iTrustPage: A User-Assisted Anti-Phishing Tool

Troy Ronda
Dept. of Computer Science
University of Toronto

ABSTRACT

Despite the many solutions proposed by industry and the research
community to address phishing attacks, this problem continues to
cause enormous damage. Because of our inability to deter phishing
attacks, the research community needs to develop new approaches
to anti-phishing solutions. Most of today’s anti-phishing technolo-
gies focus on automatically detecting and preventing phishing at-
tacks. While automation makes anti-phishing tools user-friendly,
automation also makes them suffer from false positives, false nega-
tives, and various practical hurdles. As a result, attackers often find
simple ways to escape automatic detection.

This paper presents iTrustPage — an anti-phishing tool that does
not rely completely on automation to detect phishing. Instead,
iTrustPage relies on user input and external repositories of infor-
mation to prevent users from filling out phishing Web forms. With
iTrustPage, users help to decide whether or not a Web page is legit-
imate. Because iTrustPage is user-assisted, iTrustPage avoids the
false positives and the false negatives associated with automatic
phishing detection. We implemented iTrustPage as a downloadable
extension to FireFox. After being featured on the Mozilla website
for FireFox extensions, iTrustPage was downloaded by more than
5,000 users in a two week period. We present an analysis of our
tool’s effectiveness and ease of use based on our examination of
usage logs collected from the 2,050 users who used iTrustPage for
more than two weeks. Based on these logs, we find that iTrustPage
disrupts users on fewer than 2% of the pages they visit, and the
number of disruptions decreases over time.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General —Secu-
rity and protection

General Terms

Security, Experimentation, Measurement

Keywords
phishing, anti-phishing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

EuroSys’08, April 1-4, 2008, Glasgow, Scotland, UK.

Copyright 2008 ACM 978-1-60558-013-5/08/04 ...$5.00.

Stefan Saroiu
Dept. of Computer Science
University of Toronto

Alec Wolman
Microsoft Research

1. INTRODUCTION

Today’s anti-phishing tools have done little to stop the prolifer-
ation of phishing attacks. Relying on automatic ways to identify
phishing attacks makes these tools suffer from both false positives
and false negatives. For example, attackers can easily adapt to auto-
matic spam and phishing email filters and find new ways to bypass
them. Other approaches to defend against phishing, such as auto-
matic password managers, face significant practical hurdles: they
must allow users to temporarily deactivate them to handle back-
ward compatibility issues or password resets. Many banks use
visual cues such as customized login pages to prevent phishing,
yet inattentive users can still be phished. While automation makes
these anti-phishing tools more user-friendly, automation often in-
troduces simple alternate ways for phishing attacks to continue to
be viable in practice.

Despite the many automatic anti-phishing solutions, the phish-
ing threat has continued to gain momentum. The following alarm-
ing trends indicate that our reliance on automatic tools to detect
and prevent phishing attacks has had little effect. Phishing toolk-
its have started to become available: RSA recently uncovered a
toolkit which displays the current version of a targeted Web page,
yet copies any data entered to the phisher [6]. This “Universal
Man-in-the-Middle Phishing Kit” sells for approximately $1,000,
and it allows phishers to get started by just entering a few param-
eters. Phishing messages continue to be sent in great volume:
Symantec observed 166,248 unique phishing messages during the
last six months of 2006; on average, this equates to 904 unique
phishing messages per day [26]. Symantec’s anti-phishing filters
blocked an average of 8.48 million phishing messages per day over
this time period. The number of phishing Web sites continues to
grow: There were 27,221 new unique phishing Web sites reported
in January, 2007 [1]; this is nearly three times the number of new
unique phishing Web sites reported in January, 2006. Some in the
banking industry claim that phishing is quickly becoming the sin-
gle most important source of fraud they deal with [2]. Phishing
e-mails are becoming sophisticated and hard to filter: Phishing
messages have started to include personalized information, specific
to the targeted user [17]. We believe that the research community
must investigate new approaches for anti-phishing solutions to re-
verse the current trends.

In this paper, we present iTrustPage — a novel tool that does not
completely rely on automation to detect phishing. Instead, iTrust-
Page relies on user input to decide on the legitimacy of a Web form.
iTrustPage also uses external information repositories on the Inter-
net to help the user with decision-making. A variety of sources of
information on the Internet (e.g., a search engine such as Google)
can be used to help establish the legitimacy of a particular Web
page and/or Web form.

iTrustPage is a Web browser extension that prevents users from
entering any information into suspicious Web forms. iTrustPage
intercepts the user input and prompts the user for search terms that
describe the Web page the user intended to visit. With these search
terms, iTrustPage performs a Google search and validates the Web
form only if it appears among the top search results'. If the suspi-
cious Web form does not appear in the top search results, iTrust-
Page presents visual previews of those pages that do appear in the
top search results, and asks the user whether any of them visually
match the current form. If a match is found, the current form is
likely to be a phishing attack. This step exemplifies of one of the
key benefits of user-assistance. The task of deciding whether the
visual appearance of two Web pages is similar can be very hard for
programs to get right, yet is a relatively easy task for a user. When
the user indicates a visual match, iTrustPage redirects the user to
the form selected from the search results. In this way, iTrustPage
not only prevents users from filling out phishing forms, it also helps
them locate the corresponding legitimate Web form.

In some cases, the search terms might not lead to any search
results where the legitimate Web forms are visually similar to the
current suspicious form. We believe that this type of limitation is
fundamental to all anti-phishing tools — they all encounter ambi-
guity in certain cases when attempting to determine whether a site
is legitimate. Unfortunately, there is no easy way to deal with this
case. One conservative approach is to always block users from fill-
ing out such forms. This option might appeal to corporate system
administrators. Another approach is to raise a warning before al-
lowing the user to fill out the form. However, warnings have been
shown to be ineffective: most users ignore them when they do not
understand the implications [5, 27, 8]. While iTrustPage supports
both options, the default option in our current implementation is to
raise a warning.

iTrustPage uses two simple mechanisms to reduce how often
users need to be involved in determining the legitimacy of a Web
form. First, iTrustPage uses a whitelist of 467 domain names se-
lected from the top 500 most popular Web sites as reported by
Alexa.com (some of these Web sites belong to the same domain
name). Second, iTrustPage uses a cache recording all the previ-
ously visited Web forms. In this way, users are never interrupted
when filling out a form on a Web page whose domain appears in the
whitelist or upon subsequent re-visits. Because these mechanisms
introduce automation in our tool, we deliberately kept them sim-
ple and unsophisticated to minimize (and hopefully eliminate) the
possibility of introducing false negatives when detecting whether a
form is phishing. As our evaluation will show, we found that both
the whitelist and the cache work surprisingly well in practice.

We implemented iTrustPage as a downloadable extension for the
FireFox Web browser. iTrustPage is available for download from
the Mozilla website for add-ons; once posted on this site, iTrust-
Page was downloaded by over 5,000 people in less than two weeks.
We present an analysis of our tool’s effectiveness based on reported
usability statistics collected from our deployed software. We show
that iTrustPage disrupts users on less than 2% of the pages they
visit and the number of disruptions decreases over time. We also
find that iTrustPage resorts to its user-assisted validation scheme
on 32.6% of the pages that users type into; the remaining pages are
validated by iTrustPage’s whitelist and cache. Our current imple-
mentation collects these statistics and anonymizes them to protect
our users identities; it also allows users to disable reporting entirely.

!Currently, iTrustPage uses the top 10 results returned by Google.

2. COMPARING AUTOMATION TO
USER-ASSISTANCE FOR
ANTI-PHISHING TOOLS

In this section, we illustrate the problems associated with au-
tomated anti-phishing tools with a case study: we investigate the
effectiveness of the SpamAssassin e-mail filter. SpamAssassin is a
very popular open-source spam and phishing e-mail filter. In our
experiments, we use four different corpora of e-mail (including
messages that are legitimate, phishing, and spam) collected from
a public repository of e-mail suitable to use for testing in anti-spam
and anti-phishing e-mail filters [21]. While e-mail filters are just
one of the many tools in our anti-phishing arsenal, we believe that
the problems they exhibit are representative of a wider range of is-
sues associated with automated anti-phishing techniques. We then
discuss why user-assisted tools have some inherent advantages over
fully-automated tools. We delay our in-depth discussion of the pre-
viously proposed anti-phishing techniques and their benefits and
drawbacks until Section 5.

2.1 Automation Introduces False Negatives
and False Positives

To illustrate the presence of false negatives in automated phish-
ing e-mail filters, we performed the following experiment. We
ran a very recent version of SpamAssassin (version 3.1.8) over a
relatively old corpus of 414 phishing e-mails collected between
November 2004 and June 2005 [21]. We use the default config-
uration of SpamAssassin to identify phishing e-mails. Despite this
corpus being more than two years old, SpamAssassin is still not
very effective in classifying many of them as phishing. We find
that 67 of the 414 phishing e-mail messages (16%) are labeled as
legitimate by SpamAssassin.

We ran the same configuration of SpamAssassin over a corpus of
250 legitimate e-mails collected in 2004 from the same source [21].
Although each of these e-mail messages is legitimate, these mes-
sages are known to be hard to differentiate from spam and phish-
ing e-mails because they contains unusual HTML markup, colored
text, and phrases often found in illegitimate e-mail. Despite these
e-mails being collected more than three years ago, SpamAssassin
still labeled 8 of them (3.2%) as illegitimate.

2.2 Coping With False Positives and False
Negatives Simultaneously

When anti-phishing tools suffer from false negatives, they may
not be effective in protecting their users. In such cases, they just de-
crease the likelihood that their users will become victims of phish-
ing; however, users must remain vigilant and find other means to
protect themselves from phishing attacks. On the other hand, false
positives introduce serious usability concerns. For example, users
are reluctant to continue using anti-phishing e-mail filters that clas-
sify even a small quantity of legitimate e-mail as phishing.

Unfortunately, it is very hard for an automated tool to eliminate
both its false negatives and false positives. To reduce the rate of
false negatives, the only option is to make the tool more aggres-
sive. Unfortunately, becoming more aggressive usually leads to an
increase in the rate of false positives. We illustrate this tension with
the following experiment.

We ran SpamAssassin over two e-mail data sets: (1) a newer
corpus of phishing e-mails from the same source as the one exam-
ined earlier [21] containing 1,423 e-mails dated between November
2005 and August 2006; and (2) a corpus of 478 legitimate e-mail
messages sent by one of the authors over the past few months. We
ran SpamAssassin with three different configurations: the default;

40%

29.7Y
o 30% %
(4
2
- 21.1%
D 20%
z
[]
T 10% 8.7%
[

0% ‘ ‘

Default More Aggressive Most Aggressive

SpamAssassin Configurations

40%
» 30%
[
2
o
o 20% 15.5%
[}
]
S 10%
0.0% 0.4%
0% ‘ ‘
Default More Aggressive Most Aggressive

SpamAssassin Configurations

Figure 1: The trade-off between false positives and false negatives for SpamAssassin. We ran SpamAssassin with three configurations: the default
one; a more aggressive configuration; and the most aggressive configuration. We increased SpamAssassin’s aggressiveness by decreasing its threshold
for labeling an e-mail as phishing, from 5 to 3 to 1, respectively. On the left, we present the rate of false negatives in a corpus of 1,423 phishing e-mails
collected between November 2005 and August 2006. On the right, we present the rate of false positives in a corpus of 478 legitimate e-mails sent by one of

the authors over the past few months.

60%
51.2%
45.4% 45.6%
("]
2 40%
s 30.7%
Q
=z
[
% 20%
w
I SpamAssassin as of 2004
B SpamAssassin as of 2007
0% I T

Older Dataset Newer Dataset

Figure 2: Phishing adapts to SpamAssassin. We ran SpamAssassin
over two phishing data sets: an older data set collected between November
2004 and June 2005, and a newer data set collected between June 2005
and November 2005. We ran two versions of SpamAssassin — a version
released in 2004 (version 3.0.1) and a very recent version released in 2007
(version 3.1.8). The rate of false negatives is higher in the newer phishing
data set for both versions of SpamAssassin.

a more aggressive configuration; and the most aggressive configu-
ration. We increased SpamAssassin’s aggressiveness by decreasing
its threshold for labeling an e-mail as phishing. Figure 1 presents
our results. Making SpamAssassin more aggressive has the ex-
pected effects: it reduces the rate of false negatives (as seen on the
left) while simultaneously increasing the rate of false positives (as
seen on the right).

2.3 Phishers Adapt to Automated Phishing
Filters

Another problem with automation is that phishing attacks tend to
evolve and adapt to the automated filters. We illustrate this problem
with the following experiment. We ran SpamAssassin over the two
phishing data sets used in the experiments above [21]: an older data
set collected between November 2004 and June 2005, and a newer
data set collected between June 2005 and November 2005. We ran
two versions of SpamAssassin — an older version released in 2004
(version 3.0.1) and a recent version released in 2007 (version 3.1.8).
We present the rate of false negatives in Figure 2.

For each of the two data sets, the most recent SpamAssassin has
fewer false negatives. As expected, SpamAssassin is trying to adapt

to incoming phishing e-mail — its recent version is better than the
older one. On the other hand, we also see that the rate of false
negatives increases in the newer data sets for both versions of Spa-
mAssassin. This illustrates that phishing attacks are adapting to
bypass the SpamAssassin’s automated filters.

2.4 The Benefits of User-Assistance for
Anti-Phishing Tools

We believe that tools (such as iTrustPage) that do not completely
rely on automatic techniques for phishing detection have three key
advantages over automated tools. First, we believe that false pos-
itives are rare and, if they do occur, they are less likely to irritate
users. When a user is involved in the validation process, a false pos-
itive is a legitimate e-mail or Web page that the user helped to label
as phishing. If they made a mistake, we believe that users are less
likely to complain and stop using the tool. Because false positives
are less of a concern, user-assisted anti-phishing tools can afford to
make their automated detection very aggressive. If an e-mail (or a
Web page) is deemed suspicious, such tools can then involve the
users in a manual validation process.

Second, we believe it is more challenging for phishing attacks to
adapt to user-assisted validation than to automated validation. Au-
tomatic phishing detection must examine human readable content
and classify it as legitimate or suspicious. This is a very hard prob-
lem; as an example, there is debate in the machine learning com-
munity whether machine learning algorithms can be made secure
against adversaries [4]. On the other hand, it is easier for people to
interpret and understand human readable content. While still im-
perfect, people are much better at understanding the meaning of
e-mails and Web pages than programs.

Third, user-assisted tools naturally support content in many lan-
guages whereas many automated anti-phishing tools have difficulty
handling such content. For example, automated e-mail filters writ-
ten to handle English e-mails cannot be directly ported to other
languages. Instead, they must incorporate a whole new set of auto-
matic rules and heuristics that correspond to the characteristics of
phishing e-mails in those other languages.

3. THE DESIGN OF iTrustPage

In this section, we present the design and implementation of
iTrustPage, our tool that prevents users from filling out phishing
Web forms and then assists them in finding the corresponding le-
gitimate Web form. When encountering a suspicious Web page,

iTrustPage does not simply warn the user — instead it offers them
corrective action. The design of iTrustPage is based on three obser-
vations: (1) we can rely on users to assist with the process of de-
ciding whether or not a Web page is legitimate, as there are certain
tasks that are easy for people to do, yet are very difficult to auto-
mate reliably; (2) we can assist users by locating legitimate pages
for them; and (3) we can use external information repositories, such
as Internet search engine results, to assist with the process of de-
ciding whether or not a given Web page is legitimate. User input
is needed for two tasks: (1) describing search terms for the Web
form they are filling in to see whether or not it is a well-known
and established Web page; and (2) performing visual comparisons
between the Web form they are filling in and the top Web forms
related to their supplied search terms. The external information
repositories used by iTrustPage are simply Google’s search index
and the whitelist of known trustworthy web pages.

The remainder of this section presents a step-by-step description
of how iTrustPage works, along with the intuition behind each step
as well as presenting possible alternatives.

3.1 Automatic Classification

For first-time visits to a particular Web form, iTrustPage uses
a built-in whitelist of popular legitimate sites. For subsequent re-
visits, iTrustPage maintains a local cache of all previously vali-
dated Web forms visited by the user, as well as those forms man-
ually approved by the user. In this way, iTrustPage never disrupts
users when they visit a page on a popular, well-established domain
or when they re-visit a page subsequently. Automatic validation
makes iTrustPage easier to use: the tool remains transparent when
these two heuristics determine that a form is legitimate.

3.2 Interactive Page Validation

When the automatic classification step fails to validate a partic-
ular Web form, iTrustPage involves the user in the validation pro-
cess. Whenever users attempt to fill out an unvalidated Web form?,
iTrustPage presents an overlay on the browser window that asks
them to describe the form they intend to fill in, as if they are en-
tering search terms for a search engine. iTrustPage uses the search
terms to issue a search query using Google. If the top 10 search
results contain the form’s Web site (i.e., its domain name), then
iTrustPage infers that the Web site that serves this form is legiti-
mate, and therefore the user is allowed to proceed and fill out the
form. In some cases, the user reaches a suspicious Web form by
navigating to it from the Google search page. For these forms, the
user has already assisted iTrustPage, albeit unknowingly, to vali-
date this page. Thus, iTrustPage does not ask the user to perform
an additional Google search.

The fact that the site appears in the top 10 search results means
that the Google crawler indexed the site, that many other sites link
to it, and that the site is most likely not short-lived. Since the user
selected the search terms that led to the search results, this means
that the form presumably matches the user’s intent. Once a form
is deemed legitimate, iTrustPage remembers that decision and will
not intervene again. As future work, we could improve this mech-
anism by including the query results from other search engines,
looking at other information repositories, such as the Whois do-
main registration database, and investigating whether “top 10” is
the best number of search results to check (we used this number
because it is the first page of results).

If the Web site that hosts the form does not appear in the top
search results, iTrustPage then fetches the page contents of the top

%{TrustPage monitors keyboard and mouse input to detect when a
user begins filling in a Web form.

three search results. iTrustPage presents the user with a visual pre-
view of those pages and asks the user if any of the search result
pages are visually similar to the Web form they intended to access.
If the user detects a visual similarity, then the original form is prob-
ably a phishing form. Therefore, iTrustPage immediately redirects
the user away from the original form to the legitimate form found
in the search results. Figure 3 illustrates iTrustPage’s search inter-
face overlay when visiting a questionable Web form (in this case
http://www.heinket.de, a current phishing page spoofing
PayPal). In fact, this Web form was phishing PayPal; once the user
entered the search term “paypal”, iTrustPage previews the legiti-
mate Web page, http://www.paypal.com.

3.3 Revising Search Terms

In some cases, the user will not find the intended Web site among
the top 10 search results. When this happens, the user is asked to
refine the search and the previous step is repeated. Nevertheless, it
is possible (although not very common) that users may never find
the desired site among the top search results. In this case, iTrust-
Page is unable to determine whether or not the form is legitimate.

While we make every effort to ensure that it only occurs rarely,
the problem that iTrustPage faces, of being unable to determine
whether or not a particular Web form is legitimate, is common to all
detection tools, whether they try to detect phishing, spam e-mail, or
malware. Sometimes there is simply not enough information to re-
liably make the correct decision. To address such situations, iTrust-
Page does allow the user to bypass the search mechanism when the
user is unable to find a legitimate site using visual comparison.

3.4 Implementation Details

In this section, we present additional lower-level issues related
to our tool’s implementation. iTrustPage is implemented as an ex-
tension to the FireFox Web browser. We have tested it on several
commodity OSes, including Windows, Linux, and Mac OS X. Its
source code is approximately 5,200 lines of code and it is freely
available to download [3].

iTrustPage is configured to not block a user’s interaction with
a Web form until they use the keyboard or bookmark the page.
iTrustPage ignores common Firefox keyboard control characters
such as the spacebar, the “Mac” key, and the control keys. iTrust-
Page can optionally be configured to block user interaction on page
open; to only check pages with input boxes; and to only check when
the user clicks on a form element. iTrustPage does not currently
deal with embedded objects (e.g., Flash and ActiveX) because it
does not receive their keyboard events. This is an implementation
issue rather than a fundamental flaw in our design, and we intend
to address this in a future version of iTrustPage.

3.5 Deployment

Over the past year, we have released several versions of iTrust-
Page. In the early releases, we incorporated several automatic
heuristics to validate Web forms. The first heuristic was based on
Google’s page rank. Google provides a Web service that takes
as input a URL and returns the URL’s PageRank. The PageRank
is a number between O (low) and 10 (high). Most sites have a
PageRank of 0; only a few very popular sites have a PageRank
higher than 8 (e.g., Google’s search page has a PageRank of 9).
iTrustPage required a PageRank of at least 5 to automatically label
a form as “validated”.

In addition to checking the PageRank of the actual form URL,
iTrustPage also looked at the sequence of URLs accessed immedi-
ately preceding the form. If any previous URLs were served by the
same site as the form, then the PageRank was calculated for each of

@ - - Y . & L PP e 8 CLRP= (i a
:I.P? =I.I)?ITr\lnPagm Choose Matching Web Page from =I.P Cong You a
I iTrustPage Caution: This page is unverified ssaius I Google Results Asout Us I l{!hh Page Aot Us
Unwerified page Unvarified page 1 Varifiad page
[s e Petinmt 36 ittpyvwewew Daypal.comy. Welcom. hitps:imobile pa hittgyhwewns parypal com/
- Potential Dangers of Entering Infermation info this Web [T r—— You have aveided thess potential dangers
e Paﬂ’a{ « identey theft Your persoral information coud have
Paypﬂ‘ = idently theft: Your parsonal information could be paypa] paypa] e paypa‘ bean expioited.
- 1 want ba * Crocit card frad Your numtsers could hive been
» Crocit cand fraud: Your numtsens could be siolen. wiolen.
| « Phashing Your unomarme 5 pasrmend could by » Phishing: Yiour ustemamae &5 passwond could have
== | (- |
[p——
Hamber Log-in [P—,
L Mamser Log-In Hemses Lag-in
Larmer Yiew Lo Yo Chacss Page Laenet Yiew Chooae Page arma Yiww
Igners Waring Prrmanently And Patrmannlly vetity this pags wih Goeghs seares @ Subre Varified ard Susaicious Wed Pages
alalnrhis. I Enias Setreh Keovda Hart S —— Rufine Googls vearch: AP
[y [B e N
of paypsl E]
L ary bnte
About (TP FAQ Options Uninatall Privacy Aeout 1P AQ Optiens Usinsta® Frvacy About (TP FAQ Options Uninatall Privacy

Figure 3: iTrustPage displaying its interface overlay. On the left, the user is visiting http://www.heinket.de, a well-known page phishing PayPal. Once
the user enters their search terms (in this case “paypal”), iTrustPage previews the legitimate page, http://www.paypal.com (shown in the middle). On the
right, iTrustPage informs the user about avoiding a suspicious page and being redirected to a legitimate one.

those previous URLS, and the maximum PageRank value was used
to make the decision. The intuition behind this process was that
often the URL of a form at a popular site has a very low PageRank,
yet the site homepage that contains a link to that form has a very
high PageRank.

To improve iTrustPage’s performance, once a user visited a page
iTrustPage immediately prefetched the PageRank information,
even if the user did not attempt to type anything on that page.
In this way, iTrustPage could check whether the form had a high
PageRank before the user started to fill it in. Without this prefetch,
iTrustPage would have had to block the user from filling in the
form briefly while retrieving its PageRank. We implemented this
prefetching step asynchronously to avoid interfering with the user
experience while loading the Web page.

However, after we examined the logs of our early releases, we
decided to eliminate these automatic validation heuristics from
iTrustPage for three reasons. First, we found that the automatic
heuristics were not effective; Web forms with high page ranks were
often found in iTrustPage’s whitelist or in its cache. Therefore
these heuristics added little to iTrustPage’s overall effectiveness.
Second, the automatic prefetch of the PageRank of every page
accessed introduced serious privacy concerns. A small number
of users pointed out that using iTrustPage meant transmitting to
Google the URL of every single page browsed. Third, we worried
about a “Google bomb” attack — influencing the ranking of a page
by creating a large number of sites linking to it. By relying on an
automatic test, iTrustPage could be subject to false negatives and
thereby fail to protect its users against phishing attacks.

The heuristics based on PageRank would automatically validate
any visited page with a high PageRank. To be successful, attack-
ers would only need to setup their phishing pages on Web pages
with high PageRank values. Instead, with the current version of
iTrustPage a “Google bomb” attack can only be successful when
the phishing page appears in the top 10 search results returned by
Google based on the user’s search terms. For example, to phish
PayPal attackers must make their phishing pages be one of the top
10 answers returned by Google for the search term PayPal. While
not impossible, we believe this attack will be very difficult to mount
in practice. In summary, by removing these automatic heuristics we
did not significantly affect iTrustPage’s effectiveness, we improved
iTrustPage’s users privacy, and we made “Google bomb” attacks
much harder to mount in practice.

700

600 l\

|
\
300 / \
B
|
]

500

400

AN

1] ' T
13-Jun-07 25-Jun-07 7-Jul-07

Number of Daily Fresh Installs

100

Bt

19-Jul-07

31-Jul-07

Figure 4: The number of daily installations of iTrustPage. While
iTrustPage was released in early June, the FireFox website did not post a
link to iTrustPage until June 27th. The number of fresh installs grew by
two orders of magnitude the next day.

The most recent version of iTrustPage was released in early June
2007 and appeared on the FireFox website for third-party exten-
sions on June 27th, 2007. All the results in this paper are based
on logs received before August 9th 2007. During this period, we
received logs from 5,184 users. Figure 4 shows the number of in-
stallations of iTrustPage since July 1st, 2007.

3.6 Circumventing iTrustPage

In this section, we describe how phishers might try to circumvent
the detection algorithm implemented by iTrustPage. We anticipate
three types of attacks.

One way to circumvent iTrustPage is to setup a phishing site in
a domain listed in iTrustPage’s whitelist or in its cache. For ex-
ample, an attacker can break into a popular Web site and replace
one of their pages with a phishing form. While this attack is pos-
sible, most popular sites are typically well monitored, and such an
attack would likely not go undetected for long. Another way to
circumvent iTrustPage is using the “Google bomb” attack that we
described earlier.

iTrustPage also relies on an implicit assumption: the user’s
browser has not been compromised. If the browser is compromised
then an attacker can easily disable iTrustPage’s functionality. From

of Users with 2+ Weeks of Activity 2,050

Total # of Pages Browsed 796,038

Total # of Pages Typed Into 27,936

of Hours Browsed in Total by All Users 42,928 (almost 5 years)

Table 1: High-Level Statistics of Long-Lived Users. Our evaluation is
based on users who used iTrustPage for at least two weeks.

the beginning, we decided not to engineer against such attacks: if
the browser is compromised, the user is subject to more harmful
attacks, such as malware, viruses, spyware, or Trojan horses.

4. EVALUATION

The goal of this section is to evaluate how well iTrustPage works.
For this, we attempt to answer the following six questions:

1. While most phishing attacks target passwords, divulging any
kind of information to a malicious third party can raise serious
privacy concerns. In addition to passwords, phishing attacks have
been known to target social security numbers, addresses, birth
dates, and other types of personal information. Thus, users risk
becoming the victim of a phishing attack whenever they enter
personal information into a Web page. How often do users visit
pages where they can input information?

2. When filling out suspicious Web pages, iTrustPage interrupts
users asking them to get involved in the validation process. If these
disruptions occur too frequently, users might stop using iTrustPage.
How disruptive is iTrustPage to the users?

3. iTrustPage uses a whitelist and a cache to minimize the num-
ber of disruptions; if a Web page appears in the whitelist or the
cache, iTrustPage will not stop users from entering information into
this Web page. How effective are iTrustPage’s whitelist and cache?

4. When a user starts to enter information on a Web page that
does not appear in the whitelist or in the cache, iTrustPage deems
the page suspicious. For suspicious Web pages, iTrustPage requires
user assistance. Users must either validate this page by providing
search terms to iTrustPage which then performs a Google search,
or users choose to bypass iTrustPage’s validation process. There
is one exception: if the way that the user arrived at the suspicious
Web page in the first place was by performing a Google search, then
the user has already provided assistance to iTrustPage and therefore
iTrustPage does not ask the user to validate. How often does iTrust-
Page validate pages?

5. When validating the form with iTrustPage, users enter search
terms describing the Web page they intended to type into. If the
intended page is not found based on the search terms entered, users
can continue to refine their searches until either the intended page
is found or the users choose to bypass the validation process. How
many searches do users perform until they validate their pages?

6. Ultimately, iTrustPage’s effectiveness is determined by
whether it stops users from becoming victims of phishing attacks.
Did iTrustPage prevent any users from becoming phishing victims?

We answer these questions by examining the logs returned by the
users of iTrustPage. These users installed our tool by downloading
it either from the FireFox website for third-party extensions or di-
rectly from our project Web site at the University of Toronto. After
presenting a high-level characterization of these logs, we answer
each of the six questions above in detail.

4.1 High-Level Characterization of
iTrustPage’s Logs

Some of the installations of iTrustPage were short-lived — some
users ended up uninstalling our tool after only a few hours or a few
days. We removed these short-lived installations from our evalua-
tion because we want to capture the tool’s effectiveness in steady-
state, over the course of several weeks of browsing activity. In the
remainder of this evaluation, all the results we present are based on
the logs sent by users who used iTrustPage for at least two weeks
after installation. Table 1 presents some high-level statistics about
these long-lived installations.

4.2 How often do users visit Web pages which
accept input?

Users enter information into Web pages by typing in HTML
forms or in embedded scripts that display forms. While not all
forms and embedded scripts are used for entering text in a Web
page, measuring their presence on the Web can give us an upper
bound on how often users visit Web pages which accept input. If
few browsed pages include forms or embedded scripts, the risk of
being phished is low. To determine the prevalence of forms and
scripts on the Web, we examined how widespread the use of forms
and embedded scripts is in the set of pages browsed by our users.
We determine whether pages contain a form or embedded script by
searching for the HTML “<form>" tag and the HTML “<script>"
tag, respectively. In addition, we also record the presence of HTML
input boxes of type “password”. Figure 5 presents our findings.

On the left, Figure 5 shows the fraction of all pages that include
forms, password fields, and embedded scripts. While 7% of pages
have password input boxes, almost two-thirds of all pages browsed
contain forms. This suggests that users can enter information in
many of the Web pages they visit. While many Web forms do not
ask for personal information, forms have become highly prevalent
on the Web. Embedded scripts are even more prevalent than forms,
being found in over 80% of visited pages. These results suggest
that being able to enter information in Web pages has now become
the common case when users browse the Web.

On the right, Figure 5 presents the cumulative distribution of the
number of embedded scripts, forms, and passwords present in Web
pages. For each distribution, we exclude the Web pages that do
not contain any embedded scripts, forms, and passwords, respec-
tively. Figure 5 shows that while most pages with password fields
have only one such field (92.6%), 40% of all pages with embedded
scripts include at least 10 such scripts. These results suggest that
not only are forms and embedded scripts prevalent on the Web, but
it is also common to have multiple forms and scripts present on a
single Web page.

4.3 How disruptive is iTrustPage to the
average user?

To validate suspicious Web forms, iTrustPage interrupts users
and asks them for assistance in validating these Web pages. If these
disruptions are too frequent, users might stop using iTrustPage. We
believe that a high degree of user transparency is a key requirement
of any Web security tool. iTrustPage must minimize the number of
interruptions to its users.

Figure 6 illustrates how intrusive iTrustPage is. On the left, Fig-
ure 6 shows the fraction of Web pages that iTrustPage asked to be
validated over time. On the right, Figure 6 presents the same data
measured in the number of interruptions per day rather than the
fraction of the total number of pages browsed. Our results indicate
that iTrustPage is not excessively intrusive for its users. After one
week of use, iTrustPage disrupts its users on less than 2% of all

100%
] [@80.3%
o 80%
IJ
(-9
3 [63.3%
g 60%
°
1
]
S 40%
c
2
]
o
S 20%
('S

m7.7%
0%
Forms Passwords Scripts

100

Nacoworde / /

80
)
“é, Forms /
a 60
.
°
g /< Scripts
= 40
Q
8 /
w

20

V] T

1 10
Number of Elements per Page

100

Figure 5: The distribution of forms, passwords, and scripts in Web pages. (a) Fraction of pages browsed by iTrustPage’s users with form HTML tags,
password HTML tags, and script HTML tags; (b) CDF's of the number of forms, passwords, and script tags in the browsed Web pages containing such
tags. Note that in this graph we exclude the Web pages not containing any forms, passwords, or script tags, respectively.

2.5%

2.0%

1.5%

1.0%

% of pages that iTrustPage
asked to be validated
o©
)]
3

0.0% T T T . .
10 15 20 25
of days since iTrustPage's install

30

3000
&
2500

£3 \
o
]
3T 2000
E% \
E >

9 1500
5.9
0l
9T 1000 o
c
bl \\/_\/\
-
S " 500
T

0 ; : : : :
[} 5 10 15 20 25

30
of days since iTrustPage's install

Figure 6: How disruptive iTrustPage is. On the left, we present the ratio of the number of interruptions due to iTrustPage to the total number of
pages visited each day. This graph presents the average of these ratios over time, relative to the number of days elapsed since the installation day. While
iTrustPage stops users about 2% of the time in the first couple of days, after one week, the rate decreases to 1 to 1.5% of the time. On the right, we
present the number of interruptions due to iTrustPage. The median number of interruptions per user is 0 every day, except than on the first day after the

installation.

pages browsed. In fact, we found that fewer than half of iTrust-
Page’s users are disrupted daily (except during the day when users
install their copy of iTrustPage).

4.4 How effective are iTrustPage’s whitelist
and cache?

iTrustPage uses a whitelist and a cache to minimize the num-
ber of disruptions. The whitelist contains 467 domain names se-
lected from the top 500 most popular Web sites as reported by
Alexa.com (some of these Web sites belong to the same domain
name). Also, whenever a new Web page is validated or bypassed by
a user, iTrustPage records this decision along with the page in the
user cache. In this way, users are not interrupted upon re-visiting a
Web page.

If these two techniques are effective, many of the pages users
type into will appear either in the whitelist or in the cache. Figure 7
illustrates how effective the whitelist and the cache are by present-
ing their hit rates over time. On the left, we present the average hit
rate of the caches of all users relative to the number of days since
iTrustPage’s installation. While iTrustPage’s caches have an aver-
age of 40% hit rate on their first day, the hit rate grows to 65% after
one week only. After only one week, two-thirds of the pages users
type into appear in their caches (i.e., they were re-visited).

On the right, Figure 7 shows the hit rate of the whitelist for all
users over time. The whitelist’s hit rate is analyzed independently
of the cache’s hit rate. As expected, the hit rate of iTrustPage’s
whitelist does not rise over time; instead, it remains flat at about
55%. Like the cache, the whitelist is also very effective — more
than half the pages users type into appear in iTrustPage’s whitelist.

4.5 How often does
pages?

When a user types into a page, iTrustPage first checks whether
the page’s domain appears in the whitelist. If not, iTrustPage next
checks whether the page appears in iTrustPage’s cache. If the page
appears neither in the whitelist nor in the cache, iTrustPage re-
sorts on its user-assisted validation scheme. On the left, Figure 8
presents the breakdown of validating pages with iTrustPage. More
than half of the pages that users type into (55.7%) appear in iTrust-
Page’s whitelist. Combining the whitelist and the cache, iTrustPage
can validate 67.4% of pages typed into. Intuitively, this corresponds
to the hit rate of a single cache servicing all iTrustPage’s users; this
hit rate is different than the average hit rate of users’ caches and
whitelists presented in Figure 7.

If a Web page does not appear either in the whitelist or in the
cache, iTrustPage labels the page as suspicious. In this case, iTrust-

iTrustPage validate

100%

[

£

[%)

[}

O 80%

_(l)

] M
o

S 60%

2

[7]

=1

T

£ a0%

L3

o

[

T 20%

m (]

=

I

0% T T T T T
0 5 10 15 20 25 30

of days since iTrustPage's install

100%

80%

60%

40%

20%

Hit Rate of iTrustPage's whitelist

0% T T T T T
o 5 10 15 20 25 30
of days since iTrustPage's install

Figure 7: The hit rates of iTrustPage’s cache and whitelist from a Google Search page. The hit rates of each mechanism were analyzed in isolation

from each other.

100%
User-assisted
validation
80% (32.6%)
" I
60% Appears in cache,
but not in whitelist
0
40% (11.7%)
Appears in whitelist
(55.7%)
20%
0%

Breakdown of Validating Pages Users Typed In

100%
Users chose to bypass Visually similar
80% iTrustPage's validation page chosen instead
° (33.6%) i (0.2%)
0y
60% Page validated
by searching and
40% Page validated by fou::l‘slcv:t:: 10
navigating to it from (4.6%)
Google Search)
20% (61.6%)
0%

Outcomes of iTrustPage's User-Assisted Validation

Figure 8: Breakdown of validating the pages users type into. On the left, we present how often pages are validated by the whitelist, the cache, and
finally, by iTrustPage’s user-assisted technique. On the right, we focus on the user-assisted validation only. With user-assistance, iTrustPage is successful
at validating 66.4% of all suspicious pages. In the remaining cases, users choose to bypass the validation process.

Page validates the page if the users can search and find the page on
Google. If the page is not found, the user is presented with a set of
alternate pages (i.e., the top three pages returned by Google) and
the user is asked to choose a visually similar page.

On the right, Figure 8 presents the breakdown of how iTrust-
Page handles suspicious pages. Over 60% of suspicious pages are
reached by navigating to them directly from a Google search; in
these cases, iTrustPage validates the page without asking the user
to perform an additional Google search. In almost 5% of cases,
users validate their pages by searching for them and finding the
answer in the top 10 results returned by Google. In a very small
number of cases (0.2%), users choose to navigate to an alternate
page instead. Finally, users bypass iTrustPage’s validation process
one-third of the time (33.6%).

While these results indicate that iTrustPage is successful at val-
idating many of the suspicious Web forms that users type into, we
also found that it is common for users to bypass iTrustPage’s val-
idation despite our efforts to make the tool unintrusive. One third
of the time users avoid validating their Web pages, thereby running
the risk of becoming the victim of a phishing attack.

4.6 How many searches do users perform
until they validate their page?

To validate their forms with iTrustPage, users must enter search
terms describing the Web page they intended to type into. We ex-
amine how many times users revise their search terms to validate
their Web forms. Figure 9 illustrates the number of attempts users

100%

0,
G2 "~ Three or More
12.2% ,\ Searches
80%
Two Searches
60%
40% 81.1%
\One Search
20%
0%

Number of Searches Performed Until Page Found

Figure 9: Number of times users must refine their search to validate
a page. Users can manually validate their page with only one search in
over 81.1% of the cases.

needed to revise their searches, for those searches that were even-
tually found in the top 10 search results. In 81.1% of the cases,
the first search was successful, whereas 6.8% of the cases required
at least three searches. These findings suggest that users can find
their intended page with one search the vast majority of the time.
Nevertheless, on occasion it is necessary to refine the search a few
times in order to finish the validation process for some Web forms.

4.7 Did iTrustPage prevent any users from
becoming phishing victims?

While measuring the iTrustPage’s non-intrusiveness and the ef-
fectiveness of assisting users with validating their forms is impor-
tant, ultimately iTrustPage is useful only if it stops users from be-
coming victims of phishing attacks. Unfortunately, we cannot de-
termine whether any browsed page is a phishing page without vi-
olating the privacy of iTrustPage’s users. Determining whether a
page is phishing requires knowing what the page displays.

However, we can compute an upper bound on the number of
prevented phishing attacks by investigating the cases when users
chose to navigate to a page visually similar to the one they typed
into. While we do not know whether all these cases correspond
to prevented phishing attacks, in any phishing attack stopped by
iTrustPage a user must choose to navigate to an alternate page.

We found 291 cases in our logs when a user chose a visually
similar page. While 81 of these cases occurred within the first
three days of installing iTrustPage (e.g., these might correspond to
cases when users tested and explored iTrustPage’s functionality),
92 cases occur after the user ran iTrustPage for at least two weeks.
We found HTML forms present in 240 of these pages.

4.8 Summary

Our evaluation shows that iTrustPage is effective and easy-to-
use. Specifically, we found that:

o iTrustPage disrupts users on less than 2% of the pages they
visit and the number of disruptions decreases over time.

o iTrustPage’s cache is effective — over two-thirds of the forms
users type into appear in iTrustPage’s cache after one week
of use.

e iTrustPage’s whitelist is effective — more than half of the
forms users type into appear in iTrustPage’s whitelist.

o iTrustPage resorts to its user-assisted validation scheme on
32.6% of the pages users type into.

e iTrustPage requires user-assistance to validate suspicious
Web forms two-thirds of the time; one-third of the time users
choose to bypass iTrustPage’s validation.

e iTrustPage is easy to use: when searching to validate their
Web forms, users can find their desired form in the top 10
search results 81.1% of the time.

e We cannot determine whether iTrustPage prevented any
phishing attacks without violating the privacy of iTrust-
Page’s users. Nevertheless, we found 291 cases when users
chose to navigate to a Web page other than the one they
originally intended to visit. Of these cases, 92 occurred after
the users were already familiar with running iTrustPage (i.e.,
at least two weeks after their installation date).

These findings show that iTrustPage’s approach to relying
on user input and on external repositories of information shows
promise. In the future, we intend to examine additional strategies
to incorporate these insights into other Internet security tools.

S. RELATED WORK

In this section, we start by classifying current anti-phishing tools
and techniques into four broad categories. After this categorization,
we summarize the results of six previous studies on the behavior of
Internet users when facing phishing Web pages, when using their

Web passwords, and when using different anti-phishing tools. We
believe the results of these studies results portray the seriousness of
the “phishing threat”.

5.1 Spam Filters and Blacklists

One approach relies on spam filters and blacklists to automat-
ically prevent users from visiting a phishing Web page. Already
there are many phishing-specific filters for popular email software
(e.g., Exchange Server 2003 SP2 [19], Outlook [20], and SpamAs-
sassin [25, 9]). Many Web browsers also incorporate blacklists to
prevent users from visiting specific Web pages based on the do-
main or the IP addresses they are served from. Microsoft’s new
IE7 browser, Mozilla’s FireFox 2, and Opera from version 9.1 all
include lists of known phishing pages. If such a page is visited, the
browser will either warn the user or block the page outright [12].
Very recently, a company has started to offer a special DNS service
that filters out known phishing domains [16].

Some advantages of this general approach are its simplicity,
transparency, and ease of deployment. Web browsers and spam
filters are already highly popular. Automatically deploying filters
and blacklists is easy to setup, and much of their functionality
remains transparent to most users.

While effective, this class of solutions alone will not eliminate
phishing attacks. Spam filters are not perfect. Phishing pages must
be quickly discovered and added to blacklists, especially since the
average uptime of a phishing page was only 4.5 days in August
2006 [1]. Also, the “freshness” of phishing pages can impact the
effectiveness of some anti-phishing tools [30]. Studies have shown
that many users ignore browser warnings when they do not under-
stand their implications [27, 8, 5]. All these reasons lead us to
believe that spam filters and blacklists will have only a marginal
and temporary effect on the prevalence of phishing attacks.

5.2 New Web Authentication Tools

Another approach is to invent new Web authentication schemes
that replace the current approach of users entering passwords di-
rectly into forms. Different techniques have been proposed to re-
place current authentication protocols between users and Web sites.

One such technique is out-of-band authentication, where users
are asked to login through a different channel, more secure than the
Web, such as a cell-phone [22] or a virtual machine [15]. Unfortu-
nately, some of these techniques are subject to man-in-the-middle
attacks [24]. Furthermore, out-of-band techniques can be logisti-
cally difficult to deploy.

Several research projects have proposed using password man-
agers to protect users’ credentials [14, 23, 29]. Almost all these
tools rely on a technique known as “password hashing” to ensure
that one user never re-uses a password on more than one Web site.
The idea is simple: these techniques use some site-specific infor-
mation (for example, its SSL certificate or its domain name) com-
bined with the user’s password as input to a secure hash function,
whose output is forwarded to the server. In this way, the password
manager ensures that even when phished, users do not divulge their
passwords; instead, they divulge their passwords hashed with infor-
mation specific to the phishing page. Phishers cannot reuse these
passwords on the legitimate site.

The password hashing approach is both elegant and very effec-
tive. Unfortunately, password managers have not been quickly
adopted by either users or Web sites. We believe several reasons
are responsible for the moderate success of these tools. First, some
tools have deployment issues. For example, when resetting a pass-
word, many Web sites today send an e-mail message containing a
new, perhaps temporary, password. The user must enter this new

password to login, which requires disabling the password manager.
The user then logs in with the temporary password, visits a form
that allows users to change their password, and then re-enables the
password manager to generate the permanent password. To han-
dle this issue, many password managers use a special sequence of
keys (e.g., typing the character @’ twice) or a toolbar button to
activate or de-activate them [14, 23, 29]. De-activating a password
manager is dangerous because the user becomes exposed to phish-
ing attacks. Also, a recent study [5] found that many participants
forget to activate (or re-activate) their password managers.

The same study [5] revealed a more subtle issue with password
managers. The concept of password hashing is not easy to explain
to many people, especially novice users. Some people’s mental
process of how online authentication works differs substantially
from what password hashing does. As a result, users become frus-
trated, and they misunderstand when the tool is protecting them and
when it is not. Ultimately, this leads to users still being exposed to
phishing attacks. We believe that this is an important lesson: to
be effective, a tool must be simple and intuitive, fitting most users’
mental model of how Web browsing works.

5.3 New Web Interfaces

Another approach is to design Web interfaces that are less vul-
nerable to phishing. One such example is to require users to ac-
cess important Web pages only through user-created labels [29]. In
these cases, users have to go through an initial setup phase where
they assign special labels to each of their important Web pages.
From then on, as long as users visit their pages only by clicking on
the appropriate label, they cannot be phished.

Another example allows users to create personalized visual clues
and associate them with important Web pages. Many popular Web
sites (e.g., Yahoo) have started to adopt this technique. Because a
phishing page cannot know the correct visual clue, users can im-
mediately detect when they are accessing a phishing page because
their personalized clue is missing or incorrect.

The main disadvantage of both these approaches is that they
place the burden on the user to notice the absence of personalized
clues or to never forget to access the important page through their
preset labels. These tools protect only the most diligent Web users,
the ones who will always carefully check the authenticity of the
Web forms they are about to fill in with their sensitive information.
Unfortunately, studies [7, 27] have shown that many Internet users
are not very careful when filling forms online.

Another approach relies on the content of a Web page to de-
termine its legitimacy. CANTINA [31], an anti-phishing system,
extracts keywords from a Web page, searches Google for these
keywords, and determines whether the top Google search results
contain the page’s domain. The authors also evaluate additional
heuristics combined with their keyword extraction technique. The
pure keyword extraction correctly labels 97% of their phishing data
set with 6% false positives; when combined with heuristics the sys-
tem correctly labels 90% of their phishing dataset with 1% false
positives. Unfortunately, this work doesn’t address how to notify
or block users from filling forms on suspicious Web pages. When-
ever the false positive rate is not zero, it becomes problematic to
simply notify users or block them from using a Web form. We be-
lieve this is a significant shortcoming in anti-phishing research and
is an important reason for developing iTrustPage. Another prob-
lem with CANTINA is that an attacker can create a Web page that
appears visually similar to an established page, while still mislead-
ing the tool into extracting incorrect search terms. For example,
the phisher could hide the correct keywords as an image to protect
them from being extracted. If the automated system extracts incor-

rect keywords, then the phishing web page may be automatically
validated. Adding manual validation to an anti-phishing system is
more robust — attackers cannot pick the keywords that users give to
iTrustPage’s manual validation task.

A different approach is to use automatic tools to fill in forms.
Such tools remove the need for Internet users to type their creden-
tials into online forms. These tools can then perform extra security
checks to make sure that the form is legitimate. Web Wallet [28] is
a tool that automatically fills in previously saved passwords. When
the user is phished, Web Wallet detects that the current form has not
been visited before. In this case, it presents the user with a list of
previously filled-in forms; the user must review this list and either
continue or choose one of the previous forms. If the user contin-
ues, Web Wallet issues a warning if the page has not been verified
by TrustWatch [13], a site serving a list of verified Web forms.

On the surface, Web Wallet is similar to our tool: when filling
out a new password field, the user is presented a list of previously
filled-in forms (which are presumably legitimate). However, we
believe iTrustPage is based on different insights than Web Wallet.
Web Wallet relies on three mechanisms to prevent phishing: (1) au-
tomatic detection of password fields, (2) previously filled-in pass-
word fields, and (3) relying on users to notice and understand the
description of a Web form (even when that description might not
be available). We believe that systems with automatic detection of
password fields can be “fooled” by clever Web forms (e.g., using
Active-X controls or Flash scripts). Also, we think that a good se-
curity principle is to reduce the amount of confidential information
stored and managed automatically by tools. Unfortunately, Web
Wallet has to maintain a list of previously filled-in passwords.

Unlike the anti-phishing tools discussed above, iTrustPage is
centered around three different observations. (1) users can describe
the Web forms they are about to fill in; (2) these descriptions can
be used to find more “established” forms on the Web; when such
a form exists, the current form is most likely phishing; and (3) un-
like many other solutions, iTrustPage does not simply warn the user
when encountering a suspicious Web page — it offers them correc-
tive action. iTrustPage’s goal is to assist the user by taking them
away from the phishing Web page and to help them find the corre-
sponding legitimate page.

5.4 Centralized Approaches

A different approach uses a centralized server that tracks when
users provide the same password to different sites [11]. The main
observation behind the password-tracking approach is that when
two different sites appear to have when users with the same pass-
word, it is likely that one site is phishing the other. Many issues
have been raised regarding centralized approaches, including pro-
tecting users’ privacy, filtering information introduced by phishers
to poison the server’s data, and whether the detection of phishing
pages can be done sufficiently early to rescue any potential victims.

Another approach also uses the notion of visual similarity (i.e.,
page layouts and style) of Web pages [18]. Site owners submit their
legitimate URLs and keywords to a central server. When the user
receives an e-mail message with similar keywords, the system com-
pares the visual similarity of the linked page in the e-mail message
with the registered legitimate pages. Although this is an interest-
ing approach, there are three key problems. First, it relies on site
owners submitting their keywords and URLSs, and phishers may at-
tack this mechanism. Second, we believe it is possible for this type
of heuristic to be misled by clever Web forms, which is why our
tool relies on people to perform the visual comparisons. Third, the
phisher may attempt to hide the relevant keywords in the phishing
e-mail message.

5.5 User Studies Relevant to Phishing

In this section, we briefly summarize the results of six stud-
ies of how users behave when facing phishing pages, when using
their Web passwords, and when using different anti-phishing tools.
Overall, these studies paint a pessimistic picture of our progress
against the “phishing threat”: it is very easy to mislead people into
divulging their credentials with common phishing attacks.

Floréncio et al. [10] monitored the Web password habits of over
half a million users over a period of three months. Based on these
measurements, the authors extrapolate users’ Web password behav-
iors. We describe four of their findings relevant to the phishing
problem. First, during a three week period, they observed pass-
words being typed into verified phishing sites 101 times. These are
passwords which were previously used on other Web sites. Second,
users type their passwords often. The authors estimate that users
type passwords an average of eight times per day. Third, users have
many Web accounts. On average, each user has 25 accounts requir-
ing passwords. In addition, an average user has 6.5 passwords.
Each password is shared between 3.9 different sites. Finally, users
forget their passwords. The authors estimate that 4.3% of Yahoo
users forgot their passwords during the three month study. They
also found that Yahoo users changed their password 15 times out
of every 100 logins.

Dhamija et al. [7] asked 22 participants to decide whether or not
20 Web pages are legitimate. They found that the participants made
mistakes 40% of the time. Even worse, the best phishing Web page
fooled 90% of the participants. Warnings are ineffective: 68% of
the participants “proceeded without hesitation when presented with
[certificate] warnings”.

Wu et al. [27] explored how well anti-phishing toolbars stop peo-
ple from using a fraudulent Web page. They found that active warn-
ings (e.g., pop-up warnings) are more effective than passive secu-
rity cues. Even active warnings failed to prevent some of the partic-
ipants from falling victim to the phishing pages. Moreover, some
participants thought the warning given by the toolbar was invalid.

Downs et al. [8] performed a preliminary interview study includ-
ing 20 participants with no computer security experience. They
found that many users cannot distinguish legitimate e-mail from
phishing e-mail. Many participants miss cues in the address bar,
and they do not interpret pop-up messages in meaningful ways.
They also found that security tools need to recommend a course
of action instead of merely giving warnings.

Jagatic et al. [17] performed an actual phishing attack against
581 students at Indiana University in April 2005. The experiment
used publicly available information to personalize their phishing e-
mails. 72% of targeted students gave away their username and pass-
word when the e-mail message appeared to be from a friend. When
the e-mail is sent from a fictitious person, the successful phishing
rate drops to 16%. In the first 12 hours of their experiment, 70% of
the total phishing responses occurred. Their findings illustrate that
more sophisticated phishing attacks, such as sending personalized
phishing e-mails, have very high rates of success.

Chiasson et al. [5] explored the usability of two password man-
agers with 26 participants, as mentioned earlier. Their participants
had difficulty building a mental model of the software — they do not
have an understanding, even at a high-level, of what the software
is doing. This led to frustration and misconception leading to dan-
gerous security exposures. They also found that participants tend
to dismiss alerts when the warning message is unclear.

5.6 Summary: Lessons Learned

In this section, we summarize the lessons learned from the above
related work. In spite of all these anti-phishing efforts, the phishing
threat has been gaining momentum as we discussed in Section 1.
We believe that these lessons help us better identify different strate-
gies for dealing with phishing.

e To be effective, an anti-phishing tool must be intuitive and
simple-to-use. It can rely on users only to perform very sim-
ple tasks they normally perform when browsing the Web.

e Relying on users to be diligent and check for signs of suspect
e-mails or Web pages can be only marginally successful.

e More sophisticated phishing attacks, such as the ones send-
ing personalized e-mails, have high rates of success. It is dif-
ficult for spam filters to identify and eliminate personalized
phishing e-mails.

e Many phishing pages are short-lived. To be effective, tech-
niques based on detecting these pages and blocking users
from visiting them must act quickly.

6. CONCLUSIONS

This paper presents iTrustPage, a tool for preventing users from
filling out Web phishing forms. iTrustPage relies on two key ob-
servations: (1) user input can be used to disambiguate between le-
gitimate and phishing sites, as long as the interaction with the user
is simple and intuitive; and (2) Internet repositories of information
can be used to assist the user with the decision making process.

Our results show that user-assisted anti-phishing strategies show
promise while avoiding the problems associated with automatic
tools. We believe that iTrustPage is just one example of a different
approach to Internet security — having the user assist the security
tool and helping it provide better protection. In the future, we in-
tend to examine additional strategies to incorporate this insight into
other Internet security tools.

7. ACKNOWLEDGMENTS

We would like to thank John Aycock, Fabian Monrose, Ratul
Mahajan, Niels Provos, Anil Somayaji, Paul Van Oorschot and the
anonymous reviewers for their helpful comments on earlier drafts
of this paper.

8. REFERENCES
[1] Anti-Phishing Working Group Website.
http://www.antiphishing.org/.

Personal Communication, 2006. Confidential Source,

Canadian Banking Sector. Toronto.

iTrustPage Tool, 2007. http:

//www.cs.toronto.edu/~ronda/itrustpage/.

[4] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D.
Tygar. Can Machine Learning Be Secure? In Proceedings of
the ACM Symposium on Information, Computer, and
Communication Security (ASIACCS), Taipei, Taiwan, March
2006.

[5] S. Chiasson and P. van Oorchot. A Usability Study and
Critique of Two Password Managers. In Proceedings of the
USENIX Security Symposium, August, 2006.

[6] CNET News.com. New tool enables sophisticated phishing
scams. http://news.com.com/New+tool+
enables+sophisticated+phishing+scams/
2100-1029_3-6149090.html.

—

2

—

3

—

(7]

(8]

(91

(10]

(1]

[12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

R. Dhamija, J. D. Tygar, and M. Hearst. Why Phishing
Works. In Proceedings of Conference on Human Factors in
Computing Systems (CHI), April 2006.

J. S. Downs, M. B. Holbrook, and L. F. Cranor. Decision
strategies and susceptibility to phishing. In Proceedings of
the Symposium on Usable Privacy and Security, July 2006.
L. Fette, N. Sadeh, and A. Tomasic. Learning to Detect
Phishing Emails. In Proceedings of the International World
Wide Web Conference (WWW), Banff, Alberta, Canada, May
2007.

D. Floréncio and C. Herley. A Large-Scale Study of Web
Password Habits. In Proceedings of the International World
Wide Web Conference (WWW), Banff, Alberta, Canada, May
2007.

D. Floréncio and C. Herley. Password Rescue: A New
Approach to Phishing Prevention. In Proceedings of USENIX
Workshop on Hot Topics in Security, July 2006.

R. Franco. Better Website Identification and Extended
Validation Certificates in IE7 and Other Browsers, 2005.
http://blogs.msdn.com/ie/archive/2005/
11/21/495507.aspx.

GeoTrust. TrustWatch Search, 2006.
http://www.trustwatch.com/.

J. Halderman, B. Waters, and E. Felten. A convenient method
for securely managing passwords. In Proceedings of the
International Conference on World Wide Web, May, 2005.
C. Jackson, D. Boneh, and J. C. Mitchell. Stronger Password
Authentication Using Virtual Machines. 2006.
http://crypto.stanford.edu/SpyBlock/
spyblock.pdf.

K. Jackson. DNS Gets Anti-Phishing Hook, 2006.
http://www.darkreading.com/document.asp?
doc_id=99089&WT.svl=newsl 1.

T. Jagatic, N. Johnson, M. Jakobsson, and F. Menczer. Social
Phishing. Communications of the ACM. Vol. 50, No. 10.,
October, 2007.

W. Liu, X. Deng, G. Huang, and A. Fu. An Antiphishing
Strategy Based on Visual Similarity Assessment. [EEE
Internet Computing, Vol. 10, No.2. 58-65, March/April, 2005.
Microsoft. Exchange Server, 2006. http://www.
microsoft.com/exchange/default.mspx.

[20]

(21]

[22]

(23]

[24]

[25]

(26]

(27]

(28]

(29]

(30]

(31]

Microsoft.com. Get anti-phishing and spam filters with
Outlook SP2, 2005.
http://www.microsoft.com/athome/
security/email/outlook_sp2 filters.mspx.
J. Nazario. Phishingcorpus: phishing2. http://monkey.
org/~jose/phishing/phishing2.mbox.

B. Parno, C. Kuo, and A. Perrig. Phoolproof Phishing
Prevention. In Proceedings of Financial Cryptography and
Data Security (FC), 2006.

B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. Mitchell.
Stronger Password Authentication Using Browser
Extensions. In Proceedings of the Usenix Security
Symposium, April, 2005.

B. Schneier. Two-Factor Authentication: Too Little, Too
Late. Communications of the ACM. Vol. 48, No. 4., April,
2005.

SURBL. Surbl lists, 2006.
http://www.surbl.org/lists.html.

Symantec. Symantec Internet Security Threat Report: Trends
for July - December 06. http://eval.symantec.
com/mktginfo/enterprise/white papers/
ent-whitepaper internet security threat
report_xi 03_2007.en-us.pdf.

M. Wu, R. Miller, and S. Garfinkel. Do Security Toolbars
Actually Prevent Phishing Attacks? In Proceedings of
Conference on Human Factors in Computing Systems (CHI),
April 2006.

M. Wu, R. Miller, and G. Little. Web Wallet: Preventing
Phishing Attacks by Revealing User Intentions. In
Proceedings of the Symposium on Usable Privacy and
Security, July 2006.

K. Yee and K. Sitaker. Passpet: convenient password
management and phishing protection. In Proceedings of the
Symposium on Usable Privacy and Security, July 2006.

Y. Zhang, S. Egelman, L. Cranor, and J. Hong. Phinding
Phish: An Evaluation of Anti-Phishing Toolbars. In Network
and Distributed System Security Symposium (NDSS), San
Diego, California, USA, February 2007.

Y. Zhang, J. Hong, and L. Cranor. CANTINA: A
Content-Based Approach to Detecting Phishing Web Sites.
In Proceedings of the International World Wide Web
Conference (WWW), Banft, Alberta, Canada, May 2007.

