requests/sec, because recovery is fast and the stall proxy
maintains the illusion of availability for part of the client
population.

To compute the total number of requests successfully
completed during the observation period, we simply need
to compute the area under the throughput curve. This yields
a total of 14,243 requests for JBoss-managed RUBIS, and
25,295 requests for JAGR-managed RUBIS, which repre-
sents a 78% improvement for this particular experiment.
If we assume that an increase in successful requests trans-
lates somehow into an increase in end user satisfaction, we
can argue that running J2EE applications on JAGR, our en-
hanced version of JBoss, can offer service providers a com-
petitive advantage.

6. Related Work

Redundancy and failover [15] are a staple of Internet ser-
vices and the most popular tool in reducing downtime. The
techniques presented here are complementary to that strat-
egy, since failed nodes must eventually be recovered to re-
store system throughput, as well as close the “window of
vulnerability” associated with operating under partial fail-
ure. The CNN.com meltdown on 9/11/01 [13] is a good
example of how slow node-level recovery time can lead to
the entire service collapsing.

ARMOR [24] provides some application-generic ser-
vices, such as liveness monitoring and reboot, to distributed
applications. It provides checkpoint-based recovery to ap-
plications written to ARMOR’s micro-checkpointing API,
including ARMOR itself (i.e., the ARMOR middleware
modules can recover from their own checkpoints). Com-
pared to ARMOR, we are attempting to detect more classes
of failures via the use of different types of plug-in failure
monitors, and collecting in one place (the recovery man-

ager) the policy decisions as to what should be rebooted to
attempt recovery. Since we are interested in supporting any
unmodified J2EE applications, which are not written to any
checkpointing API, our recovery is generic—successively
reboot larger subsystems until the fault goes away or we
have rebooted the entire system—but our failure detection
offers room for refinement.

The SEDA [23] project recognized the value of moving
certain behaviors (admission control, load balancing, etc.)
into the runtime system, such that all applications running
on that platform would benefit. In SEDA’s case, appli-
cations had to be written in an event-driven continuation-
passing style; admission control and load balancing could
then be done implicitly by the SEDA middleware. How-
ever, this requires recoding the application in a somewhat
nonintuitive programming style. In JAGR, no application
modifications are required.

Since we have implemented a pluggable monitoring
framework in JAGR, the monitors presented here are strictly
complementary to other failure detection techniques. The
most common techniques for detecting failures in Inter-
net services are low-level monitoring, such as heartbeats
and pings, and periodic high-level, end-to-end application
checks [15]. Heartbeats and pings have the advantage of
being simple to implement and easy to maintain. How-
ever, they lack the ability to detect many application-level
failures. Complex, end-to-end tests that make use of de-
tailed application semantics are able to detect application-
level failures, but, since they must be redeveloped for indi-
vidual applications, they are expensive to build. In addition,
they require significant maintenance to keep up-to-date with
rapidly evolving applications.

7. Conclusion

We have presented an initial implementation of JAGR—
JBoss with Application-Generic Recovery. JAGR com-

bines application-generic failure-path inference (AFPI),
path-based failure detection, and micro-reboots. AFPI uses
controlled fault injection and observation to infer paths that
faults follow through a J2EE application. Path-based fail-
ure detection uses tagging of client requests and statistical
analysis to identify anomalous component behavior. Micro-
reboots are fast reboots we perform at the sub-application
level to recover components from transient failures; by se-
lectively rebooting only those components that are neces-
sary to repair the failure, we reduce recovery time. These
techniques are designed to be autonomous and application-
generic, making them well-suited to the rapidly changing
software of Internet services. We have shown that JAGR
can improve the availability of two J2EE applications.

Although E2EMon, one of our monitors, is not en-
tirely application-generic, the JAGR infrastructure itself is
application-agnostic. We expect that, as more plug-ins are
developed, we will be able to broaden the class of failures
from which automated recovery is possible. In the future
we also intend to take JAGR to the realm of clusters and
explore the benefits it can offer in that context. We also
want to enable the recovery manager to better utilize histor-
ical information about its own actions (such as “rebooting
component X has never cured failures in the past”) in its
decision making.

Internet applications, our domain of choice, have been
increasing in complexity at a rapid pace, and are subject to
continuous evolution even after deployment. Under such
circumstances, we hope that JAGR’s self-healing property
can insulate service administrators and users from the in-
tricacies of the applications they run and use. We hope to
bring such self-recovering software to a wider user commu-
nity by making JAGR available in a future JBoss release.

References

[1] N. Bhatti, A. Bouch, and A. Kuchinsky. Integrating user-
perceived quality into web server design. In Proc. 9th Inter-
national World Wide Web Conference, Amsterdam, Holland,
2000.

G. Candea, J. Cutler, and A. Fox. Improving availabil-
ity with recursive micro-reboots: A soft-state system case
study. Performance Evaluation Journal, Summer 2003. to
appear.

G. Candea, M. Delgado, M. Chen, and A. Fox. Automatic
failure-path inference: A generic introspection technique for
software systems. In Proc. 3rd IEEE Workshop on Internet
Applications, San Jose, CA, 2003.

G. Candea and A. Fox. Recursive restartability: Turning the
reboot sledgehammer into a scalpel. In Proc. 8th Workshop
on Hot Topics in Operating Systems, Elmau/Oberbayern,
Germany, 2001.

E. Cecchet, J. Marguerite, and W. Zwaenepoel. Performance
and scalability of EJB applications. In Proc. 17th Con-
ference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, Seattle, WA, 2002.

[2

—

3

—

[4

—

[5

—

10

(6]

(7]

(8]

(9]

(10]

[11]

(12]

(13]

[14]

[15]

(16]

[17]

(18]

(19]

(20]
(21]

[22]

(23]

(24]

S. Chandra and P. M. Chen. Whither generic recovery from
application faults? A case study using open-source software.
In Proc. International Conference on Dependable Systems
and Networks, New York, NY, 2000.

M. Chen, E. Kiciman, A. Accardi, A. Fox, and E. Brewer.
Using runtime paths for macro analysis. In Proc. 9th Work-
shop on Hot Topics in Operating Systems, Lihue, Hawaii,
2003.

M. Chen, E. Kiciman, E. Fratkin, E. Brewer, and A. Fox.
Pinpoint: Problem determination in large, dynamic, Internet
services. In Proc. International Conference on Dependable
Systems and Networks, Washington, DC, June 2002.

A. Fox and D. Patterson. When does fast recovery trump
high reliability? In Proc. 2nd Workshop on Evaluating and
Architecting System Dependability, San Jose, CA, 2002.

C. Fu and R. M. et al. Compiler-directed program-fault cov-
erage for highly available internet applications. Technical
report, Rutgers University Computer Science Dept., 2003.
JBoss. Homepage. http://www.jboss.org/docs, 2002.

Z. Kalbarczyk, R. K. Iyer, G. Ries, J. Patel, M. Lee, and
Y. Xiao. Hierarchical simulation approach to accurate fault
modeling for system dependability evaluation. /[EEE Trans-
actions on Software Engineering, 25(5):619-632, Septem-
ber/October 1999.

W. LeFebvre. CNN.com—Facing a world crisis. In 15th
USENIX Systems Administration Conference, 2001. Invited
Talk.

D. E. Lowell, S. Chandra, and P. M. Chen. Exploring failure
transparency and the limits of generic recovery. In Proc.
4th USENIX Symposium on Operating Systems Design and
Implementation, San Diego, CA, 2000.

E. Marcus and H. Stern. Blueprints for High Availability.
John Wiley & Sons, Inc., New York, NY, 2000.

J. F. Meyer. On evaluating the performability of degradable
computer systems. [EEE Transactions on Computers, C-
29:720-731, Aug 1980.

R. Miller. Response time in man-computer conversational
transactions. In Proc. AFIPS Fall Joint Computer Confer-
ence, volume 33, 1968.

V. S. Pai, A. L. Cox, V. S. Pai, and W. Zwaenepoel. A flex-
ible and efficient application programming interface for a
customizable proxy cache. In Proc. 4th USENIX Symposium
on Internet Technologies and Systems, Seattle, WA, 2003.
D. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen,
J. Cutler, P. Enriquez, A. Fox, E. Kiciman, M. Merzbacher,
D. Oppenheimer, N. Sastry, W. Tetzlaff, and N. Treuhaft.
Recovery oriented computing (ROC): Motivation, defini-
tion, techniques, and case studies. Technical Report
UCB/CSD-02-1175, UC Berkeley, Berkeley, CA, March
2002.

SourceForge.Net. The world’s largest open source software
development repository. http://www.sourceforge.net/, 2003.

Sun_Microsystems. J2EE platform specification.
http://java.sun.com/j2ee/, 2002.
Sun_Microsystems. Java Pet Store Demo.

http://developer.java.sun.com/developer/releases/petstore/,
2002.

M. Welsh, D. Culler, and E. Brewer. SEDA: An archi-
tecture for well-conditioned, scalable Internet services. In
Proc. 18th ACM Symposium on Operating Systems Princi-
ples, Banff, Canada, 2001.

K. Whisnant, S. Bagchi, B. Srinivasan, Z. Kalbarczyk, and
R. Iyer. Incorporating reconfigurability, error detection, and
recovery into the Chameleon ARMOR architecture. Tech-
nical Report CRHC-98-13, University of Illinois at Urbana-
Champaign, 1998.

