
International Symposium on Information Theory and its Applications, ISITA2004
Parma, Italy, October 10–13, 2004

A Coset Construction for Tail-Biting Trellises

Aditya Nori and Priti Shankar

Department of Computer Science and Automation
Indian Institute of Science Bangalore, India 560012

E-mail: {aditya, priti}@csa.iisc.ernet.in

Abstract

A coset construction is presented for tail-biting trel-
lises which for a given linear block code C computes a
non-mergeable linear trellis representing C. This con-
struction is analogous to the Forney construction for
minimal conventional trellises. Unlike the case of con-
ventional trellises where the Forney construction and
the Kschischang-Sorokine (KS) product construction
give isomorphic trellises, the generalization of the For-
ney construction presented here and the Koetter-Vardy
adaptation of the KS construction do not give isomor-
phic trellises in general.

1. INTRODUCTION

Tail-biting trellises are compact combinatorial de-
scriptions of block codes. Though conventional trel-
lises for block codes have an elegant underlying the-
ory [9], the theory of tail-biting trellises appears to be
fairly complex. Several advances in the understanding
of the structure and properties of such trellises have
been made in recent years [2, 4, 7, 8]. More recently,
Koetter and Vardy [4] have made a detailed study of
the structure of linear tail-biting trellis and have also
shown how the product construction of Kschischang
and Sorokine [5] can be profitably exploited for the
construction of tail-biting trellises. In this paper, we
show that we can use a suitable modification of the For-
ney construction [3] of the minimal conventional trellis,
for producing non-mergeable tail-biting trellises as well.
However, this gives a trellis that is non-isomorphic to
that obtained from the Koetter-Vardy (KV) product
construction [4] if the latter gives a mergeable trellis.

2. PRELIMINARIES

In this section, we review some concepts related to
tail-biting trellises borrowing definitions from [4].

Priti Shankar acknowledges support from the Scientific Anal-
ysis Group, DRDO, India.

Definition 2.1 A tail-biting trellis T = (V,E,Σ) of
depth n is an edge-labeled directed graph with the prop-
erty that the set V can be partitioned into n vertex
classes

V = V0 ∪ V1 ∪ . . . ∪ Vn−1 (1)

such that every edge in T is labeled with a symbol from
the alphabet Σ, and begins at a vertex of Vi and ends at
a vertex of Vi+1(mod n), for some i ∈ {0, 1, . . . , n− 1}.

The set of indices I = {0, 1, . . . , n−1} for the partition
in (1) are the time indices. We will refer to log|Σ| |Vi|
as the state-complexity of the trellis at time index i

and the sequence
{

log|Σ| |Vi| , 0 ≤ i ≤ n
}

as the state-

complexity profile of the trellis. We identify I with Zn,
the residue classes of integers modulo n. An interval
of indices [i, j] represents the sequence {i, i + 1, . . . j}
if i < j, and the sequence {i, i + 1, . . . n − 1, 0, . . . j}
if i > j. Every cycle in T starting at a vertex of V0

defines a vector (a1, a2, . . . , an) ∈ Σn which is an edge-
label sequence. We assume that every vertex and every
edge in the tail-biting trellis lies on some cycle. The
trellis T represents a block code C over Σ if the set of
all edge-label sequences in T is equal to C. Let C(T)
denote the code represented by the trellis T . In addi-
tion to the labeling of edges, each vertex in the set Vi
is labeled by a sequence of length li ≥ dlog|Σ| |Vi|e of
elements in Σ , all vertex labels at a given depth being
distinct. Thus every cycle in this labeled trellis defines
sequences of length n+ l (where l = l1 + l2 + · · ·+ ln)
over Σ, consisting of alternating labels of vertices and
edges in T . This sequence is called the label sequence of
T . The set of all label sequences in a labeled tail-biting
trellis is called the label code represented by T and is
denoted by S(T). A trellis T is said to be linear if there
exists a vertex labeling of T such that S(T) is a vector
space. T is non-mergeable [6] if there do not exist ver-
tices in the same vertex class of T that can be replaced
by a single vertex, while retaining the edges incident
on the original vertices, without modifying C(T). If T
is non-mergeable, then it is also biproper – though the
converse is true for conventional trellises, it is not true

in general for tail-biting trellises [4]. In the discussion
that follows, we restrict ourselves to trellises represent-
ing linear block codes over the alphabet Σ = Fq. We
will also be required to define the notion of a span.
Given a codeword c ∈ C, the linear span of c, is the
interval [i, j] ∈ I, [i, j], j > i, which contains all the
non-zero positions of c. A circular span has exactly the
same definition with i > j. Note that for a given vector,
the linear span is unique, but circular spans are not –
they depend on the runs of consecutive zeros chosen for
the complement of the span with respect to the index
set I.

3. The COSET CONSTRUCTION

The Forney construction [3] for a conventional
trellis produces a minimal trellis, whereas the Coset
Construction that we will describe (henceforth referred
to as the CC tail-biting trellis) in this section computes
a non-mergeable linear trellis. The construction is
intimately tied up with the generator matrix with
which we begin. We modify the concepts of past and
future subcodes defined in [3] to take into account
vectors of circular span. Let C be an (n, k) linear code
over Fq with generator matrix G and parity check
matrix H = [h1 . . .hn]. Define a map πi : C → πi(C),
defined by c = (c1, . . . , cn) 7→ c1h1 + · · · + cihi, and
also a map τi : C → τi(C), defined by
c = (c1, . . . , cn) 7→ ci+1hi+1 + · · ·+ cnhn.
Define the past subcode Pi =
{(c1, . . . , ci) : c = (c1, . . . , ci, ci+1, . . . , cn) ∈ C, πi(c) = 0}
and the future subcode Fi =
{(ci+1, . . . , cn) : c = (c1, . . . , ci, ci+1, . . . , cn) ∈ C, τi(c) = 0}.
The Forney conventional trellis T = (V,E,Fq)
for C is constructed by identifying vertices in
Vi with cosets of C modulo (Pi × Fi), that is,
Vi = C/(Pi × Fi) for i ∈ {1, . . . , n}. There is an
edge from e ∈ Ei labeled ci from a vertex u ∈ Vi−1

to a vertex v ∈ Vi, iff there exists a codeword
c = (c1, . . . , cn) ∈ C such that c ∈ u ∩ v. In order to
define the CC tail-biting trellis, we will be required to
slightly modify the definitions of the maps πi and τi as
follows. πi : C → πi(C), defined by c = (c1, . . . , cn) 7→
c1h1 + · · ·+ cihi + dc τi : C → τi(C),
defined by c = (c1, . . . , cn) 7→ ci+1hi+1 + · · ·+ cnhn −
dc, where

dc =


0 if c is a row of G with linear span∑n
j=a cihi if c is row of G with circular

span [a, b]∑k
i=1 αidgi otherwise, where c =

∑k
i=1 αigi,

αi ∈ Fq, gi ∈ G, 1 ≤ i ≤ k.

Let D be the subspace consisting of all possible d

vectors and define past subcodes Pi(d) =
{(c1, . . . , ci) : c = (c1, . . . , ci, ci+1, . . . , cn) ∈ C, d = dc, πi(c) = 0}
and future subcodes Fi(d) =
{(c1, . . . , ci) : c = (c1, . . . , ci, ci+1, . . . , cn) ∈ C, d = dc, τi(c) = 0} ,
∀d ∈ D. The set of vertices Vi, 0 ≤ i ≤ n, at level
i is given by Vi = C/

(⋃
d∈D Pi(d)×Fi(d)

)
. The

condition for edge placement is the same as that for
the Forney conventional trellis.

Example 1 Consider the (7, 4) Hamming code defined
by the parity check matrix H and generator matrix G
(annotated with spans).

G =


1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1


[1, 6]
[6, 2]
[3, 7]
[7, 5]

H =

 1 1 0 0 1 0 1
1 1 1 0 0 1 0
0 1 1 1 0 0 1


The past and future subcode of C are given as
follows: P0 = φ, P1 = {0}, P2 = {00, 01},
P3 = {000, 111, 101, 010}, P4 = {0000, 0100},
P5 = {00000, 00011, 01000, 01011}, P6 =
{000000, 000110, 100101, 100011},
P7 = {0000000, 0010111, 1010001, 1000110},
F0 = {0000000, 0010111, 1010001, 1000110}, F1 =
{000000, 010111}, F2 = {00000, 10100, 00011, 10111},
F3 = {0000, 1111, 1100, 0011}, F4 = {000, 011},
F5 = {00, 01, 11, 10}, F6 = {0, 1}, F7 = φ.

The subcodes
⋃

d∈D Pi(d) × Fi(d), 0 ≤ i ≤ 7
are thus given by:⋃

d∈D P0(d)×F0(d) =
{0000000, 0010111, 1010001, 1000110},⋃

d∈D P1(d)×F1(d) = {0000000, 0010111},⋃
d∈D P2(d)×F2(d) =
{0000000, 0010111, 0110100, 0100011},⋃

d∈D P3(d)×F3(d) =
{0000000, 1111111, 1011100, 0100011},⋃

d∈D P4(d)×F4(d) = {0000000, 0100011},⋃
d∈D P5(d)×F5(d) =
{0000000, 0001101, 0100011, 0101110},⋃

d∈D P6(d)×F6(d) =
{0000000, 0001101, 1001011, 1000110},⋃

d∈D P7(d)×F7(d) =
{0000000, 0010111, 1010001, 1000110}.

We can now determine the coset structure⋃
d∈D C/(Pi(d) × Fi(d)), 0 ≤ i ≤ 7, and therefore we

have

V0 =
{
{0000000, 0010111, 1010001, 1000110},
{0100011, 1100101, 0110100, 1110010},
{0001101, 1001011, 0011010, 1011100},
{0101110, 1101000, 0111001, 1111111}

}
,

V1 =
{
{0000000, 0010111}, {0001101, 0011010},
{1101000, 1111111}, {1100101, 1110010},
{1010001, 1000110}, {1011100, 1001011},
{0111001, 0101110}, {0100011, 0110100}

}
,

V2 =
{
{0000000, 0010111, 0110100, 0100011},
{0001101, 0011010, 0111001, 0101110},
{1101000, 1111111, 1011100, 1001011},
{1100101, 1110010, 1010001, 1000110}

}
,

V3 =
{
{0000000, 1111111, 1011100, 0100011},
{0001101, 1110010, 1010001, 0101110},
{1101000, 0010111, 0110100, 1001011},
{1100101, 0011010, 0111001, 1000110}

}
,

V4 =
{
{0000000, 0100011}, {0001101, 0101110},
{1101000, 1001011}, {1100101, 1000110},
{0011010, 0111001}, {0010111, 0110100},
{1110010, 1010001}, {1111111, 1011100}

}
,

V5 =
{
{0000000, 0001101, 0100011, 0101110},
{1101000, 1100101, 1001011, 1000110},
{0011010, 0010111, 0111001, 0110100},
{1110010, 1111111, 1010001, 1011100}

}
,

V6 =
{
{0000000, 0001101, 1001011, 1000110},
{1101000, 1100101, 0100011, 0101110},
{0011010, 0010111, 1010001, 1011100},
{1110010, 1111111, 0111001, 0110100}

}
,

V7 =
{
{0000000, 0010111, 1010001, 1000110},
{0100011, 1100101, 0110100, 1110010},
{0001101, 1001011, 0011010, 1011100},
{0101110, 1101000, 0111001, 1111111}

}
.

The resulting trellis for the code is shown in Figure 1.
The vertices of the trellis are labeled by the representa-
tives (which are underlined above) of the corresponding
cosets in

⋃
d∈D C/(Pi(d)×Fi(d)), 0 ≤ i ≤ n.

We will now state without proof our main results.

Lemma 3.1 Given an (n, k) code C with generator
matrix G and parity check matrix H, the KV and CC
tail-biting trellises are isomorphic to each other, iff the
KV trellis is non-mergeable.

1

1

1

0

0

0

0

0

0

0

0

1

1

1
0

1

1

0

1

0
0

1

0

1

1

0

0

1

0

1

0

1

0
1

0

1
1

1
0

1

0

1

1

0

1

0 0

1

0

1
1

1

1

(0001101)

(0000000)

(0100011)

(0101110)

(0001101)

(0000000)

(0100011)

(0101110)

(1011100)

(0001101)

(1010001)

(0100011)

(0000000)

(1100101)

(0111001)

(1101000)

(1101000)

(0001101)

(1100101)

(0000000)

(0001101)

(1100101)

(1101000)

(0000000)

(0011010)

(0001101)

(1110010)

(1100101)

(0000000)0

(0010111)

(1101000)

(1111111)

(1110010)

(1101000)

0

(0000000)

(0011010)

(1110010)

(0000000)

0

(0011010)
1

(1101000)

Figure 1: A CC tail-biting trellis for the (7, 4) Hamming
code with generator matrix G

Lemma 3.2 The CC tail-biting trellis is a non-
mergeable linear trellis.

The following example illustrates the difference be-
tween the CC construction and the Koetter-Vardy (KV)
construction [4].

0

0 0

00

0

1 1

1

1

1

1

(a)

0

1

1

1

1
0 0

00 0

1 1

(b)

Figure 2: The KV and the CC trellises for the (3, 2)
code in Example 2

Example 2 Consider a (3, 2) code with generator ma-
trix G′ and parity check matrix H ′ defined as follows:

G′ =
[

1 0 1
1 1 0

]
[1, 3]
[2, 1] H ′ =

[
1 1 1

]

The KV tail-biting trellis for this code is a mergeable
linear trellis and is shown in Figure 3 (a) – the merge-
able vertices are indicated by dotted lines. In contrast,
the CC tail-biting trellis shown in Figure 3 (b) is non-
mergeable.

References

[1] L.R. Bahl, J. Cocke, F. Jelinek, and J. Raviv,
Optimal decoding of linear codes for minimizing
symbol error rate, IEEE Trans. Inform. Theory,
20(2), March 1974, pp. 284–287.

[2] A.R. Calderbank, G.D. Forney, Jr., and A. Vardy,
Minimal Tail-Biting Trellises: The Golay Code
and More, IEEE Trans. Inform. Theory, 45(5),
July 1999, pp. 1435–1455.

[3] G. D. Forney, Jr., Coset codes II: Binary lattices
and related codes, IEEE Trans. Inform. Theory,
34, September 1988, pp. 1152–1187.

[4] R. Koetter and A. Vardy, The Structure of Tail-
Biting Trellises: Minimality and Basic Principles,
IEEE Trans. Inform. Theory, 49, September 2003,
pp. 1877–1901.

[5] F.R. Kschischang and V. Sorokine, On the trel-
lis structure of block codes, IEEE Trans. Inform.
Theory, 41(6), November 1995, pp. 1924–1937.

[6] F.R. Kschischang, The trellis structure of maximal
fixed-cost codes, IEEE Trans. Inform. Theory, 42,
1996, pp. 1828–1838.

[7] A. Nori and P. Shankar, A BCJR-like Labeling
Algorithm for Tail-Biting Trellises, Proceedings of
the IEEE International Symposium on Informa-
tion Theory, Yokohama, Japan, July 2003.

[8] A. Nori and P. Shankar, Tail-Biting Trellises for
Linear Codes and their Duals, Forty-First Annual
Allerton Conference on Communication, Control
and Computing, Allerton, IL, USA, October 2003.

[9] A. Vardy, Trellis structure of codes, Handbook of
Coding Theory, V.S. Pless and W.C. Huffman, El-
sevier, 1998.

