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Abstract

While work hasbeendoneon connectivity, mobility andgen-
eral rendezvous systemsfor ubiquitouscomputingenviron-
ments,researchhasbeenhamperedby thelackof higherlevel
applicationabstractions. To identify what thesemight be,
weconstructedaprototypeubiquitouscomputingenvironment
whichwecall anInteractiveWorkspace,andobservedhow ap-
plicationwriters attemptedto useits facilities. We alsoiden-
tify systemsupportissuesfor ubiquitouscomputingthatdiffer
from their counterpartsin “traditional” single-nodecomput-
ing, andusethemto guidethedesignof asetof abstractionsto
supportubiquitouscomputingapplicationsdeployedin spaces
such as ours. Our implementedprototypemeta-operating-
system,iROS,andseveralapplicationsin daily useon top of
it, suggestthatwe havemadeprogresstowardthegoalof pro-
viding supportfor application-level ubiquitouscomputingab-
stractionsin a way that is robust to transientfailures,exten-
sible, portableacrossinstallations,andeasyto program. Fi-
nally, aswe considerfuture work, we arguethat the abstrac-
tions we identified—moving dataaround,moving interfaces
around,andcoordinatingthe behavior of existing monolithic
applications—arefundamentalto thisstyleof ubiquitouscom-
putinggenerally.

1 Introduction

Improvementsin device technologiesand falling costs are
rapidly enabling the original vision of ubiquitous comput-
ing [29]. Devices from large wall-sized displays to small
PDAs can easily (and wirelessly) be networked togetherin
localizedareas,forming the hardwaresideof the ubiquitous
computingenvironment. Onceconnectedtogether, however,
thesedevicesdo not generallyintegratewell with oneanother
or with existingsoftwareunlessthey weredesignedto do soa
priori. Thead-hocinteractionsandapplicationsenvisionedfor
ubiquitouscomputingaredifficult to achievebecausethereare
no higher-level systemabstractionsfor allowing this collec-
tion of off-the-shelfcomponentsto interoperate.Worse,such
systemsmust be able to toleratea dynamicenvironment,as
portabledevicescomeandgo, aswell asmaintaina high de-
greeof robustnessandavailability despiteinevitablesoftware

andhardwarefailures.We addressthis gapwith thefollowing
contributions:

� A discussionof systemssupportfor ubiquitouscomput-
ing andhow it differs from systemssupportfor “tradi-
tional” single-nodecomputing

� The identificationof fundamentalabstractionsfor appli-
cationdevelopersin room-basedubiquitouscomputing,
basedon our experiencebuilding a prototypespaceand
inviting researchersto write applicationsfor it

� A systemmodelandimplementedmeta-operating-system
that providessupportfor the high-level abstractionswe
repeatedlyobserved in ad-hoc applications,while re-
mainingrobust,extensible(new servicesanddevicesare
easyto integrate),and easily portableto other installa-
tionsandto deviceswith otheroperatingsystems

� Our experienceusingthis softwareon a daily basisand
deploying it to othersiteswith similar interests.

The meta-operatingsystemis designedto supplement,not
replace,the standardoperatingsystemfacilities provided by
individual machines.Thepaperproceedsasfollows. We de-
scribehow we built a prototyperoom to learnwhat abstrac-
tions applicationdeveloperswould require. We then distin-
guishthesystemsupportrequirementsof ubiquitouscomput-
ing from thoseof “traditional” computing,and identify the
mechanismsnecessaryto providetheseabstractionswhile sat-
isfying thesystemsconstraints.We describeandevaluateour
implementedmeta-OSandvariousapplicationsrunningon it
that are in daily use. Finally, we arguethat given our obser-
vationsandexperience,theabstractionsandsystemmodelwe
proposefor this styleof ubiquitouscomputingarefundamen-
tal, beyondourspecificprototypeimplementation.

2 Characterizing System Support for
Interactive Workspaces

We beganby building a prototypeinteractive workspace,the
iRoom.As canbeseenin figure2, it containsavarietyof dis-
play devicesandfacilities for wirelessandwired networking
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Figure1: TheiRoomcontainstheMural [4], ahigh-resolution
wall displayaddressableonly in OpenGL;threeSmartBoards,
off-the-shelflow-resolutiontouch-sensitivewall displayspow-
eredby Windows2000PC’s;atabletopdisplay;andwiredand
wirelessnetwork supportfor portabledevices.

of occupants’portabledevices,andwe arguethat it is repre-
sentativeof animportantclassof ubiquitouscomputinginstal-
lations.

To understandhow sucha spacewould actually be used,
we invited researchgroupsfrom within computerscienceand
other departmentsto usethe iRoom andcollaboratewith us
ondevelopingapplicationsfor it. A typicalusagescenarioran
as follows. A constructionmanagementteamcomesto the
iRoomfor a planningmeetingabouta new project.Oneteam
memberturnson the room lights andprojectorswith a user
interfaceshepulls to herPDA. Someengineersthenmove3D
modelsof theconstructionsitefrom their laptopsinto a com-
mon room dataspace,and the meetingmanagerdirectssev-
eraldifferentviewsof themodelontothescreensin theroom.
Othermembersview themodelsontheir laptopsor PDA’s,but
sincethe model is too complex it is automaticallydisplayed
asa setof renderedimagesshowing somekey views of the
model.

Thefinancialplannersareconcernedthatthenew planis too
expensive, so they replacea 3D modelon oneof the screens
with a financialmodelusing their PDA to choosethe appli-
cationandscreen.Sincethefinancialdataand3D modelare
alreadytaggedwith similar objectnames,the meetingman-
agerdirectstheroomto associatethefinancialmodelwith the
remaining3D views, andasvariousobjectsin the 3D model
areselectedthe meetingmembersareableto observe the re-
latedfinancialdata.

2.1 Application Developer Facilities

Thescenarioabove is representative of the many thatwe ob-
served or prototypedto varying degrees. From this process
we identified threecommonmodalitiesthat emergedrepeat-
edlyanddeservedto besupportedashigher-level facilitiesfor
applicationwriters:

A1. Data MovementFacility: A standardlocation and type
independentdatastoragefor the interactive workspace
which is easilyaccessibleto applicationdevelopers.De-
signissuesincludestandarddistributedfile systemsprob-
lems,aswell astransforminginformation into datafor-
matsunderstandableby andappropriatefor a variety of
clientdevices.

A2. InterfaceMovementFacility: A standardway to specify
how applicationscanbecontrolledby usersandotherap-
plications. Thedesignissuesherearerelatedto work in
userinterfacemarkuplanguagesandservicedescription
anddiscovery.

A3. Dynamic Application CoordinationFacility: A facility
to allow any interactive workspaceapplicationto inter-
actwith others,includingthosenotoriginally designedto
becompatible.

2.2 Systems Support Issues

Comparedto traditionalsingle-nodeOS’s, a “meta-OS”to tie
togethermultiple devicesin scenariossuchastheabove intro-
ducessomenew constraintsandqualitatively magnifiessome
existingsystemsconstraints.Wenow describethesewith their
implications.

Heterogeneity and adaptation. Thereis no single dom-
inant OS or programmingenvironmentin our scenario. OS
demandsmaybedictatedby variousfactors:theexperienceof
programmers,theavailability of devicedriversfor experimen-
tal I/O devices,thequirksof homebuilt equipmentsuchasour
hi-resMural (which is addressableonly in OpenGL).There-
fore we mustmake it easyto adaptlegacy software,hardware
andOS’s to our system,whetheror not sourcecodeis avail-
able.This impliesthatweshoulduseexisting OS’sandappli-
cationsaslargebuilding blocks,andidentify waysto usethose
applicationspotentially in waysthe designernever intended,
for exampleby “puppeteering”[7] theexisting applications.

Further, the inherentheterogeneityof ubiquitouscomput-
ing, andthe introductionof new hardwareover time, far ex-
ceedswhatwe areusedto; approachessuchasadaptationby
proxy[15], whichwork well for adaptingavarietyof clientsto
servers,donot readilygeneralizeto adaptclientsto communi-
catingwith eachother. Sincethe“leastcommondenominator”
functionality acrossclients is small, the API’s and meta-OS
codemustbeaccessiblefrom many languagesandplatforms,
andthey mustbeeasyto port to new languagesandplatforms.
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Finally, extensibility must be construedto include the in-
tegrationof futurehardwareandsoftware,which implies that
we shouldstrive to minimize the requirementsand assump-
tions madeaboutnew hardwareand software and minimize
the amountof work requiredto integratea new devices. The
Internethassuccessfullyaddresseda similar issueby moving
computationandservicesinto theinfrastructureratherthanto
clientandserverendpoints,in orderto keepclientsandservers
simple;we advocateananalogousapproachhere.

Robust to Transient Failure. A systemof dozensor hun-
dredsof devices runninghundredsof independentprocesses
mustbe able to survive transientfailuresof any component;
in fact, ideally it shouldbemodularlyrestartable[12], sothat
in generalthe restartof any componentis consideredpart of
normalsystemoperation.

Portable across installations. Justasapplicationswritten
to run on a PC undersomeoperatingsystemareportableto
other PCs, applicationswritten to our infrastructureshould
beusablein otherinteractive workspaceswith minimal or no
changes.Applicationsshouldnotberequiredto makeassump-
tions aboutwhich specificcomponentsarepresentor absent,
or aboutthegeometricarrangementsof thosecomponentsin a
particularinstallation. This implies that we shouldprovide a
way to structure“applications”aslooselycoupledensembles
of autonomouscomponents,andprovide indirection mecha-
nismsfor addressingthe componentsthat areasindependent
of locationaspossible.

3 A Meta-OS System Model

We have developeda systemmodeland implementedproto-
typethatprovidetheabovefunctionalitysubjectto thesystems
supportconstraintswe outlined. Thefoundationof themodel
is a communicationinfrastructurethatmeetstherequirements
given in the last sectionandthe goalsjust givenwhile facili-
tating dynamicapplicationcoordination.We thenlayeredon
top additionalsystemsthatusethecommunicationinfrastruc-
ture to provide datamovementand transformation(A1) and
interfacegenerationandmovement(A2) (shown in figure 2).

3.1 Communication Infrastructure

Our systemis built on a tuplespacecommunicationmodel. A
tuple is an orderedcollectionof named,typed fields. Tuple
sourcesdeposittuplesinto a logically centralizedtuplespace;
receiversquerythespaceby specifyingamatchtemplatecon-
strainingthe attributesof interest. In additionto providing a
layer of indirectionbetweensenderandreceiver in a similar
fashionto publish-subscribe,the tuplespaceadditionally de-
couplesthecommunicationin time sincetuplescanpersistin
thetuplespace.Thus,senderandreceiverneednotbeactiveat
thesametime.

Application

Data
Exchange

Interface
Mgt.

Communication Infrastructure

Dynamic
App.

Coord.

Figure2: SystemModelof Infrastructure

Many of thetradeoffsbetweenmessage-passing,RMI/RPC,
publish-subscribe,andtuplespacesarewell-known in thesys-
temsliterature. Our contribution consistsof evaluatingthese
mechanismsrelative to our problemdomain. The tuplespace
modelhasonly four primitive operations,soit is assimpleas
any othertechniquefor aclient to support.Operationssuchas
blockingRPCcanbeeasilyimplementedon top of it, but by
default, tuplespacesdecouplesendersandreceiversin time as
well asspace,sothatentitiesrecoveringfrom a failurecanre-
trieve communicationsthatweretransmittedwhile they were
down, soit affordspotentiallyrobustoperation.This property
is notpresentin publish-subscribesystems,thoughit is present
in somedistributedstatemanagementsystemssuchasscalable
reliablemulticast(SRM) [11]. Both tuplespaceandpublish-
subscribemodelsnaturallysupportmulticastcommunication
betweendisparategroupsover the samemedium, which is
moredifficult with messagepassingor RMI/RPC;but publish-
subscribemodelsaretypically “receiverdriven” in thatevents
areusuallynot postedunlesstherearesubscribersinterested
in receiving them.Becausewe do not necessarilyknow in ad-
vancewhetherareceiverwill beinterestedin aparticularpost,
we opt for the tuplespacemodel for this reason,as well as
becausethepersistenceof tuplescanbeboundedwith anex-
pirationtimeafterwhich they aregarbagecollectedif notcon-
sumed.This latterpropertyalsoimprovesrobustnesssinceit
eliminatestheresourcereclamationissueassociatedwith hav-
ing no receivers.

Tuplespacesdo not scalewell sinceall publishersandsub-
scriberscommunicatethroughthesamesharedmedium.How-
ever, asingleworkspacewill containperhapstensof usersand
hundredsof machinesor processes,so this is not a concern.
There is also a potentialperformancepitfall sinceall com-
municationis indirect, but we are concernedonly that end-
to-endlatenciesbebelow thehumandelay-perceptionthresh-
old. From theseobservations,we concluded(andour expe-
riencehaslargelyconfirmed)thatthetuplespacemodelworks
aswell asor betterthanothercommunicationtechniquesgiven
our problemdomain. Later we will argue,in light of our ex-
perience,thatsomekind of logically centralizedmulticast-like
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communicationis actuallyfundamentalto thisstyleof ubiqui-
touscomputing.

3.2 Data Exchange System

In aninteractiveworkspace,users’dataneedsto beeasilyac-
cessiblefrom any applicationfor manipulationand display.
However, the heterogeneityof the applications(and the de-
vices they run on) in this environmentmakes it difficult for
entitiesto directly sharedatawith oneanotherbecausethey
often do not understandthe samedataformats. In addition,
the datasourcesin this environmentarealsoheterogeneous,
rangingfrom traditionalfile serversto live, streamingdigital
cameras.

To successfullysupportdataexchangesamongthis variety
of applicationsanddatasources,thedataexchangesystemhas
to provide a high-level decouplingbetweenapplications,and
betweenapplicationsanddatasources,byprovidingbothtype-
independenceof data,andlocation-independenceof data.That
is,anapplicationwishingto retrieveinformationshouldnotbe
dependenton eithertheoriginal data-typeof the information,
or thekind of device theinformationis locatedon.

To providetype-independence,thesystemmustbeprepared
to automaticallytransformdatafrom its original format into
a format known to the destinationapplication. Thoughdata
transformationis difficult to doperfectly, thereareanumberof
methodsthatachieveacceptableresults[21, 24]). Similarly, to
provide location-independence,the systemmustbe prepared
to provide somemediationmechanismfrom the transferpro-
tocol presentedby the datasourceto that requiredby theap-
plication.

By providing this type-independent and location-
independentview of datastoredin an interactive workspace,
the data exchange system is removing the dependencies
applicationsonce had on one another—resulting in a high-
level decouplingalongtheseaxes,analagousto the low-level
decouplingtuplespacesprovide for control and coordination
communicationin ourmodel.

3.3 Interface Management System

Thegoalof the interfacemanagementsystem(IMS) is to en-
ableaccessingany servicefrom any userappliance.Wewould
of courselike to supportwidely-deployed UI rendererssuch
asHTML andWML browsers,but the IMS shouldallow for
generationof interfacesfor any modality, including standard
GUI/WIMP interfaces,voice interfaces,andothers. To keep
clientssimpleandminimizeassumptionsaboutthem,we pro-
vide infrastructureresourcesfor UI generationandadaptation.
Similarly, to make integrationandprototypingeasy, the IMS
shouldprovidefor automaticinterfacegenerationto thedegree
possible,so that addinga new service(or a userappliance)
doesnot forcethedeveloperto createinterfacesfor everynew

applianceor everyservice;but it shouldalsoallow creationof
custominterfaces,ideally supportingthe full spectrumfrom
automaticto handcrafted.Finally, theIMS shouldallow gen-
erationof interfacesthat areportableacrossworkspaces,but
still adaptthemselvesto thecontext of thelocalworkspace.

Although recentwork in the industryandresearchlabora-
tories(e.g. Jini [2], Hodeset al. [20], UPNP[13], Romanet
al. [22]) hasaddresseduserinterfacesin ubiquitouscomput-
ing environments,thesesystemsdo not adequatelyaddressall
theabove-mentionedgoals.Theirarchitecturesdonotdirectly
facilitateportable,yet context-adaptableUIs or infrastructure
supportfor UI generation/adaptation.Also, theHodesandJini
approachesdo not addressUIs for off-the-shelfbrowsers,the
UPNPapproachtargetsonly webbrowsers,while [22] is GUI-
centric.

To meetall theabove designgoals,we interposea new in-
frastructurecomponent,the interfacemanager, betweenthe
servicesandtheuserappliances.Servicesannouncetheir de-
scriptionsto the interfacemanagerandappliancesrequestin-
terfacesfrom it. The interfacemanagerselectsa pre-defined
interface,adaptsa genericinterface,or generatesa new inter-
faceautomaticallybasedontheservicedescription,appliance,
andthecontext informationof thelocalworkspace.

The decouplingof servicesand appliancesmadepossible
by theInterfaceManagerallowsusto convenientlyhandleap-
pliancecustomization,context adaptation,andmigrationof UI
generation/adaptationto theinfrastructure.Thus,theinterface
managerenablesloosecouplingfor userinterfacesjust astu-
plespacesdo for inter-applicationcommunicationandthedata
exchangesystemdoesfor dataexchange.

3.4 Dynamic Application Coordination

In aninteractiveworkspace,it is notusuallyknown in advance
which softwarecomponentswill becommunicating.Message
passingand RPC generally require advanceagreementbe-
tweencommunicatingpartnerson argumentmarshallingand
datatypes,constrainingapplicationsto interactingwith other
applicationsthatunderstandthe sameinterfacesthat they do.
In both cases,it is possibleto createcustomapplicationsto
bridgetwo applicationsthatusedifferentmessageformatsor
interfaces,but this canbecumbersomeandrequiresanunder-
standingof the workings of both applicationsto know what
formats or interfacesthey use. Both the tuplespace-model
andpublish-subscribe,however, sharethefollowingproperties
which make themwell suitedto dynamicapplicationcoordi-
nation:

Self-describing events: Events or tuples (called events for
simplicity in the remainder)areself-describing,andal-
waysgo througha sharedmedium.This makesit easyto
pick up eventsanddeterminetheir function.
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Figure 3: This systemoverview shows how IWork applica-
tions interactwith eachotherthroughour communicationin-
frastructure,coordinationframework, dataexchangefacility,
andinterfacemanager.

Anonymous communication: Sincethereis no needto ex-
plicitly rendezvousapplications,aslong astwo applica-
tionsunderstandthesameeventtypesthey will automat-
ically coordinatewith eachother. This meansuserscan
bringuptheapplicationsthey wantwherethey wantthem
andthingsshouldfunctioncorrectly.

Interposability: Applicationsneedto be able to coordinate
with otherapplicationsthat useevent typesunknown at
thetime anapplicationwascreatedor adaptedfor usein
the interactive workspace. Sinceeventsare public and
indirectly sentbetweenapplications,anintermediarycan
translateanevent from a sourceinto oneor moreevents
of differenttypeswhich will causetheappropriateaction
in a receiver or receivers[3]. Note this canbedonewith
messagepassingor RMI/RPC,asJini does,but requires
somemethodof ensuringapplicationswill connectto the
intermediary.

Snooping: The tuplespacemodel allows one componentto
snoop on events being sent among other components
without impingingon their behavior. Informationin that
eventcanthenbeusedto affect the local behavior of the
snoopingapplication.This is highly impracticalwith any
client/serverschemesuchasRMI/RPC.

3.5 Model Summary

Figure3 presentsan overview of how the componentsin the
systemmodelinteract.Fromthedeveloperstandpointthey de-
veloptheir applicationasa setof oneor morestandaloneap-
plicationcomponents.Givencomponentscoordinatewith the
outsideworld by submittingtuplesinto thetuplespacesystem,
andqueryingfor tuplesthatmatchsomecapabilityof thecom-
ponent.Componentsthatgenerateandconsumesimilar tuples
will thereforeautomaticallycoordinateamongthemselves,re-

Event
Heap

App1

App2

App3

Type: Multibrowse
Group: SideScreens

Get Event:

Put Event:
Type: Multibrowse
Group: SideScreens
URL: http://www.org/
ContentType: HTML

Type: Multibrowse
Group: SideScreens
ContentType: WAP

Get Event:

Figure 4: Basic Event Heap Interaction. App1 submitsa
’Multibrowse’ event instructinggroup ’SideScreens’to dis-
play URL ’http://www.org/’, contenttype ’HTML ’. App2 is
waiting for Multibrowse events addressedto SideScreens,
Group’SideScreens’,but contenttype ’WAP’, so it doesnot
receivetheevent.App3,whichcandisplayall contentaddress-
ableby aURL, doesnotspecifyavaluefor ContentType,soit
will receive theeventanddisplaytheURL.

gardlessof wherethey are in the workspace. By using the
interfaceservicesystemto provide a set of capabilities,ap-
plication componentscanbe controlledfrom any device for
whichtheinterfacemanagementsystemis ableto createanin-
terface.Finally, by submittingandretrieving attributenamed
datato the workspacewide datasystemapplicationcompo-
nentscanexchangeinformationwith any othercomponentin
theworkspacefor which thereis a valid setof datatransform-
ersavailable.

4 Prototype System

In orderto validatethesystemmodelwe proposedin thepre-
vious section,we constructeda working prototypeandhave
beenusingthevariouscomponentsin theiRoomfor almosta
yearanda half. This sectionpresentssomeimplementation
detailsfor theprototypesystem.

4.1 Event Heap: Communication Infrastruc-
ture

TheEventHeapis basedon TSpaces,a Java basedtuplespace
implementationfrom IBM [30], which is in turn basedon
Linda [17]. An exampleusageis shown in figure4.1. is given
below:

Our systemdiffers in a few key ways from a standardtu-
plespacemodel. First, multiple identical querieswill yield
eventsin FIFO orderpereventsender, thoughthereis no or-
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deringacrosssenders.Second,our matchingrulesrelax the
constrainton field orderandeventsize,allowing eventsto be
submittedwith extrafieldsunknownto somereceiverswithout
requiringthereceiverapplicationsto berewritten; thisenables
receiver evolution. Third, eventshave a Time-To-Live field
andaregarbagecollectedafter they expire; this solvesthere-
sourcemanagementissueassociatedwith postingeventsthat
no receiver is interestedin.

Although TSpacesusesa non-replicatedcentralserver for
the actual tuplespacemedium, we provide somerobustness
by effecting a fast automaticrestartof the server and auto-
matic reconnectfor all Event Heapclients in caseof server
failure. As we will explain, many of the state-maintenance
designdecisionsin the DataHeapandICrafter aresynergis-
tic with makingtheEH restartablein this manner, makingthe
iRoomasawholemodularlyrestartable[12]. TheEventHeap
consistsof a 15KB JAR file, andwe alsoprovide interfacesin
C/C++ via JNI, Python,anda Java servletinterfacethatcon-
vertsproperly-formedfat URL’s into eventpostsandqueries.
This latterability allowsthecreationof webpagesthatmanip-
ulateany of therunningapplicationsin theiRoom.

4.2 A1: Data Movement Facility

The Data Heap,the datamovementfacility we built aspart
of iROS,providestype-independentandlocation-independent
storageof large and semi-permanentdata in an interactive
workspace.We usea datatransformationsystem[?] to pro-
vide type-independence.This systemusesa set of dynami-
cally composabledatatransformersto convert databetween
arbitraryformats.

Sincewe cannotassumethat all devices can accessdata
from any oneparticulardatasourcedueto heterogeneity, we
separatetheindexing andqueryingof metadatafrom thestor-
ageof thedataitself, allowing usto storedataon a varietyof
existing datastores. Metadata-basedindexing andsearching
of informationprovideslocation-independentnamingof infor-
mation in iROS, similar to the Prestosystem[9]. The Data
Heapmediatesprotocolmismatchesbetweenapplicationsand
data sourcesby providing the capability to either dynami-
cally downloada Java protocol handler, or to have the Data
Heapcopy thedatato a supporteddatasource(suchasa stan-
dardWebDAV server). Together, this metadata-basednaming
andprotocolmediationprovideslocation-independencein the
DataHeap.

Metadatais storedand queriedusing a fast, in-memory
XML databasewedeveloped,calledCMX (Context Memory).
Controlcommunication(storageandqueryingof metadata)is
handledover theEventHeap,while datacommunicationuses
the native protocolsof the storageservers(we currentlysup-
port WebDAV andHTTP).

Issueswe have not yet addressedincludeconsistency guar-
anteesof databeingaccessedonmultipledevices,andthepos-

Event
Heap

App1

App2

DataHeap

binary
data

binary
data

Name: Document1
Type: MSWord

Put Data Cmd:

Name: Document1
Type: Postscript

Get Data Cmd:

Figure5: BasicDataHeapInteraction
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Figure6: BasicICrafterInteraction

sibility of reversetransformationto savedataeditedwhile in a
transformedformat.

4.3 A2: Interfaces Movement Facility

ICrafter, our interfacemanagementarchitecture,is compatible
with theInterfaceManagementSystem(IMS). Consistentwith
our overall designphilosophyandgoals,ICrafterarchitecture
is entirelybasedon the tuplespacemodelof the EventHeap.
Comparedto similar previouswork [20, 2, 13, 30], this offers
theability to snoopon andinterposebetweencallsto ICrafter
services.

Figure6 illustrateshow theICrafterframework works.Ser-
vicesbeacontheir descriptionsto the Event Heap(step1 in
figure 4.3). ServiceDescriptionsdescribethe services’pro-
grammaticinterfacesin an XML-based servicedescription
language.Unlike [20, 13], our servicedescriptionsdo not in-
cludeURLs or physicaladdressesof the servicesor UIs, be-
causethis would requireremappingwhenever service/UIlo-
cationschange. Due to the cleanseparationof servicepro-
grammaticinterfacesfrom userinterfaces,theservicedescrip-
tions can be generatedautomaticallyfrom the codefor ser-
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viceobjectswrittenin Java(usingJavareflection).Thisavoids
the problemof maintainingconsistency betweenthe descrip-
tionsandtheservicesastheservicesareupdated.Requestsfor
UIs from appliancescontaintheappliancedescriptions,which
list theUI languagessupportedby theappliance,andoptional
(name,value)pairsdescribingotherattributessuchasphysical
dimensions,etc.

Whena requestfor an interfacearrivesfrom an appliance
(step2), theinterfacemanagerchoosesacustomUI generator
if oneis availablefor theserviceandapplianceplatform,or a
genericservice-independentUI generatorotherwise.Thegen-
eratorscanaccesstheCMX databasefor the local workspace
context information(suchasphysicallocations).Customgen-
eratorshave beenwritten for several iRoom servicesin three
markuplanguages:HTML, VoiceXML, andSUIML (a Java
Swing UI markuplanguagedevelopedby the HCI subgroup
of our project). Whena userperformsan actionon the user
interface(step3), the serviceis invoked by placingan event
into theEventHeap(step4).

4.4 A3: Dynamic Application Coordination

As describedin section2, user-directedapplicationcoordina-
tion refers to the ability of applicationdevelopersto create
novel applicationsfrom collectionsof existing Event Heap-
enabledapplicationswith no programming. Four key prop-
ertiesof the Event Heap: self-describingevents,anonymous
communication,snooping,andinterposabilityform the basis
for userdirectedapplicationcoordinationasexplainedin sec-
tion 3.4. Note thatsomeof theseproperties(especially, self-
describingnatureof eventsand anonymouscommunication
model) are well-known in systemsliterature. Our contribu-
tion herelies in identifying how thesepropertieshave proved
usefulin aprototypeubiquitouscomputing(specifically, inter-
active workspaces)environmentand proposinghow generic
mechanismscanbe built using themthat allow usersto cre-
atenovel applicationswith no programming.By doingso,we
makeastrongcasefor adoptinganunderlyingcommunication
infrastructurethatprovidesthesepropertiesin workspace-like
ubiquitouscomputingenvironments.

Currentlymostusercoordinationin iRoomis adhocandis
primarily doneusingtwo simplemechanisms:

� Debug mechanismsbuilt into our infrastructurelet users
easilyinspecttheeventsusedby existingapplications.

� A simplewebform allowsusersto contructfatURLsthat
canbeembeddedin webpagesandcausesubmissionof
oneor morearbitraryeventswhenclicked.

Using thesemechanisms,userscan easily createweb pages
containing links which can activate and coordinatethe be-
haviour of several applications. For example,a link can be

createdon a webpagewhich, whenclicked,cancauseview-
ersto beopenedon many displayssimultaneouslydisplaying
relatedviews. Which views areshown andhow they arelaid
out acrossthedisplayscanbecontrolledby theuserusingthe
abovemechanismswith noprogramming.

As anotherexample, researchersin anothersubgroupde-
signeda wirelessbuttonwhich canbeconfiguredwith a web
interfaceto submitadesiredevent.Wewantedto usethewire-
lessbuttonto advancetheslidesin ourSmartPowerPointappli-
cation(which will bedescribedlater). This couldbeachieved
trivially (with no programming)by configuringthe button to
submitanevent thatcausedthe "advanceSlide"methodto be
invokedon theSmartPowerPointservice.

5 Application Examples

5.1 Smart Presenter

To showcasethecapabilitiesof theiRoomandoursoftwarein-
frastructure,wehavedesignedandimplementedSmartPresen-
ter, a multi-display, multi-objectpresentationprogramfor in-
teractiveworkspaces.While traditionalpresentationprograms
coordinatethe display of slidesacrosstime, SmartPresenter
coordinatesthe display of information acrossboth time and
displaysurfaces.

For instance,in theiRoom,with threelargedisplaysonone
wall, for somespecificpoint in their presentation,thepresen-
ter mayconfigurethe systemto displayan outlineof the talk
on the left-mostdisplay, themaincontentslideon themiddle
display, anda detailof a dataseton theright-mostdisplay. In
addition,audiencemembersmayfollow thepresentationfrom
a laptop,eithertrackingthe currentpresentationor browsing
contentthat is currently not being displayed. Tracking the
currentpresentationis doneby snoopingon themain control
eventsfor SmartPresenter.

Thecoreof theSmartPresenterapplicationis a smallcom-
ponent that readsa presentationscript specifying what ac-
tions shouldbe taken at what point in the presentation.The
mostcommonactionis displayingaparticulardataobjectona
nameddisplay(suchasslide#4 of a PowerPointpresentation,
or adigital photograph).In addition,thescriptmayalsospec-
ify programsto run on particulardisplays,or even command
lights to turn onandoff.

SmartPresenterusesthe Event Heapto coordinatethe be-
havior of all of the display surfaces,the Data Heapto store
slide informationandtransformslidesfor displayon various
devices (large screens,PDAs, etc.), and is controlledusing
ICrafter-generatedinterfaces.SmartPresenterviewersareim-
plementedas Event Heap-aware display services,wrapping
legacy viewer applications(suchasMicrosoft Powerpointor
InternetExplorer).

Togetherwith thedecisionto reuseexistingsoftwarefor the
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displayof data,our infrastructuregreatlysimplifiedthedevel-
opmentof the SmartPresenter. The Event Heaphandlesthe
communicationamongthe distributedcomponents,the Data
Heapmanagesthetransferof datato eachdisplayandthefor-
mattingof datafor the variousdisplays,andICrafter creates
simple,usableinterfacesfor variousdevices.All thatwasleft
to build wastheapplicationlogic for theSmartPresenter.

5.2 CivilE Suite

An earlyadopterof iRoomtechnologyhasbeenthe[ANONY-
MOUS] (CivilE), a groupof civil engineeringresearchersin-
vestigatinghow to betterautomatetheprocessof planningand
managementfor the constructionof large civil engineering
projects. Discussionswith CivilE inspiredthe scenariowith
which we openedthe paperand have resultedin the CivilE
applicationsuite,which demonstrateshow a collectionof ap-
plicationcomponentscanbecreatedthatpermittheuserto de-
terminewhichcomponentsarecoordinatingatany giventime.
CivilE designeda setof viewers for their datathat could be
runon thevariousdisplaysin theroom:

� A constructionsitemapthatallows theselectionof vari-
ousview pointsin theconstructionsiteandthenemitsan
appropriateview changeevent.

� A “4D” viewer thatshows a 3D modelof projectedstate
of theconstructionsite for any dateduringconstruction.
It respondsto view changeevents,objectandzoneselec-
tion events(e.g.,building 3), anddisplaytime events.

� Anothermapviewer thathighlightszonesbasedon zone
selectionevents.

� An appletbasedweb viewer thatdisplaystablesof con-
structionsite informationandemitszoneanddateselec-
tion eventsastableinformationis selectedandlistensfor
thesameeventsto selectinformationin thetable.

All of the applicationsusethe Event Heapfor their commu-
nication,and in fact began life asseparate,non-coupledap-
plications. Sincethey usecommonevent types,the various
componentsof thesuiteretaintheirability to coordinatewhile
still beingable to be broughtup on any screenin the room.
Sincethecomponentsarelooselycoupled,if no eventsource
is running,or thereis noeventsink,it doesnotaffectany of the
applicationcomponentscurrentlyin use. Much of the CivilE
applicationwasessentiallyplain HTML usingproperlycon-
structedfatURL’s;only thecustom4D viewerhadto becoded
specificallyto communicatewith theEventHeap.

5.3 Other Applications

TheSmartPresenterapplicationandtheCivilE Suitebetween
themgive concreteexamplesof how actualapplicationsuse

thethreeApplicationDeveloperFacilities(A1-A3) introduced
in section2.1. Thereare many other applicationsthat have
beenwrittenusingtheinfrastructure,andwelist afew of them
here:

Image management system: Imagescan be placed into a
workspacewide repository from laptops, permanent
iRoom machines,or directly from scanners.They can
bedisplayedanywherein theiRoom.

Room controller: Actually an ICrafter interface,it provides
a geometricview of theroom,theability to movedatato
any displayin the room,andcontrolover lights, projec-
tors,androutinglaptopvideoto screens.

Radiology Visualization: Allows usersto view 2D slicesof
a 3D volumetric dataset. Viewers run on independent
machines.

Storyboarding Application: Lets film storyboard artists
sketchpictures,scanthemat a scanningstation,manip-
ulate them using a imagesorterapplicationon another
screen,andmove themto AdobePremierefor creatinga
movie on two otheradjacentdisplays.

Wireless buttons: Webuilt somesimplewirelessbuttonsthat
communicatewith abasestationconnectedto acomputer
in theiRoom. In orderto connectthis wirelessbuttonin-
frastructureto iROS,we addedeventpostingcapabilities
to thesebuttons.This integrationwasachievedwith less
than20 linesof codeandimmediatelyopenedup a num-
berof new functionalitiesfor theexisting applicationsin
the iRoom. Thesebuttonsarenow usedfor controlling
lightsandprojectorsandfor controllingapplicationssuch
astheSmartPresenterdescribedin section5.1.

Although we have presentedtheseas “applications”, since
the componentswere constructedusing our infrastructure,
they can flexibly interoperatewith one another. For exam-
ple, the sameimage viewer is usedin the image manage-
mentsystem,the radiologyvisualizationandthe storyboard-
ing application—therearejust differentsourcesof therequest
for the viewer to display the information. This is important
sincewe imagineproviding userswith a setof tools (compo-
nentapplications),they canflexibly arrangeto createunique
applicationson thefly.

6 Evaluation

Building ad hoc software to provide the functionalitieswe
have describedis not especiallychallengingin andof itself;
what makesit challengingarethe additionalsystemgoalsof
high robustness,portability/reusability, andextensibility. The
evidencewepresentin thissectionsuggeststhatwehavemade
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encouragingprogressin meetingthesegoals.Wealsoquantify
the performanceof key partsof iROS andidentify designor
implementationchangesthatwould improveit.

6.1 Robustness

iROSwasdesignedandbuilt to avoid cascadingfailures,and
to berobustto individual failures.Werepeatedlyemploy three
maintechniquesto achievethis:

Loose Coupling: Since software entities communicate
throughthe Event Heapbut areotherwiseautonomous,
failuresdo not generallycascade.In theSmartPresenter
application, for example, the failure of one or more
displaysdoesnot affect thepresentationof dataon other
displays. Applicationsthat attemptto do blocking RPC
over the Event Heapeventually time out if thereis no
response,with the stale events themselves eventually
being garbagecollected. This style of communication
encouragesprogrammersto think in termsof autonomous
message-passingentitiesratherthan in termsof clients
and servers whose statesare tightly coupled through
procedurecalls.

Announce/listen rather than Register/Deregister: For ex-
ample,in ICrafter, not only do we beaconserviceadver-
tisementsratherthanrequiringregistrationandderegis-
tration, but we alsomake the beaconsthemselvescarry
the servicedescriptions. This solves two potential ro-
bustnessproblems:first, if a servicediesunexpectedly,
othercomponentswill soonnoticeit hasstoppedbeacon-
ing, so thereis no issueof resourcereclamationasthere
would beif a servicefailedto deregistergracefully. Sec-
ond, thereis no concernthat a storedpersistentversion
of a servicedescriptionmight becomeinconsistentwith
whattheservicecanactuallydo.

Modular Restartability: The above properties, combined
with automatic restart and reconnectionof the Event
Heap,allow iROSasa whole to gracefullysurvive tran-
sient failures of almost any subsetof its components,
andrecover from themwhenthe failed componentsare
restarted.We havefoundthis to becritical in practicefor
keepingthe iRoom running; in steadystate,with no ap-
plicationsrunningandnot countingbasicWindows and
Linux services,our iRoom is runningabout30 process
andnearly200threadsacross8 PC’s.

6.2 Extensibility

Our infrastructureis designedto beextensiblein two ways,by
addingdevicesandby addingservices:

Devices: Therearethreeaspectsof integratinga new device
into iROS:

1. The device and its applicationsmustbe able to usethe
Event Heap. This can be doneby writing applications
linked againstEvent Heap libraries in one of various
languages,by runningits applicationsa genericruntime
wrapperthat supportsthe Event Heap(as ICrafter does
for generatinggenericinterfacesfor Win32applications),
or by browsingappropriately-constructedWebpagesand
formson thedevice’sbrowser.

2. Thedevicecanoptionallyaddany typetransformersnec-
essaryto convert from at leastonecommondatatype to
aformatunderstoodby thedevice. For example,theonly
iROS-visibleAPI for displayinginformationon the Hi-
resMural is atransformerthatconvertsany JPEGinto the
appropriateOpenGLsequencesfor renderingbitmaps.

3. A device thatwantsto displayhumaninterfacescanop-
tionally add a custom interface generatorfor itself to
ICrafter. It can also usean existing genericone, such
astheHTML interfacegenerator.

Services: In order for a new serviceto become“ICrafter-
enabled” (remotely controllable through a dynamically-
generatedUI), the service’s Java class(or wrapper)mustbe
registeredwith ICrafter, or theservicemustbeof atypewhose
methodscan be automaticallyintrospectedby ICrafter (e.g.
usingreflection). Servicedescriptionscanthenbe automati-
cally generatedandoptionally handtunedfor higherquality.
Similarly, the userinterfacecanbe handcraftedor a generic
userinterfacecanbeautomaticallygenerated(e.g.,HTML).

To date,wehavesuccessfullyextendedtheiRoomwith new,
unplanned,devices,suchas the wirelessbutton describedin
section5.3. We have built a large numberof services,from
simplelight controllersto morecomplicatedmeta-applications
like the SmartPresenterandCivilE constructionmanagement
demo,with little new code. The ability to rapidly adda new
device or servicefor prototyping,andhand-tunethe integra-
tion later, hasbeena valuablepropertyfor a researchtestbed
in ubiquitouscomputing.

6.3 Portability

WehavesuccessfullytransferrediROSto partnersitesthatare
using it as "customers"ratherthanresearchers,i.e. their in-
terestis in deploying their own domain-specificapplications
rather than contributing to ubiquitouscomputinggenerally.
Researchersat theANONYMOUS usethe iRoomto demon-
stratehow constructionprojectteamscoulduseamulti-device
and multi-display environment to display and interact with
projectinformation.Their initial softwareconsistedof anum-
berof independentdataviewing applications;the iRoomver-
sionof theirdemoallowseachviewerto runonitsowndisplay,
andcoordinatestheir actionsusingtheEventHeap.CivilE is
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alsodeploying an"iRoom to go" usingmultiple laptopsanda
subsetof iROS.

We have alsodeployed a subsetof iROS to the ANONY-
MOUS (AAA). Their prototype interactive workspacein-
cludestwo Smartboardsand a laptop. Once we identified
which files wereneeded,we wereableto copy andusethem
without modification(with theexceptionof someweb server
configurationfiles). AAA now plansto startuser-testingandto
setuptechnology-assisted-learningapplicationsandscenarios
thatusethis infrastructure.We have alsosuccessfullyrun the
Java-basedEventHeapandrelatedserverson Windows 2000
(in theiRoomthey run on Linux).

Thoughpreliminary, our experienceto dateindicatesthat
we are on track to satisfyingour goal of portability of our
meta-operating-systemboth to different iRoom installations
andacrosstraditionaloperatingsystemplatforms.

6.4 Relevant Measured Performance

In this subsection,we reporttheperformanceobservationsfor
our system.Note that sinceour prototypeimplementationis
primarily aninitial proof-of-conceptimplementation,we have
not yet worked on performanceoptimizations. Our primary
goal was to build a systemthat was fast enoughfor human
perceptionranges.

As mentionedearlier, theEventHeapis notintendedfor low
latency fine-grainedGUI-like events(we have anothersystem
for this purpose). Instead,it is primarily intendedfor high-
level controlevents.

Wemeasuredthescalingperformanceof theEventHeapby
observingthe latency of theEventHeapundervaryingloads.
Theloadon theEventHeapwascontrolledby runninganum-
ber of client processeson a cluster that accessedthe Event
Heapin variousways(the clientsperformedsubmission,re-
trieval andremoval of events).TheTSpaceserver wasrun on
a4-cpulinux server, andconfiguredto use256MBof physical
memory. With no load on the TSpaceserver, we measureda
latency of 30ms. However, asthe load increased,we noticed
a wide variation in the latency dependingon several factors
suchasthedurationfor which theTSpaceserverwasrunning,
the numberof tuplesin the server, configurationsettingsfor
theTSpaceserver, etc. For example,with 200clients,latency
variedfrom 100msto 2 seconds.

Tspacesis a feature-richresearchproduct. (It provides
transactionsupportandalsomuchmorepowerful queryfea-
tures than those used by the Event Heap.) We believe
that a ground-upimplementationof the Event Heap(or re-
implementingit on a simpler and more maturecommercial
blackboardsystem)would resultin muchbetterperformance.
Currently, becausethe iRoomrarelyhasmorethan10-20ac-
tiveEventHeapclientssimultaneously, wehavefoundtheper-
formanceto beacceptable.

We had similar experienceswith the Data HeapSystem.

While our performancenumbersvariedsignificantlybasedon
theformatandsizeof thedata,CMX performedsatisfactorily
for a few thousandentriesat a time.

To evaluate the performanceof ICrafter, we measured
the end-to-endinterface generationtime for a typical web
interface. Ignoring the browser renderingtime, The time
taken for this canbe broken down into HTTP latency, Event
Heaplatency, and the actual interfacegenerationtime. The
observedperformancewasasfollows:

Total time: 555ms
HTTPlatency:44ms
EH latency:70ms
Interfacegeneration: 441ms

Interfacegenerationtime is fairly high becausethe critical
pathincludesseveral transitionsbetweenjava andpython in-
terpreters.Thus,theperformanceis heavily dependenton the
python interpreterandthe overheadof the transitions.While
betterperformanceis definitely desirable,we have found the
currentnumbersto beacceptable.

However, our mostinterestingresultscameaboutfrom our
studyof theapplicationswritten for theiRoom. Our observa-
tionsprovedthatiROSenabledapplicationdevelopersto write
iRoomawareapplicationsusingvery few linesof extra code.
Table1 lists our observations. In mostcases,the amountof
new coderequiredto “enable” a componentto usethe Event
Heap,DataHeapor ICrafterwason theorderof tensof lines
or a few hundredstatements.Most applicationsrequiredzero
codeto becomeICrafter-enabled,sincetheir interfacescanbe
generatedcompletelyautomatically. Thework-to-benefitratio
of enablingnew applicationshasbeenuniformly very favor-
able.

6.5 Summary

We designediROS to be botha usefultestbedfor ubiquitous
computingresearchandthe basisof “production” ubiquitous
computingenvironments.Theability to quickly deploy andin-
tegratenew devicesandserviceswithout having to hand-tune
interfacesuntil later hasbeenvery valuablein evolving the
iRoom. Similarly, the defensive loosely-coupleddesignre-
lievesusof having to worry thatintroductionof anew (buggy)
device or servicewill destabilizethe environment. The cost
of this designis thedependenceon a centralizedcommunica-
tion medium(theEventHeap)andthe potentialperformance
pitfalls associatedwith it, but we areconfidentthatrelative to
our naive implementation,this hurdle can be overcomeand
the benefitsof the simplicity androbustnessof the resulting
programmingmodelreadilyreaped.
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Application Total Lines No. of ’;’ EventHeapcode DataHeapcode ICraftercode

SmartPresenter 993 341 40 10 0
Button 300 232 8 n/a 0
Butler 298 107 10 n/a 7
Light Controller 113 41 0 n/a 0
ProjectorController 450 148 25 n/a 25

Table1: Codeanalysisof applicationswrittenusingiROS

7 Discussion and Synthesis

We believethreeaspectsof our designarefundamentalto this
styleof ubiquitouscomputing,independentof iROS:

1. Data and interface movementabstractionswith infras-
tructuresupport;

2. Groupcommunicationusinga centralizedinfrastructural
implementation(as opposedto, e.g., multicastand dis-
tributedstate);

3. Loosecouplingastheonly practicalway to achieveboth
robustnessandextensibility.

We considereachin detail.

7.1 Data and Interface Movement Are Funda-
mental Abstractions

Datamovementandinterfacemovementabstractionsarefun-
damentalbecausethey spanthe axes of extensibility. Data
movementallowstheintegrationof new applications;interface
movementallows the integration of new devices. Although
analogoustechniquesfor moving dataandinterfacesexist in
single-nodeOS’sandtoolkits,applyingtheideasto ubiquitous
computingrequiresgeneralizingthemin importantways.

Traditional GUI OS’s and toolkits such as Win32 and
X11 [25] have long relied on a “clipboard” metaphorto en-
able datacommunicationbetweenapplicationsnot designed
to interoperate.Typically, a dataproducermustpostdatain
multiple formats: its native format, plus oneor two “canon-
ical” formatsguaranteedto be understoodby other applica-
tions. For example,a spreadsheetmight postboth a spread-
sheetobject and ASCII text. This approachworks well on
single-nodeOS’ssinceapplicationswrittento thatOShaveal-
readyevolved a setof datatypeconventions.The DataHeap
generalizestheclipboardconceptin two importantways.First,
the transformationfacilities are automaticandextensible: it
automaticallycomputesmulti-step transformationsif neces-
sary, freeingthe dataproducerfrom anticipatingthe possible
needsof consumers.This is importantbecauseof the much
greaterdegreeof heterogeneityin a ubiquitouscomputingen-
vironment: the consumerof the datamight be a quite alien

applicationon a very different platform. Second,we move
both the storageandthe transformationlogic into the infras-
tructure, rather than making them part of any client, which
servesto keeptheclient simple.

A similar argumentcanbemadefor ICrafter. Applications
written for a particular GUI may be codedto keep the UI
separatefrom the applicationlogic, but the UI itself is usu-
ally expresseddirectly in thefacilitiesprovidedby thetoolkit
(e.g. buttonsandwindows in Win32), or at bestin a slightly
moreabstractlanguagethatcanbemappedto a varietyof im-
plementations,asis the casein Geoworks andmorerecently
XSL/XSLT. ICraftergeneralizesthis approachby moving in-
terfacegenerationand servicediscovery into the infrastruc-
ture,freeingtheclient from everyaspectof remotecontrolex-
ceptrequestingandinstantiatingtheinterface.

7.2 Centralized Group Communication En-
ables Incremental Integration

We have hadsomesuccesswith scenariosof “incrementalin-
tegration”: givenanensembleof � existing softwarecompo-
nentsthat alreadywork together, adda new componentthat
caneithercontrolor influencethebehavior of theensemble,or
reactto behaviors of otherensemblemembers.Both capabili-
ties requiresomeform of multicast-like communication—the
formerto addresscontrolmessagesto ensemblemembers,the
latterto “snoop”messagesamongensemblemembersanduse
themasexternalstimuli. We could have useda distributed-
statesolution such as ScalableReliable Multicast [11], but
puttingacentralizedtuplespacein theinfrastructureofferstwo
importantadvantages. First, it provides a degreeof failure
toleranceandflexibility: sinceeventscanpersistafter being
posted,it decouplescommunicationin time andallows a new
ensemblememberto rapidly “catch up”. Second,it keeps
clientssimple: only thetrivial EventHeaplogic, andnot dis-
tributedstatemanagement,needto beincorporatedinto client-
sidelibraries.This is animportantbenefitgiventhecollection
of diverseplatformswe wish to support. Further, our prob-
lemsize(hundredsof devices)doesnot requirethescalability
benefitsof schemessuchasSRM.

As currentlyimplemented,theEventHeapis a singlepoint
of failure.We note,though,thatthereis nothingpreventingus
from adoptinga morerobust implementation—infact, it was
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recommended[27] thatwe try a commercialdatabase,whose
performanceandcapacityaremorethanadequategivenourla-
tency requirementsandproblemsize.Furthermore,theEvent
Heapis automaticallyreconnectedafteratransientfailure,and
we do not rely on eventpersistenceexceptasanoptimization
(e.g. to pick up serviceadvertisementswithout waiting for
all servicesto beaconagain). In practice,we have foundthat
living with the communicationsubstrateasa singlepoint of
failurehasnot beena problem,evenwith the iRoomin daily
continuoususeandwith componentfailuresoccurringa few
timesperday.

7.3 Loose Coupling Connects Sophisticated
Building Blocks

Thatloosely-coupledmessagepassingpreservesexisting fault
isolationboundariesis particularlyimportantin adynamicen-
vironmentsuchasan interactive workspace:we canquickly
experimentwith new devices and software without concern
thatwe will destabilizetheenvironment.We believe thecom-
binationof robustnessandinteroperabilitywe have beenable
to realizewouldnothavebeenpracticalany otherway. In fact,
the predecessorto iROS hadtheseproblems:it wasfast,but
not extensible(addingnew devices or serviceswas ad hoc)
andnot robust (the componentsthemselveswerebuggy, and
thesystemwasnot resilientto componentfailures,frequently
wedgingor requiringmanualintervention). We cannotprove
thatloosecouplinghasmadetheonly difference,but givenour
experiencewith iROS,wearecertainlywilling to paytheper-
formancecostof indirectcommunicationin exchangefor the
otherbenefits.

Loose coupling has also allowed us to build sophisti-
catedbehaviors by startingwith extremely simple but pow-
erful existing mechanisms,leveragingthe full power of each
node’s OS andapplications.For example,we useURL’s as
globalnameswithin a singlework session;we leverageWeb
browsers’ability to dispatchcontentto thecorrectviewerson
their respective platforms;we useHTML andJava Swing as
simpleUI prototypingenvironmentsandWebDAV asa sim-
ple networkedstoragemechanismwith /tmp semantics;and
we rely directly on PDA transformationproxies[14] to make
thesefeaturesavailable directly on handheldswith no addi-
tional programming.Suchmechanismsarewell-understood,
enjoy widespreadsupportin new andexistingdevices,andare
easyto implementwhenunsupported.The “raw” resultsof
usingthesemechanismswithout new customcodeareusually
not themostelegantthatcanbeachieved,but for eachof the
aboveexamplemechanisms,we provide a correspondingway
to handcrafta solutionat any desiredlevel of detail that suc-
cessfullyinteroperateswith automatically-generatedsolutions.
We have alreadyexpendedmucheffort in systemintegration;
asthenumberof componentsto connect(andkeeprunning)in-
creases,it hasbeenusefulto leveragetheseefforts by simply

pluggingin new devicesandsoftwarethat usetried-and-true
interfaces.It is difficult to capturetheeasewith whichwehave
beenableto confidentlyandrapidly integratenew devicesand
servicesinto thealways-evolving iRoom.

8 Future Work

Application coordination. Theuser-directedapplicationco-
ordinationaspectof our infrastructureis theleastmature.Cur-
rentlywe lacka formalmodelfor describingapplicationcoor-
dination,andthereis no notion of what constitutes“correct”
behavior for therestof theapplicationif onecomponentfails.
(We have focusedon protectingthe rest of the systemfrom
faultsratherthanmonitoringthecorrectnessof individual ap-
plications.)Webeganinvestigatingamoreformalandsystem-
atic approachto dynamiccontrolflow basedon statemachine
representations[3], but have not hadthe resourcesto pursue
thisavenueof researchfurther.

Scalability. Sofar, we haveonly focusedon developingin-
frastructuresoftwareto enablea single-roominstallation.The
fundamentallimits onscalabilityimposedby thephysicalsize
of a single meetingroom (numberof occupants,numberof
physicaldevices,etc.)haveallowedusto tradewide-areascal-
ability for simplicity, robustness,andeaseof programmingin
the designof the software infrastructure. We are beginning
to investigatehow collaborationmight occuracrossmultiple
interactive workspaces;we anticipatehaving to createsepa-
ratemechanismsto propagaterelevanteventsbetweendistinct
EventHeapsin eachinteractiveworkspace.As with our orig-
inal approach,we would like to observe how peoplewish to
collaborateacrossinteractive workspacesbefore identifying
whattheright abstractionsare. We expectto have this oppor-
tunity asthe two new workspacescomeonlineat our partner
sites.

Security. This is anunaddressedproblem,in partbecause
we lack a socialmodelto indicatewhatsecuritymechanisms
would be appropriatein collaborative settings: when a user
movesinformationfrom a personaldevice to a large screen,
it becomespublicly readable;whena userhasthe ability to
controlpublic infrastructureremotelyfrom a personaldevice,
thereis a tradeoff betweenuserconvenienceandauthentica-
tion (asis typical in securitysystems).To complicatematters,
ourlegacy-OSbuildingblocks,suchasUnix andWindows,as-
sume(differing) single-user-at-a-timemodelsfor controlling
theconsoledisplayandallocatingprivileges.Thecurrentsit-
uation is crude: the room is firewalled from the outsideand
reasonablyphysicallysecure,but onceinsidethe room there
is nootherauthenticationor accesscontrol(exceptasrequired
by specificapplications,e.g.if aniRoomuserattemptsto open
files from a remotefileserver). A fictitious userwith minimal
privilegesis permanentlyloggedin at all the machinesthat
controlpublic infrastructure.
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9 Related Work

Previoussystemshave addressedindividualmechanismssuch
as low-level communicationmechanisms,discovery (Jini [2]
and UPNP [13]), naming (INS [1]), and adaptation( [23].
Our focushasbeenonthecombinationof thefacilitiesneeded
by theapplicationdeveloper. Consequently, we only evaluate
hereother systemsthat attemptto comprehensively address
the software infrastructurerequiredfor specific workspace-
like ubiquitouscomputingenvironments. Past work that is
relevantto only oneof thecommunicationinfrastructure,data
management,or userinterfacemanagementsubsystemshasal-
readybeenaddressedin sections3 and4.

Most otherworkspace-like projects(in otherliteraturealso
calledsmartrooms,intelligent rooms,etc.) have not specifi-
cally focused,aswe have, on building an operatingenviron-
mentpossessedof all four qualities:reusable,robust,portable
and extensible. The Intelligent Room at the MIT AI Labo-
ratory [6] andMicrosoft ResearchEasyLiving [5] both usea
combinationof sophisticatedsensorfusionandAI techniques
to enabletheenvironmentto deducetheuser’sneedsfrom con-
textual andothercues.Adding new functionality to EasyLiv-
ing is currentlyadhoc. “Smartness”wasnotoneof ourgoals:
we focusedinsteadon providing the infrastructurefor appli-
cationprogrammersto simplify writing applicationswith the
behaviors they desire.

Ourobservationsof userbehavior aresimilar to thosemade
by i-LAND [28]. Thismatureproject,whosephysicalspaceis
verysimilar to ourown, hasidentifieddesigngoalscloselyre-
latedto user-directedapplicationcoordinationandmovement
of information. Theprimarydifferencebetweeni-LAND and
the iRoom is the approachto software infrastructure: they
have written tightly-coupled custom applicationsbasedon
a SmallTalk-specificCSCWframework calledCOAST [26],
whereaswefocusonlooselycoupledgenericmechanismsthat
enableintegrationof legacy/COTShardwareandsoftware. In
addition,they provide no explicit supportfor automatictrans-
formationduringdatamovement,interfaceadaptation,or ap-
plicationcoordinationwith no programming,all of which we
believeshouldbefirst classgoalsfor any systeminfrastructure
for aninteractiveworkspace.

The Portolanoproject at the University of Washingtonis
exploring somesimilar issuesas iROS. Their current work
on aninstrumentedandenhancedbiology labworkbench[10]
is similar in spirit to our iRoom. Their currentefforts focus
moreon the facilitiesa lower-level programmingmodelsuch
asOne.world [19] shouldprovide.

Finally, we have stolen from well-known previous work
theprinciplesof loosecouplingfor robustness,soft state,and
announce/listenprotocols[8, 16]; the casefor infrastructure-
centricapproachto adaptingto clientandnetwork heterogene-
ity [15]; andthecasefor a“systemsof systems”approach[18]
in whichweconnectlegacy building blocksconsistingof com-

pletesystemswith OS’sandapplications.

10 Conclusions

We have focusedon one type of ubiquitouscomputing,the
interactive workspace. We have identified what we believe
to be fundamentalhigher-level abstractionsfor room-based
ubiquitouscomputing:moving dataaround,moving interfaces
around,andcoordinatingthe behavior of monolithic applica-
tions. Theseabstractionsarefundamentalbecausethey span
thespaceof extensibility: datamovementallows the integra-
tion of new applications,userinterfacemovementallows the
integration of new devices. We have discussedour experi-
encewith iROS,a deployedmeta-operating-systemembody-
ing theseideas,andour experiencecreatingnew applications
andretrofittinglegacy applicationsto work with iROS.

In the interestof keepingclients robust, we rely on in-
direct communicationthrougha tuplespace,which preserves
fault isolationboundaries;in theinterestof keepingthemsim-
ple, our abstractionsare implementedas infrastructuresoft-
ware,with whichotherentitiescommunicateusingsimpleand
platform-neutralnetwork protocols. The combinationof ro-
bustness,extensibility, andeaseof programmingwehavebeen
able to achieve would not have beenpractical without this
loosecoupling,and the usersdeploying our systemin addi-
tional interactive workspacesareso far validatingour experi-
ence.

Despitesoftwareandhardwareadvancesandfalling costs,
ubiquitouscomputinghasbeenhamperedby thelackof auni-
form setof appropriatehigher-level abstractionsthat alsore-
sult in arobustsystem.Weofferourlessonswith iROSandthe
softwareartifact itself with thehopethat it will bea first step
in acceleratingprogressin ubiquitouscomputingresearch.
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