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Abstract

A coset construction is presented for tail-biting trel-
lises which for a given linear block code C computes a
non-mergeable linear trellis representing C. This con-
struction is analogous to the Forney construction for
minimal conventional trellises. Unlike the case of con-
ventional trellises where the Forney construction and
the Kschischang-Sorokine (KS) product construction
give isomorphic trellises, the generalization of the For-
ney construction presented here and the Koetter-Vardy
adaptation of the KS construction do not give isomor-
phic trellises in general.

1. INTRODUCTION

Tail-biting trellises are compact combinatorial de-
scriptions of block codes. Though conventional trel-
lises for block codes have an elegant underlying the-
ory [9], the theory of tail-biting trellises appears to be
fairly complex. Several advances in the understanding
of the structure and properties of such trellises have
been made in recent years [2, 4, 7, 8]. More recently,
Koetter and Vardy [4] have made a detailed study of
the structure of linear tail-biting trellis and have also
shown how the product construction of Kschischang
and Sorokine [5] can be profitably exploited for the
construction of tail-biting trellises. In this paper, we
show that we can use a suitable modification of the For-
ney construction [3] of the minimal conventional trellis,
for producing non-mergeable tail-biting trellises as well.
However, this gives a trellis that is non-isomorphic to
that obtained from the Koetter-Vardy (KV) product
construction [4] if the latter gives a mergeable trellis.

2. PRELIMINARIES

In this section, we review some concepts related to
tail-biting trellises borrowing definitions from [4].

Priti Shankar acknowledges support from the Scientific Anal-
ysis Group, DRDO, India.

Definition 2.1 A tail-biting trellis T = (V,E,X) of
depth n is an edge-labeled directed graph with the prop-
erty that the set V' can be partitioned into n wvertex
classes

V=V,uWViu...uV,_ (1)

such that every edge in T is labeled with a symbol from
the alphabet X3, and begins at a vertex of V; and ends at
a vertex of Viii(mod ny, for some i € {0,1,...,n —1}.

The set of indices Z = {0, 1, ...,n—1} for the partition
in (1) are the time indices. We will refer to log s, |Vi]
as the state-complexity of the trellis at time index 1

and the sequence {logm Vi], 0<i< n} as the state-

complexity profile of the trellis. We identify Z with Z,,
the residue classes of integers modulo n. An interval
of indices [i, j] represents the sequence {i,i + 1,...5}
if i < j, and the sequence {i,i + 1,...n — 1,0,...5}
if i > j. Every cycle in T starting at a vertex of V}
defines a vector (a1, asg,...,a,) € X" which is an edge-
label sequence. We assume that every vertex and every
edge in the tail-biting trellis lies on some cycle. The
trellis T represents a block code C over X if the set of
all edge-label sequences in T is equal to C. Let C(T)
denote the code represented by the trellis T. In addi-
tion to the labeling of edges, each vertex in the set V;
is labeled by a sequence of length I; > [log|s |Vi|] of
elements in ¥ | all vertex labels at a given depth being
distinct. Thus every cycle in this labeled trellis defines
sequences of length n 4+ (where l =1; +lo +--- + 1)
over Y, consisting of alternating labels of vertices and
edges in T'. This sequence is called the label sequence of
T. The set of all label sequences in a labeled tail-biting
trellis is called the /abel code represented by T and is
denoted by S(T). A trellis T is said to be linear if there
exists a vertex labeling of T such that S(T') is a vector
space. T is non-mergeable [6] if there do not exist ver-
tices in the same vertex class of T' that can be replaced
by a single vertex, while retaining the edges incident
on the original vertices, without modifying C(T"). If T
is non-mergeable, then it is also biproper — though the
converse is true for conventional trellises, it is not true



in general for tail-biting trellises [4]. In the discussion
that follows, we restrict ourselves to trellises represent-
ing linear block codes over the alphabet ¥ = F,. We
will also be required to define the notion of a span.
Given a codeword ¢ € C, the linear span of c, is the
interval [i,7] € Z, [¢,7], j > 4, which contains all the
non-zero positions of c. A circular span has exactly the
same definition with ¢ > j. Note that for a given vector,
the linear span is unique, but circular spans are not —
they depend on the runs of consecutive zeros chosen for
the complement of the span with respect to the index
set 7.

3. The COSET CONSTRUCTION

The Forney construction [3] for a conventional
trellis produces a minimal trellis, whereas the Coset
Construction that we will describe (henceforth referred
to as the CC tail-biting trellis) in this section computes
a non-mergeable linear trellis. The construction is
intimately tied up with the generator matrix with
which we begin. We modify the concepts of past and
future subcodes defined in [3] to take into account
vectors of circular span. Let C be an (n, k) linear code
over F, with generator matrix G and parity check
matrix H = [h; ...h,]. Define a map m; : C — m;(C),
defined by ¢ = (¢1,...,¢4) — cih; + -+ + ¢;h;, and
also a map 7; : C — 7;(C), defined by
C = (Cl, ey Cn) — ci+1hi+1 + -+ Cnhn.

Define the past subcode P; =
{(cl,...,ci) C = (Cl,...,Ci,CH_l,...
and the future subcode F; =
{(cit1s--en) ie=(c1,. .. ¢, Cipt,y- - -
The Forney conventional trellis ' = (V,E,F,)
for C is constructed by identifying vertices in
V; with cosets of C modulo (P; x F;), that is,
Vi = C/(P; x F;) for i € {1,...,n}. There is an
edge from e € F; labeled ¢; from a vertex u € V;_;
to a vertex v € V;, iff there exists a codeword
c=(c1,...,¢n) € C such that ¢ € unv. In order to
define the CC tail-biting trellis, we will be required to
slightly modify the definitions of the maps m; and 7; as
follows. m; : C — m;(C), defined by ¢ = (¢q,...,¢p) —
cthi+--4+c¢h;+de 7 :C — Ti(C),

defined by ¢ = (e1,...,¢n) — cip1hipr + - + ¢, hy,

d., where
0 if ¢ is a row of G with linear span
Z;L:a cih;  if ¢ is row of G with circular

d. = span [a, b]
Zle a;dg, otherwise, where ¢ = Zle g,

OZiEFq, g e€G, 1<i<k.

Let D be the subspace consisting of all possible d

vectors and define past subcodes P;(d) =
{(c1y...,¢i))ie=(c1y .., CiyCig1,y -
and future subcodes F;(d) =
{(Cla-~-7ci) tC= (Cla"'vciaci-‘rl?'
Vd € D. The set of vertices V;, 0 < ¢ < n, at level
i is given by Vi = C/(Uqep Pi(d) x Fi(d)). The
condition for edge placement is the same as that for
the Forney conventional trellis.

Example 1 Consider the (7,4) Hamming code defined
by the parity check matriz H and generator matriz G
(annotated with spans).

10001 1 07 [L6]
010001 1]/ 62
G:
001011 1| 37
000110 1] [75
1100101

H=|1110010
01 11001

The past and future subcode of C are given as

follows: 7)0 = ¢, Pl = {0}, Pz = {00,01},
Ps = {000,111,101,010}, Py, = {0000,0100}
Ps = {00000, 00011,01000,01011},  Ps =

{000000, 000110, 100101, 100011},

P, = {0000000, 0010111, 1010001, 1000110},

Fo = {0000000,0010111,1010001,1000110}, F, =
{000000, 010111}, F» = {00000, 10100,00011,10111},

en) €C, mi(c) =0} Fs = {0000,1111,1100,0011}, F4 = {000,011},

Fs ={00,01,11,10}, F = {0,1}, Fr = ¢.

,en) € C, 1;(c) =0}.

The subcodes Ugep Pi(d) x Fi(d), 0 < i < 7
are thus given by:

UdeD Po(d) x Fo(d) =

{0000000, 0010111, 1010001, 1000110},
Udep Pi(d) x Fi(d) = {0000000, 0010111},
Udep P2(d) x Fa(d) =

{0000000, 0010111,0110100, 0100011},
UdeD P3(d) x Fa(d) =

{OOOOOOO7 1111111,1011100, 0100011},
Udgep Pa(d) x Fa(d) = {0000000, 0100011},
Uaep Ps(d) x F5(d) =
{0000000,0001101,0100011,0101110},
UdeD Po(d) x Fo(d) =

{OOOOOOO7 0001101, 1001011, 1000110},
UdED Pr(d) x F7(d) =

{0000000,0010111, 1010001, 1000110}.

We can now determine the coset structure
Udep C/(Pi(d) x Fi(d)), 0 <i <7, and therefore we

. cn) €C, d=d¢, m(c)=0}

.ycp) €C, d =de, 7i(c) =0},



have

Vo = {{ooooooo, 0010111, 1010001, 1000110},

{0100011, 1100101, 0110100, 1110010},
{0001101, 1001011, 0011010, 1011100},

{0101110, 1101000, 0111001, 1111111}},

vi = { (0000000, 0010111}, {0001101, 0011010},

{1101000, 1111111}, {1100101, 1110010},
{1010001, 1000110}, {1011100, 1001011},

{0111001, 0101110}, {0100011, 0110100}},

Vo = {{00000007 0010111,0110100,0100011},

{0001101, 0011010, 0111001, 0101110},
{1101000, 1111111, 1011100, 1001011},

{1100101, 1110010, 1010001, 1000110}},

Vs = {{0000000, 1111111, 1011100, 0100011},

{0001101, 1110010, 1010001, 0101110},
{1101000, 0010111, 0110100, 1001011},

{1100101, 0011010, 0111001, 1000110}},

Vi= {{0000000,0100011}, {0001101,0101110},

{1101000, 1001011}, {1100101, 1000110},
{0011010,0111001}, {0010111,0110100},

{1110010, 1010001}, {1111111, 1011100}},

Vs = {{0000000,0001101,0100011,0101110},

{1101000, 1100101, 1001011, 1000110},
{0011010,0010111,0111001, 0110100},

{1110010,1111111, 1010001, 1011100}},

Vs = {{00000007 0001101, 1001011, 1000110},

{1101000, 1100101, 0100011,0101110},
{0011010,0010111, 1010001, 1011100},

{1110010, 1111111, 0111001,0110100}},

Vi = {{00000007 0010111,1010001, 1000110},

{0100011, 1100101, 0110100, 1110010},
{0001101, 1001011, 0011010, 1011100},

{0101110, 1101000, 0111001, 1111111}}.

The resulting trellis for the code is shown in Figure 1.
The vertices of the trellis are labeled by the representa-
tives (which are underlined above) of the corresponding
cosets in Jqep C/(Pi(d) x Fi(d)), 0 <i <n.

We will now state without proof our main results.

Lemma 3.1 Given an (n,k) code C with generator
matrix G and parity check matriz H, the KV and CC
tail-biting trellises are isomorphic to each other, iff the
KV trellis is non-mergeable.

(1011100) (0011010)

(0001101)

o

b

(0200011)

(1101000) (1111111

Figure 1: A CC tail-biting trellis for the (7,4) Hamming
code with generator matrix G

Lemma 3.2 The CC tail-biting trellis is a non-
mergeable linear trellis.

The following example illustrates the difference be-
tween the CC construction and the Koetter-Vardy (KV)
construction [4].

Figure 2: The KV and the CC trellises for the (3,2)
code in Example 2

Example 2 Consider a (3,2) code with generator ma-
triz G' and parity check matriz H' defined as follows:



The KV tail-biting trellis for this code is a mergeable
linear trellis and is shown in Figure 3 (a) — the merge-
able vertices are indicated by dotted lines. In contrast,
the CC tail-biting trellis shown in Figure 3 (b) is non-
mergeable.
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