34

The J300 Family of Video
and Audio Adapters:
Software Architecture

The J300 family of video and audio products

is a feature-rich set of multimedia hardware
adapters developed by Digital for its Alpha
workstations. This paper describes the design
and implementation of the J300 software archi-
tecture, focusing on the Sound & Motion J300
product. The software approach taken was to
consider the hardware as two separate devices:
the J300 audio subsystem and the J300 video
subsystem. Libraries corresponding to the two
subsystems provide application programming
interfaces that offer flexible control of the
hardware while supporting a client-server
model for multimedia applications. The design
places special emphasis on performance by
favoring an asynchronous I/0 programming
model implemented through an innovative

use of queues. The kernel-mode device driver
is portable across devices because it requires
minimal knowledge of the hardware. The over-
all design aims at easing application program-
ming while extracting real-time performance
from a non-real-time operating system. The
software architecture has been successfully
implemented over multiple platforms, includ-
ing those based on the OpenVMS, Microsoft
Windows NT, and Digital UNIX operating sys-
tems, and is the foundation on which software
for Digital’s current video capture, compression,
and rendering hardware adapters exists.

Digital Technical Journal Vol.7 No.4 1995

Paramvir Bahl

Background

In January 1991, an advanced development project
called Jvideo was jointly initiated by engineering and
research organizations across Digital. Prior to this
endeavor, these organizations had proposed and
carried out several disjoint research projects pertaining
to video compression and video rendering. The
International Organization for Standardization (ISO)
Joint Photographic Experts Group (JPEG) was
approaching standardization of a continuous-tone,
still-image compression method, and the ISO Motion
Picture Experts Group’s MPEG-1 effort was well on
its way to defining an international standard for video
compression.>* Silicon for performing JPEG com-
pression and decompression at real-time rates was just
becoming available. It was a recognized and accepted
fact that the union of audio, video, and computer
systems was inevitable.

The goal of the Jvideo project was to pool the vari-
ous resources within Digital to design and develop
a hardware and software multimedia adapter for
Digital’s workstations. Jvideo would allow researchers
to study the impact of video on the desktop. Huge
amounts of video data, even after being compressed,
stress every underlying component including net-
works, storage, system hardware, system software, and
application software. The intent was that hands-on
experience with Jvideo, while providing valuable
insight toward effective management of video on
the desktop, would influence and potentially improve
the design of hardware and software for future com-
puter systems.

Jvideo was a three-board, single-slot TURBOchannel
adapter capable of supporting JPEG compression and
decompression, video scaling, video rendering, and
audio compression and decompression—all at real-
time rates. Two JPEG codec chips provided simultane-
ous compression and decompression of video streams.
A custom application-specific integrated circuit
(ASIC) incorporated the bus interface with a direct
memory access (DMA) controller, filtering, scaling,
and Digital’s proprictary video rendering logic.
Jvideo’s software consisted of a device driver, an
audio/video library, and applications. The underlying

ULTRIX operating system (Digital’s native implemen-
tation of the UNIX operating system) ran on work-
stations built around MIPS R3000 and R4000
processors. Application flow control was synchronous.
The library maintained minimal state information, and
only one process could access the device at any one
time. Hardware operations were programmed directly
from user space.

The Jvideo project succeeded in its objectives.
Research institutes both internal and external to
Digital embraced Jvideo for studying compressed
video as “just another data type.” While some research
institutes used Jvideo for designing network protocols
to allow the establishment of real-time channels over
local area networks (LANs) and wide area networks
(WANS), others used it to study video as a mechanism
to increase user productivity.*® Jvideo validated the
various design decisions that were different from the
trend in industry”’ It proved that digital video could be
successfully managed in a distributed environment.

The success of Jvideo, the demand for video on the
desktop, and the nonavailability of silicon for MPEG
compression and decompression influenced Digital’s
decision to build and market a low-cost multimedia
adapter similar in functionality to Jvideo. The Sound &
Motion J300 product, referred to in this paper as simply
the J300, is a direct descendent of the Jvideo advanced
development project. The J300 is a two-board, single-
slot TURBOchannel option that supports all the fea-
tures provided by Jvideo and more. Figure 1 presents
the J300 hardware functional diagram, and Table 1
contains a list of the features offered by the J300
product. Details and analysis of the J300 hardware
can be found in “The J300 Family of Video and
Audio Adapters: Architecture and Hardware Design,”
a companion paper in this issue of the Journal?®

The latest in this series of video/audio adapters are
the single-board, single-slot peripheral component
interconnect (PCI)-based FullVideo Supreme and
FullVideo Supreme JPEG products. These products
are direct descendants of the J300 and are supported
under the Digital UNIX, Microsoft Windows NT, and
OpenVMS operating systems. FullVideo Supreme is
a video-capture, video-render, and video-out-only
option; whereas, FullVideo Supreme JPEG also
includes video compression and decompression. In
keeping with the trend in industry and to make the
price attractive, Digital left out audio support when
designing these two adapters.

All the adapters discussed are collectively called the
J300 family of video and audio adapters. The software
architecture for these options has evolved over years
from being symmetric in Jvideo to having completely
asymmetric flow control in the J300 and FullVideo
Supreme adapters. This paper describes the design and
implementation of the software architecture for the
J300 family of multimedia devices.

Software Architecture: Goals and Design

The software design team had two primary objectives.
The first and most immediate objective was to write
software suitable for controlling the J300 hardware.
This software had to provide applications with an
application programming interface (API) that would
hide device-specific programming while exposing all
hardware capabilities in an intuitive manner. The soft-
ware had to be robust and fast with minimal overhead.

A second, longer-term objective was to design a soft-
ware architecture that could be used for successors to
the J300. The goal was to define generic abstractions
that would apply to future, similar multimedia devices.
Furthermore, the implementation had to allow porting
to other devices with relatively minimal effort.

When the project began, no mainstream multi-
media devices were available on the market, and expe-
rience with video on the desktop was limited.
Specifically, the leading multimedia APIs were still in
their infancy, focusing attention on control of video
devices like videocassette recorders (VCRs), laser disc
players, and cameras. Control of compressed digital
video on a workstation had not been considered in any
serious manner.

The core members of the J300 design team had
worked on the Jvideo project. Experiences gained
from that project helped in designing an API with the
following attributes:

= Separate libraries for the video and audio subsystems

= Functional-level as opposed to component-level
control of the device

= Flexibility in algorithmic and hardware tuning

= Provision for both synchronous and asynchronous
flow control

= Support for a client-server model of multimedia
computing

= Support for doing audio-video synchronization at
higher layers

In addition, the architecture was designed to be
independent of the underlying operating system and
hardware platform. It included a clean separation
between device-independent and device-dependent
portions, and, most important, it left device program-
ming in the user space. This last feature made the
debugging process tractable and was the key reason
behind the design of a generic, portable kernel-mode
multimedia device driver.

As shown in the sections that follow, the software
design decisions were influenced greatly by the desire
to obtain good performance. The goal of extracting
real-time performance from a non-real-time operating
system was challenging. Toward this end, designers
placed special emphasis on providing an asynchronous
model for software flow control, on designing a fast

Digital Technical Journal Vol.7 No.4 1995

35

36

JPEG

o Eoveress [o | COMPRESSION PORT
e] DECOMPRESS —
NTSC I I
PAL VIDEO OUT |<—| UPSCALE | e 1 F,J,“T/'E,QRAUNPDT]
S-VIDEO I | |
| FRAME | |
NTSC I B STORE [| ToNE ADJUST | |
PAL viDEOIN =] FILTER AND I | |
SECAM DOWNSCALE | 7 I
S-VIDEO I CAPTURE/PLAY I |
o _ hrTuRemAY 1oL, | FLTER o DITHER ' SYSTEM
| 1/0 BUS
VIDEO I) |
PORT
| COLOR-SPACE |, | PIXEL
| CONVERT e -DMA PORT
| BYPASS T
f
I RENDER |
r-r——""""-"-"""-""-"""-""""""-"""-""-"F""-""-"""""—7"""—"'"— '|
| CONTROLLER |
| owA ||,
(?A'E'STIQEL;S)UD'O <_|__. DIGITAL I/0 SCRATCH RAM | | HOST |
I 16 BY 32 BITS INTERFACE || |
|
| DSP56001 l :
I f—»
DSP MEMORY |
L
STEREO LINE | walos 1o 8K BY 24 BITS |
MICROPHONE/ <—— |
HEADPHONE |_l 3300 AUDIO SUBSYSTEM |
Figure 1

The Sound & Motion J300 Hardware Functional Diagram

Table 1
J300 Hardware Features

Video Subsystem

Audio Subsystem

Video in (NTSC, PAL, or
SECAM formats)*

Video out (NTSC or PAL
formats)

Composite or S-Video I/0

Still-image capture and
display

JPEG compression and
decompression

Image dithering

Scaling and filtering
before compression

Scaling and filtering
before dithering

24-bit red, green, and
blue (RGB) video out

Two DMA channels
simultaneously operable

Video genlocking
Graphics overlay

150-kHz, 18-bit counter
(time-stamping)

Compact disc (CD)-quality
analog I/0

Digital I/0 (AES/EBU
format support)**
Headphone and
microphone I/O

Multiple sampling rates
(5 to 48 kilohertz [kHz])
Motorola’s DSP56001 for
audio processing
Programmable gain and
attenuation

DMA into and out of
system memory

Sample counter

* National (U.S.) Television System Committee, Phase Alternate Line,
and Séquentiel Couleur avec Mémoire

** Audio Engineering Society/European Broadcasting Union

Digital Technical Journal

Vol.7 No.4 1995

kernel-mode device driver, and on providing an archi-
tecture that would require the least number of system
calls and minimal data copying.

The kernel-mode device driver is the lowest-level
software module in the J300 software hierarchy. The
driver views the J300 hardware as two distinct devices:
the J300 audio and the J300 video. Depending on the
requested service, the J300 kernel driver filters com-
mands to the appropriate subsystem driver. This key
decision to separate the J300 hardware by functional-
ity influenced the design of the upper layers of the soft-
ware. It allowed designers to divide the task into
manageable components, both in terms of engineer-
ing effort and for project management. Separate teams
worked on the two subsystems for extended periods,
and the overall development time was reduced. Each
subsystem had its own kernel driver, user driver,
software library, test applications, and diagnostics
software. The decision to separate the audio and the
video software proved to be a good one. Digital’s lat-
est multimedia offering includes PCI-based FullVideo
Supreme adapters that build on the video subsystem
software of the J300. Unlike the J300, the newer
adapters do not include an audio subsystem and thus
do not use the audio library and driver.

Following the philosophy behind the actual design,
the ensuing discussion of the J300 software is orga-
nized into two major sections. The first describes the
software for the video subsystem, including the design

and implementation of the video software library and
the kernel-mode video subsystem driver. Performance
data is presented at the end of this section. The second
major section describes the software written for
the audio subsystem. The paper then presents the
methodology behind the development and testing
procedures for the various software components and
some improvements that are currently being investi-
gated. A section on related published work concludes
the paper.

Video Subsystem

The top of the software hierarchy for the video sub-
system is the application layer, and the bottom is the
kernel-mode device driver. The following simplified
example illustrates the functions of the various mod-
ules that compose this hierarchy.

Consider a video application that is linked to a multi-
media client library. During the course of execution,
the application asks for a video operation through
a call to a client library function. The client library
packages the request and passes it though a socket to a
multimedia server. The server, which is running in the
background, picks up the request, determines the sub-
system for which it is intended, and invokes the user-
mode driver for that subsystem. The user-mode driver
translates the server’s request to an appropriate (non-
blocking) video library call. Based on the operation

requested, the video library builds scripts of hardware-
specific commands and informs the kernel-mode
device driver that new commands are available for exe-
cution on the hardware. At the next possible opportu-
nity, the kernel driver responds by downloading these
commands to the underlying hardware, which then
performs the desired operation. Once the operation is
complete, results are returned to the application.

Figure 2 shows a graphical representation of the
software hierarchy. The modules above the kernel-
mode device driver, excluding the operating system,
are in user space. The remaining modules are in kernel
space. The video library is modularized into device-
independent and device-dependent parts. Most of the
J300-specific code resides in the device-dependent
portion of the library, and very little is in the kernel-
mode driver. The following sections describe the vari-
ous components of the video software hierarchy,
beginning with the device-independent part of the
video library. The description of the multimedia client
library and the multimedia server is beyond the scope
of this paper.

Video Library Overview

The conceptual model adopted for the software con-
sists of three dedicated functional units: (1) capture
or play, (2) compress or decompress, and (3) render or
bypass. Figure 3 illustrates this model; Figure 1 shows
the hardware components within each of the three

APPLICATION

MULTIMEDIA CLIENT LIBRARY

J300/FULLVIDEO SUPREME
USER-MODE VIDEO DRIVER
1 1
1 1

MULTIMEDIA SERVER

J300 USER-MODE AUDIO DRIVER
1
1

VIDEO LIBRARY AUDIO LIBRARY
OPERATING
SYSTEM DEVICE INDEPENDENT |
SERVICES | DEVICE INDEPENDENT |
1300 FULLVIDEO
SPECE SUPREME | J300 SPECIFIC |
SPECIFIC
i | o mm o m oo 2
i P! USER SPACE
i S . KERNEL SPACE
1 1
J300 KERNEL-MODE DEVICE DRIVER
FULLVIDEO SUPREME
| VIDEO SUBSYSTEM | | AUDIO SUBSYSTEM | KERNEL-MODE DEVICE DRIVER
1 1 1
\i \i \i
I SOUND & MOTION J300 HARDWARE I I FULLVIDEO SUPREME HARDWARE
Figure 2

The J300 Video and Audio Library as Components of Digital’s Multimedia Server

Digital Technical Journal Vol.7 No.4 1995

37

38

COMPRESS/ COMPRESSION
DECOMPRESS PORT
VIDEO
PORT < | CAPTURE/PLAY
PIXEL
RENDER <—> LORT

Figure 3
Conceptual Model for the J300 Video Subsystem Software

units. The units may be combined in various configu-
rations to perform different logical operations. For
example, capture may be combined with compression,
or decompression may be combined with render.
Figure 4 shows how these functional units can be
combined to form nine different video flow paths sup-
ported by the software. Access to the units is through
dedicated digital and analog ports.

All functional units and ports can be configured
by the video library through tunable parameters.
Algorithmic tuning is possible by configuring the
three units, and I/0O tuning is possible by configuring
the three ports. Examples of algorithmic tuning
include setting the Huffman tables or the quantization
tables for the compress unit and setting the number of

COMPRESS —>

ANALOG

output colors and the sharpness for the render unit."”
Examples of /O tuning include setting the region of
interest for the compression port and setting the input
video format for the analog port. Thus, ports are
configured to indicate the encoding of the data,
whereas units are configured to indicate parameters
for the video processing algorithms. Figure 5 shows
the various tunable parameters for the ports and units.
Figure 6 shows valid picture encoding for the two
Digital I/0 ports. Each functional unit operates inde-
pendently on a picture. A picture is defined as a video
frame, a video field, or a still image. Figure 7 illustrates
the difference between a video frame and a video field.
The parity setting indicates whether the picture is an
even field, an odd field, or an interlaced frame.

INPUT —> CAPTURE BYPASS CAPTURE AND RENDER
CAPTURE AND COMPRESS
S CAPTURE, RENDER, AND COMPRESS
RENDER
(a) Analog Input Mode
COMPRESSED
DECOMPRESS <—— 27

BYPASS

-—— -
'

kil
PROCESS —/—>

RENDER

PLAY

DECOMPRESS AND PLAY
DECOMPRESS AND RENDER
DECOMPRESS, PLAY, AND RENDER

(b) Compressed Input Mode

fr COMPRESS —>
PLAY t BYPASS

RENDER
RENDER AND PLAY
RENDER AND COMPRESS

PROCESS <«——— RAW/DITHERED
BYPASS

RENDER

INPUT

(c) Pixel Input Mode

Note that a shaded area represents the render unit.

Figure 4
The Nine Different J300 Video Flow Paths

Digital Technical Journal Vol.7 No.4 1995

CONFIGURABLE

PARAMETERS
l
I I
PORT UNIT

| |

[[I [[I
ANALOG COMPRESSION PIXEL CAPTURE/ COMPRESS/ RENDER/
PLAY DECOMPRESS BYPASS
—REGION OF — ENCODING BUFFER (SAME lAs HUFFMAN — BRIGHTNESS
INTEREST LOCATION TABLES

— SKIP FACTOR ANALOG PORT) — SATURATION
—TVSTANDARD | .. o\ oc ENCODING ?XéAI_I\IETSIZATION | CONTRAST
— PARITY INTEREST MIRROR

EFFECT — SHARPNESS

— GENLOCKING ~ — BUFFER | NUMBER OF
L MEDIUM LOCATION ﬁﬁ%’ggsg': OUTPUT COLORS

L PARITY

— GAMMA
- REVERSE VIDEO
Figure 5

Tunable Parameters Provided by the J300 Video Library

PICTURE ENCODING

PIXELl PORT
8-BIT PSEUDOCOLOR
8-BIT MONOCHROME
16-BIT RAW (4:2:2)
24-BIT RGB PACKED
16-BIT OVERLAY

COMPRESSION PORT

PROGRESSIVE JPEG, COLOR
INTERLACED JPEG, COLOR

PROGRESSIVE JPEG,
MONOCHROME

INTERLACED JPEG,
MONOCHROME

Figure 6
Valid Picture Encoding for the Two Digital I/O Ports

VIDEO FRAME ODD FIELD

(33 MILLISECONDS) (16 MILLISECONDS)
1)--------=------- —_—> e -
2 _______________
3 ______________________________

EVEN FIELD

\—

Figure 7
A Picture, Which May Be a Frame Or a Field

The software broadly classifies operations as either
nonrecurring or recurring. Nonrecurring operations
involve setting up the software for subsequent picture
operations. An example of a nonrecurring operation
is the configuration of the capture unit. Recurring
operations are picture operations that applications
invoke either periodically or aperiodically. Examples
of recurring operations are CaptureAndCompress,
RenderAndPlay, and DecompressAndRender.

All picture operations are provided in two versions:
blocking and nonblocking. Blocking operations force
the library to behave synchronously with the hard-
ware, whereas nonblocking operations can be used for
asynchronous program flow. Programming is simpler
with blocking operations but less efficient, in terms of
overall performance, as compared to nonblocking
operations. All picture operations rely on combina-
tions of input and output buffers for picture data. To
avoid extra data copies, applications are required
to register these I/0 buffers with the library. The
buffers are locked down by the library and are used for
subsequent DMA transfers. Results from every picture

Digital Technical Journal Vol.7 No.4 1995

39

40

operation come with a 90-kHz time stamp, which can
be used by applications for synchronization. (The
J300’s 150-kHz timer is subsampled to match the
timer frequency specified in the ISO MPEG-1 System
Specification.)

The video library supports a client-server model of
computing through the registration of parameters. In
this model, the video library is part of the server process
that controls the hardware. Depending on its needs,
cach client application may configure the hardware
device differently. To support multiple clients simul-
taneously, the server may have to efficiently switch
between the various hardware configurations. The
server registers with the video library the relevant set-
up parameters of the various functional units and 1/0
ports for each requested hardware configuration.
A token returned by the library serves to identify the
registered parameter sets for all subsequent operations
associated with the particular configuration. Multiple
clients requesting the same hardware configuration get
the same token. Wherever appropriate, default values
for parameters not specified during registration are
used. Registrations are classified as either heavyweight,
e.g., setting the number of output colors for the render
unit, or lightweight, e.g., setting the quantization
tables for the compress unit. A heavyweight registra-
tion often requires the library to carry out complex
calculations to determine the appropriate values for the
hardware and consumes more time than a lightweight
registration, which may be as simple as changing a
value in a register. Once set, individual parameters can
be changed at a later time with edit routines provided
by the library. After the client has finished using the
hardware, the server unregisters the hardware configu-
ration. The video library deletes all related internal state
information associated with that configuration only if
no other client is using the same configuration.

The library provides routines for querying the con-
figurations of the ports and units at any given time.
Extensive error checking and reporting are built into
the software.

Video Library Operation

Internally, the video library relies on queues for
supporting asynchronous (nonblocking) flow control
and for obtaining good performance. Three types of
queues are defined within the library: (1) command
queue, (2) event (or status) queue, and (3) request
queue. The command and event queues are allocated
by the kernel-mode driver from the nonpaged system
memory pool at kernel-driver load time. At device
open time, the two queues are mapped to the user vir-
tual memory address space and subsequently shared
by the video library and the kernel-mode driver. The
request queue, on the other hand, is allocated by the
library at device open time and is part of the user

Digital Technical Journal Vol.7 No.4 1995

virtual memory space. Detailed descriptions of the
three types of queues follow. An example shows how
the queues are used.

Command Queue The command queue, the heart of
the library, is employed for one-way communication
from the library to the kernel driver. Figure 8 shows
the composition of the command queue. Essentially,
the command queue contains commands that set up,
start, and stop the hardware for picture operations.
Picture operations correspond to video library calls
invoked by the user-mode driver. Even though the
architecture does not impose any restrictions, a picture
operation usually consists of two scripts: the first script
sets up the operation, and the second script cleans up
after the hardware completes the operation. Scripts are
made up of packets. The header packet is called a script
packet, and the remaining packets are called command
packets. The library builds packets and puts them into
the command queue. The kernel driver retrieves and
interprets script packets and downloads the command
packets to the hardware. Script packets provide the
kernel driver with information about the type of script,
the number of command packets that constitute the
script, and the hardware interrupt to expect once all
command packets have been downloaded. Command
packets are register I /O operations. A command packet
can contain the type of register access desired, the ker-
nel virtual address of the register, and the value to use
if it is a write operation. The library uses identifiers
associated with the command packets and the script
packets to identify the associated operation. The com-
mand queue is managed as a ring buffer. Two indexes
called PUT and GET dictate where new packets get
added and from where old packets are to be extracted.
A first-in, first-out (FIFO) service policy is adhered to.
The library manages the PUT index, and the kernel
driver manages the GET index.

Event Queue The event queue, a companion to the
command queue, is also used for one-way communi-
cation but in the reverse direction, i.e., from the kernel
driver to the library. Figure 9 shows the composition
of the event queue. The kernel driver puts information
into the queue in the form of event packets whenever
a hardware interrupt (event) occurs. Event packets
contain the type of hardware interrupt, the time at
which the interrupt occurred, an integer to identify
the completed request, and, when appropriate, a value
from a relevant hardware register. The library moni-
tors the queue and examines the event packets to
determine which requested picture operation com-
pleted. As is the case with the command queue, the
event queue is managed as a ring buffer with a FIFO
service policy. The library manipulates the GET index,
and the kernel driver manipulates the PUT index.

SCRIPT PACKET

COMMAND PACKET

CONTINUE Read
TYPE --1->IGNORE COMMAND --1-3 Write
END ReadModifyWrite
REQUEST IDENTIFIER DEVICE ADDRESS Eﬁj‘ga’m
NUMBER OE StopOperation
COMMAND PACKETS MASK
EXPECTED INTERRUPT VALUE
UNUSED TAG
‘\ /’ ‘\ /’
SCRIPT | COMMAND | COMMAND COMMAND
PACKET |PACKET [PACKET PACKET START SCRIPT
> OP. 62
SCRIPT | COMMAND [COMMAND 7
PACKET | PACKET |PACKET END SCRIPT P
» pras
\ i
\ _-
\ _
GET N P
\
PUT - e
\ A
DEBUG AN PPte
\ e
i o s [N
[[
—>| op.60 [oP.61 | OP.62 | OP. B4 | | | | i1 | oP.59 [+
1 [[|
! 1
L o l_____5P:%8 L i
COMMAND QUEUE
Figure 8
The Command Queue
EVENT PACKET
COMP_DONE
TYPE - - > REND_DONE
VSYNC
TIME STAMP :
REQUEST ALARM
IDENTIFIER
RETURN VALUE
¥ P PUT
_ | EVENT | EVENT | EVENT EVENT | EVENT |
r PACKET | PACKET | PACKET PACKET | PACKET [
] 1
! EVENT QUEUE T '
| GET I
S 1
Figure 9
The Event Queue

Request Queue The library uses the request queue
to coordinate user-mode driver requests with opera-
tions in the command queue and with completed
events in the event queue. When a picture operation
is requested, the library builds a request packet and
places it in the request queue. The packet contains
all information relevant to the operation, such as
the location of the source or destination buffer, its

size, and scatter/gather maps for DMA. Subsequently,
the library uses the request packet to program the
command queue. Once the operation has completed,
the associated request packet provides the information
that the library needs for returning the results to
the user-mode driver. As with the other queues, the
service policy is FIFO, and the queue is managed as
aring bulffer.

Digital Technical Journal Vol.7 No.4 1995

41

42

Capture and Render Example Figure 10 shows an
application displaying live video on a UNIX work-
station that contains a J300 adapter. The picture oper-
ation that makes this possible is the video library’s
CaptureAndRender operation. A description of the
asynchronous flow of control when the user-mode
driver invokes a CaptureAndRender picture operation
follows. This example illustrates the typical interaction
between the various software and hardware compo-
nents. The discussion places special emphasis on the
use of the queues previously described.

1. The user-mode video driver invokes a nonblock-
ing CaptureAndRender picture operation with
appropriate arguments.

2. The library builds a request packet, assigns an
identifier to it, and adds the packet to the request
queue. Subsequently, it builds the script and com-
mand packets needed for setting up and terminat-
ing the operation and adds them to the command
queue. It then invokes the kernel driver’s start
1/0 routine, to indicate that new hardware scripts
have been added to the command queue.

3. Start 1/0 queues up the kernel routine (which
downloads the command scripts to the hardware)
in the operating system’s internal call-out queue
as a deferred procedure call (DPC) and returns
control to the video library.”’

AlphaVCR e

digital

Figure 10
Live Video on a UNIX Workstation Using the Capture
and Render Path

Digital Technical Journal Vol.7 No.4 1995

4. The video library returns control to the user-
mode driver, which continues from where it had
left off, performing other tasks until it invokes
a blocking (i.e., wait) routine. This gives the
library an opportunity to check the event queue
for new events. If there are no new events to ser-
vice, the library asks the kernel driver to “put it to
sleep” until a new event arrives.

5. In the meantime, the DPC that had previously
been queued up starts to execute after being
invoked by the operating system’s scheduler. The
job of the DPC is to read and interpret script pack-
ets and, based on the interpretation, to download
the command packets that constitute the script.
Only the first script that sets up and starts the
operation is downloaded to the hardware.

6. A hardware interrupt signaling the completion of
the operation occurs, and control is passed to the
kernel driver’s hardware interrupt service routine
(ISR). The hardware ISR clears the interrupt line,
logs the time, and queues up a software ISR in the
system’s call-out queue, passing it relevant infor-
mation such as the interrupt type and an associ-
ated time stamp.

7. The operating system’s scheduler invokes the
queued software ISR. The ISR then reads and
interprets the current (end) script packet in the
command queue, which provides the type of
interrupt to expect as a result of downloading the
previous (start) script. The software ISR checks
to see if the interrupt that was passed to it is the
same as one that was predicted by the (end) script.
For example, a script that starts a render operation
may expect to see a REND_DONE event. When
the actual event matches the predicted event, the
command packets associated with the current
(end) script are downloaded to the hardware.

8. After all command packets from the (end) script
have been downloaded, the software ISR logs the
type of event, the associated time stamp, and an
identifier for the completed operation into the
event queue. It then issues a wake-up call to any
“sleeping” or blocked operations that might have
been waiting for hardware events.

9. The system wakes the sleeping library routine,
which checks the event queue for new events. If a
REND_DONE event is present, the library uses the
request identifier from the event packet to get the
associated request packet from the request queue.
It then places the results of the operation in the
memory locations that are pointed to by addresses
in the request packet and that belong to the user-
mode driver. (The buffer containing the rendered
data is not copied because it already belongs to the
user-mode driver.) The library updates the GET

indexes of the event and request queues and
returns control to the user-mode driver.

10. The user-mode driver may then continue to
queue up more operations.

Figure 11 shows a graphical representation of
the capture and render example. If desired, multiple
picture operations can be programmed through the
library before a single one is downloaded by the driver
and executed by the hardware. Additionally, perfor-
mance is enhanced by improving the asynchronous
flow through the use of multiple buffers for the dif-
ferent functional units shown in Figure 3.

Sometimes it is necessary to bypass the queuing
mechanism and program the hardware directly. This is
especially true for hardware diagnostics and operations
such as hardware resetting, which require immediate
action. In addition, for slow operations, such as setting
the analog port (video-in circuitry), programming the
hardware in the kernel using queues is undesirable.
The kernel driver supports an immediate mode of
operation that is accomplished by mapping the hard-
ware to the library’s memory space, disabling the com-
mand queue, and allowing the library to program the
hardware directly.

The Kernel-mode Video Driver

To keep the complexity of the kernel-mode video driver
manageable, we made a clear distinction between device
programming and device register loading. Device-
specific programming is done in user space by the video
library; device register I/O (without contextual under-
standing) is performed by the kernel driver. Separating

the tasks in this manner resulted in a kernel driver that
incorporates little device-specific knowledge and thus is
casily portable across multiple devices.

The kernel driver allows only one process to access
the device at any particular time. (Support for multiple-
process access is provided by the multimedia server.)
Components of the video kernel-mode driver include

= An Initialization Routine—The driver’s initializa-
tion routine is executed by the operating system at
driver load time. The primary function of this rou-
tine is to reserve system resources such as nonpaged
kernel memory for the command queue, the event
queue, and the other internal data structures
needed by the driver.

= A Set of Dispatch Routines—Dispatch routines
constitute the main set of static functionality pro-
vided by the driver. The driver provides dispatch
routines for opening and closing the video subsys-
tem, for mapping and unmapping hardware regis-
ters to the kernel and to user virtual memory address
spaces, for locking and unlocking noncontiguous
memory for scatter/gather DMA, and for mapping
and unmapping the various queues to the library.

= An Asynchronous I/O Routine—The video library
invokes this routine to check for pending events
that have to be processed. If an unserviced event
exists, the kernel driver immediately returns control
to the library; if no event exists, the system puts the
library process to sleep.

= A Start I/O Routine and a Stop I/O Routine—
The driver uses the start I /O routine to initiate data

USER SPACE | KERNEL SPACE
|
| DRIVER/
DRIVER LIBRARY | OPERATING SYSTEM HARDWARE
¢ I
REQUEST : |
OPERATION ——> BUILD AND QUEUE |
SCRIPT AND |
COMMAND
PACKETS ————+—> QUEUE UP DPC,
PERFORM I RETURN CONTROL
OTHER
ACTIVITY | :
DPC RUNS, DOWNLOADS
l | START SCRIPT TO !
| HARDWARE ———————» EXECUTE
INVOKE I :
BLOCKING : :
CALL ————> IFNOEVENTS, GO | HARDWARE ISR RUNS, <—=——— INTERRUPT
TO SLEEP | QUEUES UP SOFTWARE
I ISR
| SOFTWARE ISR RUNS, ———> EXECUTE
| DOWNLOADS END :
: SCRIPT, LOGS EVENTS,
CONTINUE <———— CHECK EVENT, <—— WAKES UP LIBRARY

l © RETURN RESULT
TIME :

Figure 11

One Case of Simplified Flow Control When Using the Video Subsystem

Digital Technical Journal Vol.7 No.4 1995

43

44

transfers to and from the J300 by downloading reg-
ister I/O commands from the command queue to
the J300. The stop I/O routine is used to terminate
the downloading of future scripts. For performance
reasons, scripts in the process of being downloaded
cannot be stopped.

» A Hardware Interrupt Service Routine—Since the
hardware ISR runs at a higher priority than both
system and user space routines, it has purposely
been kept small, performing only simple tasks
that are absolutely necessary and time critical.
Specifically, the hardware ISR records the interrupt
and the time at which it occurred. It then clears the
interrupt and queues up a software ISR.

= A Software Interrupt Service Routine—The soft-
ware ISR is the heart of the kernel driver. It runs at
a lower interrupt request level (IRQL) than the
hardware ISR but has a higher priority than user-
space routines. The software ISR is invoked as a
DPC ecither by the hardware ISR or by the library
through a start 1/O request. Its main function is
to process script packets and download command
packets programmed by the video library.

Debugging the Video Subsystem

Because of the real-time nature of operations, debug-
ging the software was a challenge. The size of the code,
the complex interaction between the various functional
pieces, and the asynchronous nature of operations sug-
gested that, for debugging purposes, it would be help-
ful if hardware commands could be scrutinized just
before the final downloading took place. Fortunately,
the video library’s extensive use of queues made it pos-
sible for us to design a custom tool with knowledge of
the hardware and software architectures that would
allow us to examine the command scripts.

In addition to presenting a debugging challenge,
the real-time nature of operations limited the scope of
UNIX tools like dbx, kdbx, and ctrace. Timing was
important, and the debugger had the tendency to slow
down the overall program to the point where a previ-
ous failure on a free system would not occur with the
debugger enabled. To catch some of these elusive
bugs while preserving the timing integrity of the oper-
ations, the scratch random-access memory (RAM) on
the J300 audio subsystem (see Figure 1) was used to
store traces. A brief description of the two approaches
follows.

Queue Interpreter The queue interpreter was specifi-
cally developed as an aid for debugging the video
library. As the name suggests, its primary function was
to interpret the commands in the command queue
and the events in the event queue. At random
locations in the library, a list of hardware commands

Digital Technical Journal Vol.7 No.4 1995

currently in the command queue could be viewed
before the kernel driver downloaded them for execu-
tion. For each command, the information displayed
included a sequence number, the type of operation,
the ASCII name of the register to be accessed, the reg-
ister’s physical address, the value to be written, and,
when possible, a bit-wise interpretation of the value.
This information was used to check if the upper layer
software had programmed the device registers in the
correct sequence and with the proper values.

Another important capability of the queue inter-
preter was that it could step through the command
packets and download each command separately. On
many occasions, this function helped locate and isolate
the specific register access that was causing the hard-
ware to stall or to crash the system. By using the
sequence number, the offending hardware command
could be traced to the precise location in the library
where it had been programmed.

In addition, the queue interpreter was able to search
the command queue for any access to a specific
hardware register, could display the contents of
the event queue, and had a “quiet mode,” in which
the interpreter would log the commands on a disk
for later analysis.

Audio RAM Printer Although it was a useful tool for
debugging, the queue interpreter was not a good real-
time tool because it slowed down the overall program
execution and thus affected the actual timing.
Similarly, kernel driver operations could not be traced
using the system’s printf() command because it too
affected the timing. Furthermore, because of the asyn-
chronous nature of printf() and the possibility of los-
ing it, printf() was ineffective in pinpointing the
precise command that had caused the system to fail.
Thus, we had to find an alternate mechanism for
debugging failures related to timing.

The J300 audio subsystem has an 8K-by-24-bit
RAM that is never used for any video operations. This
observation led to the implementation of a print func-
tion that wrote directly to the J300’s audio RAM. This
modified print function was intermixed in the suspect
code fragment in the kernel driver to facilitate trace
analysis. When a system failure occurred or after the
application had stopped, a companion “sniffer” rou-
tine would read and dump the contents of the RAM to
the screen or to a file for analysis. The modified print
function was used primarily for debugging dynamic
operations such as the ones in the hardware and soft-
ware interrupt handlers. Many bugs were found and
fixed using this technique. The one caveat was that this
technique was useful only in cases where the video
subsystem was causing a system failure independent of
the operation of the audio subsystem.

Video Subsystem Performance

Measuring the true performance of any software is
generally a difficult task. The complex interaction
between different modules and the number of vari-
ables that must be fixed makes the task arduous. For
video, the problem is aggravated by the fact that the
speed with which the underlying video compression
algorithm works is nonlinearly dependent on the con-
tent of the video frames and the desired compression
ratio. A user working with a compressed sequence that
contains images that are smooth (i.e., have high spatial
redundancy) will get a faster decompression rate than
a user who has a sequence that contains images that
have regions of high frequencies (i.e., have low spatial
redundancy). A similar discrepancy will exist when
sequences with different compression ratios are used.
Since there are no standard video sequences available,
the analyst has to make a best guess at choosing a set of
representative sequences for experiments. Because the
final results are dependent on the input data, they are
influenced by this decision. Other possible reasons for
the variability of results are the differing loads on the
operating systems, the different configurations of
the underlying software, and the overhead imposed by
the different test applications.

Our motivation for checking the performance of
the J300 and FullVideo Supreme JPEG adapters was
to determine whether we had succeeded in our goal
of developing software that would extract real-time
performance while adding minimal overhead. The
platforms we used in our experiments were the
AlphaStation 600 5/266 and the DEC 3000 Model
900. The AlphaStation 600 5/266 was chosen
because it is a PCI-based system and could be used to
test the FullVideo Supreme JPEG adapter. The DEC
3000 Model 900 is a TURBOchannel system and
could be used to test the J300 adapter. Both systems
are built around the 64-bit Alpha 21064A processor
running at clock rates of 266 megahertz (MHz) and
275 MHz, respectively. Each system was configured
with 256 megabytes of physical memory, and each was
running the Digital UNIX Version 3.2 operating sys-
tem and Digital’s Multimedia Services Version 2.0
for Digital UNIX software. No compute-intensive or
I/0 processes were running in the background, and,
hence, the systems were lightly loaded.

Our experiments were designed to reflect real appli-
cations, and special emphasis was placed on obtaining
reproducible performance data. The aim was to
understand how the performance of individual ses-
sions was affected as the number of video sessions was
increased. We wrote an application that captured,
dithered, and displayed a live video stream obtained
from a camera while simultaneously decompressing,
dithering, and displaying multiple video streams read
from a local disk. This is a common function in
teleconferencing applications where the multiple

compressed video streams come over the network.
We measured the display rate for the video sequence
that was being captured and dithered and the average
display rate for sequences that were being decom-
pressed and dithered. The compressed sequences had
an average peak signal-to-noise ratio (PSNR) of 27.8
decibels (dB) and an average compression ratio of
approximately 0.6 bits per pixel. The sequences had
been compressed and stored on the local disk prior to
the experiment. Image frame size was source input
format (SIF) 352 pixels by 240 lines. Figure 12 and
Figure 13 illustrate the performance data obtained as
a result of the experiments.

In general, we were satisfied with the performance
results. As seen in Figures 12 and 13, a total of five ses-
sions can be accommodated at 30 frames per second
with the J300 on a DEC 3000 Model 900 system and
three sessions at 30 frames per second with the

SOUND & MOTION J300

NUMBER OF SESSIONS
N WA o N ®

o

5 10 15 20 25 30
DISPLAY RATE (FRAMES/SECOND)

KEY:

[0 DECOMPRESS, DITHER, AND DISPLAY

Il CAPTURE, DITHER, AND DISPLAY

Note: The number of sessions nis equal to one capture plus (n—1)
decompressions.

Figure 12
Performance Data Generated by a DEC 3000 Model 900
System with a Sound & Motion J300 Adapter

FULLVIDEO SUPREME JPEG

H”IW

NUMBER OF SESSIONS
N W A 0o N

o

5 10 15 20 25
DISPLAY RATE (FRAMES/SECOND)

w
o

KEY:
[0 DECOMPRESS, DITHER, AND DISPLAY
Il CAPTURE, DITHER, AND DISPLAY

Note: The number of sessions nis equal to one capture plus (n— 1)
decompressions.

Figure 13
Performance Data Generated by an AlphaStation 600
5,/266 with a FullVideo Supreme JPEG Adapter

Digital Technical Journal Vol.7 No.4 1995

46

FullVideo Supreme JPEG on an AlphaStation 600
5,/266 system. The discrepancy in performance of the
two systems may be attributed to the differences in
CPU, system bus, and maximum burst length. The
DEC 3000 Model 900 has a 32-bit TURBOchannel
bus whose speed is 40 nanoseconds with a peak trans-
fer rate of 100 megabytes per second, whereas the
AlphaStation 600 5,/266 has a PCI bus whose speed
is 30 nanoseconds. The DMA controller on the J300
adapter has a maximum burst length of 2K pages,
whereas the FullVideo Supreme JPEG adapter has
a maximum burst length of 96 bytes. Since in our
experiments data was dithered and sent over the bus
(at 83 Kbytes per frame) to the frame buffer, burst
length becomes the dominant factor, and it is not
unreasonable to expect the J300 to perform better
than the FullVideo Supreme JPEG.

The difference between capture and decompression
rate (as shown in Figures 12 and 13) may be explained
as follows: Decompression operations are inter-
mixed between capture operations, which occur at
a frequency of one every 33 milliseconds. Overall per-
formance improves when a larger number of decom-
pression operations are accommodated between
successive capture operations. Since the amount of
time the hardware takes to decompress a single frame
is unknown (the time depends on the picture con-
tent), the software is unable to determine the precise
number of decompression operations that can be pro-
grammed. Also, in the present architecture, since all
operations have equal priority, if a scheduled decom-
pression operation takes longer than expected, it is
liable to not relinquish the hardware when a new
frame arrives, thus reducing the capture rate. When we
ran the decompression, dither, and display operation
only (with the capture operation turned off), the peak
rate achieved by the FullVideo Supreme JPEG adapter
was approximately 165 frames per second, and the rate
for the Sound & Motion J300 was about 118 frames
per second. Bus speed and hardware enhancements in
the FullVideo Supreme JPEG can be attributed to the
difference in the two rates.

The next section describes the architecture for the
J300 audio subsystem. Relative to the video subsys-
tem, the audio software architecture is simpler and
took less time to develop.

Audio Subsystem

The J300 audio subsystem complements the J300
video subsystem by providing a rich set of functional
routines by way of an audio library. The software hier-
archy for the audio subsystem is similar to the one for
the video subsystem. Figure 2 shows the various com-
ponents of this hierarchy as implemented under the
Digital UNIX operating system. Briefly, an application
makes a request to a multimedia server for processing
audio. The request is made through invocation of
routines provided by a multimedia client library. The
multimedia server parses the request and dispatches
the appropriate user-mode driver, which is built on top
of the audio library. Depending on the request, the
audio library may perform the operation either on the
native CPU or alternatively on the J300 digital signal
processor (DSP). Completed results are returned to
the application using the described path in the reverse
direction.

To provide a comprehensive list of audio processing
routines, the software relies on both host-based and
J300-based processing. The workhorse of the J300
audio subsystem is the general-purpose Motorola
Semiconductor DSP56001 (see Figure 14), which
provides hardware control for the various audio com-
ponents while performing complex signal processing
tasks at real-time rates. Most notable, software running
on the DSP initiates DMA to and from system memory,
controls digital (AES/EBU) audio I/0, manages ana-
log stereo and mono I/0, and supports multiple sam-
pling rates, including Telephony (8 kHz) and fractions
of digital audio tape (DAT) (48 kHz) and compact disc
(CD) (44.1 kHz) rates. The single-instruction multi-
ply, add, and multiply-accumulate operations, the two
data moves per instruction operations, and the low
overhead for specialized data addressing make the DSP

MOTOROLA’S DSP56001 PROCESSOR

ADPCM
COMPRESSION TIME-STAMPING
CHANNEL ENERGY
RECORD CHANNEL <-—> MIXING DMA CONTROL CALCULATION <—> PLAYBACK CHANNEL

SAMPLE RATE
CONVERSION

GAIN CONTROL

Figure 14

Some Audio Functions Supported by Motorola’s DSP56001 Processor

Digital Technical Journal Vol.7 No.4 1995

especially suitable for compute-intensive audio process-
ing tasks. Real-time functions such as adaptive difteren-
tial pulse code modulation (ADPCM) encoding and
decoding, energy calculation, gain control for analog-
to-digital (A/D) and digital-to-analog (D/A) convert-
ers, and time-stamping are performed by software
running on the DSP."* Other tasks such as converting
between different audio formats (pu-law, A-law, and lin-
ear), mixing and unmixing of multiple audio streams,
and correlating the system time with the J300 90-kHz
timer and with the sample counter are done on the
native CPU by the library software."

Early in the project, we had to decide whether or
not to expose the DSP to the client applications.
Exposing the DSP would have provided additional
flexibility for application writers. Although this was an
important reason, the opposing arguments, which
were based on the negative consequences of exposing
the raw hardware, were more compelling. System
security and reliability would have been compromised;
an incorrectly programmed DSP could cause the
system to fail and could corrupt the kernel data struc-
tures. Additionally, maintaining, debugging, and sup-
porting the software would be difficult. To succeed,
the product had to be reliable. Therefore, we decided
to retain control of the software but to provide
enough flexibility to satisfy as many application writers
as possible. As customer demand and feedback grew,
more DSP programs would be added to the list of
existing programs in a controlled manner to ensure
the integrity and robustness of the system.

The following subsections describe the basic con-
cepts behind the device-independent portion of the
audio library and provide an operational overview of
the library internals.

Audio Library Overview

The audio library defines a single audio sample as the
fundamental unit for audio processing. Depending on
the type of encoding and whether it is mono or stereo,
an audio sample may be any of the following: a 4-bit
ADPCM code word, a pair of left/right 4-bit ADPCM
code words, a 16-bit linear pulse code modulation
(PCM) audio level, a pair of left/right 16-bit linear
PCM audio levels, an 8-bit p-law level, or an 8-bit
A-law level. The library defines continually flowing
audio samples as an audio stream whose attributes can
be set by applications. Attributes provide information
on the sampling rate, the type of encoding, and how
to interpret each sample.

Audio streams flow through distinct directional vir-
tual channels. Specifically, an audio stream flows into
the subsystem for processing through a record (input)
channel, and a processed stream flows out of the
subsystem through a playback (output) channel.

A configurable bypass mode in which the channels are
used for a direct path to the hardware I/0 ports is also
provided. As is the case for audio streams, each chan-
nel has attributes such as a buffer for storing captured
data, a bufter for storing data to be played out, permis-
sions for channel access, and a sample counter. Sample
counters are used by the library to determine the last
audio sample processed by the hardware. Channel per-
missions determine the actions allowed on the chan-
nel. Possible actions include read, write, mix, unmix,
and gain control or combinations of these actions.

The buffers associated with the I/0O channels are
for queuing unserviced audio data and are called
smoothing buffers. A smoothing buffer ensures a con-
tinuous flow of data by preventing samples from being
lost due to the non-real-time scheduling by the under-
lying operating system. The library provides non-
blocking routines that can read, write, mix, and unmix
audio samples contained in the channel bufters. A slid-
ing access window determines which samples can be
accessed within the bufter. The access window is char-
acterized in sample-time units, and its size is pro-
portional to that of the channel buffer that holds the
audio data.

Like the video library, the audio library supports
multiple device configurations through a set of regis-
tration routines. Clients may register channel and
audio stream parameters with the library (through the
server) at set-up time. Once registered, the parameters
can be changed only by unregistering and then rereg-
istering. The library provides query routines that
return status/progress information, including the
samples processed, the times (both system and J300
specific) at which they were processed, and the chan-
nel and stream configurations. Overall, the library
supports four operational (execution) modes: tele-
conferencing, compression, decompression, and rate
conversion. Extensive error checking and reporting
are incorporated into the software.

Audio Library Operation

The execution mode and the associated DSP program
dictate the operation of the audio library. Execution
modes are user selectable. All programs support mul-
tiple sampling rates, I/O gain control, and start and
pause features, and provide location information for
the sample being processed within the channel buffer.
Bufters associated with the record and playback chan-
nels are treated as ring bufters with a FIFO service pol-
icy. Management of data in the buffers is through
integer indexes (GET and PUT) using an approach
similar to the one adopted for the management of the
command and event queues in the video subsystem.
Specifically, the DMA controller moves the audio data
from the DSP’s external memory to the area in the

Digital Technical Journal Vol.7 No.4 1995

47

channel buffer (host memory) starting at the PUT
index. Audio data in this same channel bufter is pulled
by the host (library) from the location pointed to by
the GET index. Managers of the GET and PUT
indexes are reversed when DMA is being performed
from a channel buffer to the DSP external memory. In
all cases, the FIFO service policy ensures that the audio
data is processed in the sequence in which it arrives.

The internal operation of the audio library is best
explained with the help of a simple example that cap-
tures analog audio from the J300 line-in connector
and plays out the data through the J300’s line-out
connector. This most basic I/O operation is incorpo-
rated in more elaborate audio processing programs.
The example follows.

1. The server opens the audio subsystem, allocates
memory for the I/0 buffers, and invokes a library
routine to lock down the buftfers. Two buffers are
associated with the record and playback channels.

2. The library sets up the DSP external memory for
communications between software running on the
two processors, i.e., the CPU and the DSP. The
set-up procedure involves writing information at
locations known and accessible to both processors.
The information pertains to the physical addresses
needed by the DMA scheduler portion of the DSP
program and for storing progress information.

3. A kernel driver routine maps a section of system
memory to user space. This shared memory is used
for communication between the driver and the
library. The type of information passed back and
forth includes the sample number being processed,
the associated time stamps, and the location of the
GET and PUT indexes within the I/O buffers.

4. Other set-up tasks performed by the library include
choosing the I/0 connectors, setting the gain for
the I/0 channels, and loading the appropriate DSP
program. A start routine enables the DSP.

5. Once the DSP is enabled, all components in the
audio hardware are under its control. The DSP pro-
grams the DMA controller to take sampled audio
data from the line-in connector and move it into the
record channel buffer. It then programs the same
controller to grab data from the playback channel
buffer and move it to the external memory from
where it is played out on the line-out connector.

6. The library monitors the indexes associated with
the 1/0 buffers to determine the progress, and,
based on the index values, the application copies
data from the input channel to the output channel
buffer. The access window ensures that data copy-
ing stays behind the DSP, in the case of input, and
in front of the DSP, in the case of output.

Digital Technical Journal Vol.7 No.4 1995

Support for Multiple Adapters

The primary reason for using multiple J300 adapters
is to overcome the inherent limitations of using a single
J300. First, a single J300 limits the application
to a single video port and a single audio input port.
Some applications process multiple video input streams
simultaneously. For example, a television station receiv-
ing multiple video feeds may want to compress and
store these for later usage utilizing a single workstation.
Another example is the monitoring of multiple video
feeds from strategically placed video cameras for the
purpose of security. Since AlphaStation systems have
the necessary horsepower to process several streams
simultaneously, supporting multiple J300s on the same
system is desirable.

Second, if a single J300 is used, the video-in and
video-out ports cannot be used simultancously. This
limitation exists because the two ports share a common
frame store, as shown in Figure 1, and programming
the video-in and video-out chip sets is a heavyweight
operation. Multiple J300s can alleviate this problem.
One example of an application that requires the simul-
taneous use of the video-in and video-out ports is
a teleconferencing application in which the video-in
circuitry is used for capturing the camera output, and
the video-out circuitry is used for sending regular
snapshots of the workstation screen to an overhead
projection screen. A second example is an application
that converts video streams from one format to
another (e.g., PAL, SECAM, NTSC) in real time.

As a result of the limitations just cited, support for
multiple J300s on the same workstation was one of
the project’s design goals. In terms of coding, achiev-
ing this goal required not relying on global variables
and using indexed structures to maintain state infor-
mation. Also, because of the multithreaded nature
of the server, care had to be taken to ensure that data
and operation integrity was maintained.

For most Alpha systems, the overall performance
remains good even with two J300s on the same sys-
tem. For high-end systems, up to three J300s may be
used. The dominant limitation in the number of J300s
that can be handled by a system is the bus bandwidth.
As the number of J300s in the system increases, the
data traffic on the system bus increases proportionally.

Having described the software architecture, we now
shift our attention to the development environment,
testing strategy, and diagnostics software.

Software Development Environment

During the early phases of the development process,
we depended almost exclusively on Jvideo. Since the
J300 is primarily a cost-reduced version of Jvideo, we
were able to develop, test, and validate the design of

the device-independent portion of the software and
most of the kernel device driver well before the actual
J300 hardware arrived. Our platform consisted of
a Jvideo attached to a DECstation workstation, which
was based on a MIPS R3000 processor and was run-
ning the ULTRIX operating system. When the new
Alpha workstations became available, we switched our
development to these newer and faster machines. We
ported the 32-bit software to Alpha’s 64-bit architec-
ture. Sections of the kernel device driver were rewrit-
ten, but the basic design remained intact. The overall
porting effort took a little more than a month to com-
plete. At the end of that time, we had the software
running on a Jvideo attached to an Alpha workstation,
which was running the DEC OSF/1 operating system
(now called the Digital UNIX operating system). We
promptly corrected software timing bugs exposed as
aresult of using the fast Alpha-based workstations.

For the development of the device-dependent por-
tion, we relied on hardware simulation of the J300.
The different components and circuits of the J300
were modeled with Verilog behavioral constructs.
Accesses to the TURBOchannel bus were simulated
through interprocess communication calls (IPCs) and
shared memory (see Figure 15). Because a 64-bit ver-
sion of Verilog was unavailable, simulations were run
on a machine based on the MIPS R3000 processor
running the ULTRIX operating system. The process,
though accurate, was generally slow.

Testing and Diagnostics

We wrote several applications to test the software
architecture. The purpose of these applications was to
test the software features in real-world situations and
to demonstrate through working sample code how
the libraries could be used. Applications were classified
as video only, audio only, and ones that contained
both video and audio.

SOFTWARE PROCESS

TEST
APPLICATION
SOFTWARE J300 BOARD
LIBRARY SIMULATION
BUS
SIGNALS
WRITE
J300 DEVICE INTERPROCESS TURBOCHANNEL
DRIVER COMMUNICATIONS J<—| MODEL
READ

In addition, we wrote two types of diagnostic soft-
ware to test the underlying hardware components:
(1) read-only memory (ROM) based and (2) operating
system based. ROM-based diagnostics have the advan-
tage that they can be executed from the console level
without first booting the system. The coverage pro-
vided is limited, however, because of the complexity
of the hardware and the limited size of the ROM.
Operating system diagnostics rely on the kernel device
driver and on some of the library software. This suite of
tests provides comprehensive coverage with verifica-
tions of all the functional blocks on the J300. For the
new PCI-based FullVideo Supreme video adapters,
only operating-system-based diagnostics exist.

Related Work

When the Jvideo was conceived in early 1991, little
had been published on hardware and software solu-
tions for putting video on the desktop. This may have
been partly due to the newness of the compression
standards and to the difficulty in obtaining specialized
video compression silicon. Since then, audio and video
compression have become mainstream, and several
computer vendors now have products that add multi-
media capability to the base workstations.

Lee and Sudharsanan describe a hardware and soft-
ware design for a JPEG microchannel adapter card
built for platforms based on IBM’s PS/2 operating
system.”* The adapter is controlled by an interrupt-
driven software running under DOS. In addition, the
software is also responsible for color-space conversion
and algorithmic tuning of the JPEG parameters. Audio
support is not included in the hardware. The paper
presents details on how the software programs the var-
ious components of the board (e.g., the CL550 chip
from C-Cube Microsystems and the DMA logic) to
achieve compression and decompression. Portability
of the software is compromised since the bulk of the

SIMULATION PROCESS

Figure 15

Hardware Simulation Environment for Software Development

Digital Technical Journal Vol.7 No.4 1995

49

50

code, which resides inside the interrupt service rou-
tine, is written in assembly language.

Boliek and Allen describe the implementation of
hardware that, in addition to providing baseline JPEG
compression, uses a dynamic quantization circuit to
achieve fixed-rate compression."* The board is based
on the RIOH JPEG chip set that includes separate
chips for performing the DCT, Huffman coding, and
color-space conversion. The paper’s main focus is
on describing the Allen Parameterized (orthogonal)
Transform that approximates the DCT while reducing
the cost of the hardware. The paper contains little
information about software control, architecture, and
control flow.

Traditionally, operating systems have relied on data
copying between user space and kernel space to pro-
tect the integrity of the kernel. Although this method
works for most applications, for multimedia appli-
cations, which usually involve massive amounts of
data, the overhead of data copying can seriously
compromise the system’s real-time performance.” Fall
and Pasquale describe a mechanism of in-kernel data
paths that directly connect the source and sink
devices.'® Peer-to-peer 1/0 avoids unnecessary data
copying and improves system and application perfor-
mance. Kitamura et al. describe an operating system
architecture, which they refer to as the zero-copy
architecture, that is also aimed at reducing the over-
head due to data copying.” The architecture uses
memory mapping to expose the same physical
addresses to both the kernel and the user-space
processes and is especially suitable for multimedia
operations. The J300 software is also a zero-copy
architecture. No data is copied between system and
user space.

The Windows NT I/0 subsystem provides flexible
support for queue management.” What the J300
achieved on the UNIX and OpenVMS platforms
through the command and event queues can be
accomplished on the Windows NT platform using
built-in support from the I/O manager. A queue of
pending requests (in the form ofI/0 request packets)
may be associated with each device. The use of
1/0 packets is similar to the use of command and
event packets in the J300 video software.

Summary

This paper describes the design and implementation of
the software architecture for the Sound & Motion
J300 product, Digital’s first commercially available
multimedia hardware adapter that incorporates audio
and video compression. The presentation focused on
those aspects of the design that place special emphasis
on performance, on providing an intuitive API, and
on supporting a client-server model of computing.

Digital Technical Journal Vol.7 No.4 1995

The software architecture has been successfully imple-
mented on the OpenVMS, Microsoft Windows NT,
and Digital UNIX platforms. It is the basis for Digital’s
recent PCl-based video adapter cards: FullVideo
Supreme and FullVideo Supreme JPEG.

The goals that influenced the J300 design have
largely been realized, and the software is mature.
Digital is expanding upon ideas incorporated in the
design. For example, one potential area for improve-
ment is to replace the FIFO service policy in the vari-
ous queues with a priority-based mechanism. A second
possible improvement is to increase the usage of the
hardware between periodic operations like video cap-
ture. In terms of portability, the idea of leaving device-
specific programming outside the kernel driver can be
expanded upon to design device-independent kernel-
mode drivers, thus lowering overall development
costs. Digital is actively investigating these and other
such enhancements made possible by the success of
the J300 project.

Acknowledgments

A number of people are responsible for the success of
the J300 family of products. The author gratefully
acknowledges the contributions of members of the
J300 software and hardware development teams. In
particular, special thanks to Bernard Szabo, the project
leader for the J300 software; Paul Gauthier, for his
invaluable assistance in getting the video library com-
pleted and debugged; John Hainsworth, for imple-
menting the device-independent portion of the audio
library; Davis Pan, for writing the DSP programs; and
Robert Ulichney, for his guidance with the design and
implementation of the video rendering subsystem.
The J300 hardware design team was lead by Ken
Correll and included Tim Hellman, Peter Antonios,
Rudy Stalzer, and Tom Fitzpatrick. Nagi Sivananjaiah
wrote the diagnostics that served us well in isolating
hardware problems. Thanks also to members of the
Multimedia Services Group, including Jim Ludwig,
Ken Chiquoine, Leela Oblichetti, and Chip Dancy,
for being instrumental in incorporating the J300,
FullVideo Supreme, and FullVideo Supreme JPEG
into Digital’s multimedia server, and to Susan Yost,
our tireless product manager, for diligently ensuring
that the development teams remained on track.

References

1. Information Technology—Digital Compression
and Coding of Continuous-tone Still Images, Part 1:
Requirements and Guidelines, 1SO/IEC 10918-1:
1994 (March 1994).

2. Coding of Moving Pictures and Associated Audio for
Digital Storage Media at up to about 1.5 Mbit/s—
Part 2: Video, ISO/IEC 11172-2: 1993 (1993).

10.

11.

12.

13.

14.

15.

D. Bahl, P. Gauthier, and R. Ulichney, “Software-only
Compression, Rendering, and Playback of Digital
Video,” Digital Technical Journal, vol. 7, no. 4
(1995, this issue): 52-75.

. A. Banerjea et al., “The Tenet Real-Time Protocol

Suite: Design, Implementation, and Experiences,”
TR-94-059 (Berkeley, Calif.: International Computer
Science Institute, November 1994), also in JEEE/ACM
Transactions on Networking (1995).

A. Banerjea, E. Knightly, F. Templin, and H. Zhang,
“Experiments with the Tenet Real-Time Protocol
Suite on the Sequoia 2000 Wide Area Network,” Pro-
ceedings of the ACM Multimedia 94, San Francisco,
Calif. (1994).

W. Fenner, L. Berc, R. Frederick, and S. McCanne,
“RTP Encapsulation of JPEG Compressed Video,”
Internet Engineering Task Force, Audio-Video Trans-
port Working Group (March 1995). (Internet draft)

S. McCanne and V. Jacobson, “vic: A Flexible Frame-
work for Packet Video,” Proceedings of the ACM
Multimedia "95, San Francisco, Calif. (1995).

. M. Altenhofen et al., “The BERKOM Multimedia Col-

laboration Service,” Proceedings of the ACM Multi-
media 93, Anaheim, Calif. (August 1993): 457-463.

K. Correll and R. Ulichney, “The J300 Family of
Video and Audio Adapters: Architecture and Hard-
ware Design,” Digital Technical Journal, vol. 7,
no. 4 (1995, this issue): 20—33.

S. Leftler, M. McKusick, M. Karels, and J. Quarterman,
The Design and Implementation of the 4.3 BSD
UNIX Operating System (Reading, Mass.: Addison-
Wesley, 1989): 51-53.

Pulse Code Modulation (PCM) of Voice Frequen-
cies, CCITT Recommendation G.711 (Geneva: Inter-
national Telecommunications Union, 1972).

L. Rabiner and R. Schafer, Digital Processing of
Speech Signals (Englewood Cliffs, N.J.: Prentice-
Hall, 1978).

D. Lee and S. Sudharsanan, “Design of a Motion JPEG
(M/JPEG) Adapter Card,” in Digital Video Compres-
sion on Personal Computers: Algorithms and Tech-
nology, Proceedings of SPIE, vol. 2187, San Jose,
Calif. (February 1994): 2-12.

M. Boliek and J. Allen, “JPEG Image Compression
Hardware Implementation with Extensions for
Fixed-rate and Compressed-image Editing Applica-
tions,” in Digital Video Compression on Personal
Computers: Algorithms and Technology, Proceed-
ings of SPIE, vol. 2187, San Jose, Calif. (February
1994): 13-22.

J. Pasquale, “I/O System Design for Intensive Multi-
media 1/0,” Proceedings of the Third IEEE Work-
shop on Workstation Operation Systems, Asilomar,
Calif. (October 1991): 56-67.

16.

17.

K. Fall and J. Pasquale, “Improving Continuous-
media Playback Performance with In-kernel Data
Paths,” Proceedings of the IEEE Conference on Mul-
timedia Computing and Systems, Boston, Mass.
(June 1994): 100-109.

H. Kitamura, K. Taniguchi, H. Sakamoto, and
T. Nishida, “A New OS Architecture for High Perfor-
mance Communication over ATM Networks,”
Proceedings of the Workshop on Network and Oper-
ating System Support for Digital Audio and Video

(April 1995): 87-91.

18. Microsoft Windows NT Device Driver Kit(Redmond,

Wash.: Microsoft Corporation, January 1994).

Biography

Paramvir Bahl

Paramvir Bahl received B.S.E.E. and M.S.E.E. degrees in
1987 and 1988 from the State University of New York at
Buffalo. Since joining Digital in 1988, he has contributed
to several seminal multimedia products involving both
hardware and software for digital video. Recently, he led
the development of software-only video compression and
video rendering algorithms. A principal engineer in the
Systems Business Unit, Paramvir received Digital’s
Doctoral Engineering Fellowship Award and is completing
his Ph.D. at the University of Massachusetts. There, his
research has focused on techniques for robust video com-
munications over mobile radio networks. He is the author
and coauthor of several scientific publications and a pend-
ing patent. He is an active member of the IEEE and ACM,
serving on program committees of technical conferences
and as a referee for their journals. Paramvir is a member of
Tau Beta Pi and a past president of Eta Kappa Nu.

Digital Technical Journal Vol. 7 No. 4

1995

51

