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Abstract

Efficient integration of a multi-hop wirel ess network with
the Internet is an important research problem. In a wire-
less neighborhood network, a few Internet Transit Access
Points (ITAPs), serving as gateways to the Internet, are de-
ployed across the neighborhood; houses are equipped with
low-cost antennas, and form a multi-hop wireless network
among themsel ves to cooperatively route traffic to the Inter-
net through the ITAPs. For both these applications, place-
ment of integration points between the wireless and wired
network is a critical determinant of system performance
and resource usage. In this paper, we explore the place-
ment problem under three wireless link models. For each
link model, we develop algorithms to make informed place-
ment decisions based on neighborhood layouts, user de-
mands, and wireless link characteristics. Ve al so extend our
algorithmsto provide fault tolerance and handle significant
workload variation. We evaluate our placement algorithms
and show that our algorithms yield close to optimal solu-
tions over a wide range of scenarios we have considered.

1. Introduction

Integrating multi-hop wireless networks to the Internet
is an important research problem in wireless neighborhood
networks. A few Internet Transit Access Points (ITAPs) are
placed, relaying data from the wireless multi-hop network
to the Internet and vice versa. This application requires ef-
ficient bandwidth utilization at end nodes, which can be
achieved through a careful placement of ITAPs. This pa
per explores efficient integration of multi-hop wireless net-
works with the Internet by placing ITAPs at strategic loca-
tions.

Neighborhood networks are characterized by two impor-
tant design constraints. They should be easy and cheap to
deploy. Moreover, in order to be competitiveto DSL or ca-
ble providers, they should provide Quality of Service (QoS)
guarantees to end users. To achieve both these constraints
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it is imperative to have an intelligent placement of ITAPs
in the network. Any ITAP placement algorithm will have
to (i) efficiently use wireless capacity, (ii) take into account
the impact of wireless interference on network throughput,
and (iii) be robust in face of failuresand changesin user de-
mands. There has been little previous work on this subject.

In this paper, we investigate schemes to efficiently place
ITAPs in a multihop wireless network. Our key contribu-
tionsare:

o Weformulatethe I TAP placement problem under three
wireless models. For each model, we develop algo-
rithms to efficiently place ITAPs in the network. Our
algorithms aim to minimize the number of required
ITAPs while guaranteeing users’ bandwidth require-
ments. We demonstrate the efficiency of the algorithms
through simulation and analysis.

e To enhance robustness, we present a fault tolerance
version of the placement algorithm that provides band-
width guaranteesin the presence of failures.

e We extend the algorithms to take into account vari-
able traffic demands by developing an approximation
algorithm to simultaneously optimize I TAP placement
based on demands over multiple periods. This algo-
rithm is very useful in practice since user demands of -
ten exhibit periodic changes (e.g., diurna patterns).

2. Related Work

There has been a recent surge of interest in building
wireless neighborhood networks [1] and [8]. [1] presents
a scheme to build neighborhood networks using standard
802.11b Wi-Fi technology [22] by carefully positioning ac-
cess points in the community. However, it requires a large
number of access points. Moreover, it requires direct com-
munication between machines and access points, which is
difficult to meet in real terrains. Nokia's Rooftop technol-
ogy, presented in [8], provides broadband access to house-
holds using a multi-hop approach that overcomes the short-
comings of [1]. The ideais to use a mesh network model
with each house deploying a radio, as considered in this



paper. This radio serves the dual purpose of connecting to
the Internet and routing packets for neighboring houses [4].
The deployment and management cost of Internet TAPs in
such networks is significant, and so it is crucia to mini-
mizethe required number of ITAPsto provide QoS and fault
tolerance guarantees. However, these problems are not ad-
dressedin[1, 8].

There have been a number of interesting studies on plac-
ing servers at strategic locations for better performance and
efficient resource utilization in the Internet. For example,
the authorsin [21, 18, 24] examine placement of Web prox-
ies or server replicas to optimize clients' performance; and
Jamin et al. [17] examines the placement problem for In-
ternet instrumentation. Facility location problems are also
related to ITAP placement problem, and have been con-
sidered extensively in the fields of operation research (e.g.,
[20, 28]). Approximation algorithms with good worst case
behavior have been proposed for different variants of this
problem. The previouswork on server placement or facility
location cannot be applied to our context because they op-
timize locality in absence of link capacity constraints. This
may be fine for the Internet, but is not sufficient for wire-
less networks since wireless links are often the bottlenecks.
Moreover, the impact of wireless interference, and consid-
erations of fault tolerance and workload variation make the
ITAP placement problem very different from those studied
earlier.

Thework closest to oursisthe pioneering work in [3]. It
aimsto minimize the number of I TAPsfor multi-hop neigh-
borhood networks based on the assumptionthat ITAPsusea
Time Division Multiple Access (TDMA) schemeto provide
Internet access to users. However, TDMA isdifficult to im-
plement in multi-hop networks due to synchronization and
channel constraints [2]. Furthermore, the proposed slotted
approach might not utilize al the available bandwidth due
to unused slots. In comparison, in this paper welook at more
genera and efficient MAC schemes, such as IEEE 802.11.
Removing the TDMA MAC assumption yields completely
different designs, and increases applicability of the result-
ing agorithms.

In summary, placing ITAPs under the impacts of link
capacity constraints, wireless interference, fault tolerance,
and variable traffic demands is a unique challenge that we
aim to address in this paper.

3. Problem Description and Network Model

The ITAP-placement problem, in its simplest form, is to
place a minimum number of ITAPs that can serve a given
set of nodes on a plane, which we call houses. A house /
is said to be successfully served, if its demand, wy, is sat-
isfied by the ITAP placement. A house h is served by an
ITAP 4 through a path between h and i. This path is a-

lowed to pass through other houses, but any two consecu-
tive points on this path must have wireless connectivity be-
tween them. We are usually interested in the fractiona ver-
sion of this problem. That is, we consider the flexibility that
ahouse is allowed to route its traffic over multiple paths to
reach an ITAP.

This problem can be model ed using the following graph-
theoretic approach. Let H denote the set of houses and 7
denote the set of possible ITAP positions. We construct a
graph G on the set of vertices H U Z by connecting two
nodes if and only if there is wireless connectivity between
them. Thegoal isto open the smallest number of ITAPs (de-
noted by the set Z'), such that in the graph G[H U Z'], one
can route wy, units of traffic from house 1 to pointsin Z’ si-
multaneously, without violating capacity constraints on ver-
tices and edges of the graph, where w, is the demand from
house h.

The edge capacity, Cap,, in the graph denotes the capac-
ity of awirelesslink. In addition, each node also has an up-
per bound on how fast traffic can go through it. Therefore,
we also assign each node with a capacity, Cap,,. Usualy
Cap;, = Cap,, as both represent the capacity of a wire-
less link. (Our schemes work even when Cap,;, # Cap,,
e.g., when a node’s processing speed becomes the bottle-
neck.) Moreover, each I TAP also has a capacity limit, based
on its connection to the Internet and its processing speed.
We call this capacity, the ITAP capacity, Cap,.

In addition to edge and vertex capacities and house de-
mands, another input to the placement algorithmsisawire-
less connectivity graph (among houses). We can determine
whether two houses have wireless connectivity using real
measurements, and give the connectivity graph to our place-
ment algorithmsfor deciding I TAP locations. In our perfor-
mance evaluation, since we do not have wireless connec-
tivity graphs based on real measurements, we instead de-
rive connectivity graphs based on the protocol model [13].
In this model, two nodes i and j can communicate directly
with each other if and only if their Euclidean distance is
within a communication radius, C' R. Given the position of
all the nodes, we can easily construct a connectivity graph
by connecting two nodes with an edge if their distance is
within CR. However our placement algorithms can also
work with other wireless connectivity models (e.g., phys-
ical model [13] or based on real measurements).

3.1. Incorporating Wireless Interference

There are several ways to model wireless interference.
One approach is to use a fine-grained interference model
based on the notion of a conflict graph, introduced in [16].
The main challenge of using the fine-grained interference
model is high complexity (sometimes prohibitive), since for
even a moderate-sized network the number of interference



constraints arising from the conflict graph can become hun-
dreds of thousands.

We use a coarse-grained interference model that esti-
mates a relation between throughput and wireless interfer-
ence. Since thereis no single available function that cap-
tures the impact of interference on wireless throughput, we
estimate the wireless throughput using two related func-
tions. In our discussion, T"hroughput; denotes the amount
of throughput on alink along a path of length [, assuming
eachwirelesslink capacity is 1. The other function, g(!), de-
notesthe amount of link capacity consumedif itison apath
of length [ and the end-to-end throughput of the path is 1.
Assuming the end-to-end throughput increases proportion-
aly with the edge capacity, which is true in practice, we
ha/e g(l) = m .

In this paper, we study the following models separately:

1. Ideal link model: If throughput; = 1 for al I, or
equivalently, g(I) = 1, we get the basic version of
the problem. This model is appropriate for the envi-
ronment with very efficient use of spectrum. A num-
ber of technologies, such as directional antennas (e.g.,
[7, 11]), power control, multiple radios, and multiple
channels, al strive to achieve close to this model by
minimizing throughput degradation due to wirelessin-
terference.

2. General link model: A more general model is when
throughput; or g(1) is alinear function of [. As we
will show in Section 4.2, we can formulate the ITAP
placement problem for the general link model as an
integer linear program, and develop polynomial place-
ment algorithms. In addition, we a so devel op more ef -
ficient heuristics for two formsof g(I). Thefirstisthe
Bounded hop-count model. If throughput; = 1 for
I < k and throughput; = 0 for I > k (or equiva
lently, g(I) = 1forl < k and g(I) = oo for i > k), we
get a variant in which flow cannot be routed through
paths of length more than k. This approximates the
case where we try to ensure each flow gets at least
a threshold amount of throughput by avoiding paths
that exceeds a hop-count threshold. The second is the
Smooth throughput degradation model, which cor-
responds to the case when throughput; = }, where!
is the number of hopsin the path. Thisis equivalent to
g(l) = lforall I's(i.e., the capacity consumed is equal
to the flow times the number of hops). This represents
aconservative estimate on throughput in alinear-chain
network as we show above, and therefore thismodel is
appropriate when tight bandwidth guarantees are de-
sired.

Note that the above models capture wireless interference
and contention among nodes whose paths to ITAPs share
common links or nodes. A more accurate model will have

to handle interference among nodes on independent paths
(e.g., using the conflict graph [16]). However, in Section 5,
we use packet-level wireless network simulations to show
that an ITAP placement based on the above models gives
satisfactory performance.

3.2. Generic Approach

In the following sections, we will investigate different
variants of the placement problem. Our generic approachis
as follows. Given a set of potential ITAP locations, which
may include al or a subset of points in the neighborhood,
we first prune the search space by grouping points into
equivalence class, where each equivalence class is repre-
sented by the set of houses that are reachable via a wire-
lesslink. For example, if points A and B have wireless con-
nectivity to the same set of houses, then they are equivalent
as far as ITAP placement is concerned. Therefore we only
need to search through al the equivalence classes, instead
of al points on the plane. (Refer to [23] for details). Then
based on our choice of wireless link model, fault-tolerance
requirements, and variability in user demands, we apply one
of the placement algorithms described in Section 4, Sec-
tion 7.1, and Section 7.2 to determine I TAP locations.

4. Placement Algorithms

In this section, we study how to place ITAPs under the
impacts of link capacity constraints and wireless interfer-
ence.

4.1. Ideal Link Model

First, we consider the placement problem for the ideal
link model. We formulate the problem as a linear program,
and present an approximation a gorithm.

4.1.1. Problem Formulation: We formulate the place-
ment problem for the ideal link model as an integer linear
program shown in Figure 1. For each edge e and house h,
we haveavariable z . 5, to indicate the amount of flow from
htoITAPsthat isrouted through e. For each ITAP; we have
avariable y, that indicates the number of ITAPS opened at
the location i (More precisely, y; is the number of ITAPs
opened at locations in the equivalence class ¢, where the
equivalence class is introduced in Section 3.) Cap,, Cap;,,
and Cap, denote the capacity of the edge e, house h, and
ITAP i, respectively; w;, denotes the traffic demand gener-
ated from house h.

Now we present a brief explanation of the
above integer linear program. The first constraint
e—(up) Teh = De(h ) Te,n) formulates  the
flow conservation constraint, i.e., for every house ex-
cept the house originating the flow, the total amount of flow
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Figure 1: LP formulation for the ideal link model

entering the house is equal to the total amount of flow ex-
iting it. The inequality Ee:(hm) Tep, > wy formu-
lates the constraint that each house has w;, amount of flow
to send, and the third constraint indicates that a house
does not receive flow sent by itself. The next three in-
equalities of the above program capture the capacity
constraints on the edges, houses, and I TAPs. The inequal-
ity Ze:(m) Te,, < wpy; SAYs that no house is allowed to
send any traffic to an ITAP unless the ITAP is open. No-
tice that this inequality is redundant and follows from the
I TAP capacity constraint and the assumption that iy; isanin-
teger. However, if we want to relax the integrality assump-
tion on y;’s in order to derive a lower bound using an LP
solver (see Section 4.3.4 for example), then it is impor-
tant to include this inequality in the linear programto get a
tighter lower bound.

The following theorem shows that it is computationally
hard to optimally solvethe ITAP placement problem for the
ideal link model. Refer to [23] for the proof.

Theorem 1 It is NP-hard to find a minimum number of
ITAPs required to cover a neighborhood in an ideal link
model. Moreover, the problem has no polynomial approxi-
mation algorithm with an approximation ratio better than
InnunlessP = NP.

4.1.2. Our Approach — Greedy Placement We de-
sign the following greedy placement. We iteratively
pick an ITAP that maximizes the total demands satis-
fied when opened in conjunction with the ITAPs chosen
in the previous iterations. The major challenge is to de-
termine how to make a greedy move in each iteration.
This involves efficiently computing the total user de-
mands that can be served by a given set of ITAPs. We
make an important observation: computing the total satis-
fied demands can be formulated as a network flow prob-
lem. Thisis easy to see since our formulation for the ideal
link model shown in Figure 1 satisfies the three proper-
ties, namely, capacity constraint, skew symmetry, and flow

Input: Set of houses H, set of ITAPs Z, graph G on the set H U Z with
capacities on its edges and vertices.
Output: A multiset S of ITAPsto be opened.

begin
S :=0; Flow :=0;
while Flow islessthan the total demand do
mazx := 0;
foreachj € Z do

e Let G’ bethe subgraph of G induced on H U S U {3}, with
the same capacities as G. (If there are duplicatesin S U {5},
we create one point for each duplicated element.)

e For each house, transform its vertex capacity constraint to an
edge capacity constraint by replacing the house h with two
nodes, inj, and outy; and connect iny, to outy using a di-
rected edge with capacity capy, ; al incoming edges toward the
house go to in;, and al out-going edges from h come from
outy,.

e Add two vertices s and ¢ to G, edges of capacity w), from s
toeach h € 'H, and edges of capacity cap, from each i €
Su{j}tot.

e Find the maximum flow from s to ¢ in G’; Let f be the value
of this flow.

e if f > max,then

max := f; bestITAP := j,
endfor;
S := S U {bestITAP}; Flow := maz;
endwhile;

end.

Figure 2: Greedy placement algorithm in the ideal link
model

conservation. This suggests that we can apply the network
flow algorithms [9] to efficiently determine the satisfied de-
mands. A few transformations are required to make the
network flow algorithm applicable. Figure 2 shows a skele-
ton of the algorithm, which finds a multiset S of ITAPs to
open, where amultiset isthe same as a set, except that it al-
lows duplicate elements. Allowing duplicate elements in
S indicates that we can open multiple ITAPs in the lo-
cations that belong to the same equivalence class (i.e.,
reachable from the same set of houses), which is cer-
tainly feasible.

The following theorem shows a worst-case bound on the
performance of the above algorithm. An empirica perfor-
mance analysis of thisalgorithmis presented in Section 6.1.

Theorem 2 Consider the ITAP placement problem in the
ideal link model with integral demands and integral house
and link capacities, and let D denotethetotal demand of the
houses. The approximation factor of the greedy algorithm
for this problem is at most In(D). In other words, if the
optimal solution for the ITAP placement problem opens K
ITAPs, the greedy algorithm opensat most K In(D) I TAPs.

We will need the following lemmarto prove the above theo-
rem. Thislemmais non-trivial and uses the Ford-Fulkerson
maximum flow-minimum cut theorem [9] in the proof.

Lemma 3 Assume a multiset S of ITAPs are opened. Con-
sider an optimal way of routing the maximumtotal demands




fromhousesto the ITAPsin S, and let f; denote the amount
of traffic routed to ITAP 7 in this solution, wherei € S. As-
sume that at a later time, a multiset S U T' of ITAPs are
opened. Then, there is an optimal way of routing the maxi-
mum total demands from houses to these ITAPsin which f;
units of traffic is routed to ITAP ¢ for everyi € S.

Refer to [23] for the proofs of the above theorem and
lemma. Based on Theorem 2, we have the following corol-
lary.

Corollary 4 Let N be the number of houses. The approx-
imation factor of the greedy algorithm in the ideal link
model is In(/V) when the capacities of edges and vertices
are integer-valued and every house has either zero or one
unit of demand.

Remark 1. Corollary 4 in combination with Theorem 1,
shows that this algorithm achieves the best possible (worst-
case) approximation ratio for the graph theoretic model
when every house has either zero or one unit of demand.
Furthermore, even though in our model we allow fractional
routing of the flow, our greedy algorithm alwaysfindsanin-
tegral solution inthiscase, i.e., the demand from each house
will be served through one path to an open ITAP. Thisisa
consequence of the integrality theorem [9].

Remark 2. Notice that In(D) is the worst-case bound for
heterogeneous demands. To make the worst-case bound
tighter, we can normalize house demands, edge capacities,
and node capacities before we apply the greedy placement
algorithm. This yields a lower approximation factor, since
D is reduced after normalization. Moreover, as we will
show later in this section, in practice the greedy algorithm
performs quite close to the optimal, and much better than
the worst-case bounds, In(D) or In(N).

4.2. General Link Model

The problem of efficient ITAP placement is more chal-
lenging when the throughput along a path varies with the
path length. This corresponds to the general link model in-
troduced in Section 3.1.

4.2.1. Problem Formulation: We formulate the place-
ment problem for the general link model as an integer lin-
ear program shown in Figure 3. In this program x5, ; ; de-
notes the total amount of flow routed from house / to the
ITAPs using a path of length [ when edge e is the j'th edge
along the path. Variable y; is an indicator of the number of
ITAPs opened in the equivalence class 7, and each house h
has wy, units of traffic to send. The throughput degradation
functionfor apath of length / isdenoted by ¢(1). L isan up-
per bound on the number of hops on a communication path,
and if there is no such upper bound, we set L = |H|. The
other variables in the program are similar to the ones used
by the program presented in Figure 1.

minimize > y;
ez

subjectto Y @enu; = . Tenijrr  Vh,h' € H W #h,
e=(v,h’) e=(h',v)
Lje{l,...,LY,j<l
Z Te h,l,1 2 Wh Vh € H
e=(h,v),l
Z g() ze,n,1,; < Cap, Ve € E(G)
hl,j<l
> 9D @, pry; < Cap, VhEH
h!e=(v,h),1,5<l
> g() zopry; < Capys Viel
h!e=(v,i),l,j <1
Te h,l,j < wpy; VieI,he H
e=(u,i),l,j<I
Te,h,l,j = 0 Ve € E(G),h € H,
l,je{l,...,L},j <1
vi € {0,1,2,...} viel

Figure 3: LP formulation for the general link model, where
¢(1) models throughput degradation with increasing hop-
count.

The following theorem is an immediate consequence of
Theorem 1, asthe ideal link model is a specia case of the
general link model, when g(1) = 1.

Theorem 5 It is NP-hard to find a minimum number of
ITAPsto cover a neighborhood for a general link model.

4.2.2. Our Approach of Greedy Placement: The high-
level idea of the greedy agorithm is similar to the one pre-
sented for the ideal link model. We iteratively select ITAPs
to maximize the total user demands satisfied. The new chal-
lenge is to determine a greedy move in this model. Unlike
in the ideal link model, we cannot compute the total sat-
isfied demands by modeling it as a network flow problem
since the amount of flow now depends on the path length.
Aswe will describe below, this computation can be done by
solving alinear program, or by using a heuristic.

Expensive algorithm for the general link model:
Without making assumptions about ¢(I), we can com-
pute the total satisfied user demands, for a given set
I' of ITAPs, by solving a dightly modified LP prob-
lem than the one in Figure 3. In this linear program, we re-
place the variable y; by the number of occurrences of ¢ in
I’ (This amounts to removing all the variables correspond-
ing to edgesendingin ITAP positionsoutside 7’ and remov-
ing inequalities containing these variables). The objective
will be to maximize 3, >, .y ; Te,n,1,1, Which corre-
sponds to maximizing the satisfied demands. We also mod-
ify the second constrainttobe ., ) ; @eni,1 < wp in
order to limit the maximum flow from each house h.

In theory, solving a linear program takes polynomial
time. However, in practice an L P solver, such as cplex [10],
can only handle small-sized networks under this model due
to the fast increase in the number of variables and con-
straints with the network size.



Below we develop more efficient a gorithmsfor two spe-
cial forms of ¢(1): (i) bounded hop-count: g(I) = 1 for all
I < k,and g(l) = oo forl > k, and (ii) smooth degrada-
tion: g; = [ for al I.

Efficient algorithm for the bounded hop-count
model: We can use the following greedy agorithm
to find the tota demands satisfied by a given set of
ITAPs. The hop-count constraint suggests we should fa-
vor short paths in the graph. Therefore, in each iter-
ation, the algorithm finds the shortest path from de-
mand points to opened ITAPs in the residual graph, routes
one unit of flow aong this path, and decreases the ca-
pacities of the edges on the path by one in the resid-
ual graph. This is continued until the shortest path found
has length more than the hop-count bound. This ago-
rithmis similar to the algorithm proposed in [14] for asim-
ilar problem. While this heuristic does not guarantee com-
puting the maximum flow (so each greedy step is not local
optimal), it works very well in practice as shown in Sec-
tion 6.2.1.

Efficient algorithm for the smooth throughput degra-
dation model: When g(I) = [ or throughput, = }, the to-
tal demands satisfied by a set of ITAPs are given by the ex-
pression: maximize ), - p ﬁ where P is acollection of
edge-digoint paths in the graph, and |p;| denotes the length
of the path p;. Therefore to maximize this objective func-
tion, our heuristic should prefer imbalance in path lengths,
and this motivates the following a gorithm.

Asthe heuristic for the bounded hop-count model, in the
smooth throughput degradation model we compute the to-
tal satisfied demands by the selected I TAPs through itera-
tively removing shortest paths in the residual graph. How-
ever, we make the following modifications. First, since we
no longer have bounds on hop-count, we continue pick-
ing paths until there is no path between any demand point
and any open ITAP. Second, to ensure the throughput fol-
lows throughput(l) = 1/1, we compute the demand sat-
isfied along each path p, denoted as SD,,, according to the
throughput function after we obtain all the paths. The to-
tal satisfied demands are the sum of SD,, over al paths p.
Although this algorithm does not always find the maximum
flow (so each greedy step isnot local optimal), it yields very
good performance as shown in Section 6.2.2.

4.3. Alternative Algorithms

In the rest of this paper, we compare our greedy place-
ment algorithm to four alternative approaches.

4.3.1. Augmenting Placement: Theideaof the augment-
ing placement algorithm is similar to the greedy agorithm.
The main differenceis that in the augmenting algorithm we
do not make a greedy move; instead we are satisfied with

any ITAP that increases the total amount of demand sat-
isfied. More specifically, we search over the set of possi-
ble ITAP locations, and open the first ITAP we see that re-
sultsin an increase in the amount of satisfied demand when
opened together with the aready opened I TAPs.

The augmenting placement algorithm can be applied to
all three wireless link modelswith the following difference.
Intheideal link model, we compute the total amount of de-
mand satisfied under a given set of ITAPs by finding the
maximum flow in the graph; whereas in the genera link
models, we use the heuristics described in Section 4.2.2 to
derive the total amount of demand satisfied.

4.3.2. Clustering-based Placement: We compare our
placement algorithms to the clustering-based scheme, pro-
posed in [3]. The basic idea of the algorithm is to partition
the network nodes into a minimum number of digoint clus-
ters, and place an ITAP in each cluster. We use the
Greedy Dominating Independent Set (DIS) [3] heuris-
tic to determine a set of clusterheads, which are used
as possible ITAP locations. The nodes are then clus-
tered to ensure that each node is associated with the closest
clusterhead, and a shortest path tree rooted at the clus-
terhead is used for sending packets from and deliver-
ing packets to the cluster. The cluster is further divided
into sub-clusters if either the weight or relay-load con-
straints are violated. The weight constraint specifies that
an ITAP can serve nodes as long as the sum of their de-
mands does not exceed the capacity of the ITAP, and the
relay-load constraint specifies an upper bound on the maxi-
mum flow that can go through a node in the neighborhood
cluster. We refer the reader to [3] for more details of this al-
gorithm.

To apply the clustering-based algorithm for the ideal link
model, in our simulations we use the ITAP capacity instead
of wireless capacity when checking the weight constraint
of placing an ITAP at a particular house; this is necessary
sincethe ITAP capacity can be greater than the wireless ca-
pacity in our simulations. This ensures afair comparison of
the clustering algorithm with our placement schemes.

To apply the algorithm to the bounded-hop count model,
we make the following modification. We divide a cluster
into sub-clusters not only when the weight or relay-load
constraints are violated, but also when the distance between
any node and its clusterhead exceeds the hop-count thresh-
old. The agorithm, however, does not apply to the smooth
throughput degradation model.

4.3.3. Random Placement: This algorithm randomly
places an ITAP at a house iteratively until al the user de-
mands are satisfied. To avoid wasting resource, it ensures
that each house has a most one ITAP. This approxi-
mates un-coordinated deployment of ITAPs in a neighbor-



hood, and gives a baseline to evaluate the benefits of the
more sophisticated algorithms presented above.

As the augmenting algorithm, there are three variants
of random placement algorithms for different wireless link
models. They differ in how we compute the total demand
satisfied under a given set of ITAPs. We run the maximum
flow algorithm to compute the satisfied demand under the
ideal link model, and apply the heuristicsin Section 4.2.2 to
compute the satisfied demand under the general link mod-
els.

4.3.4. Lower Bound: It is useful to compare our algo-
rithms with the optimal solution. However, our problem is
NP-hard, and it is too expensive to derive an optimal solu-
tion. Therefore we compare our algorithms with the lower
bounds. We derive the lower bound by relaxing the inte-
ger constraints on y; in the LP (in Figure 1) and solving
the relaxed LP problem using cplex [10]. The lower bound
is a useful data point to compare with, as it gives an up-
per bound on the difference between a practical algorithm
and the optimal.

We use the same scheme to derive lower bounds for al
three link models. Note that ideally we would like to derive
the lower bound for the general link models by relaxing the
integrality constraint in Figure 3, and solving the relaxed
linear program. However, athough in theory linear pro-
grams can be solved in polynomial time, we were unableto
solve the program in Figure 3 for large networks due to the
memory constraints. So in our performance evaluation sec-
tion, we use the solution to the LP formulation of Figure 1
for the ideal link model, as the lower bound for the general
casetoo. Thislower boundis always correct, since the ideal
link model is a relaxation of the general model. However,
it might not be tight, since it ignores the throughput degra-
dation with hop count, and therefore requires fewer ITAPs
than necessary. However, in Section 6.2.1 and Section 6.2.2
we show that the results from our greedy and augmenting
algorithms are till close to these loose lower bounds.

5. Validation

To validate the wireless link models used in this paper,
we run simulations in Qualnet [25], a commercia network
simulator. More specifically, given a neighborhood layout,
the placement algorithms determine the I TAP locations and
the set of paths each house uses to reach the ITAPs. We
use the same neighborhood layout and ITAP locations in
the simulations. Every nodein the simulation uses an omni-
directiona antenna and 802.11b MAC, with the communi-
cation range and interference range being 195 meters and
376 meters, respectively. Every house sends CBR traffic
to the ITAPs at the rate specified by the placement algo-
rithms output. To support multi-path routing, we imple-
mented probabilistic source-routing in Qualnet, where the
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Figure4: Validation of general link models: CDF of clients
throughput, where N = 50, WC = 5Mbps, and wy, =
208 Kbps Vh € H.

paths used in source routing and the probability that each
path is chosen are based on the placement algorithms' out-
put.

As shown in Figure 4, the ITAPs, determined using
the smooth degradation model, satisfy the user demands
to a great extent: around 80% houses have their demands
completely satisfied when houses are randomly placed in
1000* 1000 m 2, and all houses receive their demands when
houses are randomly placed in 1500 * 1500 m 2. The bet-
ter performance in the latter scenario comes from the fact
that the larger separation among houses lowers interfer-
ence among cross traffic. Note that even for the former
case, we can further improve the clients’ throughput by
over-provisioning. As shown in the same figure, with over-
provisioning (assuming that each user’s demand is 500
Kbps when the actual demand is 208 Kbps), most of the
clients' demands are satisfied.

Sinceideal link and bounded hop-count modelsare more
optimistic about the impact of interference, they are more
suitable for the environments with efficient spectral use
(e.g., when directional antennas and/or multiple radios are
used). As part of our future work, we plan to evaluate how
well these two models capture the impact of wireless inter-
ference under such environments.

6. Performance Evaluation

In this section, we evaluate the performance of differ-
ent placement al gorithms using various network topol ogies,
house demands, and link models.

6.1. Performance Under the Ideal Link Model

First, we look at the performance under the idea link
model under various scenarios. We use the following nota-
tionsin our discussion.

N the number of houses
WC': awirelesslink’s capacity
IC: an ITAP's capacity

C R: communication radius

H R: averageinter-house distance
wp,: house h’s demand



We compare the performance of different algorithms
by varying each of the above parameters. In our evalua-
tion, we use both random topologies and a real neighbor-
hood topology. The random topologies are generated by
randomly placing houses in a region of size N « N, and
varying the communication radius. The real neighborhood
topology contains 105 houses, spanning over a region of
1106m* 1130m. (We cannot reveal the source of the data
for confidentiality.) The average inter-house distance in the
real topology is 74 meters. Unless otherwise specified, for
the same parameter setting, we run simulations three times,
and report the average number of ITAPs required for each
placement algorithm.

Effects of the communication radius: We start by ex-
amining the effect of communication radius (C'R) on the
placement algorithms. It is easy to see from the problem for-
mulation that only the ratio, %, isimportant. Thereforein
our evaluation, we vary the communication radiusfrom 1 to
50, while fixing the inter-house distance by randomly plac-
ing 100 houses in an area of 100* 100, which yields an av-

erage inter-house distance of 4.5 - 6.

Figure 5 illustrates the number of ITAPs required on
varying C'R. We make the following observations. First, we
see that an increase in C'R results in a greater overlap of
wireless coverage of the houses, and therefore fewer ITAPs
are sufficient to satisfy the house demands. Second, com-
paring the performance across different algorithms, we ob-
serve that the greedy agorithm performs very close to the
lower bound over all cases. Interestingly, the augmenting al-
gorithm performs quite well, too. The good performance of
the augmenting algorithm comes from the requirement that
new | TAPs should lead to throughput improvement, which
avoids wasting resource on the already coveredregion. This
is especialy useful after several ITAPs have been placed,
since at this point only a few locations remain that can fur-
ther increase the satisfied demands.

In contrast, the clustering and random-house placement
schemes perform much worse. Compared to the greedy
strategy, both schemes often require 2 to 10 times as many
ITAPs. Note that when the communication radius is very
large, the clustering algorithm yields worse performance
than the random-house placement. This is because in the
clustering algorithm data dissemination follows a shortest
path tree, instead of maximizing the total amount of flow
that can be pushed to the ITAPs. In comparison, the other
algorithms, including the random-house placement, run the
network algorithm to maximize the total satisfied demands.

Effects of network size: Next we study the impact of
network size on the placement algorithms. We randomly
place N housesinan N x N areawhilefixing the communi-
cation radius to 10. Figure 6 shows the number of required
ITAPs using the different placement algorithms for various
network sizes. As we would expect, an increase in the num-
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Figure 5: Ideal link model: varying communication radius,
where N = 100, WC = 6, IC = 100, and w;, = 1Vh €
H.
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Figure 6: Ideal link model: varying the number of nodes,
where CR=10, WC = 6,1C = 100,andw;, = 1Vh € H.

ber of houses leads to a larger number of ITAPs required
to cover the neighborhood. Moreover, the greedy a gorithm
continues to perform very well, with its curve mostly over-
lapping with the lower bound. The augmenting algorithm
performsslightly worse, whereas the clustering and random
algorithms perform much worse — requiring up to 5 and 8
times as many ITAPS, respectively. In addition, the bene-
fit of greedy algorithm increases as the network gets larger.

Effects of wireless link capacity: We also study the ef-
fects of wireless bandwidth on the placement algorithms.
We observe that the relative ranking of the algorithms stays
the same. The effect of bandwidth is only pronounced when
itisvery limited. For example, when the wireless bandwidth
is equa to a single house's demand, the number of ITAPs
required is considerably large. As the bandwidth increases
and the wireless link is no longer the bottleneck, the num-
ber of required ITAPs remains the same with a further in-
creasein the wireless link capacity.

Effects of the ITAP capacity: We compare the place-
ment algorithms by varying the ITAP capacity. When ITAP
capacity is small and hence is a bottleneck, the number of
required | TAPs decreases proportionally with an increasein
I TAP capacity. Asthe ITAP capacity is large enough and no
longer the bottleneck, the number of required ITAPsis un-
affected by a further increase in ITAP capacity. Moreover,
the relative performance of different placement algorithms
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Figure 7: Idea link model: real neighborhood topology
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is consistent with the previous scenarios.

Effects of heterogeneous house demands: So far we
have considered homogeneous house demands (i.e., each
house generates one unit demand). A number of studies
show that realistic user demands are very heterogeneous,
and often exhibit Zipf-like distributions [5, 6]. Motivated
by these findings, below we evaluate the placement ago-
rithms when house demands follow a Zipf distribution. The
results are qualitatively the same as those of using the ho-
mogeneous house demands. The greedy algorithm contin-
ues to out-perform the others significantly and yield nearly
optimal solutions.

Real neighborhood topology: Finaly we evaluate the
placement algorithms using a real neighborhood topology
of 105 houses. We again use Zipf-distributed house de-
mands. As shown in Figure 7, initially when the commu-
nication range is too small, most houses are unreachable
from other houses, and therefore all the algorithms require
closeto 105 ITAPs. As the communication range increases,
fewer ITAPs are needed to cover the neighborhood. At the
extreme, when the communication range reaches 250 me-
ters, the neighborhood forms a single connected compo-
nent, and therefore most algorithms require only one ITAP.
(Note that thisis only true for the ideal model. As shownin
the next section, when considering wirelessinterference, we
often needs more ITAPs even for a single connected com-
ponent.) Moreover, the greedy algorithm performs close to
optimal over all communication radii considered.

6.2. Performance Under the General Link Models

In this section, we evaluate the performance of place-
ment algorithms under two general link models, namely
bounded hop-count and smooth throughput degrada-
tion models.

6.2.1. Bounded Hop-count Model: We compare the
placement algorithms for bounded-hop count model by
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Figure 8: Bounded hop-count model: varying the hop-count
threshold, where N = 100, CR = 10, WC = 6, IC =
100, and wy, = 1Vh € H.

varying the hop-count threshold, communication ra
dius, and neighborhood topology.

Effects of hop-count threshold: First we compare the
placement algorithms by varying the hop-count threshold.
As shown in Figure 8, when the hop-count threshold in-
creases, the effect of hop-count reduces, since al or most
paths are within hop-count limit. Comparing the differ-
ent placement algorithms, we see that the greedy place-
ment performs very close to the lower bound, especially
for large hop-count threshol ds. When the hop-count thresh-
old is small, the gap between the lower bound and greedy
algorithm is dlightly larger, since the lower bound ignores
throughput degradation with the hop-count, and is not as
tight. Compared to the greedy algorithm, the augmenting
algorithm requires 50% more ITAPs; the clustering algo-
rithm in [3], requires 2 - 3 times as many ITAPs; and the
random algorithm requires 4 to 8 times as many I TAPs.

Effects of communication radius: Next wefix the hop-
count threshold to 3, and vary the communication radius.
As expected, an increase in communication radius reduces
the number of ITAPs required to cover the neighborhood.
Moreover the greedy continues to perform significantly bet-
ter than the alternatives. We observe similar resultsfor other
hop-count threshol ds.

Real neighborhood topology: We aso evauate the
placement algorithms using the real neighborhood topol-
ogy. As shown in Figure 9, the results are qualitatively the
same as the random topologies. The greedy algorithm per-
forms very close to the lower bound for al the communica-
tion radii considered.

6.2.2. Smooth Throughput Degradation Model: Next
we empirically study the placement algorithms for the
smooth throughput degradation model.

Effects of communication radius: Figure 10 showsthat
the number of required ITAPs decreases on increasing the
communication radius. The gap between the performance
of different algorithmsis the largest when the communica-
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Figure 9: Bounded hop-count model: a real neighborhood
topology for various communication radii, where N = 105,
WC = 6, IC = 100, hop-count threshold = 3, and the
house demands follow a Zipf distribution.
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Figure 10: Smooth throughput degradation model: varying
the communication radius, where N = 100, WC = 6,
IC =100,andwy, = 1Vh € H.

tion radius is between 5 and 20 (The average inter-house
is around 5.). This can be explained as follows. When the
radius is very small, most houses are disconnected from
one another. So, the number of ITAPs required is nearly
the number of houses. When the radius is very large, most
houses are reachable from one another within one or few
hops, and the number of ITAPsrequiredis closeto 1. How-
ever, for the practical scenario with medium communica-
tion radius, the gap between different algorithms is most
significant, especially between the random placement and
the other two. Note that the lower bound, which is derived
by ignoring the impact of hop-count on throughput, is more
loose for this scenario. Even then the greedy is still compet-
itive when compared with these loose lower bounds.

Real neighborhood topology: Figure 11 shows the re-
sults from the real neighborhood topology. As we can see,
the greedy placement continues to perform well, yielding
close to optimal performance.

7. Practical Considerations

We now present algorithms for handling two practical
regquirements: providing fault tolerance and handling work-
load variation.
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Figure 11: Smooth throughput degradation model: a real
neighborhood topology for various communication radii,
where N = 105, WC = 6, IC = 100, and the house de-
mands follow a Zipf distribution.

7.1. Providing Fault Tolerance

A practical solution to the ITAP placement problem
should ensure Internet connectivity to all the houses in the
neighborhood, evenin the presence of afew ITAP and house
failures. Here we present an enhancement to our algorithm
by incorporating this fault tolerance constraint. Fault tol-
erance is achieved by providing multiple node independent
pathsfrom ahouseto I TAPs!, and over-provisioning the de-
livery paths. Over-provisioning is a scheme that allocates
more flow to a house than its demand, and therefore helps
in providing QoS guarantees even when there are afew fail-
ures.

7.1.1. Problem Formulation: Let each house have one
unit of demand, and d independent pathsto reach the I TAPS;
the average failure probability of a path be p; and the over-
provisioning factor be f (i.e., each independent path allo-
cates 5 capacity to a house, and the total capacity allocated
to ahouse by d independent pathsis f).

Since for every house, there are d independent paths
from this house to ITAPs and the probability of failure of
each path is p, the probability that exactly ¢ of these paths
fail is (4)p’(1 — p)?~*. In this case, the amount of traffic
that can be delivered is min( @, 1). Therefore, the ex-
pected fraction of the traffic from a house that can reach an
ITAR, S(f,p,d), isgiven by the following formula

d

sttt =3 (§) -t min(E 2 ),

=0

Given the expected guarantee desired by the home users,
S(f,p,d), we can use the above expression to derive the
overprovision factor, f, based on path failure probability
and the number of independent paths. We now provide fault
tolerant LP formulationsfor theideal and general link mod-
els.

1 These can be different ITAPs since the ultimate goal is to provide In-
ternet connectivity irrespective of which ITAPis used.
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Figure12: LPformulationfor theideal link model with fault
tolerance constraints, where d is the number of independent
paths, and f isthe over-provision factor.

Ideal Link Model with the Fault Tolerance Con-
straint : Figure 12 provides an LP formulation of the fault
tolerant problem for the ideal case, i.e. when through-
put is independent of the path length. For each edge e and
each house h, the variable z. j indicates the amount of
flow from A to ITAPs that is routed through e. Also, for
each ITAP 4, the variable y; denotes the number of ITAPs
opened in equivalence class i. The above integer LPissim-
ilar to the one in Section 4.1.1. The differences are as
follows: (i) the constraint < w;, added to the first inequal-
ity, (ii) a change in the second constraint from w, to wyd
in the amount of flow originating from each house, and (iii)
amultiplicative factor of 5 on the |eft-hand side of the ca-
pacity constraints (since the amount of capacity each path
alocates to each house is ). The first modification en-
sures that the flow from each house is served by inde-
pendent paths; (ii) and (iii) are for the over-provisioning
purpose.

Similarly we can formulate integer LP for general link
models with the fault tolerance constraint. Refer to [23] for
details. For all link models, we have Theorem 6.

Theorem 6 It is NP-hard to find a minimum number of
ITAPs required to cover a neighborhood while providing
fault tolerance.

7.1.2. Placement Algorithms: The greedy, augmenting
and random placement agorithms are based on the same
idea described in the previous sections of this paper. How-
ever, they differ in the way they compute the total demands
supported by a given set of ITAPs. For the ideal case, we
compute the satisfied demands by slightly modifying the
LPin Figure 12, and solving the resulting LP. The objective
functionis changed to be maximizing 3, (3_._ 4 ,) Te.n —
Ze:(%h) Te,1 ), Which corresponds to maximizing the sup-
ported demands. The variables y; are replaced by the num-
ber of occurrences of 4 in I'. Furthermore, the second con-
straint is changed to Ee:(hﬂ)) Teh — Ee:@m Tep, < wpd

in order to limit the maximum flow from a node. For the
genera link model, we compute the satisfied demands by
applying similar modifications.

We compared the above agorithms to the lower bound,
derived by relaxing theintegrality constraint and solving the
relaxed linear program. Our evauation [23] shows that for
all algorithms the number of ITAPs required increases lin-
early with the number of independent paths. Moreover, the
results of the greedy algorithm are very close to the lower
bound, and significantly better than the other two.

7.2. Handle Workload Variation

In practice, user demands change over time, and often
exhibit diurnal patterns [6, 19, 26]. Since it is not easy to
change | TAP |locations oncethey are deployed, agood ITAP
placement should handle demands over all periods. In this
section, we describe and evaluate two approaches to han-
dle variableworkloads. While our discussion focuses on the
non fault-tolerant version of the placement problems, the
ideas carry over easily to the fault-tolerant version as well.

One approach to take into account workload change is
to provision ITAPs based on the peak workload. That is,
if w[h][t] denotes the demand of house h at time ¢, we
use max; w[h][t] as the demand for house /, and feed this
as an input to the placement algorithms described in the
previous sections. We call this approach peak load based
placement. This algorithmis simple, but may sometimes be
wasteful, e.g., when different houses’ demands peak at dif-
ferent times.

To improve efficiency without sacrificing user perfor-
mance, we now explore how to optimize ITAP locations
for demands over multiple time intervals. More formally,
the problem can be stated as follows. Each house i has de-
mand w[h][t] a time ¢. Our godl is to place a set of ITAPs
such that at any time ¢, they can serve al the demands gen-
erated at ¢, i.e., w[h][t] for al h's.

Here we describe a greedy heuristic with a logarithmic
worst-case bound for the ideal link model. The same idea
applies to other link models. The high-level idea is to it-
eratively place the ITAP such that together with the a-
ready opened I TAPs it maximizesthetotal demands served.
Unlike in the previous section, here the total demands in-
clude demands over multiple time intervals. More specifi-
caly, we place an I TAP such that it maximizes ) -, SDx,
where S D, isthetotal satisfied demandsat time¢. This can
be computed by changing the greedy algorithm of Section
4.1.2 as follows. In every iteration, for every j € 7 and
t € T, we construct the graph G’ asin the algorithm of Sec-
tion 4.1.2 based on the demands at time period ¢. Then we
compute the maximum flow f; ¢ in this graph. After these
computations, we pick the ITAP j that maximizes ), f;,
and open it. We call this algorithm multiple-demand-based



greedy placement (M-greedy, for short). In the following
theorem, we prove a worst-case bound on the M-greedy’s
performancein the ideal link model.

Theorem 7 Consider the ITAP placement problem in the
ideal link model with integral demands and capacities, and
let D; be the total demand in period ¢. The approxima-
tion factor of the M-greedy algorithm for this problem is
atmost In(} ", D;). Inother words, if the optimal algorithm
requires K ITAPS to serve demands over L time periods,
then the M-greedy requires at most K In()_, D;) ITAPs.

Refer to [23] for the proof. Based on the above theorem,
we have the following corollary.

Corollary 8 Let L denote the total number of periods, and
N denote the number of houses. The approximation factor
of the M-greedy intheideal link model isIn(LN), when the
capacities of edges and vertices are integer-valued and ev-
ery house has either zero or one unit of demand at any time
t.

Thisiseasy toseebecause ), D; < LN.

The approximation factor of the greedy placement using
the peak load is at most afactor of ", (In D, ) (refer to [23]
for details). When D, = D,, for al ¢'s, its cost is at most
L1n(D,,). Thisisroughly L times the approximation fac-
tor of the M-greedy algorithm proved above.

In addition to the worst-case analysis, we eval uate the ef -
fectiveness of the algorithms empirically, and observe that
the number of ITAPs required to serve demands at two dif-
ferent periods using M-greedy is only dightly higher than
the maximum number of ITAPs required to serve either of
the two periods. In the interest of space, we refer readers to
[23] for details.

8. Conclusions

In this paper we look at the problem of efficient ITAP
placement to provide Internet connectivity in multi-hop
wireless networks. We make three major contributions in
this paper. First, we formulate the ITAP placement prob-
lem under various wireless models, and design agorithms
for each model. Second, we address several practica is
sues when using these algorithms. In particular, we extend
the placement algorithms to provide fault tolerance and to
handl e variable user demands. These two enhancementsim-
prove robustness of our placement schemesin face of fail-
ures and demand changes. Third, we demonstrate the effi-
ciency of our placement algorithms using analysisand sim-
ulations, and show that the greedy algorithms give close to
optimal solutions over a variety of scenarios we have con-
sidered. To our knowledge this is the first paper that looks
at the ITAP placement problem for general MAC schemes.
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