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Abstract 

SpecExplorer is an integrated environment for model-
driven development of .NET software. In this paper we 
discuss how scenarios can be described in 
SpecExplorer’s modeling language, Spec#, and how the 
SpecExplorer tool can be used to validate those 
scenarios by various means.  
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1 Introduction 
SpecExplorer is an integrated environment for model-
driven development of .NET software which is being 
developed at Microsoft Research. It is a successor of a 
tool previously known as the AsmL test tool [5]. 
SpecExplorer supports authoring models in a C#-like 
modeling language, Spec#, exploring their behavior by 
various means, and relating them to implementations.  

This paper shows how SpecExplorer and its language, 
Spec#, can be applied for scenario-oriented modeling 
and how these models can be instrumented for 
validation purposes. The paper refines and extends 
earlier work of the authors on scenarios [1,15]. 

Scenario-oriented modeling is understood as a 
methodology for describing the behavior of a system 
from a global perspective by looking at the observable 
interactions between components in the system. A use-
case, in our understanding given by a set of scenarios, 
describes how the components interact for a certain 
purpose (or service). This view on scenarios and use-
cases is not necessarily restricted to a particular notation 
like message sequence charts (MSCs). Rather, we 
describe scenarios in this paper in an algorithmic way, 
using the modeling language Spec#. Our ultimate goal is 
to have tailored notations like MSCs as front-ends to 
this kind of descriptions. However, the focus here is not 
on these user-level notations, but on the underlying logic 
and instrumentation which we propose can be faithfully 
implemented in Spec# and instrumented in 
SpecExplorer.  

The paper is organized as follows. We start with a 
sketch of Spec#, and then describe how we encode in 
principle scenarios in Spec#. We then introduce, as a 
non-trivial example, a model for the weather control 
logic of CTAS, a flight control system, which has been 
selected as a common case study for the ICSE 2003 
Workshop on Scenarios and State. We will then use the 
SpecExplorer tool for exploring the CTAS model by 
generating a finite state machine which gives a coherent 
view of the behavior modeled by the scenarios. Finally, 
we discuss test automation based on these results. The 
paper concludes with a discussion and comparison of 
related work. 

2 A Sketch of Spec# 
Since Spec# is an extension of C#, we are confident to 
rely on the readers’ intuitive understanding of the 
language as used in the examples. 1 

Spec# integrates features known from modeling 
languages like VDM, Z and ASM into a C# notation 
style which is supposed to be easily comprehensible by 
users in an industrial development context. Spec# is a 
true superset of C#, providing all features of C# 
(objects, interfaces, inheritance, method overriding, 
properties, events, and so on), and adding a few 
constructs which support modeling. Among those the 
most important are: 
− Contracts. One can define pre- and post-conditions, 

as well as invariants in Spec#. 
− High-Level data types. There is library and language 

support for high-level data types such as finite sets, 
maps, bags, sequences and so on. 

− Comprehensions. Spec# provides a generalized 
comprehension notation for denoting aggregate type 
comprehensions (e.g. the "set of all numbers which 
satisfy a condition"), as well as logical connectives, 
like universal and existential quantification. 

− Nondeterminism. Spec# provides non-deterministic 
choice which is required in particular for supporting 
partial/loose models, avoiding over-specification. 

                                                        
1 Spec# is the successor of an earlier modeling language 

developed at Microsoft Research, called AsmL. It takes over 
many concepts of AsmL, but in an appearance similar to C#. 



 

Spec# documents can be authored as plain text, XML, 
or Microsoft Word documents and can be compiled 
from Visual Studio .NET or from Micorosft Word 
(which is integrated as an editor into SpecExplorer). 
Round tripping between XML and Word is possible.  
Note that this paper is itself a valid Spec# document 
which can be fed directly as a source file into 
SpecExplorer.  

In addition to syntactic and semantic language 
features, Spec#'s implementation supports meta-
programming and introspection that allows a systematic 
exploration of the model's behavior, e.g. for the purpose 
of model checking, test generation, and test evaluation. 
On the meta-level the state of a Spec# model is a first-
class citizen, which enables us to realize various search 
strategies over the state space of a model, which can be 
written in Spec# itself or any other .NET-compliant 
language. 

3 Scenarios in Spec# 
We consider a use case to be semantically a set of 
interaction sequences consisting of actions, where each 
action in turn is an observable activity of a component 
of a system. Use cases are described by a set of 
scenarios, where scenarios can describe one or more 
instances of similar interaction sequences2.  

The scenarios of a use-case describe the collaboration 
of the components of the system for a particular 
purpose, also called service. The same components can 
be involved in different use-cases, collaborating on 
different purposes/services. A use-case thus is a 
viewpoint on the system's integrated behavior.  

The power of scenario-oriented modeling stems from 
that it  
− allows to model the feature interactions between 

components, in contrast to direct component-wise 
modeling, where the interactions only follow 
indirectly from the component interface models; and 
it 

− allows to keep open details of component behavior, 
which is useful in particular during early requirement 
specification. 

Our goal is to describe scenarios programmatically by 
using the modeling features of Spec#. To this end, we 
first need to fix the understanding of an action.  In an 
object-oriented programming world as it is provided by 
.NET, an action naturally amounts to a method call on a 
component class or interface, with given parameters and 
possible return values. Observing an action thus 

                                                        
2 2 Other authors identify uses cases and scenarios. We prefer 

to make a distinction like in Jacobson's original definition of 
use cases [7]. However, we don't restrict scenarios to 
describe just one interaction sequence; by parameterization 
or other means, they can describe many (similar) sequences. 

amounts to observing a method call. To describe such 
observations in scenarios, we extended Spec# by the so-
called expect statement. This statement is introduced by 
the expect keyword, followed by a method call or an 
equality test over the result of a method call: 

expect o.M(x1,...); // void action 

expect y == o.M(x1,...); // non-void 

As an illustrating example, let us consider a simple 
example, a keycard controlled door.  The actors of this 
system consist of a user and the door, which are 
described by two interfaces: 

interface IUser { 

  void SwipeCard(); 

} 

interface IDoor { 

  void WaitForCard(); 

  void ReleaseLock(); 

  void SignalInvalidCard(); 

} 

The use-case consists of a global state containing the 
data base of known users, and two scenarios, describing 
the behavior for the "good" path (a valid user) and the 
"bad" path (an invalid users): 

Set<IUser> knownUsers; 

IDoor door; 

void GoodPath(User user) { 

  require user in knownUsers; 

  expect door.WaitForCard(); 

  expect user.WipeCard(); 

  expect door.ReleaseLock(); 

} 

void BadPath(User user) { 

  require user notin knownUsers; 

  expect door.WaitForCard(); 

  expect user.WipeCard(); 

  expect door.SignalInvalidCard(); 

}  

Note the use of pre-conditions for describing enabling of 
scenarios.  A pre-condition should be read as a logical 
implication: we allow the specified behavior to happen 
only when the pre-condition holds. 

An independent formal description of the semantcsi 
of such use-case descriptions can be given easily (e.g. 
by the set of traces of method calls they denote), but 
here we prefer to give our actual underlying 
implementation in Spec#, which turns out to be not 
complicated either. The expect statement is just 
syntactic sugar for firing an event which is passed 
reflection information about the method call. Thus, for 
the general case of expect with result, we translate 

expect y == o.M(x1,...) 

to the code: 



 

if (ExpectEvent != null) 

  ExpectEvent(y,o,Info("M"),x1,...); 

This event is declared (in Spec# or C#) as  

delegate void ExpectEventHandler( 

      object expectedResult, 

      object instance, 

      MethodInfo method, 

      params object[] args); 

event ExpectEventHandler ExpectEvent; 

Subscribers to the expect event handler determine the 
actual meaning of the use-case. A simple case could be 
that we just want to "print" the expected method call, in 
order to see what kind of actions the use-cased induces. 
In this case we would define (in Spec# or C#) the 
following event handler: 

void PrintHandler( 

    object expectedResult, 

    object instance,  

    MethodInfo method, 

    params object[] args) { 

  Console.WriteLine( 

      "{0} == {0}.{1}({2})", 

      expectedResult, instance, 

      info.Name,args); 

}  

A more sophisticated event handler could first perform 
an actual call to a method implementing the desired 
semantics, and then compare whether the actual result 
matches the one expected by the use case, thus realizing 
conformance testing. This will be discussed in greater 
detail later in this paper. 

We could define at this point a simple Spec# model 
program which realizes the "playing" of the door control 
use-case, using Spec#'s modeling features like non-
deterministic choice to provide parameters for the 
scenarios, and exploration features to see all possible 
behaviors for a given configuration of users and a door. 
However, this kind of application is much better done 
using the SpecExplorer tool. We will see how that 
works after we introduce a more interesting use-case 
example. 

4 CTAS Weather Control Logic 
CTAS weather control logic has been suggested by the 
organizers of the ICSE 2003 workshop on Scenarios and 
State Machines as a case study to compare tools and 
notations [3]. CTAS (Center TRACON Automation 
System) is a set of tools designed to help air traffic 
controllers. CTAS consists of a set of processes with 
one of them acting as the connection manager (CM) to 
which the other processes are clients. One task in the 
CTAS system is to synchronize weather information 
between a weather forecast provider and the variety of 

clients, which is safety critical since adverse weather 
conditions can grind an entire traffic control system to a 
halt. The weather control logic is given as a "real world" 
informal specification consisting of a set of axioms and 
scenarios written by NASA. Here, we will model a 
fragment of the logic, more specifically, the updating of 
the weather information between the CM and its clients. 
Our approach to use-case modeling in Spec# allows us a 
nearly one-to-one translation from the original spec (we 
changed some identifiers and other small details for 
reasons of comprehensibility).  

The interesting aspect of the weather updating 
process is that it has to guarantee atomicity: new 
weather information becomes effective only if all clients 
successfully receive the new weather information. 
Essentially, the logic realized between the connection 
manager and its clients is a two-phase transaction 
protocol.  

We start by defining the types of the actors of the 
system, which are the connection manager and its 
clients. The connection manager provides methods for 
representing the connection attempt of a client, for 
receiving a new weather forecast, and for receiving 
whether a client has successfully got, used, or reverted a 
weather report which has been distributed to him: 

class ConnectionManager { 

  void Connect(Client client); 

  void NewForecast(); 

  void ReceivedGet 

       (Client client, bool ok); 

  void ReceivedUse 

       (Client client, bool ok); 

  void ReceivedRevert 

       (Client client, bool ok); 

} 

A client has methods for representing the get 
command of a weather report, the command to use the 
last received weather (only if all clients successfully 
received a weather report, they should start using it), the 
command to revert to a previous weather report, and 
finally the command to close the connection: 

class Client { 

  void GetNewWeather(); 

  void UseNewWeather(); 

  void RevertWeather(); 

  void CloseConnection(); 

} 

Note that the methods of the classes above are 
unimplemented (and not abstract). Spec# allows us to 
define methods without a body, in which case the body 
is automatically generated to throw an "unimplemented 
method" exception. In general, our approach to 
scenario-modeling can refer directly to the classes of an 
existing implementation to obtain the vocabulary of 



 

actions, can use interfaces, or can use unimplemented 
classes as above which are later filled in with the 
implementation. To run a use-case for validation, we 
only need to be able to create objects of the given actor 
classes, which don't need to be implemented until we 
actually want to perform conformance checking, for 
example. 

In order to define the use-case for CTAS, we next 
define some enumerations and global state variables 
which represent the status of the connection manager 
and the clients in the system.  

enum CMStatus { 

  Ready, Updating,  

  PostUpdating, Reverting 

}; 

enum CLStatus { 

  Ready,   

  Updating, PostUpdating, Reverting 

}; 

bool initialized = false; 

ConnectionManager cm; 

CMStatus cms = CMStatus.Ready; 

Map<Client,CLStatus> cls = Map{}; 

The boolean flag initialized indicates whether the 
configuration for the CTAS is initialized; the 
initialization includes creating a connection manager 
object cm and client objects. The initialization scenario 
will not be defined here but later on when we put things 
together. 

We are now ready to define the scenarios. The first 
one describes the connection of a client to the 
connection manager (requiring that the use case is 
initialized). Connection is only possible for clients who 
are not yet connected and only if the status of the 
connection manager is Ready: 

void Connect(Client c) { 

  require initialized; 

  require cms == CMStatus.Ready; 

  require c notin cls; 

  expect cm.Connect(c); 

  cls[c] = CLStatus.Ready; 

} 

Next we describe the scenario for a new weather 
forecast, which is enabled only when the status of the 
connection manager is Ready. On a new forecast, the 
connection manager and all connected clients change 
their status to Updating, and all clients are expected to 
receive the new weather information: 

void NewForecast() { 

  require initialized; 

  require cms == CMStatus.Ready; 

  expect cm.NewForecast(); 

  cms = CMStatus.Updating; 

  foreach (c->s in cls) {  

    expect c.GetNewWeather(); 

    cls[c] = CLStatus.Updating; 

  } 

} 

Next we describe the scenario where the connection 
manager gets the notification that a client has or has not 
successfully received weather information: 

void Got(Client c, bool ok) { 

  require initialized; 

  require cms == CMStatus.Updating; 

  require cls[c] == CLStatus.Updating; 

  expect cm.ReceivedGet(c,ok); 

  if (ok) GotOk(c); 

  else GotNotOk(c); 

} 

If getting weather information was successful, the client 
status changes to PostUpdating. If all clients in the 
system are in this state, then the connection manager 
itself also changes its status accordingly, and clients are 
expected to receive the command to use the new 
weather information: 

void GotOk(Client c) { 

  cls[c] = CLStatus.PostUpdating; 

  if (Forall{s==CLStatus.PostUpdating: 

             c1->s in cls}) { 

    cms = CMStatus.PostUpdating; 

    foreach (c1->s in cls) 

      expect c1.UseNewWeather(); 

  } 

} 

If a client was not successful in getting weather 
information, the system changes it status to Reverting. 
All clients are expected to receive the command to 
revert weather information: 

void GotNotOk(Client c) {  

  cms = CMStatus.Reverting; 

  foreach (c1->s in cls) { 

    expect c1.RevertWeather(); 

    cls[c1] = CLStatus.Reverting; 

  } 

} 

We next describe the scenario where the connection 
manager gets the notification that a client has 
successfully used the new weather information. It is 
very similar to the Got scenario, except that in case of a 
failure, the system shuts down: 



 

void Used(Client c, bool ok) { 

  require initialized; 

  require cms == CMStatus.PostUpdating; 

  require  

    cls[c] == CLStatus.PostUpdating; 

  expect cm.ReceivedUsed(c,ok); 

  if (ok) UsedOk(c);  

  else Shutdown(); 

} 

void UsedOk(Client c) { 

  cls[c] = CLStatus.Ready; 

  if (Forall{s == CLStatus.Ready: 

             c1->s in cls}) 

    cms = CMStatus.Ready; 

} 

On shut-down, all connected clients are disconnected, 
and the connection manager resets its status to Ready: 

void Shutdown() { 

  foreach (c->s in cls) 

    expect c.CloseConnection(); 

  cls = Map{}; 

  cms = CMStatus.Ready; 

} 

Finally, we model the reverting phase of the protocol, 
where the connection manager receives notification 
whether a client could successfully revert its weather 
information. It is very similar to the Used-scenario. If 
revert failed, the system shuts down: 

void Reverted(Client c, bool ok) { 

  require initialized; 

  require cms == CMStatus.Reverting; 

  require  

   cls[c] == CLStatus.Reverting; 

  expect cm.ReceivedRevert(c,ok); 

  if (ok) RevertedOk(c);  

  else Shutdown(); 

} 

void RevertedOk(Client c) { 

  cls[c] = CLStatus.Ready; 

  if (Forall{s == CLStatus.Ready: 

             c1->s in cls}) 

    cms = CMStatus.Ready; 

} 

This finishes the CTAS model. In the next sections, we 
discuss how to use such a model for validation under 
SpecExplorer. 

5 A Sketch of SpecExplorer  
The SpecExplorer tool is an integrated environment for 
model-driven development of .NET software. It 
provides a platform for tool developers to integrate 
various techniques which leverage models in the 

development process. The tool, developed on base of 
experiences with its predecessor, the so-called AsmL 
test tool, is rather new. By the time of this writing it 
encompasses the following functionality: 
− Authoring of (literate) models in various editors, in 

particular Microsoft Word. 
− Annotating the model with information about its use 

in execution and exploration: what are the main 
actions of the model (the main entry points), which 
parameters to provide to these actions, predicates on 
states to be omitted in exploration, and so on. 

− Exploring the model, continuously or in single-
stepping mode, in various modes: random execution, 
state reachability checking, exhaustive exploration 
pruned by state partitioning, and so on. 

− Displaying results of exploration by means of a state 
machine diagram. 

− Generating test suites from state machines generated 
by exploration. 

− Running conformance checks of test suites against 
actual implementations. 

In this paper, we will only use some of those features, 
namely random execution and state machine generation. 
We also sketch a conformance checking algorithm 
which is tailored for the particular scenario-oriented 
modeling style we present, and which is currently being 
implemented for SpecExplorer. 

6 Random Execution of CTAS 
It is straightforward to employ a model like CTAS under 
SpecExplorer for random execution. An 
ExpectEventHandler, which prints out expected 
calls (as given in Sect. 3) can be used to get first insights 
into the behavior of the model. 

In order to enable random execution, we need to 
annotate the CTAS model with information about the 
top-level actions3 and their parameters. The actions in 
our case are the scenarios of the CTAS model, plus one 
further pseudo-scenario which sets up a configuration of 
a connection manager and its installed clients. This 
scenario is parameterized over the number of clients we 
want to install: 

                                                        
3 Please note the overloading of notions of actions in scenarios 

and in SpecExplorer. An action in a scenario is an method 
call on the interface of a component which we observe using 
the expect-statement. An action in SpecExplorer is a top-
level entry point of the model. 



 

Set<Client> installedClients = Set{}; 

void Initialize(int numOfClients) {  

  require !initialized; 

  cm = new ConnectionManager(); 

  installedClients = 

    Set{new Client():  

        i in Set{1..numOfClients}}; 

  initialized = true; 

} 

Domain annotations can be done in SpecExplorer on a 
per-type and per-method base.  If a parameter has no 
domain annotation, then its domain defaults to that of 
the type of the parameter. For CTAS, it is sufficient to 
annotate domains on a per-type base: 
− The type int, which is used as an parameter for the 

Initialize scenario, is assigned the expression 
Set{2} (so we configure the CTAS to execute with 
two clients; other values are easily possible); 

− The type Client is annotated with the expression 
installedClients (so all scenarios which expect 
a client parameter are tried with all installed clients; 

note, however, the pre-condition of the scenario 
might filter out clients for which it is not enabled); 

− The type bool, used in various scenario parameters 
for representing acknowledge of a message, is 
annotated with the expression Set{true,false}. 

Note that domain annotations are arbitrary expressions 
which are evaluated in the current state of the model 
(consider the case of  the installedClients domain 
annotation). 

Fig. 1 shows a screenshot of SpecExplorer after a 
random execution experiment. In the upper left corner, 
Microsoft Word is running as an embedded control, 
editing the CTAS model. On the upper right corner, the 
metadata explorer is shown, which allows annotating 
actions and domains of the model. The lower right 
corner displays information about the annotations for the 
method Got, which is configured to be an action of a 
certain kind, with parameter domains to be taken over 
from the annotation of the parameter types. The lower 
left corner shows the printout of the expect event 
handler on one random execution run. Different 
executions will result in different runs, determined by 



 

the random selection of parameters from the given 
parameter domains. 

7 Generating an FSM for CTAS 
Random execution is a simple application of the 
underlying powerful exploration engine of 
SpecExplorer. In general, this engine allows us to 
explore a model by various means, using techniques 
similar to that of an explicit state model checker. 
Another application of the exploration engine is finite 
state machine generation, which is used in the 
SpecExplorer tool primarily for test case generation, but 
is also useful on its own for validating the design of a 
model. We will show how to generate an FSM for 
CTAS. 

The FSM generator does an exhaustive exploration of 
the model's state space. If directly applied to the 
annotations we have given for random execution (where 
two clients are involved), it produces an FSM with 48 
transitions and 22 states. However, this FSM is already 
too large to be comprehensible. SpecExplorer provides a 
collection of techniques to prune exploration, which is 
essential if the model's state space is infinite (which is 

not the case for the CTAS as configured), and useful if 
one wants to get a coherent picture of the behavior. The 
pruning techniques are the followings: 
− Filters: predicates over the state, which characterize 

the states to be included in the exploration. If a state 
does not satisfy all filters, it will be excluded. 

− State Partitioning: one can define a projection 
function on the state which partitions the state space 
into state groups, where a group  is the set of states 
areequal under the projection. If during exploration a 
state is visited, for which a configurable number of 
representatives in its class hasgroup already been 
explored, then this state will not be considered for 
further exploration [2]. 

− Bounds: one can define an upper bound of the 
number of states to visit. 

− Coverage: one can define model coverage goals 
which, if reached, will prune exploration. 

For the CTAS example, we will make use of filters and 
state partitioning. First, we define a filter which 
excludes the trivial behavior of a cycle of the CTAS 
with zero or one connected client. The filter reads as 
follows: 



 

bool StateRestriction { 

  get {  

    return cms != CMStatus.Ready ==> 

                        cls.Size > 1; } 

} 

This filter demands that in any state where the 
connection manager's status is not Ready, the number of 
connected clients should be greater than one. 

We next define a state projection which abstracts in 
which order clients are interacting with the connection 
manager, effectively reducing the number of 
interleavings explored. The state abstraction delivers a 
pair of values, where the first element is the connection 
manager's status, and the second is a bag (multi-set) of 
the status of the clients: 
<CMStatus,Bag<CLStatus>>  

  StateProjection { 

    get { 

      return <cms,Bag{s: c->s in cls}>; 

    } 

  } 

Using this filter and partitioning an FSM will be 
generated as visualized in the screenshot in Fig. 2. Note 
that the transitions of the FSM are the scenarios of the 
model, and not the expected actions of the actors of the 
use-case. The FSM clearly visualizes the intended 
behavior of the CTAS protocol, thus serving for 
validating the adequacy of the model. 

8 Scenario Conformance Checking  
The SpecExplorer tool contains an engine for checking 
conformance of implementations against models. This 
engine takes test suites generated by traversal algorithms 
on the FSM and executes them on an implementation.  It 
supports the automatic binding of model actions against 
implementation actions, instruments the implementation 
by inserting callbacks for bounded implementation 
methods into the conformance engine, and checks the 
implementation by lock-step execution of model and 
implementation. Actions of SpecExplorer are thereby 
distinguished to be either controllable or observable. A 
controllable action is an input to the system under test, 
whereas an observable action is an output (in .NET, 
usually an event or callback). 

This engine cannot be directly applied to our 
scenario-oriented modeling approach, since the actions 
of the implementation do not correspond to the actions 
explored by SpecExplorer, which are the scenarios. We 
have developed a simple tailored version of 
conformance checking for scenario models which is 
currently implemented. 

The scenario checker works as follows. As 
SpecExplorer's actions, scenarios are distinguished to be 
either controllable or observable. By the nature of 

scenario-modeling, which describes observations over 
an autonomous system, scenarios will be configured to 
be observable most of the time. Exclusion of the rule is 
for example the Initialize scenario of CTAS, which 
controls setting up a system configuration; all other 
CTAS scenarios are observable. 

For checking the scenarios, we define the expect 
event handler (conceptually) as follows: 

bool isControllable;  

void CheckHandler( 

      object inst, object result, 

      MethodInfo info, 

      params object[] pars) { 

  if (isControllable) { 

    let implResult = 

      Trigger(inst,info,pars); 

    if (!implResult.Equals(result)) 

      throw new ConformanceFailure(); 

  } else { 

    let timeout = 

          Await(inst,info,pars,result); 

    if (timeout) 

      throw new ConformanceTryNext(); 

  } 

} 

The flag isControllable determines whether 
currently an observable or controllable scenario is 
checked. The methods Trigger and Await do the 
obvious thing, i.e. calling the according method in the 
implementation, or waiting for a call to happen with 
exactly the given parameters and result. Since 
SpecExplorer already supports instrumenting of 
implementations with callbacks, Await can be easily 
realized. 

The scenario checking engine combines exploration 
and checking "on-the-fly". From a frontier of admissible 
model states, it determines the enabled scenarios, and 
partitions them into observable and controllable. It first 
tries to execute the observable scenarios; if any of those 
throws ConformanceTryNext, it is skipped. It then 
tries the controllable scenarios; if any of those fails, or if 
there is no scenario overall to apply, the conformance 
check fails. 

Note that this technique supports only external choice 
in the implementation. Once a controllable scenario 
succeeds, there will be no point of return, i.e. 
backtracking to another choice if checking fails. 
Techniques are possible which also support internal 
choice; those are based on re-execution of the 
implementation. However, in our experience with 
applications of the SpecExplorer technology and its 
predecessor, these are rarely needed in praxis. 

There are various heuristic extensions of this basic 
model which have been investigated in the realm of on-



 

the-fly testing (e.g. [8]) and which are addressing smart 
selection of the next action to execute when several are 
enabled in a given state; we expect these techniques to 
be applicable to the scenario checker. 

9 Discussion and Conclusion 
In this paper we showed by employing a non-trivial 
example the application of Spec# and SpecExplorer for 
use-case/scenario oriented modeling. We demonstrated 
how we are able to explore a scenario model by 
execution, visualize its coherent behavior, and 
instrument it for conformance checking of an 
implementation.  Since scenarios are represented 
programmatically, our approach is very powerful, 
because it gives us all the features of a general modeling 
and programming language like Spec#, which allows as 
describing the state of the system, the interfaces of the 
actors, and the scenarios in dependency to that. 
Consistency comes for free in our approach, since we do 
not introduce redundancy. We conclude with a 
discussion of related work and restrictions of our 
approach as well as future work implied by this. 

9.1 Related Work 
We have presented earlier work on use-cases and 
scenarios in [1] and [6]. This paper presents a much 
straightened approach compared to [1], and fills the gap 
we left in [6] regarding conformance checking. Also, 
whereas in [6] actions of system components needed to 
be represented as data values, here we can represent 
them more natural by directly using the methods 
provided by actor types, using the newly introduced 
expect-statement. 

There are no other approaches we are aware of which 
closely integrate scenarios in a general purpose 
modeling language, and which are also directly 
connected to the world of implementation. A large 
collection of works exist which explores the formal 
semantics of scenarios, and their most common 
representation, message sequence charts (e.g. [10] or 
[11]). Our focus is not so much on formalizing the 
semantics, which by now is well-understood, but on 
instrumenting scenarios in model-driven development 
environment. Naturally, our approach is more tool-
oriented then others. 

Various authors presented work on synthesizing state 
machines from scenarios, e.g. [12] (by means of 
synthesizing Statecharts) or [9] (by means of 
synthesizing Markov chains).  From the state machine 
representation, test suites can be derived, using the 
known techniques based on testing of finite state 
machines, which are also build into SpecExplorer [4]. 
Our approach for scenarios does not actually intends to 
use the FSM as a device for testing, but just as an 

intermediate result of the modeling process where it 
serves to visualize and validate the design of a use case. 
Instead, we propose to use on-the-fly testing [13] for 
scenario-based conformance testing, which is better 
capable to deal with the huge amounts of interleavings 
and behaviors which can be generated from a typically 
very loose scenario model. 

The basic state exploration and FSM extraction 
algorithm that is implemented in the SpecExplorer tool 
is described in [2], and the predecessor of SpecExplorer, 
the AsmL test tool, in [5]. To our knowledge, there are 
no other model-driven development environments which 
provide a close integration of all the aspects of 
authoring, execution, exploration and conformance 
testing. Some tools implements parts of this 
functionality, for example TGV, TorX, or UniTesK. 
None of those tools, however, provides support for 
scenario-oriented modeling. 

9.2 Future Work 
Currently, there is a growing user base for Spec# and 
SpecExplorer at Microsoft, and those users are asking 
for scenario-oriented modeling features. However, one 
advantage of the approach presented in this paper is also 
one of its drawbacks for those users: by employing a 
full-fledged modeling language like Spec# for scenario-
oriented modeling, the ease of access of scenario-
oriented modeling by non-expert users may get lost. We 
regard it hence as essential to add diagram notations to 
our approach, possibly based on MSCs or LSCs, which 
recover some of the accessibility. However, our 
ambition is to provide diagram notations as a view on (a 
subset of) the programmatic representation of scenarios, 
so that a user can switch between those views, and has 
the programmatic description available for those cases 
where MSCs or LSCs are not sufficient powerful 
enough. Whether this approach works in practice has to 
be explored.  

Our current approach to scenario-modeling has (at 
least) one severe restriction which needs to be addressed 
in the future: all execution and exploration of scenarios 
is done on ground data. This is actually a restriction of 
SpecExplorer's exploration framework itself, which does 
not support "unknowns" as values. In scenario-oriented 
modeling, this restriction is particularly hindering, since 
unknowns can be very handy here to avoid over-
specification. Also, the restriction to ground data 
induces an efficiency problem for exploration, since 
variable bindings need to be unnecessarily varied over 
ground data, even if their value is never accessed. 

Our approach does not currently incorporate concepts 
for composing scenarios, like defined in High-Level 
MSCs. Future work needs to look at this subject, which 
we expect to be a smooth extension to our approach.  
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