
o h s t  Contour Tracking in Echocardiographic Sequences 

Gary Jacob, J. Alison Noble and Andrew Blake 
Department of Engineering Science, Oxford University, Oxford OX 1 3PJ, England. 

{jacob, noble, ab} @robots.ox.ac.uk 

Abstract 
In this paper we present an evaluation of a robust vi- 

sual image tracker on echocardiographic image sequences. 
We show how the tracking framework can be customised 
to defne an appropriate shape-space that describes heart 
shape deformations that can be learntfrom a training data 
set. We also investigate an energy-based temporal bound- 
ary enhancement method to improve image feature mea- 
surement. Preliminary results are presented demonstrat- 
ing tracking on real normal heart motion data sequences 
and synthesised and real abnormal heart motion data se- 
quences. We conclude by discussing some of our current 
research efsorts. 

1 Introduction 
There has been increasing interest in analysing left ven- 

tricular function using cardiac imaging technology. The 
clinical demand is for real-time analysis as most patholo- 
gies manifest themselves by abnormalities in heart dynam- 
ics. Although the ideal would be real-time analysis of tem- 
poral sequences of full volumetric data (3Di-T) such as 
MR sequence analysis [ 141, ultrasound tomography [ 131 
or free-hand probe ultrasonography [ 161 this is not likely 
to be achievable at a reasonable price in the near future. 
Hence, there is considerable clinical interest in develop- 
ing methods to perform real-time quantification of regional 
heart function based on an analysis of 2D image sequences 
(2D+T) of echocardiograms [6, 121. 

’ In this paper we present an experimental evaluation of 
a robust visual image contour tracker [ l ,  21 on extended 
echocardiographic image sequences. The potential attrac- 
tion of this method relate to tracking robustness - the ap- 
proach can track well in the presence of clutter (which in- 
cludes distracting structures as well as large amounts of 
spurious sensor noise and imaging artifacts). It achieves 
this robustness by restricting the class of allowable mo- 
tions (shape deformations) to an admissible set that has 
been learnt from tracking on a training data set. In par- 
ticular, and unlike previous approaches [3, 61, working on 
extended sequences allows us to directly estimate tempo- 
ral characteristic parameters such as periodicity and asyn- 
chronousy. Further, a robust tracker can accommodate part 

of a contour going out of the measurement window for a 
limited time. This is an attractive feature in echocardio- 
graphic image sequence analysis as due to twisting of the 
heart a section of the ventricle boundary wall may rotate 
out of the plane of the sector scan over part of the cardiac 
cycle. Methods based on tracking image features detected 
in single frame echograms [ 11, 31 can not do this. 

The ultimate goal of this work is to develop the tracking 
framework as a basis for regional heart function assess- 
ment of ischemia and infarcted heart disease. This paper 
reports on our first studies in this area. We evaluate the 
limitations of the visual tracking framework for echogram 
analysis and then go on to describe how to adapt it to bet- 
ter meet the needs of echogram analysis. We are currently 
working on the full implementation of some of these ideas. 
Future work will focus on classification issues and extend- 
ing the ideas to 4D (3D+T) analysis. 

The outline of the paper is as follows. In section 2 we 
briefly review the key ideas behind the tracking algorithm. 
Section 2.1 explains how shape deformations are defined 
and can be estimated from training sequences. Section 2.2 
considers the tracking model and how tracking dynamics 
can be estimated. Tracking experiments comparing differ- 
ent models of tracking dynamics are presented in Section 3. 
In an attempt to improve tracking performance by enhanc- 
ing the measurement process, Section 4 presents results of 
applying energy-based filtering and temporal-based noise- 
reduction methods. Further results on other heart image 
sequences are given in Section 5. We conclude, in Section 6, 
with a discussion of directions of current and future work. 

2 Theory 
Blake’s contour tracking algorithm is based on a com- 

bination of active shape modelling and stochastic methods 
for tracking non-rigid objects over time [ I ,  21. The for- 
mer encompasses the observation that the shape of an ob- 
ject can vary considerably over time, and between object 
instances. A flexible model, or deformable template, is 
used to allow for some degree of variability in the shape 
of the imaged object. The model aims to capture the nat- 
ural variability within a class of shapes. The tracker can 
learn classes of motion (shape deformation) from a train- 
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ing set. To track an object, in our case a left ventricle, a 
flexible and robust shape model is propagated over time 
using stochastic differentid equations, whose parameters 
are learnt from image training-sequences. In echocardio- 
graphic image tracking his  is especially challenging be- 
cause of speckle noise and artifacts of the imaging process. 

2.1 Shape-space model To begin with we need to be 
able to represent shape deformation of an object, which we 
assume is a non-rigid contour (B-spline). This is done us- 
ing the concept of a shape-space. A shape-space is a linear 
mapping of a “shape-space vector” X to a spline-vector Q, 

Q = W X  + Qo, (1) 

where W is called a shape matrix. The elements of X act 
as weights on the columns of W .  &O is a constant offset, 
for example, a mean shape. As an example, a planar affine 
shape space is described by, 

1 O Q g  0 
w = (  0 1 0 Q: Qg 0 

where Qg are the 5 template coordinates of control points, 
chosen with the centroid at the origin; similarly for 0:. 
Here the first two columns of W represent horizontal and 
vertical translation. The tlhird and fourth columns repre- 
sent scaling (width and height respectively). The last two 
columns deal with rotation. Rather than using Equation 1 
or Equation 2 it is possible to apply a principal component 
analysis [: 103 to the data to determine the size of space that 
could be used to represent the motion (or shape deforma- 
tion) of the object. The advantage is that the resulting W 
matrix is finely tuned to the deformations of the object of 
interest, in our case the left ventricle. The disadvantage is 
that interpretation of the resulting W matrix is less clear. 
We return to this point in Section 3. 

2.2 Tracking and training To track an object, a shape 
model is propagated over time using stochastic differential 
equations. Tracker dynamics can be described by a second 
order autoregressive model which can be written in discrete 
form as, 

X(th+z)-X = A o ( X ( t k ) - - ~ ) + A 1 ( X ( t h + ~ ) - ~ ) + B o W k  
(3) 

A Kalman filter framework [5] is used to iteratively update 
the tracking algorithm using a prediction-update strategy. 
The prediction step updates the motion based on the model 
of the tracker dynamics. This prediction is then corrected 
in the update step using in Formation provided by the mea- 
surement process. In the original tracker implementation 
measurements are made along the normals to the present 
estimate of the contour to save computational expense. 

Features are detected by applying a one-dimensio@ gra- 
dient operator along the sampled normals and selecting the 
strongest response as the most probable feature. 

Training: In Equation 3, matrices Ao, AI and Bo gov- 
ern the behaviour of the tracking algorithm and can ei- 
ther be set by specifying ‘reasonable’ default dynamics 
or learnt from extended training sequences. In practice, 
choosing a set of good default dynamics is time-consuming 
and problematic and training is necessary. Suppose that we 
are given a training sequence of data. We can estimate B 
(or equivalently Bo) by noting that the covariance of the 
data set is C=BBT The procedure for finding the coef- 
ficient matrices for AO and AI is a little more complicated 
P I .  

Briefly, first a principal component analysis is applied to 
the data to estimate W .  This is done in order to restrict the 
state space to a low-dimensional subspace during training 
to avoid overfitting. Training data is collected by tracking 
an ultrasound sequence using a tracker with good default 
dynamics. The learning exercise is then to estimate the 
coefficients A,-,, A1 and Bo from this training sequence 
of spline contours. The discrete-time system parameters 
are estimated via Maximum Likelihood estimation (MLE). 
Assuming that the noise is Gaussian, it is straightforward 
to set up and maximise the likelihood function. 

3 Tracking experiments 
A series of expedments were performed to compare 

tracking performance using different models of system dy- 
namics and training strategies. Data for these experiments 
was acquired using a HP SONOS 1000 ultrasound ma- 
chine at the John Radcliffe Hospital, Oxford. The data was 
recorded on VHS video and then digitised. 

3.1 Shape-space estimation: An experiment was con- 
ducted to compute the W matrix for an echocardiographic 
data set. The peak of the ECG R-wave was chosen as the 
starting point to a cardiac cycle. The first frame of the im- 
age sequence was then manually segmented. The result- 
ing spline, with 14 control points defined the initial tem- 
plate. Four non-consecutive cycles were selected in this 
way, with the aim of obtaining a representative sample of 
heart cycle variations. Table 1 summarises the results of 
PCA analysis. For this data set, four modes explained 95% 
of the variation. 

We can express any shape in a training set as an initial 
template plus a multiple of the estimated W matrix. As we 
have seen in the last section we can chose W via principal 
component analysis, such that the N% of the variability is 
explained by the first IC eigenvalues. (in example 1, IC = 
4, N = 95). 
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It is possible to take the mean shape &O and add to it 
multiples of each mode to see what that particular mode 
represents. Equation 1 becomes, 

where, U, is the ith eigenvector, A, is the ith eigenvalue 
which represents the sample variance of X , and m is a 
scalar usually varying between 1 and 3. 

Mode Eigenvalue Vanability % Cumulative % 

41323.56 0.0817 
4 21986.23 0.0435 0 957 

Table 1: The results of applying a principal component 
analysis to 4 manually segmented cardiac cycles. 4 modes 
of variation explain over 95% of the variabilio. 

Figure 1: Principal component analysis performed on 4 
cardiac cycles of a ultrasonic image sequence. Top: The 
mean shape (thick curve) is plotted along with curves 
representing the addition of f 3  standard deviations to the 
mean shape mode; From left, mode 1 (the dominant mode) 
to mode 4. Bottom:The mean shape (J iS ld  line) is plotted 
along with flow lines representing how the start of each spai 
behaves with the addition of f 3  standard deviations to the 
mean. From left, mode 1 (the dominant mode) to mode 4. 

Plots of the first four modes for this example are shown 
in Figure 1 (top). The thicker contour is the mean shape 
curve. The two thinner curves represent the mean shape 
f 3  standard deviations. The first mode appears to be a 
translation mode. The second mode appears to be a scal- 

(a) .. 

(cl 
_. 

ing mode where the scaling applies to the bottom of the 
left ventricle next to the mitral valve. The third and fourth 
modes both appear to represent a combination of scaling 
and translation. 

An alternative way of visualising the modes of variation 
is depicted in Figure 1 (bottom). Here flow vectors have 
been used to indicate the deformation for selected points 
along the contour. In this figure each flow vector is centred 
on a point on the mean shape. The ends of the flow vectors 
are located at f three standard deviations from the mean 
shape taken in the direction of the shape deformation. The 
attraction of this method of visualisation is that it can be 
used to highlight the degree of scaling, translation and ro- 
tation for a general shape deformation. This can be difficult 
to determine by simply plotting the shape modes (Figure 1 
(top). For example, in Figure 1 (bottom) it is clearer now 
that although mode I is predominately a translation mode 
there is also a small rotation component. Mode 4 shows a 
strong horizontal translation component. 

Recall from Equation 1 that the shape-space model is 
given by,Q = WX + Qo, X can be recovered as, X = 
W+(Q - Qo), where W+ = (WTHW)-'WTH is the 
pseudo-inverse of W. Figure 2 shows plots of 'the shape- 
space vector X over time. Note in particular the period- 
icity of the second mode. Temporal plots of this kind are 
potentially of great clinical value for quantifying heart pe- 
riodicity and asynchronousy. We plan to investigate this 
idea in future work. 

Figure 2: Plots of the four components of X over one cur- 
diac cycle; from (a) to (d), components l to 4. Each com- 
ponentis plotted against the time for the image sequence. 

3.2 Can we assume an affine mode of deformation? 
Recall from Section 2. I that it is possible to define the W 
matrix with varying degrees of freedom (dimensionality). 
A low dimensional space, such as an affine space, is at- 
tractive as it is easier to compute and offers an intuitive 
interpretation. All prior work on traclung hearts in 2D im- 
age sequences has assumed this model. On the other hand 
a higher dimensional space might be necessary for accu- 
rately characterising deformation and traclung. An exper- 
iment was conducted to investigate how close a W matrix 
estimated using PCA and training was to an affine space. 
The purpose of this experiment was to see whether a higher 
dimensional space was really necessary for characterising 
heart dynamics. 

The residual T defined as, 
IIVt - wAw2vt112 

r =  
I IVCI 12 

was used as the similarity metric. Here v, is an eigenvector 
of the PCA W matrix, WA is an affine shape matrix and 
W i  is its corresponding pseudo-inverse. 

Table 2 summarises the residuals computed for the first 
four modes of the normal heart image sequence PCA W 
matrix. This shows that although modes 1,2 and 4 are fairly 
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Eigenvector 

v1 
v2 
v3 
V d  

Table 2: Projecting a W matrix obtained using PCA into 
an afJine space. Shown is the residual after projecting into 
the afine space, ~ 

Ilvi-WaBCT:v; 112 

I l v i l I 2  . 

I I v t - w A w d e  Ilv%-wAwf;vtllZ ’ 
IIv*IIz llvz112 

0 3411 0 1163 
0 2931 0 0859 
0 9392 0 8821 
04811 0 2315 

3.3 Comparing shape models: An alternative way to 
compare how well different shape-models capture heart 
dynamics is to perform ;I visual inspection of tracking 
performance. An experiment was performed to compare 
tracking results using (1) a W matrix chosen to correspond 
to an affine shape matrix, (2) a W matrix estimated using 
PCA and (3) a W matrix estimated using PCA followed 
by training. 

Figure 3 shows ‘snapshot’ views of tracking using the 
three approaches on three consecutive frames. The main 
conclusion that we could draw from this experiment was 
that tracking based on me1 hods (2) and (3) gives superior 
results to method (1) in terms of how closely the tracker 
followed the observed hesu t chamber boundary movement. 
This indicates that that hext dynamics are not well mod- 
elled by a (simple) affine model. Training - method (3) 
- did appear to be slightly more resilient to spurious fea- 
tures and was less sensitive to parts of the contour fading 
out of the measurement window over part of the cardiac 
cycle. However, this approach is computationally more 
expensive. It was also veIy apparent from this study that 
further improvement in tracking performance could only 
be achieved by enhancing the image feature detection pro- 
cess. We consider this next. 

Figure 3: Echogram tracking using afine W matrix (left), 
W matrix ffom PCA (middle), trained tracker using W ma- 
trix from PCA (right). (a) .- (c) Frames 44, 45, and 46. 

4 Improving feature detection 
In this section we turn our attention to improving the 

measurement process. We consider two ways in which this 
can be done; replacing the visual edge feature detector by 
an acoustic boundary feature enhancement operator; and 
using spatio-temporal based speckle noise reduction prior 
to boundary detection. 

The visual image tracking algorithm uses a gradient- 
based operator for detecting contour points which produces 
many candidate responses on ultrasound images. This is 
due partly to the low signal-to-noise ratio and poor im- 
age contrast. There is, however, something fundamentally 
wrong with using such an approach. A gradient-based 
feature detector is designed to detect an object boundary 
as a step discontinuity in intensity. However, an ideal 
acoustic edge is defined as a discontinuity in acoustic 
impedance (an intensity ridge) or equivalently a disconti- 
nuity in acoustic energy or integrated backscatter (IBS). 
Formerly, integrated backscatter is defined as, 

ST- T+AT AT I V ( t )  I2dt 

Sr-AT r+Ar I P(t )  1% 
S =  

where S indicates the integrated backscatter measure, V( t )  
and P(t )  are the signals received from the tissue and the re- 
flector, respectively, r is the position in time of the centre 
of the region of interest in the tissue and AT is the corre- 
sponding half-width in time. In the spatial domain, inte- 
grated backscatter can be estimated simply as the average 
squared greylevels over a neighbourhood. The IBS model 
has been’used to measure properties of myocardial tissue 
since changes in integrated backscatter relate to changes in 
acoustic impedance, and hence changes in tissue relaxation 
and elasticity [SI. IBS boundary enhancement is also used 
in state-of-the-art commercial echocardiographic imaging 
systems for single view real-time edge detection. 

We investigated tracking heart boundaries on image se- 
quences pre-filtered by an IBS algorithm to see if this im- 
proved tracking performance. IBS filtering removed a sig- 
nificant amount of speckle noise within the left ventricle 
chamber and enhanced heart chamber boundaries but the 
result was blurred relative to the original. Overall there 
were less spurious feature responses but localisation of 
heart contours did not improve due to spatial blurring. 

A natural question to ask is whether spatio-temporal fil- 
tering can improve ultrasound feature detection relative to 
a static image feature detection approach. Herlin and Ay- 
ache explored this idea for step edge detection in ultra- 
sound images [6] .  They assumed a step model and Gaus- 
sian noise. 

We implemented a spatio-temporal acoustic bound- 
ary detection scheme based on a combination of spatio- 
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temporal speckle reduction filtering [4] and acoustic en- 
ergy discontinuity detection. Figure 4 shows one frame 
together with IBS enhanced and spatio-temporal speckle- 
reducedlIBS enhanced versions of the same images. A 
frame-by-frame visual comparison of trachng using the 
three approaches showed that the reliability of detection 
of boundaries was best for the spatio-temporal boundary 
detection algorithm. Quantifying the degree of improve- 
ment is difficult because we do not have any ground truth 
by which to compare the algorithms. However, since we 
can estimate the state vectors we can look for consistency 
of state vector component trajectories over a number of 
cycles as a measure of algorithm robustness to measure- 
ment noise. In figure 5 we show coefficient plots based 
on tracking on the original data (light curve) and the data 
pre-filtered by the spatio-temporal boundary enhancement 
method (dark curve). Observe that the plots are more con- 
sistent for the algorithm which used the spatio-temporal 
filtering approach. 

The current approach involving the sequential applica- 
tion of a temporal-based noise-reduction filter followed 
by static image feature detection gives improved track- 
ing performance. However, further improvement could be 
achieved if temporal information was utilised in the detec- 
tion step. We are currently exploring methods to extend 
the idea of spatio-temporal acoustic boundary detection to 
a truly 3D (2D+T) filtering process. 

Figure 4: Noise reduction. The original ultrasound im- 
age (left), the image after the two-dimensional least mean 
square (TDLMS) filter is applied (middle), TDLMS filter 
followed by IBS (right). 

Figure 5 :  Comparison of component plots for tracking 
on ultrasound data - original data (light curve) and en- 
hanced data (dark line) using an affine W matrix. Each 
component is plotted against the time for the image se- 
quence. 

5 Towards classification 
The ultimate goal of this work is to demonstrate that 

automated image analysis can be used for to perform 
temporal-based quantification of regional heart function. 
As a step towards this goal, in this section we present some 
results of applying the training and tracking procedures 
outlined in Section 3 to some further real heart image se- 
quences. 
5.1 A synthesised abnormal heart: Abnormal heart 
motion was simulated by editing images corresponding to 
the diastole section of the cardiac cycle for a normal heart 
image sequence (the example used in Section 3) so that the 
posterior (left) wall appeared sluggish. This was done by 
shifting an image block containing the posterior wall from 
each of the diastole images by 10 pixels to the right. The 
image block was then blended in with the data using an ex- 
ponential weight function. Finally a PCA was performed 
as before. Figure 6 summarises the results. The key thing 
to observe is that the nature of the principal modes remain 
unchanged although the magnitude is affected (compare 
with Figure 1). In particular the second mode (middle plot) 
shows that the posterior wall scales outwards to a lesser de- 
gree which is consistent with the imposed abnormality. 

Figure 6: Principal component analysis performed on 4 
cardiac cycles of a ultrasonic image sequence. The ac- 
tual data (light curve) is plotted along with the simulated 
data (dark curve). The mean shape (left) i s  plotted. The 
modes represent the addition of f3 standard deviations to 
the mean shape: From second left mode 1 to mode 4. 
5.2 A real abnoririd heart: A PCA was performed on 
four manually segmented non-consecutive cycles of real. 
data for a patient diagnosed with a disease which manifests 
as a loss in elasticity of the heart. Figure 7 summarises the 
results of the PCA. In this case seven modes of variation 
express 95% of the variability as compared to four modes 
with the normal heart. The first mode appears to be a scaling 
of the anterior wall, the second mode a translation mode, 
the third mode a scaling, the fourth mode a mixture of a 
translation and scaling and the fifth mode is translation. 

Figure 7: Firstfive principal modes for an abnormal heart. 
The mean shape {filled line) is plotted along withJlow lines 
representing how the start of each span behaves with the 
addition of f3 standard deviations to the mean. From lej?, 
mode 1 to mode 5. 
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Eigenvalue Variability % Cumulative % 
0.321 0.321 

2 544.00 0.294 0.615 
3 284.00 0.139 0.755 
4 169.4 0.115 0.871 
5 85.29 0.0546 0.925 
6 45.54 0.0185 0.944 
7 31.35 0.0139 0.958 

Table 3: The results of aj’plying a principal component 
analysis to 4 manually segmented cardiac cycles from an 
abnormal heart. 7 modes of variation explain over 95% of 
the variabiliv. 

6 Discussion and future work 
In this paper we have presented the results of an evalua- 

tion of a robust visual image tracker on echocardiographic 
image sequences. Our preliminary results are encourag- 
ing. We now plan to furthcr investigate how this tracking 
framework can be develop1:d into a clinical tool for auto- 
mated regional heart functilm analysis. 

Our current efforts are directed in three key areas: de- 
veloping alternative training strategies and generalising the 
class of motions that the tracking algorithm can handle: 
improving the detectian of image features; and developing 
further insight into the clinical interpretation of the defor- 
mation parameters. 

In Section 2 we outlined how the tracking algorithm is 
trained using a single-step (estimation of the system matri- 
ces Ao, AI and Bo. We are currently investigating how we 
could use a related idea to build a generic model of heart 
motion from training data tiased on an average model. We 
plan to investigate how well this type of model can rep- 
resent the dynamics of a normal heart and different heart 
conditions. Clearly the genxal model is not going to track 
a specific heart as well as a tracking algorithm tuned specif- 
ically to an individual heart. However, the goal here is 
to provide a general enough description of heart dynam- 
ics that can be used in conjunction with a robust feature 
detector to provide robust tracking results. 

It is clear that the main way in which tracking perfor- 
mance can be further improved is through the development 
of new methodology for robust acoustic boundary feature 
measurement. In Section 4 we found that spatio-temporal 
noise reduction improved irnage feature detection. We plan 
to investigate methods, posljibly based on energy filters [9] 
(wavelets) and anisotropic diffusion [15, 171, to extend the 
idea of spatio-temporal acoustic boundary detection to a 
truly 3D (2D+T) filtering process. 

Finally, the ultimate measure of the success of this work 
will be to demonstrate that it is possible to relate the track- 
ing parameters to clinical meaningful descriptors of the 
cardiac performance. We plan to evaluate the clinical po- 

tential of our algorithms using the objective quantification 
of ischemic heart disease and stress testing as example car- 
diac application domains. 
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